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ABSTRACT
We present TransitLabel, a crowd-sensing system for automatic
enrichment of transit stations indoor floorplans with different se-
mantics like ticket vending machines, entrance gates, drink vend-
ing machines, platforms, cars’ waiting lines, restrooms, lockers,
waiting (sitting) areas, among others. Our key observations show
that certain passengers’ activities (e.g., purchasing tickets, crossing
entrance gates, etc) present identifiable signatures on one or more
cell-phone sensors. TransitLabel leverages this fact to automati-
cally and unobtrusively recognize different passengers’ activities,
which in turn are mined to infer their uniquely associated stations
semantics. Furthermore, the locations of the discovered semantics
are automatically estimated from the inaccurate passengers’ posi-
tions when these semantics are identified.
We evaluate TransitLabel through a field experiment in eight dif-
ferent train stations in Japan. Our results show that TransitLabel
can detect the fine-grained stations semantics accurately with 7.7%
false positive rate and 7.5% false negative rate on average. In ad-
dition, it can consistently detect the location of discovered seman-
tics accurately, achieving an error within 2.5m on average for all
semantics. Finally, we show that TransitLabel has a small energy
footprint on cell-phones, could be generalized to other stations, and
is robust to different phone placements; highlighting its promise as
a ubiquitous indoor maps enriching service.

1 Introduction
With the fact that people spend most of their time at indoor spaces,
indoor Location Based Services (LBSs) are being developed at a
phenomenal rate with a variety of applications including mapping
and navigation services, point-of-interest finders, geo-social net-
works, and advertisements. With the fact that people spend most
of their time at indoor spaces, indoor LBSs are being developed
at a phenomenal rate. A key requirement to indoor LBSs is the
availability of indoor maps to display the user location on. These
LBSs have still a huge potential for enhancement if rich seman-
tic information is attached to indoor maps to support a wide class
of indoor mapping applications (especially large public buildings
that are visited daily by many people like railway stations, airports,
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museums, etc). Realizing the economic value of this technology, a
number of commercial navigation systems for indoor mapping have
started to emerge. In late 2011, Google Maps started to expand its
coverage by providing detailed floorplans for a few malls and air-
ports in the U.S. and Japan as well as allowing buildings owners
around the world to upload their indoor floorplans. Nevertheless,
these maps are still limited in coverage to a small number of coun-
tries featuring only some major airports, shopping malls, etc. This
limitation in coverage is due in part to the following reasons: (1)
buildings owners may not allow sharing of their floorplans in pub-
lic for privacy reason, (2) buildings internal structures often evolve
over time, and/or (3) manual creation of these maps requires slow,
labor-intensive tasks, and they are subject to intentional incorrect
data entry by malicious users.
Railway stations, as an example of indoor places, are a key part of
the day-to-day lives of people having millions of passengers every
day (e.g., Shinjuku station in Japan has 3.64 million passengers/day
on average1). In highly populated countries, major stations have
large indoor spaces (e.g., Shinjuku station in Japan has 36 plat-
forms and over 200 exits1). Therefore, a number of indoor naviga-
tion apps, e.g. the Tokyo station underground area navigation app2,
for stations have started to emerge. These applications, however,
are built upon a manually created map of the building showing all
important points of interest (e.g., fare collection gates, ticket vend-
ing machine, etc), which impedes their scalability to large scale de-
ployments at different stations. For example, Google indoor maps
covers less than 50 transit stations worldwide, which are a small
fraction of the thousands of stations on Earth3. The lack of de-
tailed digital floorplans for railway stations highlighting locations
of various semantics limits passengers’ experience, especially for
foreigners or first-time visitors. Consequently, this sparks the need
for the automatic construction of detailed indoor floorplans for tran-
sit stations.
To resolve this problem, the research community recently has em-
barked to address the problem of automatic construction of indoor
floorplans by exploiting motion trajectories of mobile phone users
[7, 21, 25]. These systems proved the feasibility of estimating the
general layout of a building [7, 21, 25], identifying rooms shape
and dimensions [7, 21], along with identifying other points of in-
terest such as store entrances [7, 21]. Nevertheless, none of these
approaches provide semantic-rich floorplans where various seman-
tics are tagged on the floorplan that are necessary for many of to-
day’s map-based applications. For example, stations indoor navi-
gation systems should rely on important semantics to better guide

1https://en.wikipedia.org/wiki/Shinjuku_Station
2http://en.rocketnews24.com/2016/02/17/tokyos-busiest-train-
stations-have-a-new-free-english-compatible-navigation-app/
3https://support.google.com/gmm/answer/1685827?hl=en
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(a) The locations of passing
through fare collection gate ac-
tivity as estimated by pedestrian
dead-reckoning (PDR) are high-
lighted on the floorplan.

(b) The output clusters from
the DBSCAN based on cross-
ing fare collection gates activity
locations are highlighted on the
floorplan.

(c) The semantics locations
(e.g., fare collection gates) are
estimated as the center of mass
of all samples within the output
clusters.

(d) The station indoor map with
the discovered semantics loca-
tions, estimated by TransitLa-
bel, are highlighted on the floor-
plan (TransitLabel output).

Figure 1: An example of TransitLabel in action to identify the location of ticket gates in a railway station.

passengers to their destinations; a station evacuation planning is
ineffective if maps are not tagged with emergency exit stairs; a per-
son with disability needs a map showing elevator-enabled routes;
and an occasional passenger needs a map of important semantics
that she must use to board the train (e.g., ticket gates, etc). More-
over, the discovered semantics can be leveraged to provide accurate
calibration-free indoor localization, by providing opportunities for
dead-reckoning error-resetting [3, 41]. Finally, fine-grained track-
ing of passengers’ activities and interaction with the different de-
tected semantics opens the door for indoor analytics, which is of
great business value.
In this paper, we present TransitLabel as a crowdsensing system
that leverages the ubiquitous sensors available in commodity cell-
phones to automatically enrich transit stations floorplans with dif-
ferent semantics. The core idea is that passengers perform many
activities (e.g., crossing an entrance gate) that show identifiable
signatures on the phone sensors. TransitLabel aims to recognize
these high level activities and therefrom discover their uniquely as-
sociated semantics. Therefore, starting from an unlabeled general
floorplan of a transit station, TransitLabel estimates the location of
different semantics and tags their locations on the map accordingly
to generate a detailed floorplan (Figure 1).
Translating this basic idea into a deployable system, however, in-
volves addressing a number of challenges: First, identifying se-
mantics signatures is based on the phone sensors during passen-
gers’ activities; which are prone to human behavior artifacts. Sec-
ond, current indoor localization technologies may require infras-
tructure support or prior calibration; and all have an average lo-
calization error in the range of few meters [42]. This can place
the passenger in a location on the floorplan that is far from the ac-
tual one, affecting the accuracy of semantics’ location estimation.
Finally, the system needs to be optimized for energy to avoid sig-
nificant battery drainage.
To cope with these challenges, TransitLabel draws on a classifier-
based approach based on the multi-modal sensors features to rec-
ognize passengers activities and thereby identify their associated
semantics to address the first challenge. For the second challenge,
TransitLabel relies on a DBSCAN clustering algorithm to cluster
the correct crowdsensed samples of the same semantic to estimate
its location and thus outlier locations are removed. To save energy,
TransitLabel employs sensors with low energy footprint (i.e., iner-
tial sensors) and the energy hungry sensor employed (i.e., sound) is
turned on only when needed.
Implementation of TransitLabel over different Android phones shows
that it can detect the fine-grained stations semantics accurately with
7.7% false positive rate and 7.5% false negative rate on average. In

addition, it can estimate locations of the detected semantics accu-
rately, achieving an error of 2.5m on average using as few as 40
samples of each semantic. This comes with low energy consump-
tion of 41 Joule on average for typical traces. We believe this could
be a promising and a potential candidate for the real-world.
In summary, our contributions are three-fold:
• We present the TransitLabel system to automatically and un-

obtrusively crowdsense and identify transit stations seman-
tics (e.g., ticket and drink vending machines, entrance gates,
lockers, waiting (sitting) areas, restrooms, platforms and cars’
waiting lines, escalators, elevators and stairs) from the avail-
able sensors readings with minimal energy consumption.
• We provide a framework for extracting the features used to

recognize high level user contexts (e.g., buying a ticket) from
a sequence of temporal and spatial low level user states (e.g.,
walking, standing, etc) based on the phone sensors.
• We implement TransitLabel on Android phones, collect real

data by 16 participants, and evaluate its accuracy, general-
izability, robustness and energy-efficiency at eight different
railway stations in Japan.

