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Truthful Outcomes from Non-Truthful Position Auctions∗

Paul Dütting† Felix Fischer‡ David C. Parkes§

Abstract

We exhibit a property of the VCG mechanism that can help explain the surprising rarity with
which it is used even in settings with unit demand: a relative lack of robustness to inaccuracies in
the choice of its parameters. For a standard position auction environment in which the auctioneer
may not know the precise relative values of the positions, we show that under both complete
and incomplete information a non-truthful mechanism supports the truthful outcome of the
VCG mechanism for a wider range of these values than the VCG mechanism itself. The result
for complete information concerns the generalized second-price mechanism and lends additional
theoretical support to the use of this mechanism in practice. Particularly interesting from a
technical perspective is the case of incomplete information, where a surprising combinatorial
equivalence helps us to avoid confrontation with an unwieldy differential equation.

1 Introduction

The Vickrey-Clarke-Groves (VCG) mechanism stands as one of the pillars of mechanism design
theory, but in the real world is used with surprising rarity. In past work, this mismatch between
theory and practice has been attributed to a number of properties that affect the mechanism in
certain settings, like susceptibility to collusion or prohibitive computational costs [2, 30]. Here we
identify another property of the mechanism that may be problematic in practice, a relative lack of
robustness to inaccuracies in the choice of its parameters. Unlike most of the known deficiencies it
applies already in settings with unit demand.

1.1 The Model

We start from the standard position auction model of Edelman et al. [16] and Varian [33], where n
bidders compete for the assignment of k positions. Bidders have unit demand and the value of
bidder i for position j is given by βj ·vi, where vi is a bidder-specific value and a non-increasing vector
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Google, Facebook, Universität Zürich, and the University of Glasgow is gratefully acknowledged. The second author is
supported by the Einstein Foundation Berlin. Part of the work was done while the first author was at the Department
of Mathematics of the London School of Economics and Political Science and the second author at the Statistical
Laboratory of the University of Cambridge.
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β = (β1, . . . , βk) describes the relative values of the positions. The most prominent application of
this model is to sponsored search, which contributed over 90% to Google’s revenue of $66 billion in
2014. What is rather curious is that all successful sponsored search services have used non-truthful
auction mechanisms. Overture, the first company to provide such a service, used a generalized first-
price (GFP) mechanism. Google and Microsoft use a generalized second-price (GSP) mechanism.
Facebook does use the VCG mechanism to place ads, but not in the context of sponsored search
and not in a position auction. It is hard to say in retrospect what led to the choice of non-truthful
mechanisms over a truthful one, and changing the mechanism at this point would clearly come with
huge financial risks. We will see, however, that under certain assumptions choosing the non-truthful
mechanisms may have been wise even if it was not entirely deliberate.

A mechanism for the above setting accepts a bid bi for each bidder i and from these bids
determines a one-to-one assignment of bidders to positions and a monetary payment for each
bidder. Bidder behavior can then be analyzed using game-theoretic reasoning, where it is commonly
assumed that each bidder tries to maximize the value of its assigned position minus its payment.
In the VCG mechanism in particular it is an equilibrium for each bidder to bid its true valuation,
and we refer to the resulting assignment and payments in a given situation as the truthful VCG
outcome.

In addition to the standard model of auction theory, where bidders have only probabilistic
information about one another’s valuations, it has become common to analyze position auctions
also in a complete-information model where valuations are common knowledge among the bidders.
This is motivated by practical auctions that provide bidders with aggregate statistics of others’
bids and thus enable best-response bidding, by empirical support that has been given for a family
of Nash equilibria [33, 16], and by cyclic bidding behavior observed in the absence of pure Nash
equilibria [16].1

The bid bi can be interpreted alternatively as a vector of bids βj · bi, one for each position j.
Here we vary the standard model by assuming that mechanisms instead work with bids αj · bi,
where α = (α1, . . . , αk) is another non-increasing vector and generally α 6= β. We then ask for
which values of α and β different mechanisms obtain the truthful VCG outcome in equilibrium.
Intuitively this question concerns the robustness of mechanisms to uncertainty regarding the true
value of β. It draws its motivation from current practice to infer β from data using machine
learning techniques, which will hopefully produce a good estimate α ≈ β but will usually mean
that α 6= β.2 The truthful VCG outcome is a natural point of reference for at least two reasons.
Under complete information it coincides with the bidder-optimal envy-free outcome, which happens
to be unique [24]. Under incomplete information it is the unique outcome compatible with the
maximization of social welfare [29].3

1In sponsored search an auction is carried out for a specific search term. Intuitively a complete-information model
seems more appropriate for common search terms, an incomplete-information model for those that are rare.

2Search engines do observe when an ad is clicked, and if the relative values of the positions were proportional
to the relative number of clicks all auctions we consider could be implemented without knowledge of β [34]. This
is, however, not currently being done [e.g., 6, 19]. Indeed there are good reasons why the value of a position may
depend on other factors besides the probability of a click. Milgrom [27] for example considers a situation with two
types of users of a search engine, one of them genuinely interested in the products being advertised and one merely
curious. The two types come with different rates at which clicks on an advertisement result in a purchase, but are
indistinguishable from the point of view of the search engine.

