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ABSTRACT
This paper investigates the feasibility of querying big data by
accessing a bounded amount of the data. We study bound-
edly evaluable queries under a form of access constraints,
when their evaluation cost is determined by the queries
and constraints only. While it is undecidable to determine
whether FO queries are boundedly evaluable, we show that
for several classes of FO queries, the bounded evaluability
problem is decidable. We also provide characterization and
effective syntax for their boundedly evaluable queries.

When a query Q is not boundedly evaluable, we study
two approaches to approximately answering Q under access
constraints. (1) We search for upper and lower envelopes
of Q that are boundedly evaluable and warrant a constant
accuracy bound. (2) We instantiate a minimum set of vari-
ables (parameters) in Q such that the specialized query is
boundedly evaluable. We study problems for deciding the
existence of envelopes and bounded specialized queries, and
establish their complexity for various classes of FO queries.

Categories and Subject Descriptors: H.2.1 [Database
Management]: Logical Design – Data Models; H.2.4
[Database Management]: Systems – Query Processing

General Terms: Theory, Languages, Algorithms

Keywords: Big data; query answering; complexity

1. INTRODUCTION
Querying big data is cost prohibitive. Indeed, a linear

scan of a dataset D of PB size (1015 bytes) takes days using
a solid state drive with a read speed of 6GB/s, and it takes
years if D is of EB size (1018 bytes) [18].

Given a query Q and a dataset D, can we efficiently com-
pute query answers Q(D) when D is big? There has been
work tackling this question [11, 12, 17]. One idea is to capi-
talize on a set A of access constraints, which are a combina-
tion of indices and cardinality constraints commonly found
in practice. Under A, we study boundedly evaluable queries
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Q, such that for all datasets D that satisfy constraints in A,
there exists DQ ⊆ D such that

• Q(DQ) = Q(D), and

• the time for identifying DQ and hence the size |DQ| of
DQ are determined by Q and A only.

The need for studying bounded evaluability is evident: if
Q is boundedly evaluable, then Q(D) can be computed by
accessing (identifying and fetching) a small DQ by using the
indices in A, in time determined by Q and A, not by the
size of D, no matter how big D grows. Experimenting with
real-life data, we find that a large number of queries are
boundedly evaluable under a small number of simple access
constraints, and that such queries can be efficiently answered
in big datasets that satisfy the constraints [11,12].

Example 1.1: On the dataset D0 of all traffic accidents
in the UK from 1979 to 2005 [1], we find that 77% of con-
junctive queries (CQ, a.k.a. SPC) are actually boundedly
evaluable under a set of 84 simple access constraints, and
for such queries, our query plans take 9 seconds on average
as opposed to more than 14 hours by MySQL [12].

As an example, consider a query Q0 to find the ages of
drivers who were involved in an accident in Queen’s Park dis-
trict on May 1, 2005. The query is defined on three (simpli-
fied) relations Accident(aid, district, date), Casualty(cid, aid,
class, vid) and Vehicle(vid, driver, age), recording accidents
(where and when), casualties (class and vehicle), and vehi-
cles (including driver information such as age), respectively.
Query Q0 is a conjunctive query written as

Q0(xa) = ∃ aid, cid, class, vid, dri
`

Accident(aid, “Queen’s Park”, “1/5/2005”) ∧
Casualty(cid, aid, class, vid) ∧ Vehicle(vid, dri, xa)

´

.

It is costly to compute Q0(D0) directly: the Accident,
Casualty and Vehicle relations have more than 7.5, 10 and
13.5 million tuples, respectively. Nonetheless, a closer exam-
ination of D0 reveals the following cardinality constraints:

ψ1: Accident (date → aid, 610)
ψ2: Casualty (aid → vid, 192)
ψ3: Accident (aid → (district, date), 1)
ψ4: Vehicle (vid → (driver, age), 1)

The first two constraints state that from 1979 to 2005,
at most 610 accidents happened within a single day, and
each accident involved at most 192 vehicles, respectively.
Constraint ψ3 says that aid is a key for Accident; similarly
for ψ4. These constraints are discovered by simple aggregate
queries on D0. Indices can be built on D0 based on ψ1 such



that given a date, it returns all the ids of those accidents (at
most 610) that happened on the particular day; similarly
for ψ2–ψ4. We refer to the cardinality constraints and their
indices put together as access constraints.

Given these access constraints, we can computeQ0(D0) by
accessing at most 234850 tuples from D0, instead of millions.
(1) We identify and fetch at most 610 aid’s of Accident tuples
with date =“1/5/2005”, using the index built on ψ1. (2) For
each aid, we fetch its Accident tuple using the index for ψ3.
We select a set T1 of tuples with district = “Queen’s Park”.
(3) For each tuple t ∈ T1, we fetch a set T2 of at most 192
vid’s from Casualty tuples with aid = t[aid], with the index
for ψ2. (4) For each s ∈ T2, we find a Vehicle tuple with
vid = s[vid], using the index for ψ4. These tuples suffice
for computing Q0(D0), 610 + 610 × 192 × 2 in total, all
fetched using indices. In fact, the chances are that we need
to access 610 × 2 × 2 = 3050 tuples only, since accidents
involved two vehicles on average. Better still, no matter
how big D0 grows, as long as D0 satisfies ψ1–ψ4 (possibly
with cardinality bounds mildly adjusted), Q0(D0) can be
computed by accessing a small number of tuples determined
by Q0 and the bounds in ψ1–ψ4 only. Thus Q0 is boundedly

evaluable under access constraints ψ1–ψ4.

This approach is also effective when querying graphs. Ex-
perimenting with real-life Web graphs of billions of nodes
and edges, we find that 60% of graph pattern queries via
subgraph isomorphism are boundedly evaluable under sim-
ple access constraints, and that our bounded-evaluation
approach outperforms conventional subgraph isomorphism
methods by 4 orders of magnitude on average [11]. 2

These experimental findings verify that the bounded
evaluability analysis yields a practical approach to optimiz-
ing queries on big data. The effectiveness of the approach is
particularly evident for personalized searches. For example,
a typical query of Graph Search, Facebook [16] is to“find me
all my friends in NYC who like cycling”, which only needs
data relevant to a designated person (i.e., “me”).

However, to make effective use of the approach, several
questions have to be settled. (1) Can we decide whether a
query is boundedly evaluable under given access constraints?
We know that this problem is undecidable for first-order
logic queries (FO) [17]. Is it decidable for practical fragments
of FO? (2) When queries are not boundedly evaluable, can
we “approximate” them with boundedly evaluable queries
that warrant reasonable approximation bounds?

Contributions. This paper tackles these questions.

Bounded evaluability. We start with a study of the bounded

evaluability problem, denoted by BEP. Given a query Q and
a set A of access constraints, BEP is to decide whether Q is
boundedly evaluable under A. Intuitively, it is to determine
whether it is feasible to compute exact answers to Q in big
datasets D by accessing a bounded amount of data from D.

It is known that BEP is undecidable for FO [17]. Hence we
study BEP for several classes of FO queries, including CQ,
unions of conjunctive queries (UCQ), and positive existential
FO queries (∃FO+; a.k.a. SPJU). The good news is that BEP

is decidable for these practical query classes. The bad news
is that BEP is EXPSPACE-complete for CQ and ∃FO+.

The complexity of BEP suggests that we develop an effec-

tive syntax of boundedly evaluable queries in CQ. We show
that for a given set A of access constraints over a relational

schema R, there exists a class of CQ queries over R that
are covered by A, such that (a) it is in PTIME to decide
whether a CQ is covered by A; (b) all CQ queries covered by
A are boundedly evaluable under A; and (c) every bound-
edly evaluable CQ Q under A is A-equivalent to a CQ Q′ cov-
ered by A. Here Q is A-equivalent to Q′ if for all database
instances D of R that satisfy A, Q(D) = Q′(D). The ef-
fective syntax tells us what makes a query in CQ boundedly
evaluable, and helps us design boundedly evaluable queries.
Moreover, boundedly evaluable CQ queries in practice are of-
ten covered and can be syntactically checked [12]. This pro-
vides us with a PTIME method to check the bounded evalu-
ability of conjunctive queries, which are perceived as “the
most fundamental and the most widely used queries” [22].

We also extend the notion of covered queries to UCQ and
∃FO+, and show that covered queries also provide an effective
syntax for their boundedly evaluable queries. We study the

covered query problem (CQP), to decide whether a query
is covered by A, and hence, to help us syntactically check
whether a query is boundedly evaluable. We show that CQP

is in PTIME for CQ, and is Πp
2-complete for UCQ and ∃FO+.

Boundedly evaluable envelopes. When a query Q is not
boundedly evaluable under A, we study two approaches to
approximately answering Q in big data.

One approach is by means of envelopes, following [14]. We
search for two queries Ql and Qu in the same query language
of Q, such that (a) Ql and Qu are boundedly evaluable
under A, (b) for all datasets D, if D satisfies A, then
Ql(D) ⊆ Q(D) ⊆ Qu(D), and (c) |Q(D) −Ql(D)| ≤ Nl
and |Qu(D) −Q(D)| ≤ Nu for constants Nl and Nu derived
from Q and constants in A. Here |S| denotes the cardinality
of a set S. We refer to Ql and Qu as lower and upper

envelopes of Q under A, respectively. Intuitively, envelopes
approximate Q: they guarantee a constant approximation
bound, and are boundedly evaluable under A.

