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Abstract

The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also 

known as the inverse covariance estimation problem, has gained increasing interest recently. Most 

existing works assume that inverse covariance estimators contain sparse structure and then 

construct models with the ℓ1 regularization. In this paper, different from existing works, we study 

the inverse covariance estimation problem from another perspective by efficiently modeling the 

low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank 

part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is 

common in many applications including the climate and financial analysis, and another one is that 

such assumption can reduce the computational complexity when computing its inverse. 

Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank 

part, where each component can be sparse. For optimization, the COP method greedily learns a 

rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP 

algorithm enjoys several appealing properties including the existence of an efficient solution in 

each iteration and the theoretical guarantee on the convergence of this greedy approach. 

Experiments on large-scale synthetic and real-world datasets including thousands of millions 

variables show that the COP method is faster than the state-of-the-art techniques for the inverse 

covariance estimation problem when achieving comparable log-likelihood on test data.

Keywords

Inverse Covariance Estimation; Component Pursuit; Large-Scale Data; Greedy Algorithm

1. INTRODUCTION

Suppose there are n instances {x1,..., xn} sampled from a Gaussian distribution (μ, Σ), 

where each instance xi ∈ ℝp (1 ≤ i ≤ n) lies in a p-dimensional space, μ ∈ ℝp is the mean, 

and Σ ∈ ℝp×p is the covariance matrix. An important and challenging problem is to recover 
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Σ or its inverse Σ−1 in a high-dimensional setting where n ≪ p. Estimating the inverse 

covariance matrix has attracted a lot of interests in several fields including machine learning, 

signal processing, computational biology and so on, since it can reveal the dependence 

among the p attributes [28, 11, 3]. The inverse covariance matrix is estimated by maximizing 

the log-likelihood as

or equivalently minimizing the negative log-likelihood (NLL):

(1)

where Θ is the inverse covariance estimator, Θ ≻ 0 indicates that Θ is positive definite, |·| 
denotes the determinant of a square matrix, 〈 ·, · 〉 denotes the dot product between two 

matrices or vectors,  is the mean of the samples, and 

 is the sample covariance matrix. If directly solving problem (1), 

we can obtain an analytical solution for Θ as Θ = S−1. Under the high-dimensional setting 

where n ≪ p, S is rank-deficient and hence this analytical solution is ill-posed. In order to 

make the problem well-defined, some regularizers are used to constrain Θ and a widely used 

one is the ℓ1 regularization [28, 11, 3] which assumes that Θ is sparse with the objective 

function formulated as

(2)

where ρ is a regularization parameter that controls the trade-off between the sparseness of Θ 
and the fitness to the data.

A large body of works have been devoted to solving problem (2) recently [4, 6, 11, 23, 24, 

25, 16, 17, 26], among which the state-of-the-art methods including the QUIC [16], Big-

QUIC [17] and BCDIC [26] methods can handle Θ with billions of entries under the 

assumption that Θ is sparse. Those methods commonly use Newton proximal approaches, 

where a quadratic approximation is made and one key step is to calculate the inverse of Θ, to 

minimize the NLL. Obviously, the computational bottleneck in those methods is that they 

need to compute the matrix inverse Θ−1 in each iteration, which is computationally heavy 

when p is very large. Although the Big-QUIC and BCDIC methods alleviate this problem by 

splitting the huge matrix Θ into blocks and use some cheaper operations, e.g., solving some 

linear systems, to update the corresponding blocks in Θ−1, the matrix inverse operation, 

whose complexity is O(p3), is still unavoidable. Actually, almost all the existing methods to 

solve problem (2) have this problem. Moreover, in the QUIC, Big-QUIC and BCDIC 
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methods, an operation used to largely improve the efficiency is to restrict the number of 

updated positions in Θ and this operation works well when the optimal Θ is very sparse, 

corresponding to a situation that the regularization parameter ρ in problem (2) has a large 

value. To see this, empirical studies in those works [16, 17, 26] choose ρ such that the 

optimal Θ has only 10p non-zero entries out of a total number of p2 entries and so only a 

very small fraction (i.e., 10/p) in the optimal Θ can have non-zero values. Therefore, 

although those works claim that their methods can handle a covariance matrix with billions 

of entries, only a small number of non-zero values are actually computed. Empirically we 

find that the QUIC, Big-QUIC, and BCDIC methods are not very efficient when ρ has a 

smaller value. Moreover, an extremely sparse Θ learned in those works may fail to recover 

the true relations between attributes.

In this paper, we investigate the inverse covariance estimation problem from another 

perspective by modeling the low-rank structure contained in Θ. One motivation for learning 

the low-rank structure in Θ is that the low-rank structure is common in many applications. 

For example, in climate research, spatially close locations usually exhibit strong 

dependencies in the climate attributes and such geographical consistency usually leads to 

low-rank structure in the data [14, 2, 27]. Similarly, in traffic analysis, strong local 

correlations have been detected on large-scale traffic networks and hence low-rank structure 

exists [13]. Moreover, in computational finance, a large body of works have focused on 

estimating nearly low-rank covariance or precision matrices for economy and stock analysis 

[9, 10, 7, 8]. Moreover, in addition to the generality of the low-rank structure in various 

applications, this assumption can bring the computational benefit since the matrix inverse 

Θ−1 required in each iteration can be computed in lower complexity.

Specifically, we propose a COmponent Pursuit (COP) method which assumes that the 

inverse covariance is a combination of a diagonal matrix and a low-rank matrix which can be 

sparse. In order to obtain the low-rank part in Θ, the COP method greedily learns a rank-one 

component in each iteration by maximizing the log-likelihood, where each rank-one 

component can be sparse. The subproblem associated with each rank-one component is 

shown to be non-convex under the high-dimensional setting but due to the special structure 

of the subproblem, we can prove that all its local optimums have the globally optimal 

objective value, making the optimization easier. We further show that the greedy COP 

algorithm inherently enjoys several appealing properties including the existence of an 

efficient solution for each subproblem and the theoretical guarantee on the convergence of 

this greedy approach. Compared with most existing methods whose complexity is O(p3), the 

proposed COP method only takes O(p2) operations. Experiments on large-scale synthetic 

and real-world datasets show that the proposed COP method is faster than the state-of-the-art 

methods for large-scale inverse covariance estimation when achieving comparable log-

likelihood on test data.