The rest of the paper is organized as follows: Section 2 presents the
system overview. We give the details of identifying station’s se-
mantics from phone sensors in sections 3 and 4. Section 5 provides
the evaluation of TransitLabel. Section 6 discusses the system lim-
itations and possibilities for enhancement. Finally, sections 7 and
8 discuss related work and conclude the paper respectively.

2 The TransitLabel System
Figure 2 shows the TransitLabel system architecture. TransitLabel
is based on a crowdsensing approach, where cell phones carried by
users submit their data to the TransitLabel service running in the
cloud. The data is first preprocessed to reduce the noise. Then,
semantics are classified to separate the elevation change seman-
tics (elevators, escalators, and stairs) from other railway stations
exclusive semantics (ticket vending machines, entrance gates, etc).
TransitLabel has two core components: one for extracting elevation
change semantics and the other for extracting other stations exclu-
sive semantics. TransitLabel takes a classifier approach to detect
different semantics based on the extracted features from the col-
lected sensor traces. In the rest of this section, we give an overview
of the system architecture leaving the details for the semantics de-
tection to sections 3 and 4.

2.1 Traces Collection
The system collects time-stamped sensor measurements including
the available inertial sensors (accelerometer, gyroscope and mag-
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Figure 2: The TransitLabel system architecture.

netometer), barometer as well as the sound sensor (i.e., the micro-
phone). Inertial sensors have a low-cost energy profile and they are
already running all the time during the standard phone operation
to detect phone orientation changes. Therefore, they consume zero
extra energy. On the other hand, we use an adaptive sensor schedul-
ing scheme called triggered sensing [31] to reduce the sound sensor
energy consumption. The key idea is that sensors that are inexpen-
sive in energy consumption (e.g., accelerometer) are used to trigger
the operation of more expensive sensors (e.g., sound). Specifically,
TransitLabel activates audio recordings only as soon as the pas-
senger becomes stationary for a considerable time (4 seconds) and
suspends it once she resumes walking. The intuition is that passen-
gers traces inside railway stations are dominated by walking peri-
ods and they pause only to perform an activity (e.g., buying a ticket
or a drink) which has a considerable stationarity time (more than
15 seconds). If the user does not resume walking after a certain
time (60 seconds), the audio recordings will be suspended to save
energy. The collected audio recordings during activities are used as
a tie-breaker when other sensors (e.g., inertial sensor) fail to recog-
nize certain activities.
Given the privacy implications of turning on the microphone, Tran-
sitLabel gives users full control over their own sensed data by means
of a personalized privacy configuration. TransitLabel has different
modes of operations (full sensor collection, privacy insensitive data
only) that tailor the amount of data collected based on the user’s
preferences. In addition, according to a recent study [9], inertial
sensors are enabled by most users and even the privacy-sensitive
sensors (i.e., microphone) are enabled by about 78% of users. Fi-
nally, we process audio data locally on the user’s device to further
enhance the user privacy.

2.2 Preprocessing
This module is responsible for preprocessing the raw sensor mea-
surements to reduce the effect of (a) phone orientation changes and
(b) noise, e.g., small direction changes while moving. To handle
the former, we transform the sensor readings from the mobile co-
ordinate system to the world coordinate system leveraging the in-
ertial sensors [32]. To address the latter, we apply a low-pass filter
to raw sensors data using local weighted regression to smooth the
data [10]. To filter out the noise in the employed frequency bands

(350Hz and 3kHz) in audio recordings, the standard sliding win-
dow averaging technique, with a window of 32 samples, is used.

2.3 Passengers’ Position Estimation
TransitLabel needs accurate passengers’ locations during activi-
ties to estimate their uniquely associated semantics positions. To
achieve this, TransitLabel employs the dead-reckoning technique
to track the passenger’s location starting from a reference point
(e.g., the station entrance). We employ the step detection algo-
rithm in [8] that takes into account the different users’ profiles and
gaits and apply them to the acceleration signal to detect the user
steps. The user heading is estimated by incorporating the algorithm
in [3,41] which leverages the correlation between compass and gy-
roscope to compensate gyroscope drift and compass interference
errors to accurately estimate the user orientation. The estimated
displacement and heading are fused to localize the user. However,
the displacement error of dead reckoning is unbounded making it
infeasible for indoor tracking. To alleviate this problem, TransitLa-
bel incorporates the idea of SemanticSLAM [3, 41] by leveraging
amble and unique physical points in the stations (i.e., semantics)
to reset the accumulated error. Since dead-reckoning provides a
rough location to the phone, it is also possible to roughly localize
the semantics based on when the phone senses them. Now, since
the floorplan is known, we can estimate the locations of all seman-
tics in a crowd-sensing approach (as discussed later) by combining
the rough estimates (i.e., the dead-reckoned positions) from multi-
ple passengers’ phones. These semantics, once detected based on
their unique sensor signatures, can then be used to improve dead-
reckoning of subsequent passengers, which in turn can refine the
semantic locations. This recursive dependence between estimating
the semantic location and the user location is similar to the Simul-
taneous Localization And Mapping (SLAM) framework.

2.4 Semantic Type Detection
TransitLabel is designed to detect various stations semantics based
on their unique usage patterns. This module separates between the
two major types of semantics: elevation change semantics (ele-
vators, stairs and escalators) and stations specific semantics (e.g.,
ticket vending machines, entrance gates, etc). The usage of eleva-
tion change semantics involves a noticeable change in the passen-
ger’s level (i.e., height) which is absent in other semantics (Figure
4). To separate them, we draw on the maximum difference among
the relative barometer readings (i.e., pressure) in consecutive over-
lapping windows. The employed window size, 10 seconds, is small
enough so that barometer readings are not affected by the environ-
mental changes [33]. The intuition is that a change in pressure
means a change in height which in turn means that the passenger
is using one of the elevation change semantics. Moreover, the sign
of the pressure difference indicates the direction of motion (up or
down) which is useful for other purposes (e.g., detecting escalators
direction). Evaluation of over 250 traces shows that the seman-
tic type detection can achieve 0% false positive and negative rates.
Later, the major two classes of semantics are further classified to
their more fine-grained semantics.