3Indeed, work on position auctions has traditionally focused on the maximization of welfare, which in practice
can be seen as a maximization of customer satisfaction to ensure long-term success. On a more technical level, the
focus on welfare allows for a unified treatment of complete and incomplete information environments. Extending our
results to the maximization of revenue nevertheless is an interesting direction for future work.
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1.2 Results

We show that under both complete and incomplete information a non-truthful mechanism obtains
the truthful VCG outcome in an equilibrium for a strictly larger set of values of α and β than the
VCG mechanism itself. Failure of the VCG mechanism to support the truthful VCG outcome in
fact occurs already when α is very close to β.

The result for complete information concerns the GSP mechanism and is developed in Section 3
in two steps. Through direct arguments that combine the equilibrium conditions and the structure
of allocation and payments in the truthful VCG outcome we obtain precise characterizations, for
both the VCG and the GSP mechanism, of those values of α and β that enable this outcome in
equilibrium. We then exploit the recursive nature of VCG payments to show that any violation of
the characterization for the GSP mechanism necessarily leads to a violation of the characterization
for the VCG mechanism.

In Section 4 the same type of result is shown for incomplete information, but here the VCG
mechanism is compared to the GFP mechanism and a more elaborate argument is required to
establish superiority of the latter. We begin with a standard technique for characterizing equilibria,
by equating the expected payments in a welfare-maximizing equilibrium as given by Myerson’s
Lemma with the respective payments in the two mechanisms. This gives us a candidate equilibrium
bidding function for each the two mechanisms, and each of these functions constitutes an equilibrium
if and only if it is strictly increasing almost everywhere. In the case of the VCG mechanism we
encounter an ordinary differential equation, but avoid the use of heavy machinery by appealing to
a surprising combinatorial equivalence. Even with the bidding functions for the VCG and GFP
mechanisms at hand it is not trivial to show that the latter is increasing for a larger set of values
of α and β, and we use a surprising connection between the two functions to show that this is
indeed the case.

That the VCG mechanism fails already when α is very close to β is shown by means of two ex-
amples in Sections 3.1 and 4.1. In these examples equilibria supporting the truthful VCG outcome
cease to exist when mechanisms underestimate the value of less valuable positions. This makes the
less valuable positions more attractive by reducing their associated payments, incentivizing bidders
to shade their bid and do so more strongly as their value increases. The relatively lower payments
in the VCG mechanism only magnify this effect and cause it to fail for smaller discrepancies be-
tween α and β. In settings with sufficiently many positions the failure also occurs when mechanisms
overestimate the quality of some positions but underestimate the quality of others.

More generally, the GSP and GFP mechanisms seem to benefit from the relative simplicity of
their payments, which for a given position depend only on one bid. In the VCG mechanism a par-
ticular bid may simultaneously affect the payments of many bidders, setting the correct equilibrium
payments thus becomes impossible more quickly as α and β move out of alignment. An orthogonal
requirement for equilibrium existence that favors different non-truthful mechanisms under complete
and incomplete information is that a bidder’s ability to control its own payment must match the
degree of knowledge it has of other bidders’ valuations. It is well known, for example, that the GFP
mechanism may not possess a pure Nash equilibrium under complete information [16] and that the
GSP mechanisms may not possess a welfare-maximizing Bayes-Nash equilibrium under incomplete
information [18], even when α = β.

The main focus of our analysis is on mechanisms and parameters currently in use. The in-
vestigation of additional mechanisms and parameters, and of the interaction between the auction
mechanisms and the learning algorithm used to infer β from data, provide ample scope for future
work.
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1.3 Related Work

An increased robustness of non-truthful mechanisms for position auctions in the sense we discuss
here was first suggested by Milgrom [27], who compared the GSP and VCG mechanisms in a
complete-information setting. This result was then strengthened by Dütting et al., who identified a
single value of α with which the GSP and GFP mechanisms respectively obtain the truthful VCG
outcome under complete and incomplete information for all values of β [12], as well as a single GFP
mechanism with more expressive bids that achieves the same under both complete and incomplete
information [13]. What distinguishes our results from this past work is that they characterize, for
any given value of β, which values of α enable the truthful VCG outcome. They thus apply in
particular to mechanisms currently in use.

The performance of the VCG mechanism and that of alternative, non-truthful mechanisms
have also been compared in the standard position auction model, where α = β, and a number
of authors have noted certain advantages or lack of disadvantages of the alternative mechanisms.
Under complete information, the GSP mechanism obtains the truthful VCG outcome in a locally
envy-free equilibrium, and payments that at least match those of the truthful VCG outcome in
any locally envy-free equilibrium [16, 33]. Under incomplete information the GFP mechanism
admits a unique Bayes-Nash equilibrium, which yields the truthful VCG outcome [9]. Each of the
two mechanisms has severe disadvantages in the respective other setting, such as non-existence
of a pure Nash equilibrium or of an efficient Bayes-Nash equilibrium [16, 18]. In cases where
equilibria exist, however, the worst-case welfare loss is bounded in the sense of a small price of
anarchy [23, 8, 32].4 In the standard model, and other things being equal, the VCG mechanism
of course has the advantage of truthfulness. Our results concern a more general and arguably
more realistic model and apply in a very similar way to both complete- and incomplete-information
environments.