Envelopes do not always exist. This motivates us to study
the upper and lower envelopes problems, denoted by UEP and
LEP, respectively. Given a query Q that is not boundedly
evaluable under A, UEP (resp. LEP) is to determine whether
there exists an upper (resp. lower) envelope of Q under A.
To avoid the high complexity of checking BEP, we study
envelopes that are covered by A when Q is in CQ, UCQ or
∃FO+. We establish the complexity of UEP and LEP for CQ,
UCQ, ∃FO+and FO, from NP-complete to undecidable.

Bounded query specialization. The other approach is by spe-
cializing queries to achieve bounded evaluability. A query Q
in an e-commerce system often comes with a set X of param-
eters (variables) indicating, e.g., price range and make of a
product, which are expected to be instantiated with values
of users’ choice before Q is executed. Personalized searches
of Graph Search [16] are also parameterized queries in which
a variable for “person” (i.e., “me”) is instantiated by users
of the query. We refer to Q(x̄ = c̄) as a specialized query of
Q, when a tuple x̄ of parameters of X is instantiated with
constants c̄, referred to as a valuation of x̄.

We study the query specialization problem, denoted by
QSP. Given a positive integer k and a query Q that is not
boundedly evaluable under A and comes with a set X of
parameters, it is to decide whether there exists a tuple x̄ of
at most k parameters in X such that Q(x̄ = c̄) is covered by
A for all valuations c̄ of x̄, and hence, boundedly evaluable.
We provide the complexity of QSP for CQ, UCQ, ∃FO+and



FO, ranging over NP-complete, Πp
2-complete and undecid-

able. Better still, when A and a query Q in FO satisfy
certain conditions, Q can always be boundedly specialized.

Summary. We study bounded evaluability for computing
exact query answers and approximate query answers. We
identify several problems for bounded evaluability, and de-
velop their complexity bounds. The complexity results help
practitioners assess the difficulty of the bounded evaluabil-
ity analysis for practical query classes. We also provide
characterizations for these problems, to help practitioners
develop efficient query plans. Observe that for parameter-
ized queries, it is an one-time cost to compute envelopes
and bounded specialized queries, although intractable, since
these queries remain unchanged and only their parameters
are instantiated with different values. The computation can
be conducted offline when developing the queries.

A variety of (syntactic) characterizations, algorithms and
reductions are used to prove these results. Some of the
proofs are highly nontrivial. In particular, under access
constraints, the satisfiability and containment analyses of
queries are a departure from the classical Homomorphism
Theorem [13] for CQ and the characterization of [32] for
UCQ. These have to be revisited to deal with challenges
analogous to what indefinite databases introduce [27,28,34].

Related work. We classify previous work as follows.

Scale independence. The study of bounded evaluability is
motivated by the idea of scale independence [6]. The latter
aims to guarantee that a bounded amount of work is required
to execute all queries in an application, regardless of the size
of the underlying data. To enforce scale independence, users
may specify bounds on the amount of data accessed and the
size of intermediate results; when more data is needed, only
top-k tuples are retrieved to meet the bounds [5].

The idea was formalized in [17]. A query Q is called scale

independent in a dataset D w.r.t. a bound M if there is
DQ ⊆ D such that Q(D) = Q(DQ) and |DQ| ≤ M . Access
constraints were introduced in [17]. A notion of x̄-scale inde-
pendence was also proposed in [17], to characterize queries
Q(x̄, ȳ) that, for all databases D that satisfy access con-
straints and for each tuple ā of values for x̄, Q(x̄ = ā, D) can
be computed in time dependent on A and Q only. It showed
that x-scale independence is undecidable for FO, and devel-
oped syntactic rules as a sufficient condition for deciding the
x-scale independence of FO queries under access constraints.

When x̄ is empty, i.e., when no instantiation of x̄ is re-
quired, x̄-scale independence was studied in [12], referred to
as effective boundedness. The notion of effective bounded-
ness is based on a restricted form of query plans in which
data is fetched before any relational operations. It showed
that it is in PTIME to decide whether a CQ Q is effectively
bounded under A, i.e., it has a restricted query plan. With
real-life data, the approach was experimentally evaluated for
CQ in [12] and for graph pattern queries in [11].

This work extends the prior work in the following. (1) We
extend access constraints of [12,17], by allowing cardinality
bounds to be specified by a (sublinear) function in the size
of the underlying data. (2) While [17] has mostly focused on
scale independence in a given database, we focus on bounded
evaluability on all databases that satisfy access constraints,
like x-scale independence. We also give characterizations
for bounded evaluability of queries for various fragments of

FO. (3) We study generic query plans that are not allowed
by [12]. To see the difference, BEP is EXPSPACE-hard for
CQ, as opposed to PTIME for its effective boundedness [12].
To cope with the high complexity of BEP, we give an effec-
tive syntax for boundedly evaluable CQ, which is not studied
in [12,17]. (4) When exact query answers are beyond reach,
we study approximate query answering based on bounded
evaluability, which were not considered in [12, 17], except a
special case of QSP [12]. (5) In the general setting, BEP and
QSP have not been studied for CQ, UCQ and ∃FO+, and
none of CQP, UEP and LEP has been considered in [12,17].

Related to access schema is the notion of access patterns,
which require that a relation can only be accessed by pro-
viding certain combinations of attribute values. Query pro-
cessing under limited access patterns has been well studied,
e.g., [8, 15, 29, 30]. In contrast, access schemas combine in-
dices and cardinality constraints. Our goal is to characterize
what queries are boundedly evaluable with access schema,
rather than to study the complexity or executable plans for
answering queries under access patterns [8,15,29,30].

Approximate query answering. There has been work on ap-
proximate query answering, by means of (1) data synopses
that given a query Q on a dataset D, compute Q(Ds) in
a synopsis Ds of D, such as histograms [24, 25], wavelets
[21, 35] and sampling [3, 7]; (2) budgeted search [4, 23, 36]
that terminates the run of an algorithm when reaching a
predefined budget (cost or accuracy) and returns interme-
diate answers. As opposed to the prior work, the study of
bounded evaluability aims to (a) fetch DQ ⊆ D for each
query Q based on access constraints, rather than to use a
“one-size fits-all” synopsis to answer all queries posed on D,
and (b) guarantee accuracy bound for non-aggregate queries.

Closer to our work is query-driven approximation [9, 14,
19,20] that uses a “cheaper”query Qa instead of Q and com-
putes Qa(D) as approximate answers to Q in D, e.g., UCQ

for recursive datalog [14], tractable queries for CQ [9,20], and
(revised) graph simulation for subgraph isomorphism [19].
Following the absolute approximation scheme of [14], we
study boundedly evaluable envelopes (UEP and LEP). The
problem studied in [14] is to approximate datalog programs
with UCQ; it is very different from UEP and LEP considered
in this work, which aim to find bounded evaluable envelopes
for various FO fragments under access constraints.

Related to specialized queries are query suggestion [26]
and parameterized queries, which instantiate parameters
with values possibly from a list of suggested keywords. Re-
lated to QSP is the x̄-controllability problem studied in [17],
to find a minimum set x̄ of variables in a query Q such that
Q can be verified x̄-scale independent by the syntactic rules
of [17]. It differs from QSP in that x̄-scale independence is
defined by syntactic rules, as opposed to covered queries.
Hence for FO, the x̄-controllability problem is in NP, while
QSP is undecidable. A special case of QSP was also studied
in [12] for CQ, when all variables of Q are treated as pa-
rameters. It is based on effective boundedness, as opposed
to bounded evaluability. In addition, we also study QSP for
UCQ and ∃FO+, which are not considered in [12].

Organization. Access constraints and bounded evaluabil-
ity are defined in Section 2. We study the bounded evaluabil-
ity of queries in Section 3. For approximate query answering,
we investigate boundedly evaluable envelopes in Section 4,



and bounded query specialization in Section 5. Open prob-
lems for future work are identified in Section 6.

2. BOUNDEDLY EVALUABLE QUERIES
We next define access constraints, query plans and bound-

edly evaluable queries over a relational schema.
A relational schema R consists of a collection of relation

schemas (R1, . . . , Rn), where each relation schema Ri has
a fixed set of attributes. We assume a countably infinite
domain D of data values, on which instances of R are de-
fined. For an instance D of R, we use |D| to denote its size,
measured as the total number of tuples in D.

Query classes. We study the following queries [2].

• Conjunctive queries (CQ), built up from relation atoms
Ri(x̄) (for Ri ∈ R), and equality atoms x = y or x = c
(for constant c), by closing them under conjunction ∧
and existential quantification ∃.

• Unions of conjunctive queries (UCQ) of the form Q =
Q1 ∪ · · · ∪ Qk, where for all i ∈ [1, k], Qi is in CQ,
referred to as a CQ sub-query of Q.

• Positive existential FO queries (∃FO+, SPJU of select-
project-join-union queries), built from relation atoms
and equality atoms by closing under ∧, ∨ and ∃. For
a query Q in ∃FO+, a CQ sub-query of Q is a CQ sub-
query in the UCQ equivalence of Q.

