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ABSTRACT
Recent sequential pattern mining methods have used the
minimum description length (MDL) principle to define an
encoding scheme which describes an algorithm for mining
the most compressing patterns in a database. We present a
novel subsequence interleaving model based on a probabilis-
tic model of the sequence database, which allows us to search
for the most compressing set of patterns without designing
a specific encoding scheme. Our proposed algorithm is able
to efficiently mine the most relevant sequential patterns and
rank them using an associated measure of interestingness.
The efficient inference in our model is a direct result of our
use of a structural expectation-maximization framework, in
which the expectation-step takes the form of a submodu-
lar optimization problem subject to a coverage constraint.
We show on both synthetic and real world datasets that our
model mines a set of sequential patterns with low spurious-
ness and redundancy, high interpretability and usefulness in
real-world applications. Furthermore, we demonstrate that
the quality of the patterns from our approach is comparable
to, if not better than, existing state of the art sequential
pattern mining algorithms.

1. INTRODUCTION
Sequential data pose a challenge to exploratory data anal-

ysis, as large data sets of sequences are difficult to visualise.
In applications such as healthcare (patterns in patient paths
[10]), click streams (web usage mining [18]), bioinformatics
(predicting protein sequence function [27]) and source code
(API call patterns [30]), a common approach has been se-
quential pattern mining, to identify a set of patterns that
commonly occur as subsequences of the sequences in the
data.
A natural family of approaches for sequential pattern min-

ing is to mine frequent subsequences [2] or closed frequent
subsequences [26], but these suffer from the well-known prob-
lem of pattern explosion, that is, the list of frequent subse-
quences is typically long, highly redundant, and difficult to
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understand. Recently, researchers have introduced methods
to prevent the problem of pattern explosion based on the
minimum description length (MDL) principle [12, 25]. These
methods define an encoding scheme which describes an al-
gorithm for compressing a sequence database based on a
library of subsequence patterns, and then search for a set of
patterns that lead to the best compression of the database.
These MDL methods provide a theoretically principled ap-
proach that results in better patterns than frequent subse-
quence mining, but their performance relies on designing a
coding scheme.
In this paper, we introduce an alternate probabilistic per-

spective on subsequence mining, in which we develop a gen-
erative model of the database conditioned on the patterns.
Then, following Shannon’s theorem, the length of the op-
timal code for the database under the model is simply the
negative logarithm of its probability. This allows us to search
for the set of patterns that best compress the database with-
out designing a specific coding scheme. Our approach, which
we call the Interesting Sequence Miner (ISM)1, is a novel se-
quential pattern mining algorithm that is able to efficiently
mine the most relevant sequential patterns from a database
and rank them using an associated measure of interesting-
ness. ISM makes use of a novel probabilistic model of se-
quences, based on generating a sequence by interleaving a
group of subsequences. It is these learned component subse-
quences that are the patterns ISM returns.
An approach based on probabilistic machine learning brings

a variety of benefits, namely, that the probabilistic model al-
lows us to declaratively incorporate ideas about what types
of patterns would be most useful; that we can easily com-
pose the ISM model with other types of probabilistic models
from the literature; and that we are able to bring to bear
powerful tools for inference and optimization from proba-
bilistic machine learning. Inference in our model involves
approximate optimization of a non-monotone submodular
objective subject to a submodular coverage constraint. The
necessary partition function is intractable to construct di-
rectly, however we show that it can be efficiently computed
using a suitable lower bound. The set of sequential patterns
under our model can be inferred efficiently using a structural
expectation maximization (EM) framework [8]. This is, to
our knowledge, the first use of an expectation-maximization
scheme for the subsequence mining problem.
On real-world datasets (Section 4), we find that ISM re-

turns a notably more diverse set of patterns than the recent
MDL methods SQS and GoKrimp (Table 2), while retain-

1https://github.com/mast-group/sequence-mining
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ing similar quality. A more diverse set of patterns is, we
suggest, especially suitable for manual examination during
exploratory data analysis. Qualitatively, the mined patterns
from ISM are all highly correlated and extremely relevant,
e.g. representing phrases such as oh dear or concepts such as
reproducing kernel hilbert space. More broadly, this new per-
spective has the potential to open up a wide variety of future
directions for new modelling approaches, such as combining
sequential pattern mining methods with hierarchical models,
topic models, and nonparametric Bayesian methods.

2. RELATED WORK
Sequential pattern mining was first introduced by Agrawal

and Srikant [2] in the context of market basket analysis,
which led to a number of other algorithms for frequent sub-
sequence, including GSP [23], PrefixSpan [22], SPADE [29],
and SPAM [3]. Frequent sequence mining suffers from pat-
tern explosion: a huge number of highly redundant frequent
sequences are retrieved if the given minimum support thresh-
old is too low. One way to address this is by mining frequent
closed sequences, i.e., those that have no subsequences with
the same frequency, such as via the BIDE algorithm [26].
However, even mining frequent closed sequences does not
fully resolve the problem of pattern explosion. We refer the
interested reader to Chapter 11 of [1] for a survey of frequent
sequence mining algorithms.
In an attempt to tackle this problem, modern approaches