A concurrent line of research has sought to emphasize the advantages of non-revelation mech-
anisms for position auctions under incomplete information [9, 10, 21]. In addition to uniqueness
of equilibria these include computational tractability, amenability to statistical inference, and the
ability to approximately maximize welfare in general one-dimensional environments. Our results
finally fit more generally into an increasing body of work that emphasizes robustness and sim-
plicity in economic and algorithmic design. Relevant examples of this type of work in economics
include the literature on robust mechanism design [4] and the design of the upcoming FCC In-
centive Auctions [28, 14]. The former seeks to obtain mechanisms with more robust common
knowledge assumptions and has in fact identified robustness properties that directly lead to sim-
pler mechanisms as an important direction. The latter employs a greedy mechanism to achieve
computational and strategic simplicity. Additional examples come from algorithmic game theory,
where recent work has obtained simple mechanisms with near-optimal revenue [20, 1, 3, 36] or
welfare [11, 25, 5, 17, 26, 15], but has also pointed out computational barriers to near-optimal
equilibria [7, 31].

4In the language of the price-of-anarchy literature we essentially seek to characterize those values of α and β for
which the price of stability is one. Arguments similar to the ones used to establish the price-of-anarchy guarantees for
the standard model also apply to the more general setting we study here, providing welfare guarantees that degrade
gracefully in α and β.
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2 Preliminaries

We study the standard setting of position auctions with k positions ordered by quality and n
agents with unit demand and one-dimensional valuations for the positions. Denote by Rk≥ = {x ∈
Rk : xj > 0, xj ≥ xj′ if j < j′} the set of k-dimensional vectors whose entries are positive and
non-increasing. Given β ∈ Rk≥, which we assume to be common knowledge among the agents, the
valuation of a particular agent i can then be represented by a scalar vi ∈ R, such that βjvi ≥ 0 is
the agent’s value for position j.

A mechanism in this setting receives a profile b ∈ Rn of bids from the agents, assigns positions
to agents in a one-to-one fashion, and charges each agent a non-negative payment. It can be
represented by a pair (g, p) of an allocation rule g : Rn → Sn and a payment rule p : Rn → Rn, such
that for each i ∈ {1, . . . , n}, gi(b) = j for j ∈ {1, . . . , k} means that agent i is assigned position j,
and pi(b) is the payment charged to agent i. Allocation rules and mechanisms are called efficient
if they maximize

∑n
i=1 = βgi(b)vi, where we use the convention that βj = 0 if j > k. An efficient

allocation can be obtained by assigning positions in non-increasing order of agents’ valuations. We
will be concerned exclusively with mechanisms that maximize welfare with respect to the bids, and
henceforth denote by g an efficient allocation rule that breaks ties in an arbitrary but consistent
manner. For a given vector v ∈ Rn of values or bids and i ∈ {1, . . . , n}, we write v(i) for the
(n − i + 1)st order statistic of v, such that v(1) ≥ · · · ≥ v(n), and use the convention that v(i) = 0
if i > n.

In reasoning about strategic behavior we make the usual assumption of quasi-linear preferences
and consider two different models of information regarding the preferences of other agents. Under
quasi-linear preferences, the utility ui(b, vi) of agent i with value vi, in a given mechanism and for
a given bid profile b, is equal to its valuation for the position it is assigned minus its payment, i.e.,
ui(b, vi) = βgi(b)vi− pi(b). In the complete information model the values vi are common knowledge
among the agents. A bid profile b is a Nash equilibrium of a given mechanism if no agent has an
incentive to change its bid assuming that the other agents don’t change their bids, i.e., if for every
i ∈ N ,

ui
(
b, vi

)
= max

x∈R
ui
(
(b−i, x), vi

)
,

where (b−i, x) = (b1, . . . , bi−1, x, bi+1, . . . , bn).
In the incomplete information model values vi are drawn independently from a continuous

distribution with density function f , cumulative distribution function F , and support [0, v̄] for
some finite v̄ ∈ R+ we assume to be common knowledge among the agents.5 Our results in
addition require existence and boundedness of the first three derivatives of F . Since valuations
are independent and identically distributed, an efficient allocation for all value profiles can only be
obtained from a symmetric profile b of bidding functions, i.e., one where b = (b, . . . , b) for some
bidding function b : R→ R. The quantity of interest for strategic considerations under incomplete
information is the expected utility ubi(x, vi) of agent i with value vi given that the agent bids x ∈ R
and all other agents use bidding function b, which is given by

ubi(x, vi) = E
vj∼F,j 6=i

[
ui

(
vi,
(
b(v1), . . . , b(vi−1), x, b(vi+1), . . . , b(vn)

))]
.

5An analytical characterization of equilibria in the case of non-identical distributions is, unfortunately, well beyond
the state of the art even for very simple settings. For a single item and two bidders with values drawn uniformly
from distinct intervals, for example, this question was posed by Vickrey [35] and answered only recently, almost half
a century later, by Kaplan and Zamir [22].
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A symmetric profile of bidding functions b then is a Bayes-Nash equilibrium if no agent has an
incentive to change its bid, i.e., if for all i ∈ {1, . . . , n} and vi ∈ [0, v̄],

ubi(b(vi), vi) = max
x∈R

ubi(x, vi).

A mechanism that obtains an efficient allocation in both Nash and Bayes-Nash equilibrium is
the so-called Vickrey-Clarke-Groves (VCG) mechanism. It uses the efficient allocation rule g and a
payment rule pβ that charges each agent its externality on the other agents, which is equal to the
additional utility agents assigned lower slots would obtain by moving up one slot, i.e.,

pβi (b) =

k∑
j=gi(b)

(βj − βj+1)b(j+1),

It is well known that the VCG mechanism makes it optimal for each agent to bid its true valuation,
and we refer to the resulting allocation and payments for a given valuation profile as the truthful
VCG outcome for that profile.