• First-order logic queries (FO), built from atomic for-
mulas by using ∧, ∨, negation ¬, ∃ and ∀.

If x̄ is the tuple of free variables of Q, we will write
Q(x̄). Given a query Q(x̄) with |x̄| = m and a database
D, the answer to Q in D, denoted by Q(D), is the set
˘

ā ∈ adom(D)m | D |= Q(ā)
¯

, where the active domain,
adom(D), consists of all constants appearing in D or Q.

Access schema. An access schema A over a relational
schema R is a set of access constraints of the form:

R(X → Y,N),

where R is a relation schema in R, X and Y are sets of
attributes of R, and N is a natural number.

A relation instance D of R satisfies the constraint if

• for any X-value ā in D, |DY (X = ā)| ≤ N , where
DY (X = ā) =

˘

t[Y ] | t ∈ D, t[X] = ā
¯

; and

• there exists an index on X for Y that given an X-value
ā, retrieves DY (X = ā).

For instance, ψ1–ψ4 given in Example 1.1 together with
their indices are access constraints. An access constraint is
a combination of a cardinality constraint and an index on X
for Y . It tells us that given any X-value, there exist at most
N distinct corresponding Y -values, and these Y values can
be efficiently retrieved by using the index.

We say that D satisfies access schema A, denoted by D |=
A, if D satisfies all the constraints in A.

Query plans. To define boundedly evaluable queries, we
first present corresponding query plans. Consider a query
Q in the relational algebra over schema R, defined in terms
of projection operator π, selection σ, Cartesian product ×,
union ∪, set difference − and renaming ρ (see, e.g., [2] for
details). A query plan for Q is a sequence

ξ(Q,R) : T1 = δ1, . . . , Tn = δn,

such that (1) for all instances D of R, Tn = Q(D), and (2)
for all i ∈ [1, n], δi is one of the following:

• {a}, where a is a constant in Q; or

• fetch(X ∈ Tj , R, Y ), where j < i, and Tj has attributes
X; for each ā ∈ Tj , it retrieves DXY (X = ā) from D,
and returns

S

ā∈Tj
DXY (X = ā); or

• πY (Tj), σC(Tj) or ρ(Tj), for j < i, a set Y of attributes
in Tj , and condition C defined on Tj ; or

• Tj × Tk, Tj ∪ Tk or Tj − Tk, for j < i and k < i.

The result ξ(D) of applying ξ(Q,R) to D is Tn.

A query plan ξ(Q,R) is said to be boundedly evaluable

under an access schema A if (1) for each fetch(X ∈ Tj , R, Y )
in it, there exists a constraint R(X → Y ′, N) in A such that
Y ⊆ X ∪ Y ′, and (2) the length n of ξ(Q,R) (i.e., the
number of operations) is bounded by an exponential in |R|,
|A| and |Q|, which are the sizes of R, A and Q, respectively,
independent of dataset D. Indeed, a query plan longer than
exponential in |R|, |A| and |Q| is hardly practical.

Intuitively, if ξ(Q,R) is boundedly evaluable under A,
then for all instances D of R that satisfy A, ξ(Q,R) tells
us how to fetch DQ ⊆ D with the indices in A such that
Q(D) = Q(DQ), where DQ is the set of all tuples fetched
from D by following ξ(Q,R). Better still, DQ is bounded:
|DQ| is determined by Q and constants in A only. Moreover,
the time for identifying and fetching DQ also depends on Q
and A only (assuming that given anX-value ā, it takesO(N)
time to fetch DXY (X = ā) in D with the index in R(X →
Y,N)). For instance, a boundedly evaluable query plan for
Q0 is given in Example 1.1 under access constraints ψ1–ψ4.

Boundedly evaluable queries. Consider a query Q in a
language L and an access schema A, both over the same
relational schema R. We say that Q is boundedly evaluable

under A if it has a boundedly evaluable query plan ξ(Q,R)
under A such that in each Ti = δi of ξ(Q,R),

• if L is CQ, then δi is a fetch, π, σ, × or ρ operation;

• if L is UCQ, δi can be fetch, π, σ, × or ρ, and there is
k ≤ |Q| such that the last k − 1 operations of ξ(Q,R)
are ∪, and ∪ does not appear anywhere else in ξ(Q,R);

• if L is ∃FO+, then δi is fetch, π, σ, ×, ∪ or ρ; and

• if L is FO, δi can be fetch, π, σ, ×, ∪, − or ρ

One can verify the following: if Q is boundedly evaluable
under A, then for all instances D of R that satisfy A, there
exists DQ ⊆ D such that (a) Q(DQ) = Q(D); (b) the time
for identifying and fetching DQ is determined by Q and A
only; and (c) the size |DQ| is also independent of |D|.

General access constraints. We also study access con-
straints in its general form, defined as follows:

R(X → Y, s(·)),

where s(·) is a (sublinear) function in |D|.
An instance D of R satisfies the constraint if for any given

X-value ā, we can retrieve DY (X = ā) from D by using an
index on X for Y , such that |DY (X = ā)| ≤ s(|D|).

That is, |DY (X = ā)| is bounded by a function in |D|, e.g.,

log(|D|), rather than by a constant. We refer to these as ac-
cess constraints with non-constant cardinality. Constraints
R(X → Y,N) are a special form when s(·) is a constant N ,
and are referred to access constraints with constant cardi-

nality or simply access constraints. Access constraints with
non-constant cardinality are easier to be satisfied, and still
allow us to query big data by accessing a small fraction DQ
of the data, although |DQ| is no longer independent of |D|.



To simplify the discussion, we focus on access constraints
R(X → Y,N) with constant cardinality in the sequel.
Nonetheless, the characterizations and complexity results
of Section 3 remain intact on access constraints with non-
constant cardinality, as long as function s(·) is PTIME com-
putable. Similarly, the results on QSP (Section 5) also hold
in the presence of the general access constraints.

3. DECIDING BOUNDED EVALUABILITY
We study the bounded evaluability problem, denoted by

BEP(L) for a query class L and stated as follows:

• INPUT: A relational schema R, an access schema A
over R and a query Q ∈ L over R.

• QUESTION: Is Q boundedly evaluable under A?

While BEP(FO) is undecidable [17], we show that for several
practical fragments of FO, BEP is decidable. However, the
complexity bounds of BEP for these query classes are rather
high (Section 3.1). To cope with these, we develop an ef-
fective syntax for boundedly evaluable queries in CQ. The
syntax is given in terms of a notion of covered queries, which
can be checked in PTIME. We extend the notion of covered
queries to UCQ and ∃FO+, to characterize their boundedly
evaluable queries. We also provide complexity for deciding
whether their queries are covered (Section 3.2).

3.1 Characterizing Bounded Evaluability
No matter how desirable, it is nontrivial to decide whether

a query is boundedly evaluable, even for CQ.

Example 3.1: (1) Consider an access schema A1 and a
query Q1 defined over a relation schema R1(A,B,E, F ):

A1 = {ϕ1 = R1(A→ B,N1), ϕ2 = R1(E → F,N2)},
Q1(x, y) = ∃x1, x2

`

R(x1, x, x2, y) ∧ x1 = 1 ∧ x2 = 1
´

.

Under A1, Q1 is seemingly boundedly evaluable: given an
instance D1 of schema R1, values x1 = 1 and x2 = 2, we
can extract x values from D1 by using ϕ1, and y values by
ϕ2. However, there exists no bounded query plan for Q1:
A1 does not provide us with indices to check whether these
x and y values come from the same tuples in D1.

(2) Consider A2 and Q2 defined on R2(A,B):

A2 = {ϕ3 = R2(A→ B, 1)},
Q2(x) = ∃x1, x2

`

R2(x, x1) ∧ R2(x, x2) ∧ x1 = 1 ∧ x2 = 2
´

.

Query Q2 is boundedly evaluable under A2, although A2

does not help us retrieve x values from an instance D2 of R2.
To see why Q2 is bounded, note that given any x value, it is
impossible to find both (x, 1) and (x, 2) in D2 that satisfies
A2, because of ϕ3. Therefore, Q2(D2) = ∅, i.e., Q2 is not
satisfiable by instances D2 of R2 that satisfy A2. Hence a
query plan for empty query suffices to answer Q2 in D2.

(3) Consider A3 and Q3 defined on R3(A,B,C):

A3 = {ϕ4 = R3(∅ → C, 1), ϕ5 = R3(AB → C,N)},
Q3(x, y) = ∃x1, x2, z1, z2, z3

`

R3(x1, x2, x) ∧ R3(z1, z2, y)∧
R3(x, y, z3) ∧ x1 = 1 ∧ x2 = 1

´

.

At first glance, Q3 is not boundedly evaluable under A3,
since A3 does not help us check R(z1, z2, y). However, Q3

is “A3-equivalent” to Q′
3, i.e., for any instance D3 of R3, if

D3 |= A3, then Q3(D3) = Q′
3(D3), where

Q′
3(x, x) = R3(1, 1, x) ∧R3(x, x, x).