to sequence mining have used theminimum description length
(MDL) principle to find the set of sequences that best sum-
marize the data. The GoKrimp algorithm [12] directly mines
sequences that best compress a database using a MDL-based
approach. The goal of GoKrimp is essentially to cover the
database with as few sequences as possible, because the
dictionary-based description length that is used by GoKrimp
favours encoding schemes that cover more long and frequent
subsequences in the database. In fact, finding the most com-
pressing sequence in the database is strongly related to the
maximum tiling problem, i.e., finding the tile with largest
area in a binary transaction database.
SQS-Search (SQS) [25] also uses MDL to find the set of

sequences that summarize the data best: a small set of in-
formative sequences that achieve the best compression is
mined directly from the database. SQS uses an encoding
scheme that explicitly punishes gaps by assigning zero cost
for encoding non-gaps and higher cost for encoding larger
gaps between items in a pattern. While SQS can be very
effective at mining informative patterns from text, it can-
not handle interleaving patterns, unlike GoKrimp and ISM,
which can be a significant drawback on certain datasets e.g.
patterns generated by independent processes that may fre-
quently overlap.
In related work, Mannila and Meek [15] proposed a gener-

ative model of sequences which finds partial orders that de-
scribe the ordering relationships between items in a sequence
database. Sequences are generated by selecting a subset of
items from a partial order with a learned inclusion probabil-
ity and arranging them into a compatible random ordering.
Unlike ISM, their model does not allow gaps in the gener-
ated sequences and each sequence is only generated from a
single partial order, an unrealistic assumption in practice.
There has also been some existing research on probabilis-

tic models for sequences, especially using Markov models.
Gwadera et al. [9] use a variable order Markov model to iden-

tify statistically significant sequences. Stolcke and Omohun-
dro [24] developed a structure learning algorithm for HMMs
that learns both the number of states and the topology.
Landwehr [13] extended HMMs to handle a fixed number
of hidden processes whose outputs interleave to form a se-
quence. Wood et al. developed the sequence memoizer [28],
a variable order Markov model with a Pitman-Yor process
prior. Also, Nevill-Manning and Witten [20] infer a context-
free grammar over sequences using the Sequitur algorithm.

3. MINING SEQUENTIAL PATTERNS
In this section we will formulate the problem of identifying

a set of interesting sequences that are useful for explaining
a sequence database. First we will define some preliminary
concepts and notation. An item i is an element of a uni-
verse U = {1, 2, . . . , n} that indexes symbols. A sequence
S is simply an ordered list of items (e1, . . . , em) such that
ei ∈ U ∀i. A sequence Sa = (a1, . . . , an) is a subsequence
of another sequence Sb = (b1, . . . , bm), denoted Sa ⊂ Sb, if
there exist integers 1 ≤ i1 < i2 < . . . < in ≤ m such that
a1 = bi1 , a2 = bi2 , . . . , an = bin (i.e., the standard definition
of a subsequence). A sequence database is merely a list of
sequences X(j). Further, we say that a sequence S is sup-
ported by a sequence X in the sequence database if S ⊂ X.
Note that in the above definition each sequence only con-
tains a single item as this is the most important and pop-
ular sequence type (cf. word sequences, protein sequences,
click streams, etc.).2 A multiset M is a generalization of a
set that allows elements to occur multiple times, i.e., with
a specific multiplicity #M(·). For example in the multiset
M = {a, a, b}, the element a occurs twice and so has multi-
plicity #M(a) = 2.

3.1 Problem Formulation
Our aim in this work is to infer a set of interesting sub-

sequences I from a database of sequences X(1), . . . , X(N).
Here by interesting, we mean a set of patterns that are use-
ful for helping a human analyst to understand the important
properties of the database, that is, interesting subsequences
should reflect the most important patterns in the data, while
being sufficiently concise and non-redundant that they are
suitable for manual examination. These criteria are inher-
ently qualitative, reflecting the fact that the goal of data
mining is to build human insight and understanding. To
quantify these criteria, we operationalize the notion of inter-
esting sequence as those sequences that best explain the un-
derlying database under a probabilistic model of sequences.
Specifically we will use a generative model, i.e., a model that
starts with a set of interesting subsequences I and from this
set generates the sequence database X(1), . . . , X(N). Our
goal is then to infer the most likely generating set I un-
der our chosen generative model. We want a model that is
as simple as possible yet powerful enough to capture cor-
relations between items in sequences. A simple such model
is as follows: iteratively sample subsequences S from I and
randomly interleave them to form the database sequence X.
If we associate each subsequence S ∈ I with a probability
πS , we can sample the indicator variable zS ∼ Bernoulli(πS)
2Note that we can easily extend our algorithm to mine se-
quences of sets of items (as defined in the original sequence
mining paper [2]) by extending the subsequence operator ⊂
to handle these more general ‘sequences’.
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and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ∼ Categorical(πS) where πS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quencesX(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S ∈ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS ∈ N0 as

zS ∼ Categorical(πS),

where πS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS ≥ 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X,S ⊂ X ∀S ∈ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ∼ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can efficiently compute
an approximation to |P|. We can, however, sample from P
efficiently by merging subsequences S ∈ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S ∈ I and similarly, let Π
denote the list of πS for all S ∈ I. Assuming z,Π are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|Π) =
{ 1
|P|