2.5 Feature Extraction
In this section, we present the basic features used to identify the
different semantics based on the data collected from the passen-
gers’ phone sensors. For instance, magnetic peak is a key feature to
recognize many activities that involve direct interaction with elec-
tronic machines (e.g., vending machines). To extract it, we first
apply a stream-based event detection algorithm to identify signifi-
cant changes in the magnitude of the magnetic field. Once a sig-
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Figure 3: A decision tree classifier for detecting different types of semantics.
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nificant change (a 10uT increase in a window of 50 samples4) has
been observed, we mark the corresponding time instant as the start-
ing boundary of the peak area. We buffer subsequent measurements
until a significant decrease in the magnitude of the magnetic field is
observed. Once the starting and ending boundaries have been iden-
tified, we extract two features that characterize the peak area: the
peak duration and strength. Moreover, some activities (e.g., buying
tickets) are characterized by a sudden change in the user direction
(i.e., surge in gyroscope readings) during or directly after the activ-
ity period. To detect this sudden change, we used the approximate
derivative method: The derivative of sensor values within a time
window are compared against a predetermined threshold (75◦ in a
window of 60 samples) to detect the surge in sensor values. Finally,
the variance of the acceleration is used to discriminate various pas-
senger motion types (stationary, slow walking and normal walk-
ing) which contributes to the identification of many higher level
passenger activities (e.g, buying a ticket). The acceleration vari-
ance values of 1.8 and 7 for a window of 200 samples are used as
thresholds to separate stationary, slow walking and normal walking
motion patterns respectively.

4We experimented with different values of thresholds and selected
values that are robust to changes in the platforms/stations as con-
firmed by our experiments.

2.6 Station Semantics Extraction
As many semantics share some sensors patterns while having dif-
ferent patterns on other sensors, the hierarchical classification is
an intuitive solution. Therefor, to identify semantics, TransitLabel
relies on a tree-based classifier as it is easy to understand and to
generate its rules. This classifier decomposes the task hierarchi-
cally into subtasks, proceeding from a coarse-grained classification
(shared patterns) towards the distinction of fine-grained semantics
(distinctive patterns) as detailed in sections 3 and 4.

2.7 Semantic Location Estimation
Whenever a semantic is detected by the semantic detection mod-
ules discussed later, TransitLabel needs to determine whether it is
a new instance of a station semantic (i.e., not discovered before) or
not as well as determine its location.
To do this, TransitLabel applies spatial clustering for each type of
the extracted semantics. It uses the density-based clustering algo-
rithm (DBSCAN [19]) which has a number of advantages as the
number of clusters is not required before carrying out clustering;
the detected clusters can be represented in an arbitrary shape; and
outliers can be detected. The DBSCAN is applied to all samples
of each discovered semantic to cluster all samples that are adja-
cent to each other in the spatial space. The parameter Eps spec-
ifies the radius of each cluster controlling the maximum distance
among samples on the same cluster. After clusters are formed, the



locations of the newly discovered semantics are estimated as the
weighted mean of the points inside their clusters. We weight the
different locations based on their location accuracy reported by the
localization approach. Specifically, in our position estimation ap-
proach, the longer the user trace from the last resetting point, the
higher the error in the trace. Therefore, shorter traces have better
accuracy. Based on the law of large numbers, the weighted average
of independent noisy samples should converge to the actual loca-
tion of the semantic. When a new semantic is identified, if there
is an already discovered semantic within its neighborhood, we add
it to the cluster and update its location. Otherwise, a new clus-
ter is created to represent the new semantic. To reduce outliers, a
semantic is not physically added to the floorplan until the cluster
size reaches a certain threshold which is specified by the Minpts
parameter (the minimum number of points that can form a cluster)
of the DBSCAN algorithm. The DBSCAN parameters Minpts and
Eps are selected empirically for each semantic type depending on
its available number of samples, its physical dimension, and the av-
erage inter-distance among its physical instances in the real-world
stations indoor maps. We do not state the DBSCAN parameters
values for each semantic due to space constraints.

2.8 Practical Considerations
Sensor specifications are different from one phone manufacturer
to another, which leads to different sensor readings for the same
activity. To address this issue, TransitLabel applies a number of
techniques including use of offset-independent features (e.g., vari-
ance), orientation independent features (e.g., magnitude of acceler-
ation and magnetic field) and combining a number of features for
detecting the same semantic. In addition, we experimented with
various thresholds and select those leading to high detection ac-
curacy with low false positive/negative rates while being robust to
different users and stations. This is confirmed by experiment per-
formed in the evaluation section.
TransitLabel does not also require real-time sensor data collection
(i.e., it works offline); it can store the different sensor measure-
ments and opportunistically upload them to the cloud for process-
ing; allowing it to save both communication energy and cost. This
is outside the scope of this paper.

3 Elevation Change Semantics Detection
To classify elevation change semantics 5 into their fine-grained classes
(elevators, escalators and staircases), we apply a decision tree clas-
sifier to the extracted features from passengers’ phone sensors based
on our observations of semantics usage scenarios and their physical
structures (Figure 3a).
Elevators:
We begin by recognizing elevators as it is straightforward to distin-
guish their unique pattern. The typical usage scenario of an eleva-
tor consists of a normal working period, waiting for the elevator,
walking into the elevator, changing direction to face the exit door,
standing for a while, followed by a level change when it starts to
move (Figure 5). This behavior is reflected to a unique pattern that
consists of sequence of states: walking, stationary, stepping, di-
rection change, level change, and Accelerate-Stationary-Decelerate
emerging from the start and stop of the elevator. A set of features
are extracted from accelerometer, gyroscope and barometer read-
ings and fed to a Finite State Machine (FSM) to detect this multi-
modal pattern. Starting from the initial state which represent the
user waiting for an elevator (state (a) in Figure 5), the transitions
5We provide a thorough comparison with other related approaches
in the related work section.

through all subsequent states (from (b) to (g)) have to occur to an-
nounce that a single-door elevator have been detected. However,
for elevators having two doors, users do not need to turn around.
Nevertheless, two-doors elevators can be recognized by the same
FSM while skipping the direction change transition state.
Escalators (Standing):
The acceleration variance is used to decide whether a user is stand-
ing on an escalator or not. The intuition is that when a user keeps
standing while carried by a moving staircase, the acceleration vari-
ance remains small compared to climbing stairs or escalators, which
generates a high acceleration variance due to the vertical motion of
the user. Conversely, if the acceleration variance is high, we cannot
verify whether the user is climbing a stair or an escalator.
Half-landing Stairs (Climbing):
Half landing staircases have a turn in the middle forcing users to
change their direction while straight stairs and escalators do not
have any turns. Thus, if there is a surge in gyroscope readings
(from the direction change) that took place in the middle of the el-
evation change period, it is affirmative that the user is climbing a
half-landing stairs. Otherwise, if there is no direction change, we
cannot verify whether a user is climbing a straight stair or climbing
an escalator.
Escalators (Climbing):
The magnetic field variance, due to the escalator constant speed
motors, can be used to reliably differentiate between climbing a
straight stair and climbing an escalator (Figure 6). The value 100,
in a window of 200 samples, is used as the threshold of the variance
of magnetic field.
Straight Stairs (Climbing):
After separating other elevation change semantics, the remaining
samples are classified as straight stairs.
Level Change or Floor Change:
Many stations are multi-floor buildings with a typical floor height
between 3.0 to 6.0 meters. The majority of elevation change seman-
tics installed in railway stations move passengers from one floor to
another (Floor change semantics). However, there exist some low
height stairs and escalators which move passenger from level to
another within the same floor (level change semantics). To classify
the type of escalators and stairs (marked by red stars in Figure 3a),
we rely on the magnitude of pressure difference during the eleva-
tion change period. Given that 1.0 meter height change corresponds
to 0.12 hPa change in pressure, the pressure difference of 0.3 hPa
is used as a threshold to separate level change escalators and stairs
from floor change ones.