Query Q′
3 is boundedly evaluable under A3. Hence, Q3 is

boundedly evaluable under A3 since a boundedly evaluable
query plan for Q′

3 is also a query plan for Q3.
To see that Q3 is “A3-equivalent” to Q′

3, observe the
following: for any instance D3 that satisfies A3, (a) by
ϕ4, x, y and z3 must take the same (unique) value c0
from D3, which can be fetched by using the index built
for ϕ4; hence R3(x, y, z3) becomes R3(x, x, x); and (b)
∃z1, z2(R3(1, 1, x)∧R3(z1, z2, y)) is equivalent to R3(1, 1, x);
thus R3(z1, z2, y) can be removed. Moreover, Q′

3 is bound-
edly evaluable under A3 since by ϕ5, we can check whether
(1, 1, x) and (x, x, x) are in D3 when x = c0, using the index
for ϕ5. 2

Impact of access constraints. The complications are in-
troduced partly by access constraints. Consider an access
schema A and a query Q, both defined over the same re-
lational schema R. We say that Q is A-satisfiable if there
exists an instance D of R such that D |= A and Q(D) 6= ∅.

When Q is a query in CQ, it is in PTIME to decide whether
there exists D such that Q(D) 6= ∅ (satisfiability; cf. [2]). In
contrast, A-satisfiability is intractable for CQ.

Lemma 3.2: It is NP-complete to decide whether a query
in CQ is A-satisfiable for an access schema A. 2

To prove this, we need the following notation. Consider
a tableau (TQ, u) representing a CQ Q (see, e.g., [2]). A
valuation θ of (TQ, u) is a mapping from variables in TQ
to (not necessarily distinct) constants in D. We use θ(TQ)
to denote the instance obtained by applying θ to variables
in TQ. We call θ(TQ) an A-instance of Q if θ(TQ) |= A.
There are possibly exponentially many A-instances of Q up
to isomorphism, analogous to representative instances in in-
definite data [27, 28, 34]. This is why the A-satisfiability of
CQ is more intriguing to check than the satisfiability.

Proof sketch. For the upper bound, we give an NP algo-
rithm that, given (TQ, u) and A, (a) guesses a valuation θ
of tableau (TQ, u), and (2) checks whether θ(TQ) |= A and
θ(u) is well defined; it returns true if so.

The lower bound is verified by reduction from 3SAT.
Given a propositional formula ψ, 3SAT decides whether ψ is
satisfiable. It is known to be NP-complete (cf. [31]). 2

Recall that query containment and equivalence are NP-
complete for CQ, by the Homomorphism Theorem [13].
These classical results on containment and equivalence of
CQ no longer hold in the presence of an access schema A.
More specifically, we say that a query Q1 is A-contained in
query Q2, denoted by Q1 ⊑A Q2, if for all instances D of
R such that D |= A, Q1(D) ⊆ Q2(D). We say that Q1 and
Q2 are A-equivalent, denoted by Q1 ≡A Q2, if Q1 ⊑A Q2

and Q2 ⊑A Q1. Then for CQ, the A-containment and
A-equivalence problems are Πp

2-complete, rather than NP-
complete. That is, the presence of access constraints makes
the containment and equivalence analyses harder for CQ.

Lemma 3.3: For access schema A and queries Q1 and
Q2 in CQ, (1) Q1 ⊑A Q2 if and only if either Q1 is not
A-satisfiable, or for all A-instances θ(TQ) of Q1, θ(u) ∈
Q2(θ(TQ)); and (2) it is Πp

2-complete to decide (a) whether
Q1 ⊑A Q2 and (b) whether Q1 ≡A Q2. 2

Proof sketch. (1) To determine whether Q1 ⊑A Q2, we need
to consider (possibly exponentially many) A-instances ofQ1,
rather than a “canonical instance” of Q1 as in [13]. State-



ment 1 can be verified based on the definition of Q1 ⊑A Q2

and the monotonicity of CQ, since A-instances of Q1 are
instances that satisfy A, on which Q2 can be applied.

(2) It suffices to show that it is Πp
2-complete to decide

whetherQ1 ⊑A Q2, from which the complexity of Q1 ≡A Q2

follows. For the upper bound, we give an Σp2 algorithm to
determine whether Q1 6⊑A Q2, by checking whether Q1 is
A-satisfiable (in NP) and there exists an A-instance θ(TQ)
of Q1 such that θ(u) 6∈ Q2(θ(TQ)) (in Σp2).

The lower bound is verified by reduction from ∀∗∃∗3CNF,
which is Πp

2-complete [33]. The ∀∗∃∗3CNF problem is to de-
cide, given a sentence ϕ = ∀X∃Y ψ, whether ϕ is true, where
ψ is an instance of 3SAT defined over X ∪Y . The reduction
uses Q1(X) and Q2(X) to “compute” truth assignments for
X such that ∃Y ψ is false and true, respectively. 2

Complexity. As opposed to BEP(FO), the BEP analysis is
decidable for CQ, although it is highly nontrivial.

Theorem 3.4: BEP(CQ) is EXPSPACE-complete. 2

Proof sketch. The lower bound is verified by reduction from
the non-emptiness problem for parameterized regular ex-
pressions with certainty semantics, which is shown to be
EXPSPACE-complete in [10]. A parameterized regular ex-
pression is an extension of conventional regular expressions
over alphabet Σ by including variables, which are mapped
to symbols in Σ. Given such a parameterized regular ex-
pression e, we construct a CQ Q and an access schema A,
such that Q has a boundedly evaluable query plan under A
if and only if there exists a string that is in the languages of
e under all possible valuations of its variables.

For the upper bound, we develop an NEXPSPACE algo-
rithm: it guesses a query plan ξ of exponential size, and
checks whether ξ is (a) boundedly evaluable under A and
(b) “A-equivalent” to Q, i.e., for all instances D that satisfy
A, ξ(D) = Q(D). To check (b), we show that from a bound-
edly evaluable ξ, an “A-equivalent”CQ Q′ can be computed
in PTIME in the size of ξ, and checks whether Q ≡A Q′ by
using the algorithm given in the proof of Lemma 3.3. Since
EXPSPACE = NEXPSPACE, BEP(CQ) is in EXPSPACE. 2

Adding unions. We next study BEP for UCQ and ∃FO+.
While BEP(CQ) is nontrivial, the presence of union makes
the bounded evaluability analysis more intriguing. Recall
that for two UCQ Q =

S

i∈[1,m]Qi and Q′ =
S

j∈[1,n]Q
′
j ,

Q ⊆ Q′ if and only if for each Qi, there exists Q′
j such that

Qi ⊆ Q′
j [32]. This result of [32] no longer holds when we

consider A-containment ⊑A under an access schema A.

Example 3.5: Consider a relation schema R(X), an access
schema A with R(∅ → X, 2), and queries below:

Q(x) = ∃y
`

Qc( ) ∧Qψ(x, y)
´

,
Qc( )= ∃y1, y2

`

R(y1) ∧ y1 = 1 ∧R(y2) ∧ y2 = 0
´

,
Q′(x) = Q1(x) ∪Q2(x),
Q1(x) = ∃y(Qψ(x, y) ∧ y = 1),
Q2(x) = ∃y(Qψ(x, y) ∧ y = 0),

where Qψ is a CQ, and Qc and A ensure that an R relation
encodes Boolean domain {0, 1}. Then one can verify that
Q ⊑A Q′. However, Q 6⊑A Q1 and Q 6⊑A Q2.

As another example, consider R′(A,B,C), A′ consisting
of R′(A→ B,N) only, and a query Q = Q1 ∪Q2, where

Q1(y) = ∃x, z(R′(x, y, z) ∧ x = 1),

Q2(y) = ∃x, z(R′(x, y, z) ∧ x = 1 ∧ z = y).

Then under A′, Q1 and Q are boundedly evaluable, but
Q2 is not. Hence a CQ sub-query of a boundedly evaluable
UCQ Q may not be boundedly evaluable itself, as long as it
is contained in other sub-queries of Q. 2

The lemma below characterizes the bounded evaluability
of UCQ under an access schema. It also tells us how to de-
termine whether a query Q in ∃FO+is boundedly evaluable,
since a query in ∃FO+is equivalent to a query in UCQ.

Lemma 3.6: Under an access schema A, a UCQQ is bound-
edly evaluable if and only if Q is A-equivalent to a UCQ

Q′ = Q1 ∪ · · · ∪ Qk such that for each i ∈ [1, k], CQ sub-
query Qi is boundedly evaluable under A. 2

We next show that BEP is decidable for UCQ and ∃FO+.

Corollary 3.7: BEP is EXPSPACE-complete for ∃FO+. 2

Proof sketch. The lower bound follows from Theorem 3.4.
For the upper bound, we give an NEXPSPACE (EXPSPACE)
algorithm for checking BEP(∃FO+), by “decomposing” an
∃FO+query into a union of “elementary queries” such that
their tableaux satisfy A, and by using Lemma 3.6. 2

3.2 Effective Syntax
While BEP is decidable for CQ and ∃FO+, its complexity is

too high for us to make practical use of bounded evaluability
analysis. This motivates us to develop an effective syntax for
their boundedly evaluable queries, with lower complexity.

