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HipMer: An Extreme-Scale
De Novo Genome Assembler
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Chaitanya Aluru‡, Rob Egan∗, Leonid Oliker†, Daniel Rokhsar∗,¶, Katherine Yelick†,‡
†Computational Research Division / ∗Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
‡EECS Department / ¶Molecular and Cell Biology Department, University of California, Berkeley, USA

ABSTRACT
De novo whole genome assembly reconstructs genomic se-
quences from short, overlapping, and potentially erroneous
DNA segments and is one of the most important compu-
tations in modern genomics. This work presents HipMer,
the first high-quality end-to-end de novo assembler designed
for extreme scale analysis, via efficient parallelization of the
Meraculous code. First, we significantly improve scalabil-
ity of parallel k-mer analysis for complex repetitive genomes
that exhibit skewed frequency distributions. Next, we opti-
mize the traversal of the de Bruijn graph of k-mers by em-
ploying a novel communication-avoiding parallel algorithm
in a variety of use-case scenarios. Finally, we parallelize the
Meraculous scaffolding modules by leveraging the one-sided
communication capabilities of the Unified Parallel C while
effectively mitigating load imbalance. Large-scale results on
a Cray XC30 using grand-challenge genomes demonstrate
efficient performance and scalability on thousands of cores.
Overall, our pipeline accelerates Meraculous performance by
orders of magnitude, enabling the complete assembly of the
human genome in just 8.4 minutes on 15K cores of the Cray
XC30, and creating unprecedented capability for extreme-
scale genomic analysis.

1. INTRODUCTION
DNA sequencing and assembly are the first necessary steps

towards understanding and modifying the behavior of geno-
mes, with promises of transforming and personalizing me-
dicine. Recent advances in next-generation sequencing are
exponentially improving the rate and reducing the cost of
genome sequencing, creating the potential to assemble an
unprecedented number of animal, fungi, plant and envi-
ronmental genomes. However, state-of-the-art short-read
shotgun sequencing technologies make the problem of de
novo assembly one of the most demanding computational
bioinformatics challenges, particularly for human and even
larger gigabase-scale genomes, which can now be sequenced
at modest cost. De novo assemblers reconstruct an un-
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known genome from a collection of short reads, and have
inherent advantages of discovering variations that may re-
main undetected when aligning sequencing data to a ref-
erence genome; unfortunately de novo assembly computa-
tional runtimes cannot keep up with the data generation of
modern sequencers.

In this work we present HipMer, the first end-to-end high-
performance parallelization of the Meraculous de novo as-
sembler [1], which has been ranked among the first places in
most metrics of the Assemblathon II competition [2]. Mer-
aculous leverages base quality scores from sequencing in-
struments to identify non-erroneous overlapping substrings
of length k (k-mers) with high quality extensions. Merac-
ulous uniquely assembles genome regions into uncontested
sequences called contigs by constructing and traversing a
de Bruijn graph of k-mers, a special type of graph that is
used to represent overlaps among k-mers. Contigs are then
linked together to create scaffolds, sequences of contigs that
may contain gaps among them. Finally gaps are filled using
localized assemblies based on the original reads.

In our previous work [3] we studied parallel high-perfor-
mance algorithms for k-mer analysis and contig generation,
which form the initial stages of the Meraculous assembly pi-
peline. The full pipeline that we have now implemented is
described in Section 2. We have applied several key opti-
mizations (Section 3) to our previous algorithms. First, we
significantly improve scalability of parallel k-mer analysis for
complex repetitive genomes that exhibit skewed frequency
distributions. Results on the grand-challenge, highly repet-
itive wheat genome show a performance improvement of up
to 2.4× compared with the previous version. Second, we op-
timize the traversal of the de Bruijn graph of k-mers by em-
ploying a novel communication-avoiding parallel algorithm
in a variety of practical use-case scenarios. Experimental
results demonstrate a speedup of up to 2.8× when process-
ing multiple genomes of the same species by leveraging our
algorithmic optimization. Additionally, we increase I/O per-
formance by efficient parallel reading of the input FASTQ
files.

Section 4 then describes our efficient implementation and
parallelization of scaffolding, enabling the first massively
scalable, high quality, complete end-to-end de novo assem-
bly pipeline. Experimental large-scale results on the NERSC
Edison Cray XC30 using human and the wheat genomes, as
well as the massive-scale metagenome of wetland soil sam-
ples are presented in Section 5 — demonstrating efficient
performance and scalability on thousands of cores. Com-
pared with the original Meraculous code, which has limited
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Figure 1: Meraculous assembly flow chart.

scalability, and requires approximately 23.8 hours to assem-
ble the human genome, HipMer employs an efficient Unified
Parallel C (UPC) implementation, computing the assembly
in only 8.4 minutes using 15,360 cores of Edison — an overall
speedup of approximately 170×. Overall results show that
HipMer holds the potential to outperform today’s biomedi-
cal sequencing capacity via high-concurrency supercomput-
ing assembly, and significantly accelerate the dissemination
of computed genomes to the bioinformatics community.

2. MERACULOUS ASSEMBLY PIPELINE
This section gives a high level overview of Meraculous as-

sembler pipeline, which consists of three major stages (see
Figure 1):
1) K-mer analysis: The input reads are processed to im-
plicitly exclude errors. First, the reads are chopped into
k-mers, which are overlapping sequences of length k. Then,
the k-mers are counted and those that appear fewer times
than a threshold are treated as erroneous and discarded. Ad-
ditionally, for each k-mer we keep track of the two neighbor-
ing bases in the original read it was extracted from (hence-
forth we call these bases extensions). The result of k-mer
analysis is a set of k-mers and their corresponding exten-
sions that with high probability include no errors.
2) Contig generation: The resulting k-mers from the pre-
vious step are stored in a de Bruijn graph. The de Bruijn
graph is a special type of graph that represents overlaps in
sequences. In this context, k-mers are the vertices in the
graph, and two k-mers that overlap in k − 1 bases whose
corresponding extensions are compatible are connected with
an undirected edge in the graph (see Figure 2 for a de Bruijn
graph example with k = 3).