4 Station Specific Semantics Detection
Stations are rich with many exclusive semantics like ticket vend-
ing machines, entrance gates, drink vending machines, platforms,
cars’ waiting lines, lockers, restrooms, and waiting (sitting) areas.
Based on our observations, these semantics force users to behave
in predictable ways which are translated to unique sensor signa-
tures that can be mined to identify them. For instance, a passenger
crossing an entrance gate has to slow down her walking speed until
she pauses to drop the ticket into the gate machine and then steps
forward to grab it. Meanwhile her phone is experiencing a mag-
netic field distortion emanating from the gate machine electronics.
TransitLabel draws on a decision tree classifier to recognize differ-
ent passengers’ activities (Figure 3b). The root of the decision tree
separates activities into two main classes. The right branch of the
tree comprises activities that require the passenger to be stationary
during the service time (ticket and drink vending machines, lock-
ers, restrooms, waiting (sitting) areas, etc). On contrast, the left
branch comprises activities that do not force passengers to pause
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Figure 8: A time-domain sample of an audio signal depicting the
usage of a drink vending machine is shown in (d) where three high-
lighted audio signal (bounded by blue boxes) corresponding to the
background noise, the coin insertion sound, and the drink falling
sound respectively. Figures (a), (b), (c) depict the frequency do-
main of these three audio signals respectively.
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Figure 9: A sample of audio signal in the time domain depicting
the usage of a ticket vending machine is shown in (c) where two
different audio signal are highlighted (bounded by blue boxes) cor-
responding to the background noise and the beep audio signal re-
spectively. Figures (a) and (b) depict the frequency domain of these
two cropped signals respectively.

(e.g., ticket gates, etc). In the balance of this section, we give the
details of the classifier features that can differentiate the different
station specifics semantics (coin operated machines, entrance gates,
platforms track, sitting areas, restrooms).

4.1 Coin Operated Machines

Nowadays, ticket vending machines are found in every station and
drink vending machines exist in many transits to dispense items
(e.g. beverages, etc) to customers automatically. In addition, coin
operated lockers are widely installed in railway stations to allow
passengers to leave their baggages for several hours respectively to
visit the surrounding area freely (especially in major stations in the
downtown areas).
To identify these machines, we observed that their typical usage
traces consist of normal walking to the machine, followed by stand-
ing in front of it, inserting currency, beginning the service (choos-
ing a drink or the ticket type in case of drink and ticket vending
machines respectively or opening the locker door in case of lock-
ers), finishing the service (grabbing the ticket or the drink in case of
ticket and drink vending machines respectively or putting luggage
into the drawer and locking it), and finally walking away (Figure
7). This usage scenario is translated to the following unique pat-
terns on the sensors. First, the user is stationary during the machine
usage. Second, there is a fluctuation in the magnetic field readings
as soon as the user interacts with the machine. This fluctuation is
due to the distortion from metals and electronic chips installed in
these machines forming a peak in the magnetic field readings (de-
tected by the peak detector). Finally, as these machines are usually
mounted to walls, the passenger is forced to change her direction to
walk away as soon as she finishes the service. This instantaneous
change in the user direction is reflected to a surge in the gyroscope
readings when the user starts to resume walking (detected by the
surge detector). This unique patterns are leveraged by TransitLa-
bel to separate this type of machines from other semantics (Figure
3b). Now, we will give the detail of how to discriminate the three
classes of coin operated machines.

4.1.1 Drink Vending Machines
Based on our observation, they have a unique loud sound emitted
when they are dispensing drinks to the customer. This sound is
emanated when the drink is pulled down from the machine storage
into its outlet.
To verify that we can recognize the unique drink falling sound in
the ambience, in our preliminary experiment, we recorded an au-
dio clip during the usage of a drink vending machine (Figure 8).
The time-domain audio signal contains coin insertion sound exist-
ing in all coin operated machines, the drink falling sound, and the
background noise respectively (highlighted by the three consecu-
tive blue boxes in Figure 8d). The Fast Fourier Transform (FFT) of
the audio signal shows a clear peak at the 350Hz frequency band in
the drink falling audio clip (Figure 8c) while no peaks are evident
at the 350Hz frequency band neither in the coin insertion nor the
background noise clips due to the absence of this distinct acoustic
signal (Figs. 8a, 8b). We observed that this frequency is consis-
tent across all drink vending machines we experienced in the eight
different stations in our dataset. During the system operation, we
use an empirical threshold of three standard deviations (i.e., 99.7%
confidence level of noise) to detect the drink falling acoustic signal
in the ambient sound recorded during the usage of coin operated
machines. If the received audio signal strengths in the 350Hz fre-
quency band exceeds the threshold, indicating that the sound level
is significant at this frequency band (as signal strength is jumped
significantly at this frequency band), the system confirms the de-
tection of a drink vending machine.

4.1.2 Ticket Vending Machines
Similarly, they emit a unique beep sound many times during the
user interaction (e.g., pressing a button, indicating the end of trans-
action, etc). We envision that this beep signal can be leveraged
as a reliable discriminator as it is absent in lockers where users
insert coin, put luggage and lock the drawer without any distinc-
tive sound. We incorporate the same acoustic detection algorithm
used to identify drink vending machines to separate ticket vending
machines from lockers. Figure 9c shows a raw audio recording col-
lected during buying a ticket from a vending machine. We crop two
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Figure 10: The sensor pattern of crossing a gate by a ticket and
an IC card. Both consist of (a) normal walking, (b) deceleration
near the gate, (c) acceleration accompanied by a peak on ambient
magnetic field, and (d) normal walking.

sections from the original audio signal comprising the background
noise and the beep audio signal respectively and convert these sig-
nals into the frequency domain by using FFT (Figs. 9a, 9b). We
observed a clear peak around the frequency of 3kHz in the beep au-
dio signal whereas no peaks are observed at the frequency of 3kHz
in the background noise (Figs. 9a, 9b). When the ticket vending
machine starts beeping, the signal strength in the 3kHz frequency
band jumps significantly and therefore the ticket vending machine
can be detected.

4.1.3 Lockers
To recognize lockers, we first attempted to identify the coin inser-
tion sound in the ambience to avoid classifying all unrecognized ac-
tivities as using lockers (i.e., catching all). However, we observed
that while some coin sound signatures were visible, in many cases
it was difficult to separate them from other frequency components
(e.g., background noise). In addition, we find that the number of
traces, other than coin operated machines ones, having a stationary
period accompanied with a significant magnetic distortion on the
user’s magnetometer followed by a direction change (i.e., surge in
gyroscope readings) are small. So, once vending machines sam-
ples are separated, the remaining coin operated machines samples
are classified as lockers.

4.2 Entrance Gates
Railway passengers have to pass through an automatic fare collec-
tion gate in their routes to the station’s platform. To cross a gate,
there are two ways:

With a Ticket:
Passengers mostly pass by a ticket vending machine to get a ticket.
Thereafter, as a passenger approaches the gate, a noticeable slows
down in her walking speed is observed till she pauses in front of the
gate to drop the ticket into the machine, then she steps forward to
grab it from the machine, and finally she resumes normal walking
(Figure 10a). This scenario translates to a unique motion pattern
consisting of the following sequence: normal walking, decelera-
tion, accelerating and normal walking. This unique motion pattern
is detected by using the variance of acceleration (Figure 10a) where
the two horizontal lines correspond to the thresholds used to sep-
arate different motion patterns. Simultaneously, crossing the gate
heavily distorts the magnetic field by the gate ferromagnetic metals
forming a distinct peak on the magnetometer reading (detected by
a simple peak detector).
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Figure 11: The effect of activity transition from walking to sitting
against the effect of transition from walking to standing on the Y
acceleration and gyroscope readings.