Effective syntax for CQ. Example 3.1 suggests that to de-
cide whether a CQ Q is boundedly evaluable under an access
schema A, we need to check (a) whether Q is “A-equivalent”
to a CQ Q′ that is boundedly evaluable under A, or (b)
whether the indices for constraints in A “cover” attributes
corresponding to variables in Q. We now formalize what
queries Q in CQ are “covered by” A, i.e., when the cardi-
nality constraints and indices in A provide us with sufficient
information to fetch tuples for answering Q.

Covered variables. We first look at variables in Q that have
to be “covered by” A. Denote by var(Q) the set of all
variables that occur in Q, either free or bound. Assume
w.l.o.g. that Q is safe, i.e., each variable in var(Q) is equal
to either a variable occurring in a relation atom or a con-
stant in Q. We also assume that queries are satisfiable, i.e.,

each variable can be equal to at most one constant; and
moreover, we assume w.l.o.g. that only variables appear in
relation atoms of Q, while constants are in equality atoms.

For a variable x ∈ var(Q), we denote by eq(x,Q) the set
of all variables in Q that are equal to x as determined by
equality atoms of the form y = z in Q, and the transitivity of
equality. We define eq+(x,Q) as the extension of eq(x,Q)
by including variables y such that x = y can be inferred
also from conditions z = c for some constant c (e.g., x = c
and y = c). We refer to x as a constant variable if eq(x,Q)
contains a variable y such that y = c occurs in Q.

A variable x is called data-dependent if eq(x,Q) contains
variables that occur in relation atoms of Q, and it is called
data-independent otherwise. A CQ Q(x̄) can be equivalently
written as Qdd(x̄1) ∧ Qdi(x̄2) such that x̄ = (x̄1, x̄2), x̄1

and x̄2 are disjoint, and Qdd and Qdi consist solely of data-
dependent and independent variables, respectively.

Example 3.8: Consider a query:



Q(x, y, u, v) = R(x, y) ∧ x = 1 ∧ x = y ∧ u = 1 ∧ u = v.

Then eq(x,Q) = {x, y} and eq+(x,Q) = {x, y, u, v}. Note
that x and y are data-dependent, but u is not, although
u ∈ eq+(x,Q). It is to define data-independent variables
that we separate eq(x,Q) from eq+(x,Q). 2

We next define the set cov(Q,A) of variables covered by

A. Intuitively, cov(Q,A) contains all variables in Q whose
values are determined by Q or by A. We define

cov(Q,A) = cov(Qdd,A) ∪ cov(Qdi,A),

where cov(Qdi,A) = var(Qdi), since the values of such vari-
ables do not need to be retrieved from a database D, or to be
verified with data in D. We define cov(Qdd,A) inductively,
starting from cov0(Qdd,A) = ∅. When i > 0, we say that an
access constraint ϕ = R(X → Y,N) is applicable to an atom
R(x̄, ȳ, z̄) in Qdd if the following conditions are satisfied:

• variables x̄ correspond to X, and either are already in
covi−1(Q,A) or are constant variables; and

• ȳ corresponds to Y , and there exists a variable y in ȳ
such that y is not yet in covi−1(Q,A).

We define covi(Qdd,A) by extending covi−1(Qdd,A) with
the following after each application of a constraint:

• variables in eq+(x,Qdd) for all constant variables x in
x̄ that are not already in covi−1(Q,A); and

• variables in eq+(y,Qdd) for each y ∈ ȳ.

Note that by using eq+ instead of eq, we ensure that
whenever variable x is covered and x = c holds, then all
other variables that are equal to constant c are covered
as well. We define cov(Qdd,A) = covk(Qdd,A) when
covk(Qdd,A) = covk+1(Q,A), i.e., as “the fixpoint”.

The lemma below ensures that cov(Q,A) is well defined,
regardless of the order in which constraints in A are applied.

Lemma 3.9: For any CQ Q and access schema A over a
relational schema R, cov(Q,A) is uniquely determined and
can be computed in PTIME in |Q|, |R| and |A|. 2

Covered queries. We are now ready to define covered
queries. A CQ Q(x̄) is covered by A if

(a) its free variables are covered, i.e., x̄ ⊆ cov(Q,A);

(b) for all non-covered variables y 6∈ cov(Q,A), y is non-
constant and only occurs once in Q; and

(c) each relation atom R(w̄) in Q is indexed by A, i.e.,

there is a constraint R(Y1 → Y2, N) in A such that
(a) all variables in w̄ corresponding to attributes Y1

must be covered, and (b) let ȳ be w̄ excluding bound
variables that only occur once in Q; then each y in ȳ
corresponds to an attribute in Y1 ∪ Y2.

Intuitively, condition (a) ensures that the values of all free
variables of Q are either constants in Q or can be retrieved
from a database instance with indices in A. Conditions (b)
and (a) together assert that non-covered variables are exis-
tentially quantified and do not participate in “joins”; hence,
for any instance D of R, Q(D) does not depend on what val-
ues these variables take. Condition (c) requires that when
we need t[Y ] values of an R tuple t to answer Q, the values
of all attributes in Y come from the same tuple t and can
be retrieved (checked) by using an index in A.

Example 3.10: Query Q3 of Example 3.1 is covered by
A3: (a) cov(Q3,A3) = {x, y, z3, x1, x2}, including all free

variables x and y; (b) while z1 and z2 are uncovered, they
satisfy condition (b), and thus their values has no impact on
answers to Q3; and (c) relations R(x1, x2, x) and R(x, y, z3)
are indexed by ϕ5, and R(z1, z2, y) is indexed by ϕ4.

In contrast, query Q1 of Example 3.1 is not covered by
A1: Q1 does not satisfy condition (c), since relation atom
R(x1, x, x2, y) is not indexed by any constraint in A1.

As another example, query Q0 of Example 1.1 is covered
by A0 consisting of ψ1–ψ4. Indeed, its free variable xa is
covered, non-covered variables cid and class occur only once
in Q0, and all its relation atoms are indexed: Accident by
ψ3, Casualty by ψ2 and Vehicle by ψ4. 2

Effective syntax. Covered CQ queries provide us with an
effective syntax for boundedly evaluable CQ queries. In
our experiments with real-life data [12], we find that most
boundedly evaluable CQ queries are covered.

Theorem 3.11: For an access schema A and a CQ Q.

(1) Q is boundedly evaluable under A if and only if Q is
A-equivalent to a CQ Q′ that is covered by A;

(2) if Q is covered by A, then Q is boundedly evaluable
under A; and

(3) checking whether Q is covered by A is in PTIME in
|Q|, |A| and |R|, where R is the relational schema
over which Q and A are defined. 2

Proof sketch. The proof is a little involved, and needs the fol-
lowing lemmas, which are verified with constructive proofs,
i.e., by developing algorithms needed. Consider query plans,
an access schema A and queries over a relational schema R.

(a) Every boundedly evaluable query plan ξ under A for a
CQ determines a CQ Qξ such that Qξ is covered by A and
for all instances D of R, if D |= A, then when ξ is applied
to D, ξ(D) = Qξ(D). This is verified by induction on the
length of ξ, constructing Qξ step by step.

(b) If a CQ Q is covered by A, then Q is boundedly evalu-
able under A. This is verified by generating a boundedly
evaluable query plan ξ for Q, mimicking each step of the
evaluation of Q with an operation in ξ.

From Lemmas (a) and (b), statement (1) follows. State-
ment (2) follows from Lemma (b). Statement (3) follows
from Lemma 3.9 and the fact that checking conditions (b)
and (c) of covered queries can be done in PTIME. 2

Example 3.12: The notion of coverage characterizes what
makes a CQ boundedly evaluable. For instance, Q0 of Ex-
ample 1.1 is covered by A0, and Q3 of Example 3.1 is covered
by A3. As shown earlier, both queries are boundedly evalu-
able. The characterization is, however, not purely syntactic.
Some boundedly evaluable CQ queries may not be covered,
but are A-equivalent to a covered query in CQ. For example,
Q2 of Example 3.1 is not covered by A2: its free variable x
is not in cov(Q2,A2). Nonetheless, Q2 is A2-equivalent to
a query Q′

2(x) = (x = 1 ∧ x = 2), which is covered by A2

since its variable is data-independent. 2

Effective syntax for ∃FO+. We now extend the notion
of covered queries to ∃FO+(and hence UCQ). A query Q
in ∃FO+is covered by an access schema A if for each Qi
of its CQ sub-queries, either (a) Qi is covered, or (b) for
all A-instances θ(TQ) of Qi, there is j ∈ [1, k] such that
θ(u) ∈ Qj(θ(TQ)) and Qj is covered by A.



Covered queries are also an effective syntax for bound-
edly evaluable queries in ∃FO+. Indeed, the corollary below
follows from Theorem 3.11 and Lemma 3.6.

Corollary 3.13: (1) An ∃FO+query is boundedly evaluable
under an access schema A if and only if it is A-equivalent to
an ∃FO+query that is covered by A. (2) Each ∃FO+query
covered by A is boundedly evaluable under A. 2

Deciding coverage. We study the query coverage problem,
denoted by CQP(L) and stated as follows.

• INPUT: R, A and Q as in BEP.