Due to the nature of DNA, the de Bruijn graph is ex-
tremely sparse (e.g. the human genome’s adjacency matrix
that represents the de Bruijn graph is a 3·109×3·109 matrix
with between two and eight non-zeros per row for each of
the possible extensions). For k-mers where the extensions
are defined to be unique in both directions, only rows with
two non-zero entries need to be considered. Thus a compact
representation can be leveraged via a hash table: A vertex
(k-mer) is a key in the hash table and the incident vertices
are stored implicitly as a two-letter code [ACGT][ACGT]
that indicates the unique bases that immediately precede
and follow the k-mer in the read dataset. By combining the
key and the two-letter code, the neighboring vertices in the
graph can be identified. Via construction and traversal of
the underlying de Bruijn graph of k-mers the connected com-
ponents in the graph are identified, which are linear chains

of k-mers, called contigs. Contigs are (with high probabil-
ity) error-free sequences that are generally longer than the
original reads.
3) Scaffolding and gap closing: The first step of scaffold-
ing is to map the original reads onto the generated contigs.
This mapping provides information about the relative order-
ing and orientations of the contigs. Once the orientations are
determined, it is possible that there are gaps between pairs
of contigs. We then further assess the read-to contig map-
pings and locate the reads that are placed into these gaps.
Ultimately, we leverage this information and close the contig
gaps. The final result of the assembly is a completed set of
scaffolds.

3. NOVEL OPTIMIZATIONS
We now describe several novel optimizations developed to

improve the behavior of previously studied components [3]:
high-frequency k-mer analysis, communication-avoiding de
Bruijn graph traversal, and FASTQ read I/O performance.

3.1 Efficient High Frequency k-mers Analysis
During the k-mer generation phase, our previous work [3]

relied on Bloom filters [4] to eliminate erroneous k-mers
without inserting them into the main data structures, re-
sulting in memory requirement reductions of up to 85% in
human and wheat genomes. In that approach, we assigned
each k-mer to a particular ‘owner’ processor, which counts
all the occurrences of a given k-mer. In other words, proces-
sors did not perform any partial counting. This choice was
largely motivated by the need to use Bloom filters for elim-
inating erroneous k-mers, which requires that all counting
for a k-mer is performed by its owner in order to safely call
it erroneous,.

For a simple analysis, assume that there are n k-mers and
a fraction 0 ≤ f ≤ 1 of them occur only once (hence guaran-
teed to be an error or unreliable at best). Blindly performing
partial counting in each processor for all k-mers encountered
would require O(np) aggregate space over p processors. Us-
ing the owner computes model and Bloom filters reduces
this overhead to O(fn). The downside of this approach is
that highly complex plant genomes, such as wheat, are ex-
tremely repetitive and it is not uncommon to see k-mers
that occur millions of times. For example, the (hexaploid)
bread wheat lines ‘Synthetic W7984’ assembled in previous
work [5] has about 2,000 k-mers that each occur more than
half a million times and about 70 k-mers that occur over 10
million times for k=51. Such high-frequency k-mers create
a significant load imbalance problem, as the processors as-
signed to these high-frequency k-mers require significantly
more memory and processing times.

Consequently, we improve our approach by first identify-
ing frequent k-mers (i.e.“heavy hitters” in database litera-
ture) and treating them specially. In particular, the owner
compute method is still used for low-to-medium frequency k-
mers but the high frequency k-mers are accumulated locally,
followed by a final global reduction. Since an initial pass
over the data is already performed to estimate the cardinal-
ity (the number of distinct k-mers) and efficiently initialize
our Bloom filters, running a streaming algorithm for iden-
tifying frequent k-mers during the same pass is essentially
free in terms of I/O costs.

We use the counter-based algorithm of Misra and Gries [6]
(subsequently reinvented several times [7, 8]). If the true fre-



quency of a k-mer x is f(x), the Misra-Gries algorithm out-
puts all k-mers with f(x) ≥ 1/θ using O(θ) space. Further-
more, the reported count f ′(x) is a lower bound on the ac-
tual count, i.e. f ′(x) ≤ f(x). Since the items with f ′(x) > 1
can not be eliminated by the Bloom filter, integration of the
Misra-Gries algorithm to the k-mer analysis step does not
decrease the efficiency of Bloom filters as long as we only
treat k-mers with f ′(x) > 1 specially.

For parallelization, we take advantage of the fact that the
Misra-Gries algorithm creates mergeable summaries [9] and
use a high-performance implementation of the algorithm de-
scribed by Cafaro and Tempesta [10].

3.2 Communication-Avoiding
de Bruijn Graph Traversal

We now describe the key components of the de Bruijn
graph traversal methodology and our innovative communi-
cation-avoiding algorithm for accelerating performance; a
more in-depth discussion of de Bruijn graph traversal is de-
scribed in our previous work [3].

The first step towards efficient parallelization is to store
the de Bruijn graph in a distributed hash table. First, a
given processor pi chooses a random k-mer as seed and cre-
ates a new subcontig data structure that is represented as
a string, where the initial content of the string is the seed
k-mer. Processor pi then attempts to extend the subcon-
tig towards both of its endpoints by using the edges of that
k-mer node. In order to explore a neighboring vertex, pi
performs a lookup in the distributed hash table. Processor
pi can also extend the subcontig towards both of its end-
points until the contig construction is completed (or equiva-
lently until the corresonding connected component has been
explored). If two processors work on the same connected
component (i.e. both selected seed k-mers from the same
contig), race conditions are avoided via a lightweight syn-
chronization scheme [3]. Finally, the parallel traversal is
terminated when all the connected components in the de
Bruijn graph are explored.