Notations—We use lower-case letters for scalars, bold-face and lower-case letters for 

vectors, and bold-face and upper case letters for matrices. tr(·) denotes the trace of a square 

matrix. rank(·) denotes the rank of a matrix. diag(·) converts a vector to a diagonal matrix or 

extracts the diagonal entries in a square matrix to form a vector. ||·||2 denotes the ℓ2 norm of a 
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vector. ||·||* denotes the ℓ2 norm of a matrix, which equals the maximum eigenvalue of a 

square matrix.

2. RELATED WORK

Most of the previous studies [4, 6, 11, 23, 24, 25, 16, 17, 26] assume that the inverse 

covariance matrix is sparse and propose different optimization algorithms to solve problem 

(2). Different from those approaches, we aim to learn low-rank structure in the inverse 

covariance matrix.

Similar to our work, some recent methods investigate other structures of the inverse 

covariance instead of learning with pure sparsity. For example, in [23, 14, 17], the inverse 

covariance matrix is assumed to have diagonal block structure, where each diagonal block 

matrix is sparse, when the attributes can be divided into several groups with each one 

containing similar attributes. Moreover, the latent Gaussian graphical model (LGGM) 

proposed in [5] assumes that the inverse covariance is equal to the difference between a 

sparse matrix and a low-rank matrix, and two algorithms [22, 15] including the alternating 

direction method and Newton proximal method have been proposed for the LGGM method. 

However, these methods [23, 14, 17] still learn the sparse inverse covariance and the LGGM 

method treats the sparse part as a dominate part. Moreover, computing the matrix inverse 

with O(p3) complexity is unavoidable in the LGGM method and even worse, it has to 

recover the low-rank part via the eigen-decomposition in each iteration, which also costs 

O(p3). Different from these algorithms, the proposed COP method focuses on learning the 

low-rank part and greedily pursuits a rank-one component in each iteration, whose 

complexity is O(p2).

The proposed COP method seems related to the principal component analysis (PCA) [18] 

but they are different, since the PCA assumes the covariance matrix is a sum of a low-rank 

part and a diagonal one but in the proposed COP method, the inverse covariance matrix is a 

combination of a low-rank part and a diagonal one, implying that the covariance matrix 

equals the difference between a diagonal part and a low-rank one.

3. MOTIVATION AND PROBLEM SETUP

In this section, we formally present the motivation and define the problem. In order to make 

the inverse covariance Θ positive definite to satisfy the constraint of problem (1), we assume 

that Θ is combination of two matrices, i.e., Θ = L + P, where L is a low-rank positive 

semidefinite matrix and P is a positive definite diagonal matrix. Such assumption on the 

structure of L and P is motivated by the solution of problem (1) as revealed in the following 

corollary.

Corollary 1—The optimal solution Θ* of problem (1) satisfies the following condition:
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where I is an identity matrix with appropriate size and A ⪰ B implies that A − B is positive 
semidefinite for two square matrices A and B.

Corollary 1 can be directly proved by theorems in [3, 21] and thus its proof is omitted here. 

From Corollary 1, Θ* can be rewritten as  where  is diagonal 

and  can be assumed to capture the low-rank structure. Inspired by this 

decomposition, we just assume that L is a low-rank positive definite matrix and P = diag(η) 

is a diagonal matrix where η ∈ ℝp with each entry, i.e., ηi, positive. As we will see later, 

such assumption on the structure of Θ can bring computational benefit since the complexity 

to compute Θ−1 reduces from O(p3) to O(p2).

Then we are ready to present the problem formulation. Given the sample covariance matrix 

S ∈ ℝp×p, we consider the inverse covariance estimation problem by assuming a low-rank 

plus diagonal structure as

(3)

where r ≪ p is a pre-defined rank. In the next section, we propose the efficient COP method 

to solve problem (3).

4. THE COP METHOD

In this section, we show how to solve problem (3) efficiently. Since there are two parts, L 
and P, in problem (3), we use an alternating method to solve it. That is, in each iteration, we 

first optimize problem (3) with respect to (w.r.t.) P by fixing L and then estimate L with P 
fixed, where L is learned by pursuing its rank-one components greedily.

4.1 Learning Diagonal Part

When the low-rank component L is fixed, the problem w.r.t. the diagonal part P is

(4)

It is easy to prove that problem (4) is convex w.r.t. P or η and we can use some gradient 

descent method to solve it directly, where the gradient of the objective function in problem 

(4) is
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where (L+P)−1 = P−1 −P−1U(I+UT P−1U)−1UT P−1 by utilizing the low-rank structure of L 
that L equals UUT for some low-rank U and hence it can be computed efficiently. Then, with 

a carefully chosen step size as [16, 17, 15], the positiveness of ηi’s can be guaranteed in 

each iteration.

Moreover, at the beginning of the COP algorithm, L is set to be a zero matrix and the 

problem for P is formulated as

which has an analytical solution  for 1 ≤ i ≤ p, where sij denotes the (i, j)th element in 

S and sii is positive since S is a covariance matrix. We use this analytical solution as the 

initialization for P.

4.2 Component Pursuit for Low-Rank Part

With a fixed P, we aim to learn the low-rank part L efficiently. We propose to pursue its 

rank-one components of L iteratively. When P is fixed, the problem w.r.t. L can be 

formulated as

(5)

In order to make the whole algorithm efficient, we aim to learn the rank-one components in 

L greedily and hence in the (k+1)th iteration we formulate the estimation Lk+1 as 

 where Lk is the low-rank estimation obtained until the kth iteration 

and uk+1 is the rank-one component to be learned in the (k + 1)th iteration. By defining Mk 

= Lk + Pk, the subproblem w.r.t. uk+1 in the (k + 1)th iteration can be formulated as

(6)

which can be simplified by omitting some constant terms as

(7)

Based on problem (7), we are also interested in learning structured components. For 

example, in many situations, the rank-one component in the low-rank structure can be sparse 
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[29]. To obtain sparse components via the ℓ1 regularization, a simple variant of problem (7) 

can be formulated as

(8)

where γ > 0 is a regularization parameter controlling sparsity in the rank-one component 

vector u.