While computation of payments in the VCG mechanism requires knowledge of β, we will be
interested instead in the ability of mechanisms to support the truthful VCG outcome in equilibrium
when only an inaccurate estimate α of the vector β of relative values is available to the designer. To
this end we consider parameterized variants of three mechanisms that have been used in practice
and therefore studied quite extensively: the α-VCG mechanism, the α-GFP mechanism, and the
α-GSP mechanism. The three mechanisms all use allocation rule g, and their payment rules pV, pF,
and pS respectively charge an agent its externality, its bid on the position it is assigned, and the
next-lower bid on that position, i.e.,

pVi (b) =

k∑
j=gi(b)

(αj − αj+1)b(j+1),

pFi (b) = αgi(b)bi, and

pSi (b) = αgi(b)b(gi(b)+1).

We will sometimes drop superscripts when the mechanism we are referring to is clear from the
context.

3 Complete Information

We begin our analysis with the complete-information case. Here, when α = β, the α-VCG mecha-
nism has a truthful equilibrium, the α-GSP mechanism has an equilibrium that yields the truthful
VCG outcome [16, 33], and the α-GFP mechanism may not have any equilibrium [9]. When α 6= β
the α-VCG mechanism loses its truthfulness, and it makes sense to ask under what conditions the
α-VCG mechanism and the α-GSP mechanism preserve the truthful VCG outcome in equilibrium.
To build intuition we first look at the special case with three positions and three agents, before
moving on to the general case.
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3.1 Three Positions and Three Agents

In the special case, valuations are given by vectors v ∈ R3 and β ∈ R3
≥ while mechanisms use a

vector α ∈ R3
≥ that may differ from β. Without loss of generality we can assume that v1 ≥ v2 ≥ v3

and that α1 = β1 = 1. Our goal will be to understand which combinations of α = (1, α2, α3)
and β = (1, β2, β3) allow for the existence of a bid vector b = (b1, b2, b3) that leads to an efficient
assignment and truthful VCG payments for all positions. Efficiency requires that b1 ≥ b2 ≥ b3 and
truthful VCG payments are given by

pβ1 (v) = (β1 − β2)v2 + (β2 − β3)v3,
pβ2 (v) = (β2 − β3)v3, and

pβ3 (v) = 0.

In the α-GSP mechanism, the agent assigned position i pays αib(i+1) when i ∈ {1, 2} and zero

when i = 3. We thus obtain the truthful VCG payments if α1b(2) = pβ1 (v) and α2b(3) = pβ2 (v), i.e.,

if b(2) = pβ1 (v)/α1 and b(3) = pβ2 (v)/α2. Together with efficiency this yields the following necessary
condition, which in fact is sufficient as well:

b1 ≥ b2 =
pβ1 (v)

α1
≥ b3 =

pβ2 (v)

α2
.

In the α-VCG mechanism the payment of the agent assigned position i is (α1−α2)b(2) + (α2−
α3)b(3) if i = 1, (α2−α3)b(3) if i = 2, and zero if i = 3, which is equal to the truthful VCG payments

if b(2) = (pβ1 (v)− pβ2 (v))/(α1 − α2) and b(3) = pβ2 (v)/(α2 − α3). Together with efficiency we obtain
the following necessary condition, which again is also sufficient:

b1 ≥ b2 =
pβ1 (v)− pβ2 (v)

α1 − α2
≥ b3 =

pβ2 (v)

α2 − α3
.

Crucial for both mechanisms is the second inequality, concerning the relationship between b2
and b3, and by solving it for α2 we obtain

α2 ≥ α1
pβ2 (v)

pβ1 (v)
and α2 ≥ (α1 − α3)

pβ2 (v)

pβ1 (v)
+ α3

for the α-GSP and the α-VCG mechanism, respectively. On the other hand pβ1 (v) ≥ pβ2 (v) and thus

pβ2 (v)/pβ1 (v) ≤ 1. This means that

α1
pβ2 (v)

pβ1 (v)
≤ (α1 − α3)

pβ2 (v)

pβ1 (v)
+ α3,

making the condition for the α-GSP mechanism easier to satisfy. If pβ2 (v)/pβ1 (v) < 1 the inequality
will in fact be strict, and will produce examples where the α-GSP mechanism possesses an equilib-
rium of the desired type but the α-VCG mechanism does not. For concreteness let α = (1, 0.6, 0.3),

β = (1, 0.7, 0.3), and v = (20, 10, 10). Then pβ1 (v) = 7, pβ2 (v) = 4, and pβ3 (v) = 0, and thus

α2 = 0.6 ≥ α1 · pβ2 (v)/pβ1 (v) = 4/7 while α2 = 0.6 < (α1 − α3) · pβ2 (v)/pβ1 (v) + α3 = 0.7. More gen-
erally, and holding everything else fixed, any value of α2 ≥ 4/7 ≈ 0.57 would suffice for the α-GSP
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α-VCG