∏
S∈I

∏|πS |−1
m=0 π

[zS=m]
Sm

if X ∈ P,
0 otherwise,

where |πS | is the length of πS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each πS as being an infinite vector and each S ∈ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)∗ and (3)∗ to generate the sequence
(1, 2, 1, 3, 2).
Calculating the normalization constant |P| is problem-

atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes efficient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S ∈ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| ≤
(∑

S∈S |S|
)
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|Π) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).
Now assuming the parameters Π are known, we can infer

z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|Π) over z:

max
z

∑
S∈I

|πS |−1∑
m=0

[zS = m] ln(πSm )−

∑
S∈S
|S|∑

j=1

ln j

s.t. X ∈ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let Ω be
a finite multiset and let N0

Ω denote the set of all possible
multisets that are subsets of Ω, then a function f : N0

Ω → R
is submodular if for for every C ⊂ D ⊂ Ω and S ∈ Ω with
#C(S) = #D(S) it holds that

f(C ∪ {S})− f(C) ≥ f(D ∪ {S})− f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S ∈ I s.t. S ⊂ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T → R as

f(C) :=
∑
S∈C

|πS |−1∑
m=0

[#C(S) = m] ln(πSm )−

∑
S∈C
|S|∑

j=1

ln j

3



and g(C) := |∪S∈CS|. We can now re-state (3.1) as: Find
a non-overlapping multiset covering C ⊂ T that maximizes
f(C) , i.e., such that g(C) = g(T ) and f(C) is maximized.
Note that g(T ) = |X| by construction. Now clearly g is
monotone submodular as it is a multiset coverage function,
and we will show that f is non-monotone submodular. To
see that f is submodular observe that for C ⊂ D,#C(S) =
#D(S)

f(D ∪ {S})− f(D) = ln(πS#D(S)+1 )− ln(πS#D(S) )

−

∑
D∈D

|D|+|S|∑
j=
∑

D∈D
|D|+1

ln j

≤ ln(πS#C(S)+1 )− ln(πS#C(S) )

−

∑
C∈C
|C|+|S|∑

j=
∑

C∈C
|C|+1

ln j

= f(C ∪ {S})− f(C)

which is precisely Definition 1. To see that f is non-monotone
observe that

f(C ∪ {S})− f(C) = ln
(
πS#C(S)+1

πS#C(S)

)
−

∑
C∈C
|C|+|S|∑

j=
∑

C∈C
|C|+1

ln j

whose sign is indeterminate.
Maximizing the posterior (3.1) is therefore a problem of

maximizing a submodular function subject to a submodular
coverage constraint and can be approximately solved by ap-
plying the greedy approximation algorithm (Algorithm 1).
The greedy algorithm builds a multiset covering C by re-
peatedly choosing a sequence S that maximizes the profit
f(C ∪ {S}) − f(C) of adding S to the covering divided by
the number of items in S not yet covered by the covering
g(C∪{S})−g(C) = |S|. In order to minimize CPU time spent
solving the problem, we cache the sequences and coverings
for each database sequence as needed.

Algorithm 1 Greedy Algorithm
Input: Database sequence X, supported sequences T

Initialize multiset C ← ∅
while g(C) 6= |X| do

Choose S ∈ T maximizing f(C∪{S})−f(C)
|S|

C ← C ∪ {S}
end while
return C

Note that while there are good theoretical guarantees on
the approximation ratio achieved by the greedy algorithm
when maximizing a monotone submodular set function sub-
ject to a coverage constraint (e.g. ln|X| + 1 for weighted
set cover [5, 7]) the problem of maximizing a non-monotone
submodular set function subject to a coverage constraint
has, to the best of our knowledge, not been studied in the
literature. However, as our submodular optimization prob-
lem is an extension of the weighted set cover problem, the
greedy algorithm is a natural fit and indeed we observe good
performance in practice.

Algorithm 2 Hard-EM

Input: Multiset of sequences I and initial estimates Π(0)

k ← 0
do

k ← k + 1
E-step: ∀X(i) solve (3.1) to get z(i)

S ∀S ∈ Ti

M-step: π
(k)
Sm
← 1

N

∑N

i=1[z(i)
S = m] ∀S ∈ I, ∀m

while ‖Π(k−1) −Π(k)‖F > ε
Remove from I sequences S with πS0 = 1
return I,Π(k)

3.4 Learning
Given a set of interesting sequences I, consider now the

case where both variables z,Π in the model are unknown. In
this case we can use the hard EM algorithm [6] for parame-
ter estimation with latent variables. The hard-EM algorithm
in our case is merely a simple layer on top of the inference
algorithm (3.1). Suppose there are N database sequences
X(1), . . . , X(N) with multisets of supported interesting se-
quences T (1), . . . , T (N), then the hard EM algorithm is given
in Algorithm 2 (note that ‖·‖F denotes the Frobenius norm
and πS0 is the probability that S does not explain any se-
quence in the database). To initialize Π, a natural choice is
simply the support (relative frequency) of each sequence.