Here we investigate both problems (7) and (8). For the two problems, the following theorem 

with its proof in the appendix shows that they are non-convex under the high-dimensional 

setting.

Theorem 1—When n ≪ p, problems (7) and (8) are non-convex w.r.t. u.

According to Theorem 1, we could only find a local optimum of uk+1, making the greedy 

algorithm hard to learn a globally optimal rank-one component of L in each iteration. 

Fortunately, we find that all the local optimums of problem (7) have the same globally 

optimal objective value of problem (6) according to the following theorem.

Theorem 2—For problem (7), if u is a rank deficient local minimum of f(u), then U = uuT 

is a global minimum of F (U), i.e., all the local optimums have the same globally optimal 
objective value in problem (6).

Theorem 2 allows us to use any optimization method, which can find a local optimum, to 

solve problem (7). Generally, we can use gradient descent algorithms since the objective 

function f(·) is differentiable and its gradient can be computed as

For problem (8), there is no result similar to Theorem 2. However, we can use general 

proximal gradient (GPG) methods [12, 20] to solve it efficiently by using the optimal 

solution of problem (7) as the initialization to speedup the convergence. The entire greedy 

COP algorithm is depicted in Algorithm 1.

Algorithm 1

The COP algorithm.

Input: S, r;

Output: Θ̂;

 1: Initialize P0 and set M0 = P0, k = 0;

 2: repeat
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 3:  Solve problem (7) or (8) with fixed Pk;

 4:

  ;

 5:  Mk = Lk + Pk;

 6:

 Compute ;

 7:  Update Pk with fixed Lk;

 8:  k := k + 1;

 9: until k > r or some convergence criterion is satisfied

 10: Θ̂ = Mk;

5. THEORETICAL ANALYSIS

In this section, we theoretically analyze the COP method, where we derive an efficiently 

analytical solution for problem (7) and prove the convergence of the COP algorithm in 

Algorithm 1.

We first present some interesting properties, which set the stage for the introduce of our 

main results, of the COP method.

Proposition 1—Assume Mk is the matrix obtained in the kth iteration of Algorithm 1. If 
there exists a vector a ∈ ℝp that

(9)

then by defining

(10)

we have ℒ(Mk + uuT) < ℒ(Mk). Otherwise, adding any rank-one component to Mk will not 
decrease the NLL, implying that Algorithm 1 will stop at the kth iteration.

Proposition 1 provides the necessary condition, i.e., Eq. (9), for the convergence of the COP 

method. Note that Proposition 1 does not require that u should be a local optimum of 

problem (7) or (8).

Proposition 2—Suppose a vector a satisfies Eq. (9) and define . Then, using 
the definitions in Eq. (10), the decrease of the NLL in the two successive iterations, i.e. 
ℒ(Mk) − ℒ(Mk + uuT), is a monotone increasing function w.r.t. c:
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(11)

where c > 1.

Proposition 2 implies that in order to achieve fast decrease in the NLL by adding a rank-one 

component to Mk, we need to choose the maximum value of c. Until now, both the 

Propositions 1 and 2 hold for Algorithm 1 when solving either problem (7) or (8), since 

those results are obtained by analyzing the difference of the NLL values in two successive 

iterations. When we solve problem (7) based on the COP algorithm, we can obtain an 

analytical solution for it with the detailed result shown in the following proposition.

Proposition 3—If there exists a vector a satisfying Eq. (9), then problem (7) is equivalent 
to the following Rayleigh quotient problem:

(12)

which admits an analytical solution by solving the generalized eigen-decomposition problem 

 with λ* and a* as the largest eigenvalue and the corresponding eigenvector. 

Moreover, , i.e., the maximum value that c can reach in the (k + 1)th iteration of 
Algorithm 1, can be computed as

(13)

In Proposition 3, the largest eigenvalue λ* and eigenvector a* of the generalized eigen-

decomposition problem can be computed efficiently by the power method [19]. Moreover, 

Proposition 3 implies that solving the Rayleigh quotient problem also provides a way to 

check whether Eq. (9) can be satisfied in the (k + 1)th iteration by testing whether 

 holds or not. When solving problem (8) instead, we directly check Eq. (9) 

based on the component obtained by the GPG method to determine whether the COP 

algorithm needs to be terminated.

In the following theorems, we present the analytical solution for problem (7) and prove the 

convergence of the COP algorithm in Algorithm 1.

Theorem 3 (Analytical Solution)—Let Mk be the matrix defined in step 5 of Algorithm 

1 in the kth iteration and denote by λ* and a* the largest eigenvalue and the corresponding 

eigenvector of the generalized eigen-decomposition problem . Then u*, 
which is defined as
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(14)

is a local optimum of problem (7) in the (k + 1)th iteration.

Theorem 4 (Convergence)—In the COP algorithm shown in Algorithm 1, which solves 
either problem (7) or (8), the NLL decreases iteratively until convergence.

Theorems 3 and 4 provide important guarantees for the proposed COP method.

6. SPEEDUP IN HIGH DIMENSIONS

According to Proposition 3 and Theorem 3, a key step in the COP method is solving the 

Rayleigh quotient problem (12) if we want to adopt the analytical solution for problem (7) or 

use it to initialize the estimator in problem (8). Both Eq. (9) and problem (12) require that 

(a*)T Sa* > 0 for the optimal a* or equivalently a* lies in the range space of S. We can 

rewrite S as S = XT X if we assume that the data samples are normalized to have zero 

sample mean and based on this reformulation, we can see that the range space of S is 

spanned by X, implying that a* lies in the row space of X. Hence we can represent a as a = 

XT b where b ∈ ℝn contains the spanning coefficients. Accordingly problem (12) can be 

reformulated as

(15)

Problem (15) is still a Rayleigh quotient problem which can be solved by the power method. 