Figure 1: Comparison of the α-GSP and α-VCG mechanisms under complete information, for
a setting with three positions, three agents, and valuations v1 ≥ v2 = v3. The hatched areas
indicate the combinations of α2 and β2 for which the mechanisms respectively obtain the truthful
VCG outcome in equilibrium, when α1 = β1 = 1 and α3 = β3. The dotted line illustrates the
performance of the mechanisms for a particular value of β2. When α3 = β3 = 0.3 it would lie at
β2 = 0.7 and would intersect the curve for the α-GSP mechanism at α2 = 4/7 and that for the
α-VCG mechanism at α2 = 0.7. Any point on the dotted line between these two intersection points
corresponds to a value of α2 for which the α-GSP mechanism has an equilibrium of the desired
type and the α-VCG mechanism does not.

mechanism, whereas the α-VCG mechanism would require that α2 ≥ 0.7. Figure 1 illustrates the
relationship between the inequalities in a parametrized manner, holding α1 = β1 = 1 and α3 = β3
fixed and letting α2 and β2 range over [α3, 1]. It shows that the α-VCG mechanism fails to preserve
the truthful VCG outcome even if it only slightly underestimates β2, while the α-GSP mechanism
is relatively robust in this regard.

3.2 The General Case

Perhaps surprisingly, superiority of the α-GSP mechanism over the α-VCG mechanism in preserving
the truthful VCG outcome also holds in general. The following result establishes a weak superiority
for arbitrary numbers of agents and positions and arbitrary valuations. Examples in which only
the α-GSP mechanism preserves the truthful VCG outcome are straightforward to construct, and
indeed we have already done so for a specific setting.

Theorem 1. Let α, β ∈ Rk≥, v ∈ Rn. Then the α-GSP mechanism obtains the truthful VCG
outcome in a Nash equilibrium for valuations given by β and v whenever the α-VCG mechanism
does.

We show this result by characterizing the combinations of α and β for which the α-GSP and
α-VCG mechanisms respectively obtain the truthful VCG outcome in equilibrium. To this end
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consider a situation with k positions and n agents, and assume without loss of generality that
n ≥ k and that agents are indexed such that v1 ≥ · · · ≥ vn. For j = 1, . . . , k let pβj (v) =∑k

i=j(βi − βi+1) · vi+1 denote the truthful VCG price of position j, and for notational convenience

set pβi (v) = 0 when i ≥ k + 1.
The characterization is provided in terms of two lemmas. Under both mechanisms the bid b1

of the agent with the highest value has to be a maximum bid but is otherwise unconstrained. The
bids b2, . . . , bk of the agents with the 2nd- to kth-highest values are completely determined, as
is the highest bid b(k+1) of any agent not assigned a position, if such an agent exists. They are

given by functions depending on α and on the truthful VCG payments pβ(v) and have to form a
non-increasing sequence. The formal statements of the lemmas also take care of some corner cases,
like those where αj = 0 in the case of the α-GSP mechanism or αj−1 − αj = 0 in the case of the
α-VCG mechanism, and are therefore slightly more complicated. Detailed proofs of these and all
other lemmas are given in the appendix.

Lemma 1. Let α, β ∈ Rk≥, v ∈ Rn such that v1 ≥ v2 ≥ · · · ≥ vn. Then the following are equivalent:

(a) Bid vector b ∈ Rn yields an efficient equilibrium of the α-GSP mechanism in which agent i

pays pβi (v).

(b) The bids satisfy b1 ≥ b2 ≥ · · · ≥ bk ≥ b(k+1), and for j = 1, . . . , k either αj = pβj (v) = 0 or

b(j+1) = pβj (v)/αj.

Lemma 2. Let α, β ∈ Rk≥, v ∈ Rn such that v1 ≥ v2 ≥ · · · ≥ vn. Then the following are equivalent:

(a) Bid vector b ∈ Rn yields an efficient equilibrium of the α-VCG mechanism in which agent i

pays pβi (v).

(b) The bids satisfy b1 ≥ b2 ≥ · · · ≥ bk ≥ b(k+1), and for j = 1, . . . , k either αj = αj+1 and

pβj (v) = pβj+1(v) or b(j+1) =
pβj (v)−p

β
j+1(v)

αj−αj+1
.

The proof of Theorem 1 now exploits the recursive structure of VCG payments to show that
the characterization for the α-VCG mechanism is more demanding.

Proof of Theorem 1. Assume for contradiction that there exist α, β ∈ Rk≥ such that the α-GSP
mechanism does not preserve the truthful VCG outcome on β while the α-VCG mechanism does.
By Lemma 1, there are only two possible reasons for the failure of the α-GSP mechanism to support
the truthful VCG outcome. Either there exists a position i ≤ k such that αi = 0 and pβi (v) > 0, or
a position i < k with αi ≥ αi+1 > 0 such that

pβi (v)

αi
<
pβi+1(v)

αi+1
.

In both cases we can assume without loss of generality that i is the largest such position.
In the former case, for any bid vector b ∈ Rn, pαi (b) = (αi − αi+1)b(i+1) + pαi+1(b) = 0, which

clearly prevents the α-VCG mechanism from supporting the truthful VCG outcome.
In the latter case, we can make two simple observations. First αi > αi+1, as αi = αi+1 would

imply pβi (v) < pβi+1(v), which is clearly impossible. Second there must exist a position j with
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i < j ≤ k such that αj 6= αj+1, because i < k, αi+1 > 0, and αk+1 = 0. Without loss of generality

we can assume that j is the smallest such position. Now, by writing pβi (v) as pβi (v)−pβi+1(v)+pβi+1(v),

pβi (v)− pβi+1(v) + pβi+1(v)

αi
<
pβi+1(v)

αi+1
,

and by rearranging,

pβi (v)− pβi+1(v)

αi
<
pβi+1(v)

αi+1
− pβi+1(v)

αi
.