With an IC Card:
Nowadays, IC cards are commonly used for paying transit fees
in many areas (e.g., Pasmo6 in Japan, Ventra7 in Chicago). This
gate entrance method has two differences from the ticket based
one. First, passengers using IC cards do not have to pause as the
card reader can recognize the card while it is in close proximity in
users’ hand or wallet (acceleration variance still above the station-
arity threshold (Figure 10b)). Second, mostly it is not preceded by
the usage of a ticket vending machine activity (i.e., neither sequen-
tial nor dependent activities).

4.3 Waiting (Sitting) areas
Waiting areas are available in many stations platforms, especially
those where trains inter-arrival time is long. Many people espe-
cially elderly people, pregnant women, people with disabilities and
even normal passengers (e.g., in the winter) prefer to wait for trains
in this area. We postulate that if there are many activities transitions
from walking to sitting taking place within the premises of a certain
area, then this area will be a waiting area with a high probability.
To switch from walking to sitting, the passenger has to rotate first to
be aligned with the seat and then sit down. The instantaneous surge
in gyroscope reading (from the direction change) followed by a dif-
ference in relative magnitudes of Y acceleration values (from for-
ward and backward motions while sitting) are used to characterize
the transition from walking to sitting (Figure 11a). Conversely, the
transition from walking to standing does not involve a noticeable
difference on the readings of Y acceleration (Figure 11b). We lever-
age the change in direction as an affirmative feature to decrease the
false positive rate in the sitting recognition given that the change in
Y acceleration values may happen in other conditions (e.g., normal
device bouncing while the user is walking).

4.4 Restrooms
Public restrooms are available in almost all stations. Normally,
people must have stationary periods while they are at restrooms
(e.g., hand washing). Moreover, due to the sensitive nature of pub-
lic restrooms, their entry doors are faced by walls so users have
to change their directions after crossing entry doors. However,
the user stationarity and direction change patterns are not suffi-
cient to efficiently separate the user being in a restroom from other
contexts. To accurately identify restrooms, we incorporate the al-
gorithm in [20] which detects restrooms by actively probing the
acoustics of environment with the built-in speaker and microphone
on the mobile phone. A probing sound is emitted by the phone and
the impulse response (IR) is analyzed to detect the type of space

6http://www.pasmo.co.jp/en/
7https://www.ventrachicago.com/
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(restroom or not). The acoustic characteristics of an environment
depend on its dimension and its ability to absorb sound. Since,
public restrooms have similar affordances (e.g., water resistance
floors and wall, toilets and sinks), they have a unique absorption
coefficient of sound and thus they can be detected easily. Since
the sweep volume level does not affect the accuracy of the model
significantly [20], TransitLabel leverages sweeps with lower vol-
umes to avoid being invasive. Additionally, the model prediction
performance is robust against the restroom occupancy and sounds
generated by the occupants (e.g., flushing or hand-washing) [20].

4.5 Platform and Waiting Lines

To further enrich the semantics of TransitLabel, we also identify
the platform area and the location of waiting lines for train cars.
The platform is the area where passengers board the train. There-
fore, their transportation mode changes from standing (waiting for
train) to walking (into the train car) to be in a motorized trans-
port (when the train moves) during a short time period. Trans-
portation mode detection has been thoroughly studied in literature,
e.g. [1,23,28,36,40]. We follow the approach proposed in [23] that
provides high accuracy of transportation mode detection (walking,
stationary or in a motorized transport) based on the energy-efficient
accelerometer sensor. The short temporal consequence of standing,
walking shortly and being in a train activities is leveraged to detect
the platform track and its position is estimated from passengers’
positions during train boarding.
Once the platform area is identified, the waiting line positions can
be estimated from the passengers’ positions reported while they
are waiting for the trains (i.e., switching from walking to standing
activity on the platform (Figure 11b)). We videotaped a sample of
3000 passengers’ traces starting for their access to the platform (es-
calator, elevators and stairs) until they join a waiting line. Figure 12
shows that about 76% of passengers walk a short distance (less than
60m) on the platform where they tend to join the nearest uncrowded
waiting line. This is partially due to the fact that platforms are typ-
ically designed to have multi-accesses to disperse the passengers
load. In addition, as passengers use elevation change semantics
to access the platform, their dead-reckoned derailed position will
be curbed and calibrated to the access locations of these seman-
tics on the platform when this semantic surface on the user’s trace.
This verifies that TransitLabel can localize the user accurately on
the platform. Thus, waiting lines positions can be estimated by the
clustering approach from passengers’ locations when they are wait-
ing in a line for the train. Once lines are detected, every neighbored
collection of n lines (where n is the number of doors per car, which
is a known constant) are representing a queuing area for a train car.

5 Evaluation
TransitLabel is evaluated through a deployment at eight different
stations of different sizes in two different cities (Osaka and Kobe)
in Japan. Table 1 shows the detailed description of the collected
dataset. The stations are managed by different companies; hav-
ing different buildings designs and sizes; and semantics placement.
This emphasizes the scalable nature of TransitLabel. The average
length and width of platforms are 160m and 12m on average respec-
tively. Train cars are of 20m length with 3 doors and the average
inter-door distance is 5.2m.

5.1 Data Collection Methodology
A group of 16 volunteers, of different ages (11 in their 20’s and
5 in their 30’s) and gender (12 males and 4 females), collected
the necessary data for evaluation. The collected data consists of
two datasets-scenario based and free- differing in how the data is
collected. In the scenario-based dataset, 10 participants were as-
signed specific trajectories starting from the station entrance to dif-
ferent platforms. The trajectories were selected carefully to cover
all possible routes that were exhibited by daily passengers while
covering all available semantics at the same time. While heading
to a specific platform, some participants purchased tickets to cross
entrance gates; others crossed gates directly using different types
of IC cards; some participants used drink vending machines while
others used lockers; and all participants passed through elevation
change semantics to access the platform. On the other hand, the
free dataset is collected by six individuals from their everyday train
commutation in different stations.
We have deployed two Android applications: The first application
is a data collection tool that runs in the background to sample all
inertial sensors, the barometer at 50Hz as well as recording audio.
The second application is designed for ground truth collection and
runs in the foreground to allow participants to manually tag their
activities. The data collection was conducted in different times,
different days and using different Android phones including Sam-
sung Galaxy S5 and LG Nexus 5. Participants carry smartphones
in different placements (in hand or in the trouser pocket). When
the participants carry the logger phones in the trouser pocket, they
carry another phone in their hands to annotate their activities. This
captures the time-variant nature of semantics signatures and sta-
tions congestion level; generalization of the system over different
stations; as well as the heterogeneity of users and devices.

5.2 Performance Results
In this section, we evaluate the semantics identification accuracy,
semantics location estimation accuracy, power consumption, im-
pact of different phone placement and finally quantify the general-
ization performance of TransitLabel.

5.2.1 Semantics Detection Accuracy
We evaluate the semantics detection accuracy based on the scenario-
based datasets. The detection accuracy is measured by false posi-
tive 8 and false negative 9 rates.

Table 2 shows the confusion matrix for detecting various eleva-
tion change semantics. It shows that some elevation change se-
mantics are easy to detect due to their unique patterns. This leads
to zero false positive and false negative rates for the elevators (the
coarse-grained category), half-landing stairs, and escalator (when
users are standing) cases. However, climbing straight stairs some-
times are misclassified as climbing escalators when the stairs are
8Samples of other semantics classified as the current semantic.
9Samples of the current semantic that are not detected.