Although our de Bruijn graph traversal demonstrates high
scalability [3], it inherently suffers from high communication
overhead. Because we focus on de novo genome assembly
(i.e. there is no reference genome), the initial contig con-
struction lacks implicit locality, and it is the goal of the de
Bruijn algorithm to explore connectivity and to find the cor-
responding connected components. Additionally, due to the
nature of DNA, the de Bruijn graph is extremely sparse, as
previously discussed. Thus, to explore an additional vertex
in the graph and expand a subcontig by one base is it neces-
sary to perform a lookup in the distributed hash table, which
with high probability will incur a communication event.

Therefore, given a genome of size G, the asymptotic com-
munication cost of the parallel traversal is O(G) messages,
or O(G/p) messages if we measure the number of messages
along the critical path. Since the messages have size O(1)
(each message is just a single k-mer), the asymptotic band-
width costs are the same. Note that our parallel algorithm is
load balanced and communication along the critical path is
decreased as the number of processors is increased, thus al-
lowing our traversal algorithm to strong scale efficiently [3].

There are two key insights that underly the development
of our communication-avoiding algorithm for the parallel de
Bruijn graph traversal:
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Figure 2: A de Bruin graph of k-mers where k = 3. In this
graph we can identify three contigs or equivalently three con-
nected components. The dashed lines indicate an optimal
partitioning of the graph with p = 3. Each processor will
work only with local k-mers during the traversal.

Oracle Partitioning.
If given an oracle partitioning function that could accu-

rately predict how the k-mers are placed into contigs, the
k-mers could be partitioned in such a way that k-mers ul-
timately belonging to the same contig would be mapped to
the same processor. Thus, during the traversal a processor
would incur no communication, since none of the k-mer ac-
cesses (lookups in the distributed hash table) will require
communication — all the vertices of the de Bruijn graph
that build up a particular contig are local to a single proces-
sor (local buckets in the distributed hash table). This idea
is similar to graph partitioning, which aims to minimize the
number of edges between separated components. An exam-
ple is given in Figure 2, which shows three processors and
three equally-sized sub-graphs that do not share any edges.
By assigning the corresponding k-mers to the appropriate
processor, all three processors will conduct local lookups in
the hash table during the parallel traversal.

Genetic Similarity.
The nucleotide diversity is similiar for given organisms.

For example it is estimated that humans differ in only 0.1%–
0.4% of DNA base pairs, meaning that the contigs of differ-
ent humans have a high degree of similarity. This implies
that an oracle partitioning derived from one genome will
work for others of the same species.

Communication-avoiding parallel algorithm

These insights have enabled us to develop an off-line ora-
cle partitioning function. Once the contigs are computed
for a given organism, we can apply this oracle partitioning
function to any other de Bruijn graph (for another member
of the same species), to dramatically decrease the commu-
nication incurred during the traversal computation. This
approach can also be leveraged when searching for the opti-
mal k length for de novo assembly. Typically, computational
biologists begin the genome assembly process for a given or-
ganism with a draft version generated using a reasonable
initial k value. Different k lengths are then explored to opti-
mize the quality of the assembly output. Thus we can gener-
ate our oracle partitioning function during the initial contig
generation phase, and use it to significantly reduce commu-
nication for subsequent assemblies that explore different k
values. Even though the contigs are expected to change for
varying k lengths, the new set of contigs will have a high
degree of similarity with the first draft assembly, resulting



in significant performance improvements.
The (off-line) algorithm for generating the oracle parti-

tioning function, oracle_hash(), given a set of contigs C
and a uniform hash function, uniform_hash(), consists of
two steps:
(1) Iterate over the set of contigs C and assign each contig
a processor ID (in a cyclic fashion to ensure load balance)
among processors.
(2) Iterate within each contig and extract its k-mers. To
each one of these k-mers assign the contig’s processor ID and
store this information in a compact oracle_hash_vector. In
particular, given a k-mer A, we store the corresponding pro-
cessor ID in the position uniform_hash(A) of oracle_hash_-
vector. If there is a collision (i.e. another k-mer of another
contig has been already stored in this position of the vector),
then k-mer A will be stored to a remote processor instead of
the correct (local) one. The number of collisions in this
oracle_hash_vector is approximately the number of com-
munication events that will be incurred during the traver-
sal. Therefore, with a larger oracle_hash_vector we can de-
crease the number of collisions and consequently we can de-
crease the communication volume. Essentially we can trade
off memory requirements and the number of collisions in
the oracle_hash_vector, thus increasing or decreasing com-
munication overhead according to the size of the available
aggregate memory. Note that the algorithm for generating
the oracle_hash_vector can be trivially parallelized. Nev-
ertheless, since the construction of the oracle_hash_vector
is an offline process and has to be completed only once, it
does not lie on the critical path of the pipeline’s execution.

The oracle_hash() values are computed during the graph
construction and traversal for a given oracle_hash_vector
as follows:
(1) The processors load the oracle_hash_vector in their
memory, and the oracle_hash_vector is replicated across
processors. Alternatively we can replicate the oracle_hash_-
vector on a node basis in order to decrease the per thread
memory requirements.
(2) When calling oracle_hash(A) at the application level
in respect to a k-mer A, the value of uniform_hash(A) is
computed. Next we lookup in the processor-local oracle_-
hash_vector and retrieve the corresponding processor ID
(pi). Based on the value of pi, we subsequently reshuffle the
original uniform_hash(A) value. In particular, if uniform_-
hash(A) was about to be mapped in location (bucket) b of
processor pj (assuming a cyclic distribution of buckets to
processors), the return value of oracle_hash(A) is adjusted
such that it is mapped at location (bucket) b of processor
pi. Observe that uniformity in the distribution of buckets is
preserved since all the hash values are shifted in a uniform
way to the appropriate buckets. Moreover, the vast majority
of the contig’s k-mers that will be looked up after k-mer A
during the traversal phase, are located in the same processor
pi by construction of the oracle_hash_vector. Therefore, if
the processors select traversal seeds from local buckets, they
will be mostly performing local accesses in the hash table
when traversing the de Bruijn graph.