• QUESTION: Is Q covered by A?

In practice, the analysis of CQP helps us syntactically check
whether Q is boundedly evaluable under an access schema.

By Theorem 3.11, CQP is in PTIME for CQ, as opposed
to EXPSPACE-complete for BEP. It provides us with a
tractable syntactic method to check the bounded evaluabil-
ity of CQ. However, CQP is nontrivial when it comes to UCQ

and ∃FO+, although it is easier than its BEP counterparts.

Theorem 3.14: CQP is

• in PTIME for CQ; and

• Πp
2-complete for UCQ and ∃FO+. 2

Alternatively, one can define a query Q in ∃FO+to be cov-
ered if each of its CQ sub-query is covered. If so, CQP(UCQ)
is in PTIME and CQP(∃FO+) is coNP-complete, down from
Πp

2-complete. We opt to adopt a more general notion of cov-
ered queries for ∃FO+, to include most boundedly evaluable
UCQ and ∃FO+queries found in practice.

Proof sketch. We show that CQP is in Πp
2 for ∃FO+and Πp

2-
hard for UCQ. For the upper bound, we develop an Σp2
algorithm that checks whether a query Q in ∃FO+ is not
covered by an access schema. The lower bound is verified
by reduction from the ∀∗∃∗3CNF problem; it is a revision of
its counterpart given in the proof of Lemma 3.3. 2

Generalization. Access constraints with non-constant car-
dinality (Section 2) do not make our lives harder.

Corollary 3.15: All the results of this section (Theo-
rems 3.11, 3.4 and 3.14, Lemmas 3.2, 3.3, 3.9, 3.6, as well as
Corollaries 3.7 and 3.13) also hold under access constraints
of the general form R(X → Y, s(·)). 2

4. QUERY DRIVEN APPROXIMATION
When a query Q is boundedly evaluable under an access

schema A, in all datasets D that satisfy A, we can compute
Q(D) by accessing a bounded amount of data. If Q is not
boundedly evaluable, however, it may be cost-prohibitive
to compute exact answers to Q in D. In light of this, we
study how to compute approximate query answers to Q fol-
lowing the absolute approximation scheme of [14]. Below
we first present envelopes based on bounded evaluability in
Section 4.1. We then study the existence of upper and lower
envelopes in Sections 4.2 and 4.3, respectively.

4.1 Boundedly Evaluable Envelopes
Consider an access schema A and a query Q, both defined

over a relational schema R, where Q is in query language L,
and Q is not boundedly evaluable under A.

We want to find queries Ql and Qu in L such that

(a) Ql and Qu are boundedly evaluable under A; and

(b) for all instances D of R that satisfy A,

– Ql(D) ⊆ Q(D) ⊆ Qu(D), and

– |Q(D) −Ql(D)| ≤ Nl, |Qu(D) −Q(D)| ≤ Nu,

where Nl and Nu are constants derived from Q and con-
stants in A. We refer to Qu and Ql as upper and lower

envelopes of Q under A, respectively, and call Nu (resp. Nl)
an approximation bound of Qu (resp. Ql) w.r.t. Q.

Intuitively, upper and lower envelopes approximate query
Q. Given any instance D of R, as long as D |= A,
Qu(D) and Ql(D) can be efficiently computed by access-
ing a bounded amount of data. Better still, Qu(D) and
Ql(D) are not too far from the exact answers Q(D): Qu(D)
includes all tuples in Q(D), and it has at most Nu tuples
that are not in Q(D); moreover, all tuples in Ql(D) are also
in Q(D), and at most Nl tuples in Q(D) are not in Ql(D).

Example 4.1: Consider a relation schema R(A,B), an ac-
cess schema A consisting of a single constraint R(A→ B,N)
for a constant N , and two queries in CQ:

Q1(x) = ∃y, z, w
`

R(w, x) ∧ R(y,w) ∧R(x, z) ∧ w = 1
´

;
Q2(x, y) = ∃w

`

R(w, x) ∧ R(y,w) ∧ w = 1
´

.

Then Q1 is not boundedly evaluable under A. However,
it has upper envelope Qu and lower envelope Ql:

Qu(x) = ∃y, z
`

R(1, x) ∧R(x, z)
´

,
Ql(x) = ∃y, z

`

R(1, x) ∧R(y, 1) ∧R(x, y) ∧R(x, z)
´

.

Indeed, Qu and Ql are covered by A and are boundedly
evaluable. Moreover, for any instance D of R, if D |= A,
then |Qu(D) −Q1(D)| ≤ N and |Q1(D) −Ql(D)| ≤ N .

In contrast, Q2 is not boundedly evaluable under A, and
it has neither upper nor lower envelope. 2

As we have seen in Example 4.1, a query may not have up-
per or lower envelopes, e.g., Q2. This suggests that we study
problems for deciding whether a query Q has envelopes un-
der an access schema, to help us determine whether it is
possible to approximate Q with boundedly evaluable queries
that warrant constant approximation bounds.

However, the problems for deciding the existence of en-
velopes for a given query Q are even harder than BEP, the
problem for deciding the bounded evaluability of Q. In light
of this we consider envelopes of certain syntactic forms, to
get lower complexity for the decision problems.

4.2 Deciding Upper Envelopes
We first define upper envelopes of a certain syntactic form,

and then study the associated decision problem.

Query relaxation. Assume a relational schema R over
which our queries and access schemas are defined.

A relaxation of a CQ Q(x̄) = ∃ȳψ(x̄, ȳ) is a CQ Q′(x̄) =
∃ȳ′ψ′(x̄, ȳ′) such that ȳ′ ⊆ ȳ, and moreover, every atomic
formula in ψ′ is an atomic formula in ψ.

For instance, query Qu given in Example 4.1 is a relax-
ation of Q1. Intuitively, Q′ is obtained by removing tuples
from the tableau representing Q. Note that Q and Q′ have
the same set of free variables and Q ⊆ Q′. Hence Q ⊑A Q′

for any access schema A defined over R.

We extend the notion of relaxation to ∃FO+. A relaxation

of an ∃FO+query Q is a query Q′ in ∃FO+such that each CQ

sub-query Q′
i of Q′ is a relaxation of a CQ sub-query of Q.



Decision problem. The upper envelope problem for a query
class L, denoted by UEP(L), is stated as follows.

• INPUT: A relational schema R, an access schema A
over R, and a query Q ∈ L over R that is not bound-
edly evaluable under A.

• QUESTION: Does there exist an upper envelope Qu
of Q under A? In particular, when L is CQ, UCQ or
∃FO+, it is to decide whether there exists Qu that is a
relaxation of Q and is covered by A.

That is, whenever possible, we search for upper envelopes
that can be syntactically checked, to reduce the cost of
checking their bounded evaluability. By Corollary 3.13, a
covered query is boundedly evaluable.

Characterization. What queries can have an upper enve-
lope? We start with a condition that is necessary for the
existence of both upper and lower envelopes.

A query Q is bounded under A if there exists a constant c
determined by Q and A such that for all instances D of R,
if D |= A, then there exists DQ ⊆ D, where

(a) Q(DQ) = Q(D); and

(b) |DQ| ≤ c, i.e., |DQ| is independent of |D|.

Hence, there exists a constant cr such that |Q(D)| ≤ cr.

The notion of boundedness is weaker than the notion of
boundedly evaluability. A boundedly evaluable query is also
bounded, but a bounded query may not be boundedly evalu-
able, i.e., it does not necessarily have an boundedly evalu-
able query plan. For instance, query Q1 of Example 4.1 is
bounded, but it is not boundedly evaluable.

Recall that query Q2 of Example 4.1 is not bounded, and
it does not have an envelope. This is not a coincidence.
Indeed, boundedness is a necessary condition for a query to
have an envelope, as shown by the lemma below.

Lemma 4.2: Under an access schema A,

(a) if a query Q has an (upper or lower) envelope, then Q
must be bounded;

(b) a CQ Q(x̄) is bounded if and only if all free variables
x̄ of Q are covered by A; and

(c) a query Q in ∃FO+is bounded if and only if every CQ

sub-query of Q is bounded. 2

Proof sketch. If Q has an envelope Q′, then Q′ is bound-
edly evaluable and hence for all instances D that satisfy A,
|Q(D)| ≤ c for a constant c. Thus if Q is not bounded,
Q′ does not have a constant approximation bound for Q′

w.r.t. Q. From this statement (a) follows.
Statements (b) and (c) are verified based on the mono-

tonicity of CQ and ∃FO+. Note that statement (c) only holds
for bounded queries. In contrast, for a boundedly evaluable
query in ∃FO+, some of its CQ sub-queries may not be bound-
edly evaluable, as Example 3.5 demonstrates. 2

For a CQ Q that is not boundedly evaluable under A, UEP

asks whether we can make Q covered by removing relation
atoms, and hence removing variables that are not covered
by A. For instance, query Q1 of Example 4.1 has a relation
atom R(y,w) with variable y that is not covered. We remove
R(y,w) and get an upper envelope Qu that is covered.

When Q is in ∃FO+, the lemma below characterizes UEP

for ∃FO+, which can be verified based on the definitions of
query relaxations and covered queries for ∃FO+.