Table 1: The description of collected data.

Station Osaka Umeda Senrichuo Juso Higashi-Umeda Nishinomaya Kobe-Sanyomia Shin-Kobe
No. of Traces 108 78 71 69 61 59 53 48
No. of Users 10 9 7 6 6 6 5 4

Type and City JR- Osaka Subway- Osaka Subway- Osaka Hankyu- Osaka Hankyu- Osaka Hankyu- Osaka Subway- Kobe Subway- Kobe

very close to escalators so they have a similar magnetic distortion
signature. Moreover, separating the two types of elevators gen-
erates some misclassifications which is due to the different eleva-
tor usage patterns (e.g., some users of single-door elevators do not
turn around completely in one step). Nevertheless, as standing in or
climbing up escalators activities are translated to the same semantic
(escalator), TransitLabel can still achieve a high detection accuracy
for elevation change semantics with 3.3% false positive and 4.1%
false negative rates on overage.

Table 3 shows the confusion matrix representing the detection
accuracy of station specific semantics that force users to be station-
ary while using them (i.e., semantics in the right branch of the de-
cision tree in Figure 3b). It shows that coin operated machines (the
coarse-grained category) can be detected with near 100% accuracy
using their unique inertial sensors pattern. To classify coin operated
machines to their fine-grained categories (drink vending machines,
ticket vending machines and lockers), the acoustic based detection
scheme can achieve a good accuracy with 10.4% and 6.9% for false
positive and false negative rates respectively on average. This is
due to the responsive sound of vending machines that is univer-
sally used in many stations in Japan10, making it an identifiable
signature for classification. On the other hand, standing and wait-
ing for train activities are sometimes interchangeably misclassified.
For example, when a user is standing on the platform (to answer a
phone call), this may be interpreted as waiting for train and oppo-
sitely the user may be waiting for train but it is misclassified as
standing when the system failed to recognize that the user is on the
platform. TransitLabel lessens this effect by using the transporta-
tion mode detection algorithm to detect when the train has moved,
which comes after the waiting for train inactivity, as opposed to any
other type of inactivity.

The confusion matrix of classifying semantics from non station-
ary traces (i.e., semantics in the left branch of the decision tree in
Figure 3b) is shown in Table 4. The table shows that TransitLa-
bel can reliably detect crossing entrance gates using a ticket. The
detection of crossing of entrance gates by IC cards is a bit chal-
lenging as some passengers either do not slow down their walking
sufficiently or walk very slowly making their signature similar to
ticket-based methods. Even worse, sometimes the card reader does
not recognize the IC card and the passenger has to rollback and
cross the gate again. However, since all gates have IC card readers
and ticket slots integrated into the same machine, the two entrance
methods (IC card and ticket) are aggregated into one semantic (en-
trance gate) that can be identified with 5.9% and 6% false positive
and false negative rates, respectively. Moreover, the detection of
train boarding is sometimes misclassified as crossing a gate by an
IC card. The main reason is that train motors and electrical invert-
ers emit large magnetic noise during the acceleration periods of the
train which sometimes coincides with the pattern arising when the
user crosses a gate using an IC card. To reduce this, TransitLabel
leverages the sound emitted when the IC card touches the reader.
Nevertheless, there is a trade-off between energy consumption and

10Vending machines around Japan are similar in their user interface
and hardware to facilitate the Human-Machine interaction as well
as to be able to recognize the same IC card types used to pay transit
fees and drinks cost across the country.

the semantic detection accuracy in this case.
Figure 13 reports the accuracy of detecting the waiting line loca-
tions, as computed by TransitLabel. Aligned with our intuition, the
accuracy of waiting line locations detection relies on their place-
ment with respect to the platform accesses. Due to the limited area
of platform (average dimension is 160m×12m), the short move-
ment of a user on the platform (Figure 12), and the average inter-
distance between waiting-line (5.2m); TransitLabel can estimate
the line positions accurately, especially those near to the platform
accesses where most user trails are short and thus the location ac-
curacy is high [3, 41].
Finally, TransitLabel can consistently detect the fine-grained classes
of semantics accurately with 7.7% false positive rate and 7.5% false
negative rates on average.

5.2.2 Discovered Semantics Location Accuracy
In this subsection, we study how much data is enough for Transit-
Label to estimate semantics locations accurately as in crowdsensing-
based systems the accumulation of more samples will enhance the
system performance. Figure 14 quantifies the effect of the number
of crowd-sensed samples on the accuracy of semantics (apart from
waiting lines). The figure shows that even if some semantics have
some outliers, the system can achieve a good accuracy in estimating
their locations. This stems from the fact that independent correct
samples of the same semantic are in adjacent locations and tend to
cluster while erroneous samples are widely scattered in the spatial
space and do not form a cluster. In addition, TransitLabel works
offline so as a user encounters a semantic, TransitLabel learns her
errors, and therefore can track back and partly correct her past trail
thus the effect of the cold start problem is mitigated. Finally, as
stations are rich with semantics, the localization error grows and
sharply drops at semantics curbing the localization error and in its
turn enhances the semantic location accuracy. Even though the in-
stantaneous PDR error still has an effect on the semantics locations
estimation, especially when the number of samples of semantics are
small, it is evident from the figure that this error will drop quickly as
the number of crowd-sensed samples increases. TransitLabel can
consistently achieve the accuracy of 2.5m using as few as 40 sam-
ples for each discovered semantic type. Thus, TransitLabel con-
verges reasonably quickly. However, we note that it needs to be
periodically run to handle dynamic environment changes.

5.2.3 Energy Consumption
Figure 15 shows the energy consumption of TransitLabel averaged
over typical traces from entering the station to boarding trains. For
this, we run an application that samples the GPS every second to
show the contrast in power consumption (GPS is neither available
in all locations in stations nor able to detect semantics but it is
used as a baseline system). The energy is calculated using the Pow-
erTutor profiler [22] and the Android APIs using the HTC Nexus
One cell phone. TransitLabel leverages the inertial sensors for pas-
sengers’ activity recognition and position estimation. Since iner-
tial sensors are indeed used during the normal phone operation, to
detect the phone orientation change or estimate the user location
for any indoor LBS, TransitLabel practically consumes little ex-
tra sensing power in addition to the standard phone operation. In



Table 2: Confusion Matrix for classifying different elevation change semantics.

Elevator (Single) Elevator (Double) Stairs (Straight) Stairs (Half-land.) Escalator (Stand.) Escalator (Climb.) Escalator (Over.) FP FN
∑

Elevator (Single) 100 5 0 0 0 0 0 6.7% 4.8% 105
Elevator (Double) 7 79 0 0 0 0 0 5.8% 8.1% 86
Stairs (Straight) 0 0 111 0 0 9 9 0% 7.5% 120

Stairs (Half-land.) 0 0 0 51 0 0 0 0% 0% 51
Escalator (Stand.) 0 0 0 0 114 0 - - - 114
Escalator (Climb.) 0 0 0 0 0 107 - - - 107
Escalator (Over.) 0 0 0 0 - - 221 4.1% 0% 221

Total 3.3% 4.1% 583

Table 3: Confusion Matrix for classifying different stations specific semantics discovered from stationary traces.