Since αi > αi+1, we can multiply both sides by αi/(αi − αi+1) to obtain

pβi (v)− pβi+1(v)

αi − αi+1
<
pβi+1(v)

αi+1
. (1)

By writing pβj (v) as pβj (v)− pβj+1(v) + pβj+1(v), and using that pβj+1(v) ≤ αj+1

αj
pβj (v) by choice of i,

pβj (v) ≤ pβj (v)− pβj+1(v) +
αj+1

αj
pβj (v),

and by rearranging,

pβj (v)− αj+1

αj
pβj (v) ≤ pβj (v)− pβj+1(v).

Since αj > αj+1, we can divide both sides by αj − αj+1 to obtain

pβj (v)

αj
≤
pβj (v)− pβj+1(v)

αj − αj+1
. (2)

By choice of j, for any position m with i < m < j we have that αs = αs+1. By the assumption
that the α-VCG mechanism preserves the truthful VCG outcome and by Lemma 2, this implies
that pβs (v) = pβs+1(v). If no such m exists then j = i+ 1, and in both cases,

pβi+1(v)

αi+1
=
pβj (v)

αj
(3)

Combining (1), (2), and (3),

pβi (v)− pβi+1(v)

αi − αi+1
<
pβi+1(v)

αi+1
=
pβj (v)

αj
≤
pβj (v)− pβj+1(v)

αj − αj+1
. (4)

On the other hand, since αi > αi+1 and αj > αj+1, we know from Lemma 2 that any bid vector b′

that yields the truthful VCG outcome must set b′i+1 to the left-hand side of (4) and b′j+1 to the
right-hand side of (4). Since i < j it must also hold that b′i+1 ≥ b′j+1, which is a contradiction.
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4 Incomplete Information

We now turn to incomplete-information environments, where agents only possess probabilistic in-
formation regarding one another’s valuations. Here the α-GSP mechanism may fail to possess an
efficient equilibrium even when α = β.6 When α = β, the α-VCG mechanism of course maintains its
truthful dominant-strategy equilibrium. Another good mechanism in this case is the α-GFP mech-
anism, which differs from the α-GSP mechanism in its use of first-price rather than second-price
payments. While sharing the latter’s non-truthfulness it possesses a unique Bayes-Nash equilibrium
for any value of α, and this equilibrium yields the truthful VCG outcome [9].

Given these results it is quite natural to ask how successful the α-VCG and α-GFP mechanisms
are in maintaining the truthful VCG outcome when α 6= β. The answer to this question is strikingly
similar to the complete-information case in that the non-truthful mechanism is again more robust,
for arbitrary values of α and β and independent and identically distributed valuations according
to any distribution satisfying mild technical conditions. Our analysis uses Myerson’s classical
characterization of possible equilibrium bids to identify, for either of the two mechanisms, conditions
on α and β that are necessary and sufficient for equilibrium existence. The conditions for the α-VCG
mechanism turn out to be more demanding. Just as we did for complete-information environments,
we begin by considering a special case, this time with two positions, three agents, and valuations
drawn uniformly at random from the unit interval. The special case is used to build intuition, and
introduce the necessary machinery, for the general result.

4.1 Two Positions and Three Agents

Let v1, v2, v3 be drawn independently from the uniform distribution on [0, 1]. Let α, β ∈ R2
≥ with

α2, β2 > 0, and assume without loss of generality that α1 = β1 = 1. Our goal will again be to
characterize the values of α and β for which given mechanisms of interest, in this case the α-GFP
and α-VCG mechanisms, admit an efficient equilibrium. Behavior under incomplete information
can be described by a vector of bidding functions, one for each agent, that map the agent’s value
to its bid. It is clear that in a symmetric setting like ours efficient outcomes can only result from
symmetric bidding functions, so we will be interested in functions bF : R→ R that yield an efficient
equilibrium in the α-GFP mechanism and functions bV : R → R that achieve the same in the
α-VCG mechanism.

The standard technique for equilibrium analysis under incomplete information uses a seminal
result of Myerson that characterizes the expected allocation and payments in equilibrium in terms
of the allocation probabilities induced by a mechanism and agents’ bidding functions. The result
was originally formulated for truthful mechanisms, but equivalent conditions exist for arbitrary
bidding functions that instead of being in equilibrium provide a best response among values in
their range. The latter is obviously a necessary condition for equilibrium, and can be turned into
a sufficient condition by arguing that no better response exists outside the range. For our setting
and notation we have the following result.