3.5 Inferring new sequences
We infer new sequences using structural EM [8], i.e., we

add a candidate sequence S′ to I if doing so improves the
optimal value p of the problem (3.1) averaged across all
database sequences. Interestingly, there are two implicit reg-
ularization effects here. Firstly, observe from (3.1) that when
a new candidate S′ is added to the model, a corresponding
term lnπS′

0
is added to the log-likelihood of all database se-

quences that S′ does not support. For large sequence databases,
this amounts to a significant penalty on candidates in prac-
tice. Secondly, observe that the last term of (3.1) acts as an
additional penalty, strongly favouring a non-redundant set
of sequences.
To get an estimate of maximum benefit to including can-

didate S′, we must carefully choose an initial value of πS′

that is not too low, to avoid getting stuck in a local opti-
mum. To infer a good πS′ , we force the candidate S′ to
explain all database sequences it supports by initializing
πS′ = (0, 1, . . . , 1)T and update πS′ with the probability
corresponding to its actual usage once we have inferred all
the coverings. Given a set of interesting sequences I and cor-
responding probabilities Π along with database sequences
X(1), . . . , X(N), each iteration of the structural EM algo-
rithm is given in Algorithm 3 below.
Occasionally the Hard-EM algorithm may assign zero

probability to one or more singleton sequences and cause
the greedy algorithm to not be able to fully cover a database
sequence X using just the interesting sequences in I. In this
case we simply re-seed I with the necessary singletons. Fi-
nally, in practice we store the set of candidates that have
been rejected by Structural-EM and check each poten-
tial candidate against this set for efficiency.

3.6 Candidate generation
The Structural-EM algorithm (Algorithm 3) requires a
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Algorithm 3 Structural-EM (one iteration)

Input: Sequences I, Π, optima p(i) of (3.1) ∀X(i)

Set profit p← 1
N

∑N

i=1 p
(i)

do
Generate candidate S′ using Candidate-Gen
I ← I ∪ {S′}, πS′ ← (0, 1, . . . , 1)T

E-step: ∀X(i) solve (3.1) to get z(i)
S ∀S ∈ Ti

M-step: π′Sm
← 1

N

∑N

i=1[z(i)
S = m] ∀S ∈ I, ∀m

∀X(i), solve (3.1) using π′S , z
(i)
S ∀S ∈ Ti

to get the optimum p(i)

Set new profit p′ ← 1
N

∑N

i=1 p
(i)

I ← I \ {S′}
while p′ ≤ p {until one good candidate found}
I ← I ∪ {S′}
return I,Π′

method to generate new candidate sequences S′ that are to
be considered for inclusion in the set of interesting sequences
I. One possibility would be to use the GSP algorithm [23]
to recursively suggest larger sequences starting from single-
tons, however preliminary experiments found this was not
the most efficient method. For this reason we take a slightly
different approach and recursively combine the interesting
sequences in I with the highest support first (Algorithm 4).
In this way our candidate generation algorithm is more likely
to propose viable candidate sequences earlier and in practice
we find that this heuristic works well.

Algorithm 4 Candidate-Gen
Input: Sequences I, cached supports σ, queue length q

if @ priority queue Q for I then
Initialize σ-ordered priority queue Q
Sort I by decreasing sequence support using σ
for all ordered pairs S1, S2 ∈ I, highest ranked first
do

Generate candidate S′ = S1S2
Cache support of S′ in σ and add S′ to Q
if |Q| = q break

end for
end if
Pull highest-ranked candidate S′ from Q
return S′

3.7 Mining Interesting Sequences
Our complete interesting sequence mining (ISM) algo-

rithm is given in Algorithm 5. Note that the Hard-EM

Algorithm 5 ISM (Interesting Sequence Miner)

Input: Database of sequences X(1), . . . , X(N)

Initialize I with singletons, Π with their supports
while not converged do

Add sequences to I,Π using Structural-EM
Optimize parameters for I,Π using Hard-EM

end while
return I,Π

parameter optimization step need not be performed at ev-
ery iteration, in fact it is more efficient to suggest several

candidate sequences before optimizing the parameters. As
all operations on database sequences in our algorithm are
trivially parallelizable, we perform the E and M -steps in
both the hard and structural EM algorithms in parallel.

3.8 Interestingness Measure
Now that we have inferred the model variables z,Π, we

are able to use them to rank the retrieved sequences in I.
There are two natural rankings one can employ, and both
have their strengths and weaknesses. The obvious approach
is to rank each sequence S ∈ I according to its probabil-
ity under the model πS , however this has the disadvantage
of strongly favouring frequent sequences over rare ones, an
issue we would like to avoid. An alternative is to rank the
retrieved sequences according to their interestingness under
the model, that is the ratio of database sequences they ex-
plain to database sequences they support. One can think of
interestingness as a measure of how necessary the sequence
is to the model: the higher the interestingness, the more sup-
ported database sequences the sequence explains. Thus in-
terestingness provides a more balanced measure than prob-
ability, at the expense of missing some frequent sequences
that only explain some of the database sequences they sup-
port. We define interestingness formally as follows.