Drink Vending Machine Ticket Vending Machine Locker Restroom Waiting (Sitting) Area Standing Cars’ Waiting Lines FP FN
∑

Drink Vending Machine 123 1 6 0 0 0 1 7.6% 6.1% 131
Ticket Vending Machine 9 260 12 0 0 0 0 3.2% 7.5% 281

Locker 1 8 119 0 0 0 0 20.3% 7% 128
Restroom 0 0 4 87 2 4 0 7.2% 10.3% 97

Waiting (Sitting) Area 0 0 0 4 88 6 3 11.9% 12.9% 101
Standing 0 0 3 3 7 140 5 11.4% 11.4% 158

Cars’ Waiting lines (waiting for a train) 0 0 1 0 3 8 125 6.6% 8.8% 137
Total 9.7% 9.1% 1033

Table 4: Confusion Matrix for classifying different stations specific semantics discovered from non stationary traces.

Walking Platform Track (Boarding) Entrance Gate (Ticket) Entrance gate (IC Card) Entrance gate (Overall) FP FN
∑

Walking 170 7 5 9 14 10.5% 11% 191
Platform Track (Boarding) 3 135 2 11 13 15.2% 10.6% 151

Entrance Gate (Ticket) 9 2 264 6 - - - 281
Entrance gate (IC Card) 8 14 9 234 - - - 265
Entrance gate (Overall) 17 16 - - 513 4.9% 6.0% 546

Total 10.2% 9.2% 888

Table 5: The semantics classification accuracy in a one-station-out cross validation.

Elevator(S.) Elevator (D.) Stairs (Str.) Stairs (Half.) Escalator Drink Vd. Mch. Ticket Vd. Mch. Lock. Restr. Sit. Area Wait. Lines Plat. Tr. Entr. gate
∑

FP 8.6% 4.6% 0% 0% 5.4% 9.1% 3.9% 21% 8.2% 10.8% 8% 9.2% 5.3% 7.2%
FN 3.8% 10.4% 10% 0% 0% 7.6% 8.2% 8.6% 9.3% 15.8% 10.2% 11.9% 8.6% 8.0%

addition, the sound sensor; which has a higher energy footprint;
is activated only shortly during the time of activities (average ac-
tivity duration is short- 31seconds- excluding the restroom). This
also avoids the impact of false positive triggers of the sound sen-
sor (e.g., sensor being activated while the user is standing doing a
phone call). Finally, as soon as the user waits for the train on the
platform, we suspend the activation of the sound sensor. All lead
to a low energy consumption of TransitLabel that is significantly
(44%) less than the GPS consumption.

5.2.4 Impact of the Phone Placement
To demonstrate that our approach is robust to different device place-
ments, we carried out experiments on different phone placements
(in a user hand or in a trouser pocket). Figure 16 shows the seman-
tics detection accuracy as measured by the F-measure 11 in both
phone placements. The results suggest that the semantic accuracy
is not significantly dependent on device poses, with TransitLabel
achieving a high accuracy of about 80% at least (in the case of
non-stationary traces which is the most tricky case due to the effect
of the legs movement on the phone in the pocket reading). This
robustness mainly comes from the transformation of sensor read-
ings to the real world coordinates and the extraction of placement-
independent features from phone sensors. For example, the mag-
netometer readings features are not largely attenuated by human
bodies (i.e., in pocket). While the acceleration can be affected by
the motion noise to some extent, its impact is effectively mitigated

11F-measure is the harmonic mean of precision and recall and rep-
resents a single number for comparison.
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TransitLabel.

by smoothing the raw acceleration and averaging the acceleration
variance over a long time window. Finally, the collected audio data
is not much derailed by the phone placement in pocket as passen-
gers are forced to be close to semantics at the usage time. Note
that TransitLabel uses different thresholds values to identify pas-
senger’s activities depending on the phone placement (pocket or
hand). Nonetheless, the light proximity sensor can be used to de-
tect the phone position and, accordingly, decide which thresholds
value to be used. Other phone positions can be handled in a similar
manner, which is a subject of future work for space constraints.

5.2.5 Generalization of TransitLabel
We based our semantics identification on their typical usage pat-
tern/signature by the majority of train commuters. However, some
users may have different usage patterns (regular versus occasional
travelers) and some stations have different building structures and
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different machines hardware (e.g., vending machines) that may lead
to some semantics misclassifications. Thus, to demonstrate that
TransitLabel could generalize over various users and stations, we
consider an experiment where a group of daily train commuters
are asked to collect data freely (without prescribed scenarios) in
different stations in two different cities managed by different train
companies in Japan. Figure 17 shows the accuracy of the semantic
detection by TransitLabel. The results demonstrate that Transit-
Label can still achieve a comparable semantic detection accuracy
to the scenario-based experiments. This robustness is mainly due
to the uniform nature of passengers’ activities at railway station.
Specifically, most passengers follow similar routes, exhibit uniform
behavior as they have a common target (boarding the train) starting
from getting a ticket to boarding the train. In addition, Transit-
Label fuses multiple features (e.g., accelerometer, gyroscope and
magnetometer based features are fused to identify the coin oper-
ated machines as shown in the classification tree in Figure 3b) to
identify the same semantic, reducing the sensitivity to specific sce-
narios or machines.
Per-Station Accuracy: To understand the classification accuracy
on a per-station basis, we show a one-station-out cross validation
(one station data is selected as the validation data while all data
collected at other stations is used as the database) results in Table
5. Evident from the table, the classification accuracy does not de-
viate much between different stations due to fusing many features
and the uniform railway passengers’ behaviors. This further em-
phasizes the generalization ability of TransitLabel.

6 Discussion and Limitations
We discuss some crowd-sensing challenges addressed by the cur-
rent version of TransitLabel along with our ongoing work.

System Robustness
Our evaluation, quantified in Section 5, is carried out by different
users using different phones in different placement through differ-
ent data collection methodologies and spanned different stations
and cities in Japan. These extensive experiments verified Transit-
Label robustness under a wide range of scenarios. We believe that
this robustness is based on a number of factors/design decisions
including reorienting the phone sensors data, harnessing offset-
invariant and orientation-invariant features, multi-modal sensor fu-
sion, and combining a number of low level activities to identify the
higher level passengers’ activity. All allow TransitLabel to gener-
alize to different stations run by different operators, users, devices,
and operation scenarios.

Scalability
We have tested TransitLabel extensively in eight railway stations
by 16 users under different scenarios. Scaling TransitLabel to a
worldwide scale is directly based on location clustering and lever-

aging the cloud. In particular, the semantics of each station can be
processed independently of other stations based on the location of
the collected traces. This spatial clustering lends itself nicely to the
processing in the cloud, further enhancing the system scalability.

Preserving User’s Privacy
TransitLabel gives users full control over their sensed data and pro-
cesses the audio data locally on the user’s phone. Nonetheless,
some users may opt to turn off the sound or other sensors for pri-
vacy concerns. However, since TransitLabel is a crowd-based sys-
tem, it will still be able to identify these semantics from the samples
submitted by other users.

Handling Dynamic Changes
The station internal structures may evolve over time and, accord-
ingly, the state of the different semantics (location changed or re-
moved). To address this, TransitLabel periodically rerun its clus-
tering algorithm across time windows of different granularity to
detect the removal of specific semantics. Specifically, the lack of a
cluster with a specific size at the location of a previously detected
semantic indicates the removal of this semantic. If clusters of cor-
rect samples of a semantic type formed in consecutive windows
are being mapped to a location that vary substantially from old in-
stances locations, this is indicative of a change in the environment.
To classify the change type, we monitor newly uploaded samples
of each instance of a semantic type. The change of location of a
specific semantic is treated as a simple removal of this landmark
and detecting it at a new location. We leave the evaluation of this
aspect to future work due to space constraints.