One advantage to solve problem (15) instead of problem (12) is that the size of matrices in 

the generalized eigen-decomposition problem (15) is n × n which is much smaller than that 

of problem (12) under the high-dimensional setting where n ≪ p, leading to a much more 

efficient implementation and a significant speedup. Moreover, when solving problem (15), 

we only need to store the data matrix X instead of the sample covariance matrix S as in 

problem (12), which can largely reduce the storage requirement. For the case where n > p, 

we still solve problem (12) since in this situation the null space of S is empty with a large 

probability.

7. COMPLEXITY ANALYSIS

In this section, we discuss the complexity of the proposed COP method in Algorithm 1 and 

compare with existing approaches.

In each iteration of Algorithm 1, the matrix inverse  is needed in step 6. Since 

 where  is a vector, we can efficiently compute  as

Han et al. Page 10

KDD. Author manuscript; available in PMC 2017 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which only needs O(p2) operations because  has already been stored during the previous 

iteration. Step 3 in Algorithm 1 when we consider problem (7) needs to solve problem (12) 

or (15), whose complexity is O(min(p2, n2)). When solving problem (8), the complexity of 

the GPG method is no more than O(p2), and when we adopt the optimal solution of problem 

(7) as the initialization, the GPG method will converge fast in considerably few iterations. 

Moreover, updating the diagonal matrix Pk in each iteration costs O(p2). In a word, the 

overall time complexity of the COP algorithm is O(rp2) where r is the pre-defined rank 

satisfying r ≪ p. Moreover, the storage requirement for the the two matrices (i.e., L and P) 

in the COP algorithm is a linear function w.r.t. p, since we only need to keep the diagonal 

elements in Pk and the component vectors { }.

All the sparse inverse covariance estimation methods including [4, 6, 11, 24, 25, 16] use the 

first-order or second-order proximal methods to solve problem (2) where computing the 

inverse of a p × p matrix  is needed and costs O(p3). So the computational complexity of 

the COP method is lower than those of the aforementioned approaches. For the LGGM 

methods [5, 22, 15], which assume the inverse covariance has a sparse minus low-rank 

structure, they need to compute the inverse of p × p matrices with O(p3) cost and also need 

additional O(p3) operations for the eigen-decomposition to update the low-rank part, making 

it have higher complexity than the proposed COP method. Moreover, as discussed before, 

the storage complexity of the COP algorithm is O(p) but those of the above approaches 

depend on the number of non-zero entries in Θ, which could be O(p2) in the worst case.

8. EXPERIMENTS

In this section, we conduct experiments on both synthetic and real-world datasets to evaluate 

the proposed COP method and the ℓ1-regularized COP method (COP-ℓ1).

8.1 Experimental Settings

We compare with a number of state-of-the-art methods for the inverse covariance estimation 

problem, including the QUIC [16], Big-QUIC [17], BCDIC [26] and QUIC&Dirty [15] 

methods.1 Among those methods, the QUIC, Big-QUIC and BCDIC methods are the state-

of-the-art sparse inverse covariance estimation methods, while the QUIC&Dirty method is 

currently the most efficient algorithm for the LGGM problem. The implementations for the 

QUIC, Big-QUIC, BCDIC and QUIC&Dirty methods adopt the recommended settings as 

provided in their works and the Big-QUIC and BCDIC methods are parallelized with 

multiple cores. All the experiments are performed on a machine with dual 6-core Intel Xeon 

X5650 2.66GHz processor and 32GB RAM.

1The codes for the QUIC, Big-QUIC and QUIC&Dirty methods can be downloaded from http://www.stat.ucdavis.edu/~chohsieh/ and 
that for the BCDIC method can be obtained at http://www.javierturek.com/software/.
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In the experiments, we split the data into a training set containing 90% of the samples and a 

test set with the rest samples. We use Strain to denote the sample covariance matrix on the 

training set and Stest as the sample covariance matrix on the test set. All the data are 

normalized such that the diagonal elements in both Strain and Stest are all ones. By following 

[16, 17, 26], we choose the regularization parameter ρ in problem (2) for the QUIC, Big-

QUIC and BCDIC methods such that the estimated Θ̂ contains approximately 10p non-zero 

elements. For the QUIC&Dirty method, we set its regularization parameter ρ1 for the sparse 

part to be ρ in problem (2) and choose another regularization parameter ρ2 for the low-rank 

part from {0.1, 1, 10}. For the COP-ℓ1 method, we choose the best γ from the candidate set 

{10−5, 10−4, ···, 10−1}.

8.2 Experiments on Synthetic Data

In this section, we conduct experiments on synthetic data to test the performance of the 

proposed COP and COP-ℓ1 methods.

8.2.1 Results on Small-Scale Data—We first generate a dataset of small scale to test 

the correctness of the theoretical results presented in Section 5. In order to do this, we 

generate a matrix A ∈ ℝr* × p, where r* = 20 and p = 100. Each entry in A is sampled from 

the standard normal distribution (0, 1). Then we generate the sample covariance matrix S* 

as (S*)−1 = AT A + I. We estimate Θ̂ by solving problem (1) and compare the estimated Θ̂ 

and (S*)−1 to see whether they are exactly the same. In order to see the learned L, we 

suppose that the diagonal part P is known and set to be the ground truth, i.e., the identity 

matrix I.

Fig. 1 shows detailed results of the COP method. Fig. 1(a) depicts the change of the NLL 

values when increasing the the number of components or equivalently the iterations. Since 

we are aware of the ground truth of the inverse covariance, we can calculate the ground truth 

of the NLL value which is illustrated by the red dashed line. We see that the NLL of the 

COP algorithm decreases in almost a linear rate, and when the rank or equivalently the 

number of components reaches 20, which is the ground truth for the rank, the COP method 

exactly recovers the ground truth of the inverse covariance and the corresponding NLL value 

is equal to the ground truth. Hence, the COP algorithm stops at the 21st iteration by 

perfectly recovering the ground truth of the inverse covariance. Fig. 1(b) plots change of the 

λ* against the rank. As expected, the value of λ* decreases when increasing the rank and 

when the number of iterations reaches 21, λ* becomes 1, which implies that Eq. (9) is no 

longer satisfied, leading to the termination of the COP algorithm. These observed results 

well match the theoretical results in Section 5.