A refinement for practical considerations (e.g. SMP clus-
ters), is working with node IDs instead of processor IDs. In
this setting, the algorithm avoids the off-node communica-
tion while performing intra-node accesses when generating
the contigs, which are orders of magnitude cheaper than the
off-node communication overhead.

3.3 Parallel Reading of FASTQ Files
Our previous work relied on the SeqDB [11] binary format,

which utilizes the modern HDF5 file format, for fast parallel
I/O. Even though SeqDB is a scalable compressed storage
medium for sequence data, this required conversion from
the FASTQ format prior to the execution, and could thus
become an impediment for end users who do not want to
change their file formats. The challenge was that neither of
the parallel genome assemblers we tested (Ray and Abyss)
had a scalable fast FASTQ reader. In this work, we overcome
this barrier by implementing a parallel block FASTQ reader.

The reader first samples the FASTQ file in parallel (each
processor samples about a million reads concurrently) to
estimate the id lengths, which can be variable across reads.
The average id length is then used as an estimate to find
splitting points across processors. Since a splitting point
can be in the middle of a read, a processor pi fast forwards
to the beginning of the next full read, while the previous
partial read is processed by the neighboring processing pi−1.
The key to high performance is to use MPI-IO functions
(in our case MPI_File_read_at) with large buffer sizes and
parse the buffered data in memory. Using this approach,
our method obtains close to the I/O bandwidth achieved by
reading SeqDB (up to compression factor differences).

4. SCAFFOLDING PARALLELIZATION
In this section we describe the newly developed paralleliza-

tions of the scaffolding’s modules.

4.1 Contig Depths and Termination States
Given the exact count (depth) of the k-mers and a set

of contigs, we first calculate the average depth of each con-
tig. The parallelization here consists of two steps. First,
the k-mers are stored in a distributed hash table where
the keys are k-mers and the values are the corresponding
counts. For the construction of the distributed hash table
we employ a communication optimization, namely “aggre-
gating stores” [3]. This optimization aggregates fine-grained
messages and decreases their total number along the critical
path, while additionally reducing the synchronization costs
in the distributed hash table construction. Next, each pro-
cessor pi is assigned 1/p of the contigs (p is the total number
of available processors) and for every contig, pi looks up all
the contained k-mers and sums up their counts. The aver-
age depth of the contig is then calculated as the mean depth
of all the k-mers. Note that this step does not require any
synchronization, as the distributed hash table is only read
after its construction.

In the distributed hash table of k-mers we store their cor-
responding extensions as their values. The algorithm then
iterates in parallel over the contig set and identifies the ter-
mination condition for every contig. For example, a contig
may have been terminated because it did not find any neigh-
boring k-mers to its endpoints, or if it found a branch in the
graph with two high quality neighboring k-mers. The latter
is the case that often arises in diploid organisms and in repet-
itive genome regions. The Meraculous assembler terminates
contigs if they do not have unique high quality neighboring
k-mers, but this termination state is utilized in the following
bubble identification step during scaffolding.

4.2 Identifying Contig Set Bubbles
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Figure 3: (a) Contigs k and m constitute a splint. (b)
Contigs i and j constitute a span.

In this step, we examine the termination condition of con-
tigs and we detect bubbles: contigs that have the same k-
mers as extensions of their endpoints (note that this is only
applicable in diploid genomes). By leveraging this bubble in-
formation and the contigs’s end termination state, a graph of
contigs is created called the bubble-contig graph. This graph
is orders of magnitude smaller than the original k-mer de
Bruijn graph because the connected components (contigs) of
the de Bruijn graph have been contracted to supervertices.
We build this bubble-contig graph in parallel by employing
a distributed hash table.

Once the bubble-contig graph is built, it is traversed to
merge qualifying contigs (e.g. by following one of the paths
in the bubbles). We parallelize this traversal using a spec-
ulative approach. The processors pick random seeds from
the bubble-contig graph and initiate independent traversal.
Once an independent traversal is terminated we store the
resulting path. However, if multiple processors work on the
same path, they abort their traversals and allow a single pro-
cessor to complete them. In practice, this speculative execu-
tion spends most of the time (∼ 99%) in parallel traversals.
Given that the bubble-contig graph is orders of magnitude
smaller than the original de Bruijn graph, its traversal is
extremely fast. The result of this module is a set of contig
paths, where every path can be compressed to a single DNA
sequence. For simplicity, we call these compressed paths
contigs in the description of the following modules.

4.3 Alignment of Reads onto Contigs
In this pipeline phase the goal is to map the original reads

onto the generated contigs. This mapping provides infor-
mation about the relative ordering and orientation of the
contigs. In order to efficiently parallelize the read-to-contig
alignment, we employ merAligner [12], a scalable, end-to-
end parallel sequence aligner. MerAligner implements a
seed-and-extend algorithm and fully parallelizes all of its
components. Therefore it significantly outperforms other
parallel alignment tools that mostly build their lookup ta-
bles serially [12].

4.4 Insert Size Estimation of Read Libraries
Given a set of paired-end reads (i.e. the reads come in

pairs) and the corresponding read-to-contig alignments from
the previous step, we now use full length alignments in which
both ends of a pair are placed within a common contig, and
calculate the insert size. Sampling the alignments allows us
to estimate the insert size of the library, which is used as
a parameter in subsequent scaffolding modules. The insert
size estimation is parallelized by having p processors build
local histograms of distinct sampled alignments and eventu-
ally merging these p local histograms to a global one, from

which the insert size of the read library is computed.

4.5 Locating Splints and Spans
The next step is to process the alignments and identify

splints, which are contigs that overlap at their ends. Essen-
tially, if a particular segment of a read aligns to the ends
of two different contigs we conclude that these contigs form
a splint (see Figure 3 (a)). The parallelization of this step
is straightforward: Each of the p processors independently
processes 1/p of the total read alignments and stores the
splints’s information.