Definition 2. The interestingness of a sequence S ∈ I re-
trieved by ISM (Algorithm 5) is defined as

int(S) =
∑N

i=1[z(i)
S ≥ 1]

supp(S)

and ranges from 0 (least interesting) to 1 (most interesting).

Any ties in the ranking can be broken using the sequence
probability p(S ⊂ X) = p(zS ≥ 1) = 1− πS0 .

3.9 Correspondence to Existing Models
There is a close and well-known connection between prob-

abilistic modelling and the minimum description length prin-
ciple used by SQS and GoKrimp (see MacKay [14], §28.3
for a particularly nice explanation). Given a probabilistic
model p(X|Π, I) of a single database sequence X, by Shan-
non’s theorem the optimal code for the model will encode
X using approximately − log2 p(X|Π, I) bits. So by find-
ing a set of patterns that maximizes the probability of the
data, we are also finding patterns that minimize description
length. Conversely, any encoding scheme implicitly defines
a probabilistic model. Given an encoding scheme E that as-
signs each transaction X to a string of L(X) bits, we can
define p(X|E) ∝ 2−L(X), and then E is an optimal code
for p(X|E). Interpreting the previous subsequence mining
methods in terms of their implicit probabilistic models pro-
vides interesting insights into these methods.
The encoding of a database sequence used by SQS can be

interpreted as a probabilistic model p(X, z|Π, I), where the
SQS analog of p(X, z|Π, I) is similar to (3.1) with

πSm =

( ∑N

i=1 z
(i)
S∑

I∈I

∑N

j=1 z
(j)
I

)m

,

along with additional terms that correspond to the descrip-
tion lengths for indicating the presence and absence of gaps
in the usage of a sequence S. Additionally, SQS contains an
explicit penalty for the encoding of the set of patterns I,
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that encourages a smaller number of patterns. In a proba-
bilistic model, this can be interpreted as a prior distribution
p(I) over patterns. There is also a prior distribution on the
content of the patterns, similar to a unigram model, which
encourages the patterns to contain more common elements.
Similarly, GoKrimp uses a variant of the above model,

where instead we have

πSm =

( ∑N

i=1 z
(i)
S + |{T ∈ I |S ⊂ T}|∑

I∈I

∑N

j=1 z
(j)
I + |{T ∈ I | I ⊂ T}|

)m

.

In addition, the description length used by GoKrimp also
has a gap cost that penalizes sequences with large gaps.
GoKrimp employs a greedy heuristic to find the most com-
pressing sequence: an empty sequence S is iteratively ex-
tended by the most frequent item that is statistically depen-
dent on S. ISM, by contrast, iteratively extends sequences
by the most frequent sequence in its candidate generation
step which enables it to quickly generate large candidate
sequences (Section 3.6). We did consider performing a sta-
tistical test between a sequence and its extending sequence,
however this proved computationally prohibitive.
The differences between these models and ISM are:
• Interleaving. SQS cannot mine subsequences that are in-
terleaved and thus struggles on datasets which consist
mainly of interleaved subsequences (for illustration, see
Section 4.4). GoKrimp handles interleaving using a pointer
scheme that explicitly encodes the location of the subse-
quence within the database. In ISM, the partition function
|P| allows us to handle interleaving of subsequences with-
out needing to explicitly encode positions, and also serves
as an additional penalty on the number of elements in the
subsequences used to explain a database sequence.
• Gap penalties. Both SQS and GoKrimp explicitly pun-
ish gaps in sequential patterns. Adding such a penalty
would require only a trivial modification to the algorithm,
namely, updating the cost function in Algorithm 1. We did
not pursue this as we observe excellent results without it
(Section 4).
• Encoding the set of patterns. Both SQS and GoKrimp con-
tain an explicit penalty term for the description length of
the pattern database, which corresponds to a prior distri-
bution p(I) over patterns. In our experiments with ISM,
we did not find in practice that an explicit prior distri-
bution p(I) was necessary for good results. It would be
possible to incorporate it with a trivial change to the ISM
algorithm, in particular, when computing the score im-
provement of a new candidate in the structural EM step.
• Encoding pattern absence. Also, observe that, if we view
ISM as an MDL-type method, not only the presence of a
pattern, but also the absence of it is explicitly encoded (in
the form of πS0 in (3.1)). As a result, there is an implicit
penalty for adding too many patterns to the model and
one does not need to use a code table which would serve
as an explicit penalty for greater model complexity.