8.2.2 Results on Large-Scale Data—Similar to the previous section, we generate a 

matrix A ∈ ℝr* × p, where r* = 100 and each entry in A is sampled from the standard normal 

distribution (0, 1). The true covariance S* is generated in the same way as (S)−1 = AT A + 

I. In this case, we generate n = 1000 samples, which are stored in the data matrix X ∈ ℝn×p, 

from (0, S*). We vary p from 5, 000 to 25, 000 at an interval of 5, 000 to evaluate the 

performance of all the methods. Since the sparse inverse covariance estimation methods 

including the QUIC, Big-QUIC and BCDIC methods solve problem (2) and the 
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QUIC&Dirty method solve the LGGM problem, the comparison among them is not 

straightforward. In order to make fair evaluations, we compare the running time of different 

methods when they achieve the same or comparable NLL on the test dataset and the method 

with the lowest running time is the most efficient one. Moreover, we compare the COP and 

COP-ℓ1 methods with the sparse inverse covariance estimation methods and the QUIC&Dirty 

method separately.

Table 1 shows the results by comparing the proposed COP and COP-ℓ1 methods with the 

sparse inverse covariance estimation methods. In Table 1, there are seven groups of columns. 

The first group of columns denotes different settings for p. The second group shows the 

value of the regularization parameter ρ in problem (2), the number of non-zero (NNZ) 

entries in the estimated Θ̂ which is around 10p by following experimental settings in the 

original works, and the NLL on the test data denoted by NLLte for the QUIC, Big-QUIC and 

BCDIC methods. Since all the three methods solve the same problem (i.e., problem (2)), 

their NNZ’s and NLLte’s are nearly the same and thus we only report the results obtained 

from the BCDIC method. The third group reports the running time for the QUIC, Big-QUIC 

and BCDIC methods. The forth group of columns shows the learned rank r and the NLLte of 

the COP method, and the fifth group reports its running time. Similarly, the last two columns 

show the results for the COP-ℓ1 method. From the results, the COP and COP-ℓ1 methods 

usually needs 10 to 20 components to achieve comparable NLLte with those of the QUIC, 

Big-QUIC and BCDIC methods on all the synthetic datasets and the COP and COP-ℓ1 

methods are always faster than other methods under all the settings.

The comparison results among the QUIC&Dirty, COP and COP-ℓ1 methods are recorded in 

Table 2. Table 2 has a similar format to Table 1 and it shows all the detailed settings and the 

running time of the three methods. When p is lower than 20, 000, the COP and COP-ℓ1 

methods are much more efficient than the QUIC&Dirty method when they achieve similar 

NLLte. When p becomes larger, the QUIC&Dirty method cannot provide the estimation in 

reasonable time (i.e., 5 hours) and hence it can only handle medium-scale datasets. For the 

COP and COP-ℓ1 methods, we try larger ranks, i.e., 50, and they still obtain lower NLLte in 

reasonable time.

By comparing Table 1 and Table 2, we find that the QUIC&Dirty method has slightly better 

testing NLL values than the sparse inverse covariance estimation methods when their 

regularization parameters, which control the sparsity, are set to the same value. This 

observation reveals that considering both the low-rank and sparse structure can fit the data 

better than purely sparse inverse covariance in these synthetic datasets. However, training the 

QUIC&Dirty method is much more computational expensive and hence it can hardly 

process large-scale data as shown in Table 2.

In Tables 1 and 2, the COP-ℓ1 method does not perform better than the non-regularized one, 

and it generally needs more ranks and running time to obtain comparable NLLte with the 

COP method. This is probably because under the synthetic setting, the ground truth does not 

contain sparse components.
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In addition, we provide more details for the COP method in Fig. 2 which plots iterative 

results of the COP method on synthetic data with p = 5, 000. We set the total number of 

ranks to be 101 in this case. Fig. 2(a) plots the change of the NLL on the training data w.r.t. 

the number of iterations. Again, we find that the NLL on the training set decreases in a 

linear rate against the number of iterations. Fig. 2(b) shows the value of λ* in each iteration 

and we see that λ* becomes smaller iteratively while it is always larger than 1 even at the 

101st iteration, implying that the algorithm can further proceed. Note that in this situation, 

the ground truth of the rank is 100 but the COP algorithm does not terminate at the 101st 

iteration. This is reasonable since under this setting where n ≪ p, the sampling bias exists in 

the training data and hence the estimated components are not exactly the true components.

8.3 Experiments on Real-World Datasets

In this section, we conduct experiments on large-scale real-world datasets. We use four 

datasets from the Gridded Climate Data2 and one stock dataset collected from the Yahoo 

finance3, which are also studied in [14]. The four climate datasets are: (1) the Northern 

Hemisphere EASE-Grid Weekly Snow Cover and Sea Ice Extent (Snow), which records the 

weekly snow cover in northern hemisphere on 1.0 latitude × 1.0 longitude grids from 

January, 1971 to December, 1995. Each grid is treated as an attribute. By removing invalid 

observations, the number of attributes p is 9, 148, and the number of samples n is 297; (2) 

the NCEP/NCAR Re-analysis air data (Air), which contains daily air temperature on the 

earth with 2.5 latitude × 2.5 longitude global grids. The number of attributes p is 10, 512 and 

by following [14] we use n = 1460 records in year 2001; (3) the CPC Unified Gauge-Based 

Analysis of Daily Precipitation over CONUS (Precip), which focuses on the daily 

precipitation in USA. The valid data contains p = 13, 610 attributes and we use n = 3652 

observations from year 1997 to year 2006; (4) the NOAA’s Outgoing Longwave Radiation 

(OLR) Daily Climate Data Record, which provides the OLR records on the earth. In this 

dataset, p equals 21, 720 and n is equal to 2903. For the Stock dataset, we collect p = 21, 602 

stocks with daily closing price recorded in latest 300 days before Dec. 31, 2015.