Lemma 4.3: Under an access schema A, a query Q in
∃FO+has an upper envelope that is a relaxation and covered
if and only if for each CQ sub-query Qi of Q, either Qi has a
covered relaxation, or for any A-instance θ(TQ) of Qi, there
exists a covered relaxation Q′

j of a CQ sub-query Qj such
that θ(u) ∈ Q′

j(θ(TQ)). 2

Complexity. We next give the complexity of UEP(L). To
make the picture complete, we also study UEP(FO) in which
an upper envelope Qu is simply defined to be a boundedly
evaluable FO query such that Q ⊑A Qu and Qu has a con-
stant approximation bound w.r.t. Q.

While UEP is intractable for CQ and ∃FO+, its analyses
are much simpler than their BEP counterparts.

Theorem 4.4: Under an access schema, UEP is

• NP-complete for CQ;

• Πp
2-complete for UCQ and ∃FO+; and

• undecidable for FO.
2

Proof sketch. (1) Lower bounds. We show that UEP is NP-
hard, Πp

2-hard and undecidable for CQ, UCQ and FO by
reductions from X3C, ∀∗∃∗3CNF and the complement of the
satisfiability problem for FO, respectively. The X3C problem
(exact cover by 3-sets) is to determine, given a set X with
3q elements and a collection C of 3-element subsets of X,
whether C contains an exact cover C′ of X, i.e., C′ ⊆ C
such that every element of X occurs in exactly one subset of
C′. It is NP-complete (cf. [31]). The satisfiability problem
for FO is to decide, given an FO query Q over a relational
schema R, whether there is an instance D of R such that
Q(D) 6= ∅. It is undecidable (cf. [2]).

It should be remarked that while UEP(UCQ) has the same
complexity as CQP(UCQ), the reduction for UEP is more
involved than its counterpart for CQP.

(2) Upper bounds. We develop an NP algorithm for checking
whether a CQ has a relaxation that is covered by A, based
on Theorem 3.11. Capitalizing on Lemma 4.3, we develop
an Σp2 algorithm to check whether a query in ∃FO+does not

have a relaxation that is covered by A. 2

4.3 Deciding Lower Envelopes
Analogous to the analysis of upper envelopes, we study

lower envelopes of a certain syntactic form.

Query expansion. Assume a positive integer k. A k-
expansion of a CQ Q(x̄) = ∃ȳψ(x̄, ȳ) is a CQ Q′(x̄) =
∃ȳ′ψ′(x̄, ȳ′) such that ȳ ⊆ ȳ′, every atomic formula in ψ
is an atomic formula in ψ′, and moreover, ψ′ contains at
most k relation atoms that do not occur in ψ.

Intuitively, let (TQ, u) be the tableau representation of Q,
and T ′

Q be a tableau obtained by adding at most k additional
tuples to TQ. Then Q′ is a CQ represented by (T ′

Q, u). For
instance, query Ql given in Example 4.1 is an 1-expansion of
query Q1. Observe that Q′ ⊆ Q and Q′ ⊑A Q for any access
schema A that is defined over the same relational schema R
on which queries Q and Q′ are defined.

We define a k-expansion of a query Q in ∃FO+ to be a
query Q′ in ∃FO+such that each CQ sub-query of Q′ is a
k-expansion of a CQ sub-query of Q.

Decision problem. We now state the lower envelope

problem for a query class L, denoted by LEP(L).



• INPUT: R, A, Q as in UEP, and a natural number k.

• QUESTION: Does there exist a lower envelope Ql of
Q under A that is A-satisfiable? In particular, when
L is CQ, UCQ or ∃FO+, it is to decide whether there
exists a lower envelope Ql that is a k-expansion of Q
and is covered by A.

We refer to Ql as a k-expansion lower envelope.
We requireQl to be A-satisfiable to rule out“trivial” lower

envelopes. Note that when a CQ Q is bounded under A,
empty query Q∅ would have been a lower envelope of Q.
Such a trivial envelope is not very useful. We do not impose
the condition on upper envelopes, since an upper envelope
Qu is guaranteed A-satisfiable. Indeed, UEP is studied for
Q that is not boundedly evaluable under A; hence Q must
be A-satisfiable. By Q ⊑A Qu, Qu is also A-satisfiable.

Characterization. For a CQ Q that is not boundedly evalu-
able, LEP is to decide whether we can make Q covered by
adding additional relation atoms. Intuitively, when Q con-
tains variables that are not covered, we add relation atoms
to make them covered, as illustrated by Ql of Example 3.10.
When Q contains relation atoms R(ȳ) that are not indexed
by A (see the definition of covered queries in Section 3.1),
sometimes we can “split”R(ȳ) into R(ȳ1)∧ . . .∧R(ȳn) such
that ȳ = (ȳ1, . . . , ȳn) and each R(ȳi) is indexed.

Example 4.5: Consider a relation schema R(A,B,C), an
access schema A and a CQ Q defined as follows:

A = {R(A→ B,N), R(B → C, 1)},
Q(x, y) = R(1, x, y).

Then Q is not covered by A, since R(1, x, y) is not indexed
by A. Nonetheless, its 1-expansion below is covered:

Q′(x, y) = ∃z1, z2
`

R(1, x, z1) ∧R(z2, x, y)
´

.

One can verify that Q′ is indexed and Q′ ≡A Q. 2

For query Q in ∃FO+, a characterization for the existence
of lower envelopes is given as follows, which can be verified
by using the definitions of covered queries and k-expansions.

Lemma 4.6: Under an access schema A, a query Q in
∃FO+has a k-expansion lower envelope if and only if (a) Q
is bounded under A, and (b) there exists a CQ sub-query
Qi of Q such that it has a k-expansion that is covered by A
and is A-satisfiable. 2

Complexity. Compared to UEP(L), LEP(L) has a lower com-

plexity when L is UCQ or ∃FO+.

Theorem 4.7: Under an access schema A, LEP is

• NP-complete for CQ and UCQ;

• DP-complete for ∃FO+; and

• undecidable for FO. 2

Proof sketch. (1) Lower bounds. We show that LEP is NP-
hard, DP-hard and undecidable for CQ, ∃FO+and FO, by
reduction from X3C, SAT-UNSAT and the complement of
the satisfiability problem for FO, respectively. SAT-UNSAT

is to decide, given a pair (ϕ1, ϕ2) of 3SAT instances, whether
ϕ1 is satisfiable and ϕ2 is not satisfiable. It is DP-complete
(cf. [31]). The reduction from SAT-UNSAT makes use of
nested union in ∃FO+query, which is not supported by UCQ.

(2) Upper bounds. Based on Lemmas 4.2 and 4.6, we develop

an algorithm to check whether a query has a lower envelope
that is a k-expansion, A-satisfiable and covered. It is in
NP for UCQ. In contrast, it is in DP for ∃FO+since it uses
a coNP oracle to check whether Q is bounded, and an NP

oracle to check whether Q has a covered k-expansion. 2

General constraints. When access constraints with non-
constant cardinality are considered, the notion of bounded
queries needs to be revised to accommodate cardinality func-
tions, and the results of this section do not carry over di-
rectly to access constraints of the general form.

5. BOUNDED QUERY SPECIALIZATION
For a queryQ that is not boundedly evaluable, the chances

are that Q will become boundedly evaluable when its users
instantiate some parameters of Q. This suggests another
strategy to process costly queries based on bounded evalua-
bility. As remarked in Section 1, parameterized queries are
common in e-commerce systems and personalized searches,
and such queries are typically specialized by instantiating
some of its parameters when being issued by its users. Be-
low we study QSP, the query specialization problem.

5.1 Query Specialization
We first present (bounded) query specialization.

Specialized queries. First consider Q(ȳ) = ∃z̄ ψ(ȳ, z̄) in
CQ, where ψ is quantifier free, and z̄ consists of bound vari-
ables. The parameters of Q, denoted by X, may include
both free variables of ȳ and bound variables of z̄. Such pa-
rameters are typically designated by the provider of Q.

A specialized query Q(x̄ = c̄) of Q is defined as ∃z̄(ψ(ȳ, z̄)∧
x̄ = c̄), where x̄ is a tuple of parameters in X, and c̄ is a
tuple of constants with |x̄| = |c̄|. Here we use |x̄| to denote
the arity of x̄, and refer to c̄ as a valuation of x̄. That is, we
specialize Q by instantiating parameters x̄.

Example 5.1: Consider query Q defined on relations
Accident, Casualty and Vehicle given in Example 1.1:

Q(xa) = ∃ aid, date, district, cid, class, vid, dri
`

Accident(aid, district, date) ∧
Casualty(cid, aid, class, vid) ∧ Vehicle(vid, dri, xa)

´

.

It has two parameters date and district inX, identified by the
designer of Q. Given a valuation (c1, c2) of (date, district),
the specialized query Q(date = c1, district = c2) of Q is to
find the ages of drivers who were involved in an accident in
district c2 on day c1. For instance, Q(date = “1/5/2005”,
district =“Queen’s Park”) is query Q0 given in Example 1.1.