4. NUMERICAL EXPERIMENTS
In this section we perform a comprehensive quantitative

and qualitative evaluation of ISM. On synthetic datasets
we show that ISM returns a list of sequential patterns that
is largely non-redundant, contains few spurious correlations
and scales linearly with the number of sequences in the
dataset. On a set of real-world datasets we show that ISM

103 104 105 106

No. Sequences

101

102

103

104

105

Ti
m
e
 (
s)

Figure 1: ISM scaling as the number of sequences in our
synthetic database increases.

finds patterns that are consistent, interpretable and highly
relevant to the problem at hand. Moreover, we show that
ISM is able to mine patterns that achieve good accuracy
when used as binary features for real-world classification
tasks.
Datasets We use ten real-world datasets in our numer-
ical evaluation (see Table 1). The Alice dataset consists of
the text of Lewis Carrol’s Alice in Wonderland, tokenized
into 1, 638 sentences using the Stanford Document Prepro-
cessor [17] with stop words and punctuation deliberately
retained. The Gazelle dataset consists of 59, 601 sequences
of clickstream data from an e-commerce website used in the
KDD-CUP 2000 competition [11]. The JMLR dataset con-
sists of 788 abstracts from the Journal of Machine Learning
Research and has previously been used in the evaluation of
the SQS and GoKrimp algorithms [12, 25]. Each sequence is
a list of stemmed words from the text with stop words re-
moved. The Sign dataset is a list of 730 American sign lan-
guage utterances where each utterance contains a number
of gestural and grammatical fields [21]. The last six datasets
listed in Table 1 were first introduced in [19] to evaluate
classification accuracy when mined sequential patterns are
used as features. The datasets were converted from time in-
terval sequences into sequences of items by considering the
start and end of each unique interval as distinct items and
ordering the items according to time.
ISM Results We ran ISM on each dataset for 1, 000 itera-
tions with a priority queue size of 100, 000 candidates. The
runtime and number of non-singleton sequential patterns re-
turned by ISM is given in the right-hand side of Table 1. We

Dataset Uniq. Items Sequences Subseq.† Runtime
Alice 2, 619 1, 638 123 114 min
Gazelle 497 59, 601 727 582 min
JMLR 3, 846 788 361 230 min
Sign 267 730 159 31 min
aslbu 250 424 144 4 min
aslgt 94 3, 464 57 19 min
auslan2 16 200 10 >1 min
context 94 240 19 7 min
pioneer 178 160 86 3 min
skating 82 530 70 9 min

Table 1: Summary of the real datasets used and ISM results
after 1, 000 iterations. † excluding singleton subsequences.
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Figure 2: Precision against recall for each algorithm on our
synthetic database, using the top-k patterns as a threshold.
Note that SQS is a single point at the top-left and GoKrimp
has near zero precision and recall. Each plotted curve is the
11-point interpolated precision3.

also investigated the scaling of ISM as the number of se-
quences in the database increases, using the model trained
on the Sign dataset from Section 4.1 to generate synthetic
sequence databases of various sizes. We ran ISM for 100 it-
erations on these databases and one can see in Figure 1 that
the scaling is linear as expected. All experiments were per-
formed on a machine with 16 Intel Xeon E5-2650 2.60Ghz
CPUs and 128GB of RAM.
Evaluation criteria We will evaluate ISM along with SQS,
GoKrimp and BIDE according to the following criteria:
1. Spuriousness – to assess the degree of spurious correlation

in the mined set of sequential patterns.
2. Redundancy – to measure how redundant the mined set

of patterns is.
3. Classification Accuracy – to measure the usefulness of the

mined patterns.
4. Interpretability – to informally assess how meaningful and

relevant the mined patterns actually are.

4.1 Pattern Spuriousness
The sequence-cover formulation of the ISM algorithm (3.1)

naturally favours adding sequences to the model whose items
co-occur in the sequence database. One would therefore ex-
pect ISM to largely avoid suggesting sequences of uncor-
related items and so return more meaningful patterns. To
verify this is the case and validate our inference procedure,
we check if ISM is able to recover the sequences it used to
generate a synthetic database. To obtain a realistic synthetic
database, we sampled 10, 000 sequences from the ISM gen-
erative model trained on the Sign dataset (cf. Section 3.2).
We were then able to measure the precision and recall for
each algorithm, i.e., the fraction of mined patterns that
are generating and the fraction of generating patterns that
are mined, respectively. Figure 2 shows the precision-recall
curve for ISM, SQS, GoKrimp and BIDE using the top-k
mined sequences (according to each algorithms ranking) as a
threshold. One can clearly see that ISM was able to mine al-
most all the generating patterns and almost all the patterns
mined were generating, despite the fact that the generated
database will contain many subsequences not present in the
3i.e., the interpolated precision at 11 equally spaced recall
points between 0 and 1 (inclusive), see [16], §8.4 for details.

original dataset due to the nature of our ‘subsequence inter-
leaving’ generative model. This not only provides a good val-
idation of ISM’s inference procedure and underlying genera-
tive model but also demonstrates that ISM returns few spu-
rious patterns. For comparison, SQS returned a very small
set of generating patterns and GoKrimp returned many pat-
terns that were not generating. The set of top-k patterns
mined by BIDE contained successively less generating pat-
terns as k increased. It is not our intention to draw con-
clusions about the performance of the other algorithms as
this experimental setup naturally favours ISM. Instead, we
compare the patterns from ISM with those from SQS and
GoKrimp on real-world data in the next sections.