Additionally, by processing paired-end reads’ alignments
we identify spans, which are pairs of contigs associated with
particular “mate” reads via their read-to-contig alignments.
For example, consider that the first read of a pair aligns with
contig i while the second read of that pair aligns with contig
j. It can thus be concluded that contigs i and j form a span
(see Figure 3 (b)). Note that we have already calculated the
insert size of the read library in previous step and therefore
can estimate the gap size among contigs i and j. Again
the parallelization of this module is straightforward, where
each processor independently assesses 1/p of the total read
alignments and stores the spans’s information.

4.6 Contig Link Generation
Once splints and spans are created, they can be assessed

to generate links among pairs of contigs. More specifically, if
a sufficient number of read alignments supports a particular
splint between contig k and contig m, we generate a splint
link for that pair of contigs. Parallelizing this operation
requires a distributed hash table, where the keys are pairs of
contigs and values are the splint/overlap information. Each
processor is assigned 1/p of the splints and stores them in the
distributed hash table. Here, we again apply the aggregating
stores optimization to minimize the number of messages and
the synchronization cost. When all splints have been stored
in the distributed hash table, each processor iterates over its
local buckets to further assess/count the splint links.

In an analogous way, if a sufficient number of paired-read
alignments supports a particular span between contig i and
contig j we generate a span link for that pair of contigs.
The parallelization of this operation relies on a distributed
hash table where the keys are pairs of contigs and values are
the span/gap information. Again we have each processor
assess 1/p of the spans and apply the aggregating stores
optimization. After the distributed hash table construction
is finalized, each processor iterates over its local entries to
further assess/count the span links.

4.7 Ordering and Orientation of Contigs
After storing the previously generated links in a distributed

hash table where the keys are pairs of contigs and values are
the corresponding link information, the data in the links is
processed to build ties among the contigs by consolidating
splint/span links. This step employs parallelism by having
each processor work on the local buckets of the links’ dis-
tributed hash table. After the establishment of ties among
the contigs, Meraculous’ scaffolder traverses the implicit graph
of ties and then locks contigs together in order to form scaf-
folds (see Figure 4). The traversal is done by selecting seeds
in order of decreasing length (this heuristic tries to lock to-
gether first “long” contigs) and therefore it is inherently se-
rial. We have optimized this component and found that
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Figure 4: A scaffold formed by traversing a sequence of ties.
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Figure 5: A set of gaps in a scaffold to be closed.

its execution time is insignificant compared to the previ-
ous pipeline operations. This behavior is expected since the
number of contigs (vertices in the ties’s graph) is orders of
magnitude smaller than the k-mers (vertices in the de Bruijn
graph of the pipeline).

4.8 Gap Closing
The gap closing stage uses the merAligner outputs (i.e.

read-to-contig alignments), the scaffolds and the contigs to
attempt to assemble reads across gaps between the contigs
of scaffolds (see Figure 5). To determine which reads map
to which gaps, the alignments are processed in parallel and
projected into the gaps. The gaps are divided into subsets
and each set is processed by a separate thread, in an em-
barrassingly parallel phase. Several methods are available
for constructing closures, and are used in succession until a
closure is found or no more methods are available. The first
method used is spanning, i.e. finding a read that begins with
the end of the contig on one side of the gap, and finishes with
the start of the contig on the other. Should spanning fail,
an attempt is made to do a traversal (k-mer walk) across
the reads from one side of the gap to the other, with iter-
atively increasing k-mer sizes until the gap is closed. This
mini-assembly step is first attempted from the right hand
side contig to the left, and if that fails, from left to right.
If both traversals fail, the final method used is an attempt
to patch across the two incomplete traversals, i.e. find an
acceptable overlap between the two sequences.

The various closure methods differ in computational inten-
sity, with spanning and patching being orders of magnitude
quicker than k-mer walks. Given that it is not clear a priori
what methods will be successful for closing a gap, the com-
putational time can vary by orders of magnitude from one
closure to the next. To prevent load imbalance in the gap
closing phase, the gaps are distributed in a Round Robin
fashion across all the available threads. This suffices to pre-
vent most imbalance because it breaks up the gaps from a
single scaffold, which tend to require similar costs to close.

5. EXPERIMENTAL RESULTS
Parallel performance experiments are conducted on Edi-

son, the Cray XC30 located at NERSC. Edison has a peak
performance of 2.57 petaflops/sec, with 5,576 compute nodes,
each equipped with 64 GB RAM and two 12-core 2.4GHz
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Figure 6: Strong scaling of k-mer analysis on wheat, show-
ing the effect of the heavy hitters (high frequency k-mers)
optimization.

Intel Ivy Bridge processors for a total of 133,824 compute
cores, and interconnected with the Cray Aries network using
a Dragonfly topology. For our experiments, we use Edison’s
parallel Lustre /scratch3 file system, which has 144 Ob-
ject Storage Servers providing 144-way concurrent access to
the I/O system with an aggregate peak performance of 72
GB/sec.

To analyze HipMer performance behavior we examine a
human genome for a member of the CEU HapMap popula-
tion (identifier NA12878) sequenced by the Broad Institute.
The genome contains 3.2 Gbp (billion base pair) assembled
from 2.9 billion reads (290 Gbp of sequence), which are 101
bp in length, from a paired-end insert library with mean
insert size 395 bp. Additionally, we examine the grand-
challenge hexaploid wheat genome (Triticum aestivum L.)
containing 17 Gbp from 2.3 billion reads (477 Gbp of se-
quence) for the homozygous bread wheat line ‘Synthetic
W7984’. Wheat reads are 150-250 bp in length from 5
paired-end libraries with insert sizes 240-740 bp. Also, for
the scaffolding phase we leveraged (in addition to the previ-
ous libraries) two long-insert paired-end DNA libraries with
insert sizes 1 kbp and 4.2 kbp. This important genome was
only recently sequenced for the first time [13], and requires
high-performance analysis due to its size and complexity.