Lemma 3 (Myerson [29]). Consider a position auction for an environment with n agents, k po-
sitions, and β ∈ Rk≥. Assume that agents use a bidding function b with range X, and that an

6Gomes and Sweeney [18] gave a characterization of those values of α that enable equilibrium existence in this
case. The result can be strengthened in our setting to show that for some values of β no choice of α leads to an
efficient equilibrium.
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agent with value v is consequently assigned position s ∈ {1, . . . , k} with probability Ps(v). Then
u(b(v), v) = maxx∈X u(x, v) for all v ∈ [0, v̄] if and only if the following holds:

(a) the expected allocation
∑k

s=1 Ps(v)βs is non-decreasing in v, and

(b) the payment function p satisfies

E[p(v)] = p(0) +

k∑
s=1

βs

∫ v

0

dPs(z)

dz
z dz. (5)

All mechanisms we consider set p(0) = 0 and use an efficient allocation rule, for which

Ps(v) =

(
n− 1

s− 1

)
(1− F (v))s−1(F (v))n−s

and (a) is satisfied. Together with our assumptions on F , efficiency mandates further that b must
increase almost everywhere.

In the special case with two positions and three agents with values distributed uniformly on
the unit interval we have that P1(v) = F 2(v) = v2 and P2(v) =

(
2
1

)
F (v)(1 − F (v)) = 2v(1 − v),

payments in any efficient equilibrium can thus be described by a function pE : R→ R satisfying

E[pE(v)] = β1

∫ v

0

dP1(z)

dz
z dz + β2

∫ v

0

dP2(z)

dz
z dz

=
2

3
β1v

3 + β2v
2 − 4

3
β2v

3. (6)

A candidate equilibrium bidding function for the α-GFP mechanism can now be obtained by
writing the expected payment in terms of bidding function bF , equating the resulting expression
with (6), and solving for bF . In the α-GFP mechanism an agent with value v that is allocated
position s pays αsb

F (v), its expected payment therefore satisfies

E[pF (v)] = P1(v)α1b
F (v) + P2(v)α2b

F (v)

= (α1v
2 + 2α2v − 2α2v

2)bF (v). (7)

By Lemma 3 the expressions in (6) and (7) must be the same. Equating them yields

bF (v) =
2/3 · v3 − 4/3 · β2v2 + β2v

2

v2 − 2α2v2 + 2α2v

when v > 0, and we can set bF (0) = 0 for convenience.7 Bidding below bF (0) = 0 is impossible,
bidding above bF (v̄) is dominated,8 and bF satisfies the second condition of Lemma 3 by construc-
tion. The α-GFP mechanism thus has an efficient equilibrium if and only if bF is increasing almost
everywhere. Taking the derivative we obtain

dbF (v)

dv
=

(43v − 8
3β2v + β2)(v − 2α2v + 2α2)

(v − 2α2v + 2α2)2
− (1− 2α2)(

2
3v

2 − 4
3β2v

2 + β2v)

(v − 2α2v + 2α2)2
.

7Application of l’Hospital’s rule shows that limv→0 b
F (v) = 0, so this choice makes bF increasing.

8Since equilibrium bidding functions must be increasing almost everywhere, bidding above bF (v̄) would not increase
the probability of winning, and it would also not lead to a lower payment.
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The sign of this expression is determined by the sign of its numerator, and it turns out that the
numerator is positive at 0 and, depending on the value of β2, either non-decreasing everywhere on
[0, 1] or decreasing everywhere on [0, 1]. Indeed, dbF (v)/dv|v=0 = β2/(2α2) > 0, and the derivative
of the numerator, (4/3−8/3β2)(v−2α2v+2α2), is non-negative when β2 ≤ 1/2 and negative when
β2 > 1/2. In the case where β2 > 1/2 we need that

dbF (v)

dv

∣∣∣∣
v=1

=

(
4

3
− 5

3
β2

)
− (1− 2α2)

(
2

3
− 1

3
β2

)
≥ 0,

which holds when

α2 ≥
2β2 − 1

2− β2
.

We conclude that the α-GFP mechanism possesses an efficient equilibrium if and only if β2 ≤ 1/2
or α2 ≥ (2β2 − 1)/(2− β2).

Analogously, in the α-VCG mechanism, the payment of an agent with value v satisfies

E[pV (v)] = P1(v)

[
(α1 − α2)

∫ v

0

2t

v2
bV (t) dt+ α2

∫ v

0

2(v − t)
v2

bV (t) dt

]
+ P2(v)α2

∫ v

0

1

v
bV (t) dt

= (2α1 − 4α2)

∫ v

0
tbV (t) dt+ 2α2

∫ v

0
bV (t) dt, (8)

where 2t/v2 = 2F (t)f(t)/F (v)2 and 2(v − t)/v2 = 2F (v − t)f(t)/F (v)2 are the densities of the
second and third highest values given that the agent’s value v is the highest, and 1/v = f(t)/F (v)
is the density of the third highest value given that v is the second highest. By Lemma 3 the
expressions in (6) and (8) must again be the same. Taking the derivatives of both and solving for
bV (v) yields

bV (v) =
2v2 − 4β2v

2 + 2β2v

2v − 4α2v + 2α2

when v < 1, and we can extend bV appropriately when v = 1.9 By the same argument as before, the
α-VCG mechanism has an efficient equilibrium if and only if bV is increasing almost everywhere.
Taking the derivative we obtain

dbV (v)

dv
=

(4v − 8β2v + 2β2)(2v − 4α2v + 2α2)

(2v − 4α2v + 2α2)2
− (2− 4α2)(2v

2 − 4β2v
2 + 2β2v)

(2v − 4α2v + 2α2)2
.