4.2 Pattern Redundancy
We now turn our attention to evaluating how redundant

the sets of sequential patterns returned by ISM, SQS, GoKrimp
and BIDE actually are. A suitable measure of redundancy
for a single sequence is the minimum edit distance between
it and the other mined sequences in the set. Averaging this
distance across all sequences in the set, we obtain the av-
erage inter-sequence distance (ISD). Similarly, we can also
calculate the average number of sequences containing other
mined sequences in the set (CS), which provides us with an-
other measure of redundancy. Finally, we can also look at
the number of unique items present in the set of mined se-
quences which gives us an indication of how diverse it is. We
ran ISM, SQS, GoKrimp and BIDE on all the datasets in
Table 1 and report the results of the three aforementioned
redundancy metrics on the top 50 non-singleton sequential
patterns for each algorithm in Table 2. One can see that on
average the top ISM sequences have a larger inter-sequence
distance, smaller number of containing sequences and larger
number of unique items, clearly demonstrating they are less
redundant than SQS, GoKrimp and BIDE. Predictably, the
top BIDE sequences are the most redundant, with an aver-
age inter-sequence distance of 1.00.

4.3 Classification Accuracy
A key property of any set of patterns mined from data

is its usefulness in real-world applications. To this end, in
keeping with previous work [12], we will focus on classifi-
cation tasks as they are some of most important applica-
tions of pattern mining algorithms. Specifically we will con-
sider the task of classifying sequences in a database using
mined sequential patterns as binary features. We therefore
performed 10-fold cross validation using a Support Vector
Machine (SVM) classifier on the six classification datasets
from Table 1 with the top-k patterns mined by ISM, SQS,
GoKrimp and BIDE as features. We used the linear clas-
sifier from the libSVM library [4] with default parameters.
Additionally, we used the top-k most frequent singleton pat-
terns as a baseline for the classification tasks. The resulting
plots of k against classification accuracy for all the datasets
and algorithms are given in Figure 3. One can see that the
patterns mined by SQS perform best, exhibiting the highest
classification accuracy on four out of the six datasets, closely
followed by ISM and GoKrimp, which performs surprisingly
well considering it struggles to return more than 50 patterns.
All three consistently outperform BIDE and the singletons
baseline which exhibit similar performance to each other.
We therefore conclude that the sequential patterns mined
by ISM can indeed be useful in real-world applications.
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Alice Gazelle JMLR Sign aslbu
ISD CS Items ISD CS Items ISD CS Items ISD CS Items ISD CS Items

ISM 2.00 0.00 94 3.36 0.00 167 1.84 0.00 96 3.64 0.00 113 2.24 0.00 110
SQS 1.76 0.10 72 4.24 0.38 183 1.82 0.02 92 1.26 0.94 57 *1.89 *0.11 *61
GoKrimp 1.24 0.10 52 *4.51 *0.05 *176 *1.40 *0.10 *30 1.72 0.24 63 *2.00 *0.00 *18
BIDE 1.00 0.36 29 1.00 0.36 26 1.00 0.18 12 1.00 0.60 15 1.00 0.00 26

aslgt auslan2 context pioneer skating
ISD CS Items ISD CS Items ISD CS Items ISD CS Items ISD CS Items

ISM 2.08 0.20 94 *2.40 *1.0 *14 *2.16 *0.47 *35 2.04 0.00 102 2.12 0.72 73
SQS 1.96 0.28 86 *1.42 *1.17 *12 2.14 0.90 64 1.64 0.40 78 1.62 0.84 46
GoKrimp *2.00 *0.00 *89 *2.00 *0.25 *8 *2.07 *0.52 *51 *1.82 *0.00 *33 *1.90 *0.29 *64
BIDE 1.00 0.00 22 *1.00 *3.16 *6 1.00 1.72 12 1.02 0.06 32 1.00 1.06 17

Table 2: Average inter-sequence distance (ISD), average no. containing sequences (CS) and no. unique items for the top
50 non-singleton sequences returned by the algorithms from the datasets. Larger inter-sequence distances and smaller no.
containing sequences indicate less redundancy. * returned less than 50 non-singleton sequences.

ISM SQS GoKrimp BIDE
support vector machin support vector machin support vector machin algorithm algorithm

real world machin learn machin learn learn learn
larg scale state art real world learn algorithm

high dimension data set state art algorithm learn
state art bayesian network high dimension data data

first second larg scale reproduc hilbert space learn data
reproduc kernel hilbert space nearest neighbor experiment result model model

maximum likelihood decis tree supervis learn problem problem
wide rang neural network neural network learn result

gene express cross valid compon analysi problem algorithm
princip compon analysi featur select well known method method

random field graphic model support vector algorithm result
maximum entropi real world base result data set
low dimension high dimension paper investig learn learn learn
blind separ mutual inform data demonstr learn problem
wide varieti sampl size hilbert space learn method
acycl graph learn algorithm such paper algorithm data
turn out princip compon analysi algorithm demonstr learn set

markov chain logist regress learn result problem learn
leav out model select learn experi algorithm algorithm algorithm

Table 3: The top twenty non-singleton sequences as found by ISM, SQS, GoKrimp and BIDE for the JMLR dataset.