Table 3 reports experimental results for the QUIC, Big-QUIC, BCDIC and QUIC&Dirty 

methods on all the datasets, while Table 4 gives the results of the COP and COP-ℓ1 methods. 

In Table 3, the QUIC, Big-QUIC and BCDIC methods, whose Θ’s have about 10p non-zero 

entries, have much larger NLL’s on the test data especially for the Snow, Air, and OLR 

datasets when comparing with the COP and COP-ℓ1 methods in Table 4. The QUIC&Dirty 

method has better NLLte than the sparse inverse covariance estimation methods on the Snow 

and Air datasets, but it fails to learn the model on the larger Precip, OLR and Stock datasets 

in reasonable time. Under all the settings, we set the rank of the COP method to be 5, which 

is good enough to obtain lower NLL’s on all the test data, and we choose the model 

parameters for the COP-ℓ1 method to obtain similar testing NLL’s to the COP method. 

According to Table 4, in most settings, the COP method not only has better NLLte than the 

COP-ℓ1 method but also performs faster. The exceptions are that on the OLR dataset, the 

2http://www.esrl.noaa.gov/psd/data/gridded/
3http://finance.yahoo.com/
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COP-ℓ1 method has better predictive performance and that it is slightly faster on the Stock 

dataset.

Moreover, we provide some additional results for the QUIC, Big-QUIC and BCDIC 

methods on the Snow, Air, OLR and Stock datasets in Table 5, where their regularization 

parameters ρ’s are selected such that the resulting estimators can achieve comparable NLL’s 

on the test data with those of the COP and COP-ℓ1 methods.4 Table 5 does not include the 

Precip data, because the result reported in Table 3 is already comparable to those of the COP 

and COP-ℓ1 methods. Under this setting, the QUIC&Dirty method still can not return any 

result in 5 hours and so it is not included. From the results, we can see that in order to 

achieve lower NLL’s on the test set of the four datasets, the numbers of the non-zero entries 

in their estimators become larger and as a consequence, the running time of the three 

methods significantly increases, which again demonstrates the efficiency of the proposed 

COP and COP-ℓ1 methods.

9. CONCLUSION

In this paper, we proposed an efficient component pursuit (COP) method and its ℓ1-

regularized variant for the large-scale inverse co-variance estimation problem by assuming 

that the inverse covariance is a combination of a low-rank matrix and a diagonal matrix. 

Both theoretical analysis and empirical evaluations demonstrate the effectiveness and 

efficiency of the proposed methods when compared with the state-of-the-art methods.

As a future direction, we are interested in applying the COP methods to more large-scale 

applications, e.g., the gene expression data, where there exists inherent low-rank structure 

among the features. Another future direction is to extend the COP method to deal with more 

complex structure in the inverse covariance estimation problem, e.g., the low-rank plus block 

diagonal structure, since in many applications such as financial analysis, the group 

information among features is available as a priori information.
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APPENDIX

A. PROOF OF THEOREM 1

Proof

For problem (7), the derivative and the Hessian of f(u) can be calculated as

(16)

(17)

It is easy to see that , since  is positive-definite and  for any 

vector u. If , it is easy to see that the hessian  and f (u) is convex w.r.t. u. 

However, under the high-dimensional case where S is positive semidefinite but not positive 

definite due to n ≪ p,  is not positive semi-definite and it contains at least 

p − n negative eigenvalues. Moreover, the first term in the right-hand side of Eq. (17) is only 

a rank-one matrix. So  is not positive semidefinite and hence f(u) is a non-convex 

function w.r.t. u.

B. PROOF OF THEOREM 2

Proof

The proof of Theorem 2 follows directly from the Proposition 4 in [1].

C. PROOF OF PROPOSITION 1

Proof

By considering the difference between ℒ(Mk) and ℒ(Mk+ uuT), we have

Han et al. Page 17

KDD. Author manuscript; available in PMC 2017 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Define . We investigate whether there exists some 

pair (α, a) such that

When a is fixed, we define  and c2 = aTSa, where obviously c1 > 0 and c2 ≥ 0 

since  is positive definite and S is positive semidefinite. Then l(α, a) can be formulated 

as a function w.r.t. α as

(18)

The convexity and the extreme value of l(α) depends on the two scalars c1 and c2. Fig. 3(a) 

plots some examples of the function l(α) when adopting different values for c1 and c2. By 

setting  we obtain the maximizer of l(α) as

(19)

From Eq. (19), if c1 > c2, plugging Eq. (19) into l(α, a) gives

By defining , we have

(20)

where . Then we get . It is easy to see that the function q(c) is 

monotonically increasing when c > 1, because . Moreover, since q(1) = 0, we have q(c) 
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> 0 for any c > 1. Fig. 3(b) plots the curve of q(c) for c > 1. Therefore, we can get that ℒ(Mk 

+ uuT) < ℒ(Mk).

When c1 ≤ c2, based on Eq. (19), we have u = αa = 0 and hence ℒ(Mk) − ℒ (Mk + uuT ) = 

0, which implies that adding an additional rank-one component is not helpful to decrease the 

NLL. If this happens, the greedy algorithm stops.

D. PROOF OF PROPOSITION 2

Proof

When condition (9) is satisfied, combing Eqs. (10), (19) and (20), we have

Based on the proof of Proposition 1, q(c) is a monotonically increasing function w.r.t. c for c 
> 1.

E. PROOF OF PROPOSITION 3

Proof

According to Eq. (20), the decrease in the NLL becomes faster if c is larger, since q(c) is 

monotonically increasing when c > 1. Therefore, based on the analysis on the Rayleigh 

quotient problem (12), we reach the conclusion.

F. PROOF OF THEOREM 3

Proof

Based on propositions 1–3, we only need to check whether u* = α*a* is a local optimum of 

problem (7). Since ∇f(u*) = 0 and , u* is a local optimum and we reach the 

conclusion.