Under access constraints ψ1–ψ4 of Example 1.1, (1) Q is
not boundedly evaluable itself, since free variable xa is not
covered; but (2) Q(date = c1) is boundedly evaluable for all

valuations c1 of date; i.e., instantiating a single parameter
makes the specialized queries boundedly evaluable. 2

For an FO query Q, consider its DNF form: Q(ȳ) =
P1z1 . . . Pnznψ(ȳ, z̄), where Pi is either ∃ or ∀, and z̄ de-
notes (z1, . . . , zn). Its parameters in X may be variables
from ȳ and z̄. A specialized query Q(x̄ = c̄) of Q is de-
fined as P1z1 . . . Pnzn(ψ(ȳ, z̄) ∧ x̄ = c̄), where x̄ is a tuple
of parameters in X, and c̄ is a valuation of x̄.

Bounded query specialization. Consider query Q that is
not boundedly evaluable under an access schema A, with a
parameter setX. We say thatQ can be boundedly specialized



under A with x̄ if x̄ is a tuple of parameters from X such
that (a) Q(x̄ = c̄) is boundedly evaluable under A for all

valuations c̄ of x̄, and (b) there exists at least one valuation
c̄ of x̄ such that Q(x̄ = c̄) is A-satisfiable.

Intuitively, condition (a) asks for Q(x̄ = c̄) to be generic
regardless of what valuations are used, and condition (b)
requires the specialized query to be sensible.

Some queries Q may not be boundedly specialized. For
instance, recall query Q from Example 5.1. If its set X of
parameters consists of district only, one can verify that Q
may not be boundedly specialized under constraints ψ1–ψ4.
Moreover, if Q can be boundedly instantiated, we naturally
want to instantiate a minimum set of parameters in X.

Decision problem. Hence we study the query specializa-

tion problem, denoted by QSP(L) for a query language L.

• INPUT: A relational schema R, an access schema A
over R, a query Q ∈ L defined over R that is not
boundedly evaluable under A, a set X of parameters
in Q, and a natural number k.

• QUESTION: Can Q be boundedly specialized under A
with a tuple x̄ from X such that |x̄| ≤ k? In particular,
when L is CQ, UCQ or ∃FO+, it is to decide whether
there exists x̄ such that |x̄| ≤ k andQ(x̄ = c̄) is covered
by A for all valuations c̄ of x̄.

The study of QSP aims to help us decide what access
schema to maintain and what parameters to instantiate, to
make specialized queries boundedly evaluable.

When L is CQ, UCQ or ∃FO+, we ask for specialized
queries Q(x̄ = c̄) that are covered by A, to reduce the
cost of the QSP analysis. By Corollary 3.13, Q(x̄ = c̄) is
boundedly evaluable under A. Without the syntactic re-
striction, QSP(L) has complexity higher than BEP(L) when
L is, e.g., CQ, and is too costly to be practical.

Remark. Both QSP and LEP aim to restrict a query Q and
make it boundedly evaluable. However, QSP approaches
bounded evaluability by instantiating parameters, while LEP

is by imposing additional relation atoms on Q. Moreover,
LEP requires that |Q(D) −Ql(D)| ≤ Nl with a constant
Nl for all instances D that satisfy A. In light of this, Q
has to be bounded to get a lower envelope, whereas this is
not required by QSP. As will be seen shortly, QSP(L) and
LEP(L) have different complexity for UCQ and ∃FO+.

5.2 Deciding Bounded Specialization
We next study the complexity of QSP(L). It is nontrivial

to identify parameters x̄ of Q for instantiation and make
specialized Q(x̄ = c̄) boundedly evaluable.

Example 5.2: Consider a relational schema R, an ac-
cess schema A and a CQ Q over R: (1) R consists of
Ri(A,B1, B2, B3) for i ∈ [1, n], (2) A defines 4 constraints
on each Ri: Ri(A → (B1, B2, B3), 1), Ri(B1 → A, 1),
Ri(B2 → A, 1) and Ri(B3 → A, 1); and (3) Q is

∃ȳ, z̄
`

V

i∈[1,n]Ri(1, 1, 1, 1) ∧
V

i∈[1,n]Ri(yi, zi1, zi2, zi3)
´

.

One can verify that the Boolean query Q() is not boundedly
evaluable under A. Now let X be ȳ and k be a positive
integer. We want to know whether Q can be boundedly
specialized with x̄ from X and |x̄| ≤ k.

In the proof of Theorem 5.3, we use R, A and Q to encode
an instance of the minimum set cover problem (MSC). Given

a collection C of subsets of a finite set S and a natural
number k, MSC is to decide whether there exists a cover
C′ of C with |C′| ≤ k. Assume C = {Ci | i ∈ [1, n]}
and |S| = |z̄|. Then each Ri encodes a subset Ci ∈ C,
yi ∈ ȳ indicates Ci, and zi1, zi2 and zi3 denote elements in
Ci. Moreover, C contains a cover C′ with |C′| ≤ k if and
only if Q can be boundedly specialized with x̄ from X and
|x̄| ≤ k. This illustrates why QSP analysis is nontrivial. 2

Theorem 5.3 gives the complexity of QSP. While QSP(L)
has the same complexity as UEP(L), the proofs are quite dif-
ferent from their counterparts for UEP. Compared to LEP,
the QSP analysis is more complicated for UCQ and ∃FO+.

Theorem 5.3: QSP is

• NP-complete for CQ; and

• Πp
2-complete for UCQ and ∃FO+; and

• undecidable for FO. 2

Proof sketch. (1) Lower bounds. We show that QSP is NP-
hard, Πp

2-hard and undecidable for CQ, UCQ and FO by
reduction from MSC, ∀∗∃∗3CNF and the complement of the
satisfiability problem for FO, respectively. It is known that
MSC is NP-complete (cf. [31]). In contrast to the reductions
of Theorem 4.7, the reductions here encode what variables
can be instantiated and ensure that all instantiations of these
variables yield a covered specialized query. For instance,
Example 5.2 outlines a reduction from MSC for CQ.

(2) Upper bounds. We develop NP and Πp
2 algorithms for

checking QSP for CQ and ∃FO+, respectively. The algorithms
make use of Theorem 3.11 and a lemma: if Q is A-satisfiable,
then for all tuples x̄ of parameters of Q, there exists a valu-
ation c̄ of x̄ such that Q(x̄ = c̄) is A-satisfiable. 2

A syntactic condition. Is it possible to maintain an access
schema A over a relational schema R such that bounded spe-
cialization is always within reach under A for all FO queries
defined over R? The answer is affirmative.

We say that A covers R if for each relation schema R in R,
there exists an access constraints R(X → (Y,N)) in A such
that for each attribute B of R, either B ∈ X or B ∈ Y , i.e.,

indices are built on B or for B. We say that an FO query Q
is fully parameterized if its set X of parameters includes all
variables in Q. These suffice for bounded specialization.

Proposition 5.4: Under an access schema A that covers
a relational schema R, all fully parameterized FO queries
defined over R can be boundedly specialized. 2

Generalization. The results of this section carry over to
access constraints with non-constant cardinality.

Corollary 5.5: Theorem 5.3 and Proposition 5.4 also hold
on access constraints of the form R(X → Y, s(·)). 2

6. CONCLUSION
We have investigated how to query big data by leverag-

ing bounded evaluability, to compute exact answers if pos-
sible, and approximate answers otherwise by means of en-
velopes and bounded query specialization. We have identi-
fied several problems associated with bounded evaluability,
and provided their complexity and characterizations. The
main complexity results are summarized in Table 1, anno-
tated with their corresponding theorems.



Queries BEP(L) CQP(L) UEP(L) LEP(L) QSP(L)

CQ EXPSPACE-c (Th. 3.4) PTIME (Th. 3.11) NP-c (Th. 4.4) NP-c (Th. 4.7) NP-c (Th. 5.3)
UCQ EXPSPACE-c (Cor. 3.7) Πp2-c (Th. 3.14) Πp2-c (Th. 4.4) NP-c (Th. 4.7) Πp2-c (Th. 5.3)
∃FO+ EXPSPACE-c (Cor. 3.7) Πp2-c (Th. 3.14) Πp2-c (Th. 4.4) DP-c (Th. 4.7) Πp2-c (Th. 5.3)
FO undecidable [17] not defined for FO undecidable (Th. 4.4) undecidable (Th. 4.7) undecidable (Th. 5.3)

Table 1: Complexity for reasoning about bounded evaluability (C-c indicates C-complete)

This work suggests a strategy to answer queries on big
data as follows. (1) We develop and maintain an access
schema A for an application. (2) Given a dataset D that
satisfies A, for all queries Q posed over D, we first check
whether Q is boundedly evaluable under A or covered by
A; if so, we compute exact answers Q(D) by accessing a
bounded amount of data; otherwise we compute approxi-
mate query answers, by using envelopes or by interacting
with users to get a boundedly specialized query.

One topic for future work is identify an effective syntax for
boundedly evaluable FO queries. Another topic is to study
UEP and LEP under general access constraints. A third topic
is to study, given a query Q in a language L, whether Q has
envelopes in another language L′, e.g., to find envelopes in
CQ for an FO query. Finally, it is interesting to explore
envelopes with approximation ratios measured in terms of
precision and recall, instead of absolute approximation [14].
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