4.4 Pattern Interpretability
For the two text datasets in Table 1 we can directly in-

terpret the mined patterns and informally assess how mean-
ingful and relevant they are.
JMLR Dataset We compare the top-20 non-singleton pat-
terns mined by ISM, SQS, GoKrimp and BIDE in Table 3.
It is immediately obvious from the table that the BIDE pat-
terns are almost exclusively permutations of frequent items
and so uninformative. For this reason we omit BIDE from
consideration on the next dataset. The patterns mined by
ISM, SQS and GoKrimp are all very informative, contain-
ing technical concepts such as support vector machine and
commonly used phrases such as state (of the) art.
Alice Dataset We compare the top twenty-20 non-singleton
patterns mined by ISM, SQS and GoKrimp in the first three
columns Table 4. This time, one can clearly see that the
patterns mined by ISM are considerably more informative.
They contain collocated words and phrases such as mock
turtle and oh dear, correlated words such as as spoke and
off head, as well as correlated punctuation such as ( ) and
“ ”. Both SQS and GoKrimp on the other hand mine collo-
cated words with spurious punctuation and stop words, e.g.

prepending the to nouns and commas to phrases. To further
illustrate this notable difference, we also show the top-20
non-singleton patterns that are exclusive to each algorithm
(i.e., found by ISM but not SQS/GoKrimp, etc.) in the last
three columns of Table 4. One can clearly see that GoKrimp
has the least informative exclusive patterns, predominantly
combinations of stop words and punctuation, SQS mostly
prepends and appends informative exclusive patterns with
punctuation and stop words, whereas ISM is the only algo-
rithm that just returns purely correlated words. Note that
SQS in particular struggles to return patterns such as bal-
anced parentheses, since it punishes the large gaps between
them and cannot handle interleaving them with the patterns
they enclose. Here we can really see the power of the statis-
tical model underlying ISM as it is able to discern spurious
punctuation from genuine phrases.

Parallel Dataset Finally, we consider a synthetic dataset
that demonstrates the ability of ISM to handle interleav-
ing patterns. Following [12], we generate a synthetic dataset
where each item in the sequence is generated by five inde-
pendent parallel processes, i.e., each process i generates one
item from a set of five possible items {ai, bi, ci, di, ei} in or-
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Figure 3: Linear SVM classification accuracy using the top-k sequences returned by each algorithm as binary features. ISM
shows consistently good performance, comparable to SQS and GoKrimp.

ISM SQS GoKrimp Exclusive ISM Exclusive SQS Exc. GoKrimp
she herself ! ’ ‘ ’ she herself ? ’ ‘ ’
mock turtle , and , and ( ) the mock turtle , said .

( ) ? ’ , said . he his the march hare said the .
went on . ’ mock turtle as spoke * * * * of the .

“ ” the mock turtle said the . had back , ’ said alice i n’t ’
ca n’t the march hare in a just when , you know march hare
he his * * * * of the . off head it was alice .

looked at , ’ said alice i n’t ’ she at once the white rabbit what ?
had been the queen i ’m oh dear , ’ you know
must be , you know march hare never before ; and ‘ !
at last went on went on join dance she had you ?
as spoke it was a little might well beau – ootiful soo – oop ! , , ,
looking at the white rabbit ! ’ if ’d i ’ve oh , !
had back , ’ alice . such thing minute or two i ’
just when ; and to herself ’ve seen there was alice ;
off head a little as she do n’t know what ‘ well , , !

she at once i ’m what ? going into – ’ the .
oh dear do n’t you know too much in a tone alice ,

more than she had the queen soon found soo – oop of the e – e – it :
never before beau – ootiful soo – oop ! the hatter took its , ’ said the king and she

Table 4: The top twenty non-singleton sequences as found by ISM, SQS and GoKrimp for the Alice dataset as well as those
found by ISM but not SQS/GoKrimp, SQS not ISM/GoKrimp and GoKrimp not ISM/SQS.
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Figure 4: Recall for each algorithm on the synthetic par-
allel dataset, using the top-k (first-k for SQS) patterns as
a threshold. Note that SQS maintains a recall level of 0.6
for the remaining patterns (up to k = 403, not shown for
clarity).

der. In each step, the generator chooses i at random and
generates an item using process i, until the sequence has
length 1, 000, 000. The sequence is then split into 10, 000
sequences of length 100. For this dataset we know that all
mined sequences containing a mixture of items from different
processes are spurious. This enables us to calculate recall,
i.e., the fraction of processes present in the set of true pat-
terns mined by each algorithm. We plot the recall for the
top-k patterns mined by ISM and GoKrimp in Figure 4 and
the first-k patterns mined by SQS (as it was still running
after seven days). One can see that while ISM and GoKrimp
are able to mine true patterns from all processes, SQS only
returns patterns from 3 of the 5 processes.

5. CONCLUSIONS
In this paper, we have taken a probabilistic machine learn-

ing approach to the subsequence mining problem. We pre-
sented a novel subsequence interleaving model, called the
Interesting Sequence Miner, that infers subsequences which
best compress a sequence database without having to de-
sign a MDL encoding scheme. We demonstrated the efficacy
of our approach on both synthetic and real-world datasets,
showing that ISM returns a more diverse set of patterns
than previous approaches while retaining comparable qual-
ity. In the future we would like to extend our approach to
the many promising application areas as well as considering
more advanced techniques for parallelization.
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