Other Indoor Environments
Although TransitLabel is designed for railway stations, it can be
customized to other indoor environments, e.g., airports, that have
similar semantics (e.g., elevators, stairs, escalators, vending ma-
chines, lockers, security gates, and automated boarding-pass print-
ing machine). Moreover, TransitLabel can be extended to use semi-
unsupervised learning techniques [3, 41] to extend to new environ-
ments without any prior knowledge about what activities are ex-
pected. Specifically, new automatically learned semantic classes
can be presented to a human user to provide the label to them, sig-
nificantly reducing the overhead of extending TransitLabel to new
environments.

7 Related Work
The ideas in TransitLabel are built on three threads of research:
mobile phone localization, human activity recognition and floor-
plan construction. We survey the most relevant work in each thread
in the interest of space.

Mobile Phone Localization
Mobile phone localization has been well-studied with a variety of
approaches so far [42]. As GPS signal is not available in many
stations (e.g., subway stations), an indoor localization technique
is needed to estimate the passenger’s location. The most ubiqui-
tous indoor localization techniques are either WiFi-based or dead-
reckoning based. WiFi-based techniques, e.g., [12, 14, 24, 44–47],
require calibration to create a prior wireless map for the build-
ing. However, the calibration process is time consuming, tedious,
and requires periodic updates; leading to the emergence of new
calibration-free techniques [13]. Dead-reckoning based localiza-
tion techniques, e.g., [26, 41], leverage the inertial sensors on mo-
bile phones to dead-reckon the user starting from a reference point
[26]. However, dead-reckoning error quickly accumulates leading



to complete deviation from the actual path. Therefore, many tech-
niques have been proposed to reset the dead-reckoning error in-
cluding snapping to environment anchor points, such as elevators
and stairs [3, 41] and matching with the map information either in-
door [34] or outdoor [4, 5].
TransitLabel employs the basic concept in [3,41] as it provides ac-
curate, energy-efficient localization, and does not require an infras-
tructure support. However, TransitLabel discovers novel, activity-
based, fine-grained and richer set of semantics targeting railway
stations (e.g., vending machines, lockers, entrance gates, platforms,
waiting (sitting) areas, among others) to reset the accumulated lo-
calization error frequently.

Human Activity Recognition
Activity recognition literature has demonstrated the ability to rec-
ognize user behavior using phone equipped sensors. Accelerome-
ter data was used to detect the user transportation mode (walking,
stationary, being in motorized transport) [1, 23, 28, 36, 40] and it
can classify more fine-grained activities and attributes like running,
breathing rate, climbing up the stairs, biking, cleaning kitchen, vac-
uuming, and brushing teeth [2,6,18,29,35]. Moreover, accelerome-
ter data is used to detect more complex human activities like biking,
lying, cleaning kitchen, cooking, sweeping, washing hands, and
medication [11]. Ambient sensors like temperature, humidity, pres-
sure, and light have been used to label user’s location directly as
being in kitchen, bedroom, bathroom and living room [30]. More-
over, the AmbientSense system [37] can recognize 23 different con-
texts (e.g., coffee machine, raining, restaurant, dishwasher, toilet
flush, etc) by analyzing ambient sounds sampled from phone. In
addition, the RoomSense system in [38] uses active sound probing
to classify the type of room (e.g., corridor, kitchen, lecture room,
etc) where the user is located. Ref. [20] actively probes the envi-
ronment and then analyzes the impulse response on the phone to
separate restroom from other rooms. Recently, RF-based device-
free activity tracking and recognition has been used to detect dif-
ferent activities and the location of the person using standard RF
networks [27, 39, 43].
TransitLabel recognizes a higher level and novel set of passenger
activities at railway stations. The crowd-sensed locations of these
activities are then mined to discover their uniquely associated sta-
tions semantics.

Automatic Floorplan Construction
Recently, a number of systems have been proposed that employ
pedestrian motion traces to automatically construct indoor floor-
plans [7, 15–17, 21, 25]. For instance, CrowdInside [7] processes
inertial motion traces using computational geometry techniques to
extract the overall floorplan shape as well as corridors and room
boundaries. It also identifies a variety of points of interest in the
environment such as elevators and stairs. However, their semantic
detection method neither targets stations specific semantics (e.g.,
entrance gate, etc) nor it provides fine-grained classes of elevation
change semantics (e.g., stair types and elevator types). In addition,
their elevator detection algorithm leverages only the motion pattern
(Accelerate-Constant-Decelerate) which may coincide with normal
human walking patterns. This cannot happen in our method as
normal walking traces are separated beforehand using the seman-
tic type detection module. Finally, different passengers’ behaviors
(e.g., climbing up or standing in escalators) makes the low accel-
eration variance, used in their method, is not a reliable discrimi-
nator between climbing stairs and escalators. Jigsaw [21] uses a
computer vision approach to extract the position, size, and orienta-
tion of landmark objects from images taken by users. It then com-

bines user mobility traces and locations where images are taken to
produce the hallway connectivity and the room size. The system
proposed in [25] leverages Wi-Fi fingerprints and user motion in-
formation to determine which rooms are adjacent in the building
and estimating their sizes. It then orders them along each hallway
and adjusts the room sizes to optimize the overall floorplan layout.
Nevertheless, all previous systems did not attach any semantic in-
formation to the floorplan layout. Finally, Ref. [33] assumes that
there is a difference in time to change floors using elevators, esca-
lators, and stairs and thus relies on the rate of height change (i.e.,
pressure) to separate them. However, this hypothesis is neither ro-
bust to different users walking speeds nor to different elevators/
escalators motion speeds.
The closest work to ours is the automatic enrichment of indoor
floorplans with semantic names technique in [17]. It exploits phone
sensors data collected from users during their normal check-ins
to location-based social networks (LBSNs) (e.g., Foursquare) and
combines them with data extracted from the LBSNs databases to
associate a place name with its location on an unlabeled floorplan.
This system, however, can be applied only to indoor environments
where the check-ins granularity level matches the semantic names
needed to enrich the map. For example, in shopping malls, user
check-ins with venues names which can by leveraged by Sem-
sense [17] to attach a venue name to each room in the floorplan.
However, users at railway stations usually do check-ins with sta-
tions names (they don’t check-in using fine-grained station indoor
semantics names) which is not sufficient to infer and locate the in-
station semantics.
TransitLabel assumes in its operation the availability of an unla-
beled station floorplan by using one of these approaches. It then
enriches the input floorplan with different semantics based on data
collected from users’ phones.

8 Conclusion
We presented the TransitLabel system for automatically enriching
transit indoor maps via a crowdsensing approach based on standard
cell phones. For energy efficiency, TransitLabel leverages low-
energy phone sensors and sensors that are already running for other
purposes (e.g., inertial sensors). We presented the TransitLabel ar-
chitecture as well as the features and classifiers that can accurately
recognize different passenger’s activities in railway stations which
are mined to detect their uniquely associated semantics.
We implemented TransitLabel using commodity mobile phones run-
ning the Android operating system and evaluated it at different rail-
way stations in Japan. Our results show that TransitLabel can detect
stations fine-grained semantics accurately with 7.7% false positive
and 7.5% false negative rates on average leading to high accuracy in
semantics location estimation. Finally, TransitLabel can be gener-
alized over various stations running by different operators and user
groups; and is robust to different phone placements while having a
significantly small energy profile.
Currently we are expanding TransitLabel in multiple directions in-
cluding inferring more station semantics, handling dynamic changes
in the environment, deployment of TransitLabel in other indoor en-
vironments, among others.
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