G. PROOF OF THEOREM 4

Proof

Proposition 1 implies that adding a rank-one component will lead to a lower NLL in the 

current iteration, if the component vector a satisfies Eq. (9). Moreover, after adding a rank-

one component, updating the diagonal part P solves a convex function w.r.t. P, and therefore 

the NLL will not increase after the updating. So the NLL is guaranteed to decrease during 

iterations in Algorithm 1 until there is no vector satisfying Eq. (9) and then the algorithm 

converges.
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Figure 1. 
The detailed results of the COP method on a small-scale synthetic data.
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Figure 2. 
Detailed results on synthetic data when p = 5, 000.
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Figure 3. 
Illustrations of two functions.
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	Suppose there are n instances {x1,..., xn} sampled from a Gaussian distribution 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="13.977px" height="9.756px" viewBox="4.688 -1.531 13.977 9.756" enable-background="new 4.688 -1.531 13.977 9.756"
xml:space="preserve">
<path d="M18.664-1.298c-1.241,0.774-2.492,2.164-3.753,4.17c-0.604,0.963-1.196,1.961-1.776,2.995
c-0.548,0.986-0.951,1.772-1.211,2.357l-0.262-0.128c0.165-0.49,0.247-0.965,0.247-1.423c0-0.302,0.005-0.756,0.015-1.362
c0.009-0.607,0.014-1.061,0.014-1.363c0-0.67,0.106-1.39,0.318-2.159c0.081-0.27,0.183-0.675,0.305-1.218l-1.366,2.364
c-2.021,3.507-3.76,5.261-5.218,5.261c-0.359,0-0.656-0.083-0.893-0.248C4.821,7.76,4.688,7.495,4.688,7.156
c0-0.235,0.064-0.438,0.191-0.608c0.146-0.185,0.333-0.276,0.56-0.276c0.312,0,0.467,0.144,0.467,0.432
c0,0.303-0.137,0.453-0.41,0.453c-0.123,0-0.248-0.035-0.376-0.105C5.054,7.054,5.021,7.114,5.021,7.227
c0,0.472,0.323,0.708,0.97,0.708c1.289,0,2.88-1.619,4.772-4.857l2.697-4.609l0.198,0.127c-0.302,0.552-0.496,1.263-0.58,2.131
c-0.048,0.746-0.095,1.492-0.143,2.237c-0.137,1.431-0.354,2.73-0.65,3.901c0.68-1.279,1.283-2.36,1.813-3.243
c1.59-2.671,3.07-4.375,4.438-5.112L18.664-1.298z"/>
</svg>
(μ, Σ), where each instance xi ∈ ℝp (1 ≤ i ≤ n) lies in a p-dimensional space, μ ∈ ℝp is the mean, and Σ ∈ ℝp×p is the covariance matrix. An important and challenging problem is to recover Σ or its inverse Σ−1 in a high-dimensional setting where n ≪ p. Estimating the inverse covariance matrix has attracted a lot of interests in several fields including machine learning, signal processing, computational biology and so on, since it can reveal the dependence among the p attributes [28, 11, 3]. The inverse covariance matrix is estimated by maximizing the log-likelihood asor equivalently minimizing the negative log-likelihood (NLL):(1)where Θ is the inverse covariance estimator, Θ ≻ 0 indicates that Θ is positive definite, |·| denotes the determinant of a square matrix, 〈 ·, · 〉 denotes the dot product between two matrices or vectors,  is the mean of the samples, and  is the sample covariance matrix. If directly solving problem (1), we can obtain an analytical solution for Θ as Θ = S−1. Under the high-dimensional setting where n ≪ p, S is rank-deficient and hence this analytical solution is ill-posed. In order to make the problem well-defined, some regularizers are used to constrain Θ and a widely used one is the ℓ1 regularization [28, 11, 3] which assumes that Θ is sparse with the objective function formulated as(2)where ρ is a regularization parameter that controls the trade-off between the sparseness of Θ and the fitness to the data.A large body of works have been devoted to solving problem (2) recently [4, 6, 11, 23, 24, 25, 16, 17, 26], among which the state-of-the-art methods including the QUIC [16], Big-QUIC [17] and BCDIC [26] methods can handle Θ with billions of entries under the assumption that Θ is sparse. Those methods commonly use Newton proximal approaches, where a quadratic approximation is made and one key step is to calculate the inverse of Θ, to minimize the NLL. Obviously, the computational bottleneck in those methods is that they need to compute the matrix inverse Θ−1 in each iteration, which is computationally heavy when p is very large. Although the Big-QUIC and BCDIC methods alleviate this problem by splitting the huge matrix Θ into blocks and use some cheaper operations, e.g., solving some linear systems, to update the corresponding blocks in Θ−1, the matrix inverse operation, whose complexity is O(p3), is still unavoidable. Actually, almost all the existing methods to solve problem (2) have this problem. Moreover, in the QUIC, Big-QUIC and BCDIC methods, an operation used to largely improve the efficiency is to restrict the number of updated positions in Θ and this operation works well when the optimal Θ is very sparse, corresponding to a situation that the regularization parameter ρ in problem (2) has a large value. To see this, empirical studies in those works [16, 17, 26] choose ρ such that the optimal Θ has only 10p non-zero entries out of a total number of p2 entries and so only a very small fraction (i.e., 10/p) in the optimal Θ can have non-zero values. Therefore, although those works claim that their methods can handle a covariance matrix with billions of entries, only a small number of non-zero values are actually computed. Empirically we find that the QUIC, Big-QUIC, and BCDIC methods are not very efficient when ρ has a smaller value. Moreover, an extremely sparse Θ learned in those works may fail to recover the true relations between attributes.In this paper, we investigate the inverse covariance estimation problem from another perspective by modeling the low-rank structure contained in Θ. One motivation for learning the low-rank structure in Θ is that the low-rank structure is common in many applications. For example, in climate research, spatially close locations usually exhibit strong dependencies in the climate attributes and such geographical consistency usually leads to low-rank structure in the data [14, 2, 27]. Similarly, in traffic analysis, strong local correlations have been detected on large-scale traffic networks and hence low-rank structure exists [13]. Moreover, in computational finance, a large body of works have focused on estimating nearly low-rank covariance or precision matrices for economy and stock analysis [9, 10, 7, 8]. Moreover, in addition to the generality of the low-rank structure in various applications, this assumption can bring the computational benefit since the matrix inverse Θ−1 required in each iteration can be computed in lower complexity.Specifically, we propose a COmponent Pursuit (COP) method which