Additionally, we leverage HipMer for k-mer analysis and
contig generation of a massive-scale metagenomics dataset,
containing wetland soil samples that are a timeseries dataset
across several physical sites from the Twitchell Wetland in
the San Francisco Bay-Delta. These samples consist of either
the rhizome-associated soil of two important wetland plants
(cattail and tule) or bulk soil material, and consist of 7.5
billion reads (1.25 Tbase). These data are 4.07× larger than
the human data (2637 GB vs 648 GB) and significantly more
complex due to the diversity of the metagenomics. Hence,
they require extreme-scale computing for effective analysis.

In this section we only present performance results for
components with improvements and optimizations (heavy
hitters for k-mer analysis, communication-avoiding contig
generation), new components (the various scaffolding steps),
and end-to-end results for the whole de novo assembly pipe-
line. A detailed analysis of existing results can be found in
our previous work [3, 12]. Also, the accuracy of the assem-
blies generated by HipMer is not reported in this paper since
it produces results that are biologically equivalent to the



original Meraculous results. The original Meraculous’s ac-
curacy has been exhaustively studied using different metrics
and datasets (including the human genome) in the Assem-
blathon I [14] and II [2] studies. In those studies, Meraculous
is also compared against other de novo genome assemblers
and found to excel in most of the metrics.

5.1 Optimization Effects on k-mer Analysis
Figure 6 presents the effect of identifying heavy hitters

(i.e. high frequency k-mers). As described in Section 3.1,
we treat heavy hitters specially by first accumulating their
counts and extensions locally, followed by a final global re-
duction. We do not show the results for human as the heavy
hitters optimization does not significantly impact its running
time.

We use θ = 32, 000 in our experiments, which is the num-
ber of slots in the main data structure of the Misra-Gries
algorithm. Since the wheat data has approximately 330 bil-
lion 51-mers, this choice of θ only guarantees the identifi-
cation of k-mers with counts above 10 million. In practice,
however, the performance was not sensitive to the choice
of θ, which was varied between 1K and 64K with negligi-
ble (less than 10%) performance difference. At the scale of
15,360 cores, the heavy hitters optimization results in a 2.4×
improvement for the wheat data.

In the default version, the percentage of communication
increases from 23% in 960 cores to 68% in 15,360 cores.
In the optimized version, however, communication increases
from 16% to only 22%, meaning that the method is no longer
communication bound for the challenging wheat dataset and
is showing close to ideal scaling up to 7,680 processors. Scal-
ing beyond that is challenging because the run times include
the overhead of reading the FASTQ files, which requires 40-
60 seconds (depending on the system load). Since the Edison
I/O bandwidth is already saturated by 960 cores, the I/O
costs are relatively flat with increasing number of cores and
thus impact scalability at the highest concurrency.

5.2 Communication-Avoiding
de Bruijn Graph Traversal

To evaluate the effectiveness of our communication-avoid-
ing algorithm we investigate performance results on the hu-
man genome data set on Edison using two concurrencies:
480 and 1,920 cores. Table 1 presents the speedup achieved
by our communication avoiding algorithm (columns “oracle-
1” and “oracle-4”) over the basic version without an ora-
cle hash function (column “no-Oracle”). The case labeled
“oracle-1” corresponds to an oracle hash function with a per-
thread memory requirement of 115 MB, while the “oracle-4”
hash functions requires four times more memory, i.e. 461
MB per-thread. Recall that an increase of dedicated mem-
ory for the oracle hash function corresponds to more effective
communication-avoidance. At 480 cores the communication-
avoiding algorithms yields a significant speedup up to 2.8×
over the basic algorithm, while at 1,920 cores we achieve an
improvement in performance up to 1.9×.

The data presented in Table 2 show that the performance
improvements are related to a reduction in communication.
As expected, the basic algorithm performs mostly off-node
communication during the traversal. In particular, 92.8% of
the lookups result in off-node communication at 480 cores,
and 97.2% of the lookups yield off-node communication at
1,920 cores. By contrast, even a lightweight oracle hash func-

Graph traversal time (sec) Speedup
Cores no-Oracle oracle-1 oracle-4 oracle-1 oracle-4

480 145.8 105.8 52.1 1.4× 2.8×
1,920 46.3 35.9 24.8 1.3× 1.9×

Table 1: Speedup of communication-avoiding parallel de
Bruijn graph traversal vs. the basic (no Oracle) algorithm.

Off-node communication % reduction in
Cores (% of total) off-node comm

no-Oracle oracle-1 oracle-4 oracle-1 oracle-4

480 92.8 % 54.6 % 22.8 % 41.2 % 75.5 %
1,920 97.2 % 54.5 % 23.0 % 44.0 % 76.3 %

Table 2: Reduction in communication time via oracle hash
functions.

tion“oracle-1”reduces the off-node communication by 41.2%
and 44%, at 480 and 1,920 cores, respectively. By allocating
more memory for the oracle hash function (“oracle-4”) we
can further decrease the off-node communication, by 75.5%
and 76.3%. Note that the remainder of this paper only ex-
amines the analysis of single individual genomes and cannot
effectively leverage the oracle partitioning. Therefore this
optimization is turned off during the experiments for the
results presented in this paper. However, the oracle parti-
tioning infrastructure is crucial for the scenario of exploring
assemblies of multiple genomes of the same species and for
the scenario of optimizing an individual assembly by iterat-
ing over multiple lengths for the k-mers. These two use-case
scenarios of HipMer are the subject of ongoing studies in
biology.

5.3 Parallel Scaffolding
Figure 7 (left) illustrates the strong scaling performance

for the scaffolding module using the human dataset. This
graph depicts three scaffolding component runtimes at each
concurrency: (1) the merAligner runtime, the most time
consuming module of scaffolding, (2) the time required by
the gap closing module and (3) the execution time for the
remaining steps of scaffolding. The final component includes
computation of contig depths and termination states, identi-
fication of bubbles, insert size estimation, location of splints
& spans, contig link generation and ordering/orientation of
contigs — which have all been parallelized and optimized for
the HipMer implementation of our study. Scaling to 7,680
cores and 15,360 cores results in parallel efficiencies (rela-
tive to the 480 core baseline) of 0.48 and 0.33, respectively.
While merAligner exhibits effective scaling behavior all the
way up to 15,360 cores (0.64 efficiency), the scaling of gap
closing is more constrained by I/O and only achieves a paral-
lel efficiency of 0.35 at 7,680 cores, and 0.19 at 15,360 cores.
Similarly, the remaining modules of scaffolding show scal-
ing up to 7,680 cores, while once again suffering from I/O
saturation at the highest (15,360 cores) concurrency.

Figure 7 (right) presents the strong scaling behavior of
scaffolding for the larger wheat dataset. We attain parallel
efficiencies of 0.61 and 0.37 for 7,680 and 15,360 cores respec-
tively (relative to the 960 core baseline). While merAligner
and gap closing exhibit similar scaling to the human test
case, the remaining scaffolding steps consume a significantly
higher fraction of the overall runtime. There are two main
reasons for this behavior. First, the highly repetitive nature



 128

 256

 512

 1024

 2048

 4096

 480  960  1920  3840  7680  15360

Se
co

nd
s

Number of Cores

overall time
merAligner

rest scaffolding
gap closing

ideal overall time

 512

 1024

 2048

 4096

 8192

 16384

 960  1920  3840  7680  15360

Se
co

nd
s

Number of Cores

overall time
merAligner

rest scaffolding
gap closing

ideal overall time

Figure 7: Strong scaling of scaffolding for (left) human genome and (right) wheat genome. Both axes are in log scale.

of the wheat genome leads to increased fragmentation of the
contig generation compared with the human DNA, resulting
in contig graphs that are contracted by a smaller fraction.
(We refer to contraction with respect to the size reduction
of the k-mer de Bruijn graph when it is simplified to equiva-
lent contig graphs.) Hence, the serial component of the con-
tig ordering/orientation module requires a relatively higher
overhead compared with the human data set. Second, the
execution of the wheat pipeline as performed in our previ-
ous work [5] requires four rounds of scaffolding, resulting in
even more overhead within the contig ordering/orientation
module.

5.4 Twitchell Wetlands Metagenome Scaling
Metagenomes or environmental sequencing is one of the

ways that researchers can investigate the genomes of micro-
bial communities that are otherwise unable to be discov-
ered. Because these datasets, depending on their origin, can
contain upwards of 10,000 different species and strains, the
assembly requires many terabytes of memory, which some-
times prevents the largest datasets from being assembled at
all. Even when assembly is possible, typically 90% of the
reads [15] cannot be assembled because the sampling was
not high enough to resolve low-abundance organisms, and
yet collecting more sequencing data would exacerbate the
computing resource requirements.

We show the performance of HipMer’s k-mer analysis and
contig generation steps on the Twitchell wetlands metage-
nome dataset, one of the largest and most complex microbial
communities available. Since this dataset includes a widely
diverse set of organisms, its k-mer count histogram is much
flatter and the Bloom filters are less effective. In partic-
ular, only 36% of k-mers have a single count (versus 95%
for human), which necessitates a much bigger working set

Cores k-mer analysis contig generation file I/O

10K 776.04 47.83 92.81
20K 525.34 31.02 95.42

Table 3: Performance (seconds) and scaling of k-mer anal-
ysis and contig generation for metagenomic data. For this
table only, we report the time spent in I/O on a separate
column to highlight the scaling of non-I/O components.

for the local hash tables that store the k-mers and their
extensions. Therefore, we only show results for 10K and
20K cores, which consumed 13.8 TB and 16.3 TB aggregate
distributed memory, respectively, for analyzing the k-mers.
Since metagenome assembly is not within the original design
of the Meraculous algorithms, and single-genome logic may
introduce errors in the scaffolding of a metagenome, we will
only execute HipMer through the uncontested contig gen-
eration, and plan future work to adapt HipMer to properly
scaffold a metagenome at scale.

As shown in Table 3, all steps except file I/O show scaling.
Since the I/O is well saturated at both concurrencies, the
time difference is solely due to system load. Though the
accomplishment of generating an assembly for a dataset of
this size is an achievement in and of itself, the ability to
rapidly generate contigs opens up the possibility of further
iterating the metagenome assembly parameter space in a
way that was until now unprecedented.

5.5 End-to-End Performance
Figure 8 shows the end-to-end strong scaling performance

of HipMer on the human (left) and the wheat (right) data
sets. For the human dataset at 15,360 cores we achieve a
speedup of 11.9× over our baseline execution (480 cores).
At this extreme scale the human genome can be assembled
from raw reads in just ∼8.4 minutes. On the complex wheat
dataset, we achieve a speedup up to 5.9× over the baseline
of 960 core execution, allowing us to perform the end-to-
end assembly in 39 minutes when leveraging 15,360 cores.
In the end-to-end experiments, a significant fraction of the
overhead is spent in parallel scaffolding (e.g. 68% for human
at 960 cores); k-mer analysis requires significantly less run-
time (28% at 960 cores) and contig generation is the least
expensive computational component (4% at 960 cores).