assumes that the inverse covariance is a combination of a diagonal matrix and a low-rank matrix which can be sparse. In order to obtain the low-rank part in Θ, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood, where each rank-one component can be sparse. The subproblem associated with each rank-one component is shown to be non-convex under the high-dimensional setting but due to the special structure of the subproblem, we can prove that all its local optimums have the globally optimal objective value, making the optimization easier. We further show that the greedy COP algorithm inherently enjoys several appealing properties including the existence of an efficient solution for each subproblem and the theoretical guarantee on the convergence of this greedy approach. Compared with most existing methods whose complexity is O(p3), the proposed COP method only takes O(p2) operations. Experiments on large-scale synthetic and real-world datasets show that the proposed COP method is faster than the state-of-the-art methods for large-scale inverse covariance estimation when achieving comparable log-likelihood on test data.Notations—We use lower-case letters for scalars, bold-face and lower-case letters for vectors, and bold-face and upper case letters for matrices. tr(·) denotes the trace of a square matrix. rank(·) denotes the rank of a matrix. diag(·) converts a vector to a diagonal matrix or extracts the diagonal entries in a square matrix to form a vector. ||·||2 denotes the ℓ2 norm of a vector. ||·||* denotes the ℓ2 norm of a matrix, which equals the maximum eigenvalue of a square matrix.
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	2. RELATED WORK
	3. MOTIVATION AND PROBLEM SETUP
	In this section, we formally present the motivation and define the problem. In order to make the inverse covariance Θ positive definite to satisfy the constraint of problem (1), we assume that Θ is combination of two matrices, i.e., Θ = L + P, where L is a low-rank positive semidefinite matrix and P is a positive definite diagonal matrix. Such assumption on the structure of L and P is motivated by the solution of problem (1) as revealed in the following corollary.Corollary 1—The optimal solution Θ* of problem (1) satisfies the following condition:where I is an identity matrix with appropriate size and A ⪰ B implies that A − B is positive semidefinite for two square matrices A and B.Corollary 1 can be directly proved by theorems in [3, 21] and thus its proof is omitted here. From Corollary 1, Θ* can be rewritten as  where  is diagonal and  can be assumed to capture the low-rank structure. Inspired by this decomposition, we just assume that L is a low-rank positive definite matrix and P = diag(η) is a diagonal matrix where η ∈ ℝp with each entry, i.e., ηi, positive. As we will see later, such assumption on the structure of Θ can bring computational benefit since the complexity to compute Θ−1 reduces from O(p3) to O(p2).Then we are ready to present the problem formulation. Given the sample covariance matrix S ∈ ℝp×p, we consider the inverse covariance estimation problem by assuming a low-rank plus diagonal structure as(3)where r ≪ p is a pre-defined rank. In the next section, we propose the efficient COP method to solve problem (3).
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	Algorithm 1
	5. THEORETICAL ANALYSIS
	In this section, we theoretically analyze the COP method, where we derive an efficiently analytical solution for problem (7) and prove the convergence of the COP algorithm in Algorithm 1.We first present some interesting properties, which set the stage for the introduce of our main results, of the COP method.Proposition 1—Assume Mk is the matrix obtained in the kth iteration of Algorithm 1. If there exists a vector a ∈ ℝp that(9)then by defining(10)we have ℒ(Mk + uuT) < ℒ(Mk). Otherwise, adding any rank-one component to Mk will not decrease the NLL, implying that Algorithm 1 will stop at the kth iteration.Proposition 1 provides the necessary condition, i.e., Eq. (9), for the convergence of the COP method. Note that Proposition 1 does not require that u should be a local optimum of problem (7) or (8).Proposition 2—Suppose a vector a satisfies Eq. (9) and define . Then, using the definitions in Eq. (10), the decrease of the NLL in the two successive iterations, i.e. ℒ(Mk) − ℒ(Mk + uuT), is a monotone increasing function w.r.t. c:(11)where c > 1.Proposition 2 implies that in order to achieve fast decrease in the NLL by adding a rank-one component to Mk, we need to choose the maximum value of c. Until now, both the Propositions 1 and 2 hold for Algorithm 1 when solving either problem (7) or (8), since those results are obtained by analyzing the difference of the NLL values in two successive iterations. When we solve problem (7) based on the COP algorithm, we can obtain an analytical solution for it with the detailed result shown in the following proposition.Proposition 3—If there exists a vector a satisfying Eq. (9), then problem (7) is equivalent to the following Rayleigh quotient problem:(12)which admits an analytical solution by solving the generalized eigen-decomposition problem  with λ* and a* as the largest eigenvalue and the corresponding eigenvector. Moreover, , i.e., the maximum value that c can reach in the (k + 1)th iteration of Algorithm 1, can be computed as(13)In Proposition 3, the largest eigenvalue λ* and eigenvector a* of the generalized eigen-decomposition problem can be computed efficiently by the power method [19]. Moreover, Proposition 3 implies that solving the Rayleigh quotient problem also provides a way to check whether Eq. (9) can be satisfied in the (k + 1)th iteration by testing whether  holds or not. When solving problem (8) instead, we directly check Eq. (9) based on the component obtained by the GPG method to determine whether the COP algorithm needs to be terminated.In the following theorems, we present the analytical solution for problem (7) and prove the convergence of the COP algorithm in Algorithm 1.Theorem 3 (Analytical Solution)—Let Mk be the matrix defined in step 5 of Algorithm 1 in the kth iteration and denote by λ* and a* the largest eigenvalue and the corresponding eigenvector of the generalized eigen-decomposition problem . Then u*, which is defined as(14)is a local optimum of problem (7) in the (k + 1)th iteration.Theorem 4 (Convergence)—In the COP algorithm shown in Algorithm 1, which solves either problem (7) or (8), the NLL decreases iteratively until convergence.Theorems 3 and 4 provide important guarantees for the proposed COP method.
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