5.6 Competing Parallel De Novo Assemblers
To compare the performance of HipMer relative to existing

parallel de novo end-to-end genome assemblers we evaluated
Ray [16, 17] (version 2.3.0) and ABySS [18] (version 1.3.6)
on Edison using 960 cores. Both of these assemblers are de-
scribed in more detail in Section 6. Ray required 10 hours
and 46 minutes for an end-to-end run on the Human dataset.
ABySS, on the other hand, took 13 hours and 26 minutes
solely to get to the end of contig generation. The subse-
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Figure 8: End-to-end strong scaling for (left) human genome and (right) wheat genome. Both axes are in log scale.

quent scaffolding steps are not distributed-memory parallel.
At this concurrency on Edison, HipMer is approximately
13 times faster than Ray and at least 16 times faster than
ABySS.

6. RELATED WORK
As there are many de novo genome assemblers and as-

sessement of the quality of these is well beyond the scope
of this paper, we refer the reader to the work of the Assem-
blathons I [14] and II [2] as examples of why Meraculous [1]
was chosen to be scaled, optimized and re-implemeted as
HipMer. For performance comparisons, we primarily refer
to parallel assemblers with the potential for strong scaling on
large genomes (such as plant, mamalian and metagenomes)
using distributed computing or clusters.

Ray [16, 17] is an end-to-end parallel de novo genome
assembler that utilizes MPI and exhibits strong scaling. It
can produce scaffolds directly from raw sequencing reads and
produces timing logs for every stage. One drawback of Ray
is the lack of parallel I/O support for reading and writing
files. As shown in Section 5.6 Ray is approximately 13×
slower than HipMer for the human data set on 960 cores.

ABySS [18] was the first de novo assembler written in MPI
that also exhibits strong scaling. Unfortunately only the first
assembly step of contig generation is fully parallalized with
MPI and the subsequent scaffolding steps must be performed
on a single shared memory node. As shown in Section 5.6
ABySS’ contig generation phase is approximately 16× slower
than HipMer’s entire end-to-end solution for the human data
set on 960 cores.

PASHA [19] is another partly MPI based de Bruijn graph
assembler, though not all steps are fully parallelized as its
algorithm, like ABySS, requires a large memory single node
for the last scaffolding stages. The PASHA authors do claim
over 2× speedup over ABySS on the same hardware.

YAGA [20] is a parallel distributed-memory that is shown
to be scalable except for its I/O, but the authors could not
obtain a copy of this software to evaluate. HipMer employs
efficient, parallel I/O so is expected to achieve end-to-end
performance scalability. Also, the YAGA assembler was de-
signed in an era when the short reads were extremely short
and therefore its run-time will be much slower for current
high throughout sequencing systems.

SWAP [21] is a relatively new parallelized MPI based de
Bruijn assembler that has been shown to assemble contigs for
the human genome and performs strong scaling up to about
one thousand cores. However, SWAP does not perform any
of the scaffolding steps, and is therefore not an end-to-end
de novo solution. Additionally, the peak memory usage of
SWAP is much higher than HipMer, as it does not leverage
Bloom filters.

There are several other shared memory assemblers that
produce high quality assemblies, including ALLPATHS-LG [22]
(pthreads/OpenMP parallel depending on the stage), SOAP-
denovo [23] (pthreads), DiscovarDenovo [24] (pthreads) and
SPADES [25] (pthreads), but unfortunately each of these
requires a large memory node and we were unsuccessful at
running these experiments using our datasets on a system
containing 512GB of RAM due to lack of memory. This
shows the importance of strong scaling distributed memory
solutions when assembling large genomes.

7. CONCLUSIONS AND FUTURE WORK
Next-generation short-read sequencing technology has re-

sulted in explosive growth of sequenced DNA. However, de
novo assembly has been unable to keep pace with the flood
of data, due to vast computational requirements and the al-
gorithmic complexity of assembling large-scale genomes and
metagenomes. In this work we address this challenge head
on by developing HipMer, an end-to-end high performance
de novo assembler designed to scale to massive concurren-
cies. Our work is based on the Meraculous assembler, which
has been shown to be one of the top de novo approaches in
recent Assemblathon competitions [2].

We developed several novel algorithmic advancements by
leveraging the efficiency and programmability of UPC, in-
cluding optimized high-frequency k-mer analysis, commu-
nication avoiding de Bruijn graph traversal, advanced I/O
optimization, and extensive parallelization across the nu-
merous and complex application phases. We emphasize that
distributed hash tables lie in the heart of HipMer and the
main operations on them are irregular lookups. Therefore
our algorithms avoid synchronization and message matching
logic that would be imposed by a two-sided communication
model and instead employ the asynchronous one-sided com-
munication capabilities of UPC. The global address space is



also convenient for these algorithms, since variables may be
directly read and written by any processor.

Overall results show unprecedented performance and scal-
ability, attaining an overall runtime of 8.4 minutes for the
human DNA at 15K cores on the Cray XC30, compared
with 10.8 hours for Ray and 23.8 hours for the original Mer-
aculous application. Additionally, we explored performance
on the grand-challenge wheat genome, which, to date, has
been too large and complex for most modern de novo as-
semblers. Our results demonstrated impressive scalability,
allowing the completed wheat assembly in just 39 minutes
using 15K cores.

Furthermore, we have shown that the distributed memory
implementation of HipMer can successfully assemble con-
tigs from one of the largest, most complex and challenging,
deeply sequenced metagenome datasets in less than 11 min-
utes using 20K cores. We have begun to apply the Meracu-
lous algorithm to the new challenge of metagenome assem-
bly and plan to continue to develop the necessary algorith-
mic changes for scaffolding, variant resolution and cluster-
ing, and will then adapt this code into an end-to-end high
performance metagenome assembler.

Using our HipMer technology enables — for the first time
— assembly throughput to exceed the capability of all the
world’s sequencers, thus ushering in a new era of genome
analysis. Additionally, HipMer makes it possible to improve
assembly quality by running tuning parameter sweeps that
were previously prohibitively expense. The combination of
high performance sequencing and efficient de novo assem-
bly is the basis for numerous bioinformatic transformations,
including advancement of global food security and a new
generation of personalized medicine.
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