When α2 < 1 the sign of this expression is determined by its numerator, which is positive at 0 and,
depending on the value of β2, either non-decreasing everywhere on [0, 1] or decreasing everywhere
on [0, 1]. Indeed, dbF (v)/dv|v=0 = β2/α2 > 0, and the derivative of the numerator, (4− 8β2)(2v −
4α2v+ 2α2), is non-negative when β2 ≤ 1/2 and negative when β2 > 1/2. When β2 > 1/2 we need
that

dbV (v)

dv

∣∣∣∣
v=1

=
(4− 6β2)(2− 2α2)− (2− 4α2)(2− 2β2)

(2− 2α2)2
≥ 0,

9We have assumed that α2 > 0, so the denominator vanishes only when v = α2 = 1. If β2 < 1, then limv→1 b
V (v) =

∞. If β2 = 1, application of l’Hospital’s rule shows that limv→1 b
V (v) = 1.
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Figure 2: Comparison of the α-GFP and α-VCG mechanisms under incomplete information, for
a setting with two positions, three agents, and valuations drawn independently and uniformly
from [0, 1]. The hatched areas indicate the combinations of α2 and β2 for which the mechanisms
obtain the truthful VCG outcome in equilibrium, when α1 = α2 = 1. The dotted line at β2 = 0.8
intersects the curve for the α-GFP mechanism at α2 = 0.5 and that for the α-VCG mechanism at
α2 = 0.75. For all points between the intersection points the α-GFP mechanism has an equilibrium
of the desired type and the α-VCG mechanism does not.

which for α2 < 1 holds when

α2 ≥ 2− 1

β2
.

When α2 = 1 the above reasoning still applies as long as v < 1, so bV (v) is increasing almost
everywhere when

lim
v→1

dbV (v)

dv
≥ 0.

This is indeed the case, as limv→1 db
V (v)/dv = ∞ when β2 < 1, and limv→1 db

V (v)/dv = 1 when
β2 = 1 by applying l’Hospital’s rule twice. We conclude that the α-VCG mechanism possesses an
efficient equilibrium if and only if β2 ≤ 1/2 or α2 ≥ 2− 1/β2.

It is now not hard to see that the equilibrium condition for the α-GFP mechanism is easier to
satisfy than that for the α-VCG mechanism. In fact, the α-VCG mechanism may fail to preserve
the truthful VCG outcome even when α2 is very close to β2. When β2 = 0.8, for example, any value
of α2 ≥ 0.5 would suffice for the α-GFP mechanism, while the α-VCG mechanism would require
that α2 ≥ 0.75. An illustration is provided in Figure 2. Figure 3 compares the derivatives of the
respective bidding functions for β2 = 0.8 and varying values of α2.

4.2 The General Case

We proceed to show that the α-GFP mechanism is superior in general to the α-VCG mechanism
in preserving the truthful VCG outcome. The following result establishes a weak superiority for
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Figure 3: Derivatives of the candidate bidding functions for the α-GFP and α-VCG mechanisms
in a setting with three agents with values distributed uniformly on [0, 1] and two positions with
β = (1, 0.8), when α1 = 1 and α2 ranges from 0.8 to 0.1.

any number of positions and agents, and arbitrary symmetric valuation distributions. Examples
in which only the α-GFP mechanism preserves the truthful VCG outcome are straightforward to
construct, and indeed we have already done so for a specific setting.

Theorem 2. Let α, β ∈ Rn≥. Let v ∈ Rn, with components drawn independently from a continuous
distribution with bounded support. Assume that n > k. Then the α-GFP mechanism obtains the
truthful VCG outcome in a Bayes-Nash equilibrium for valuations given by β and v whenever the
α-VCG mechanism does.

To obtain this general result we will follow the same basic strategy as in the special case, but
will have to overcome two major difficulties on the way.

The first difficulty concerns the equilibrium bidding function for the α-VCG mechanism.
Whereas deriving a bidding function for the α-GFP mechanism remains relatively straightforward
even for an arbitrary number of positions and arbitrary valuation distributions, the situation be-
comes significantly more complex for the α-VCG mechanism due to the dependence of its payment
rule on the bids for all lower positions. Specifically, when equating the two expressions for the
expected payment in equilibrium, (6) and (8) in the special case, and taking derivatives on both
sides, the integrand in the latter no longer depends only on t, the variable of integration. Instead,
the conditional densities of the values of agents assigned lower positions introduce a dependence
on v. When taking the derivative one would expect to obtain a differential equation, and a closed
form solution to this differential equation would be required to continue with the rest of the argu-
ment. We take a different route and use a rather surprising combinatorial equivalence to obtain an
alternative expression for the expected payment that only depends on t.

A second difficulty arises when trying to show that bF is increasing for a wider range of values
of α and β than bV . In the special case we could argue directly about the derivatives of the bidding
functions, but this type of argument becomes infeasible rather quickly when increasing the number
of positions or moving to general value distributions. The key insight that will allow us to generalize
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the result is that there exist functions A : R → R and B : R → R such that bF (v) = A(v)/B(v)
and bV (v) = A′(v)/B′(v), where A′ and B′ respectively denote the derivatives of A and B. This
relationship is easily verified for the bidding functions in (6) and (8) but continues to hold in
general. We use it to show that at the minimum value of v for which dbF (v)/dv is non-positive,
should such a value exist, dbV (v)/dv is non-positive as well.

We begin by deriving candidate equilibrium bidding functions for the two mechanisms. Due to
the more complicated structure of the payments, the case of the α-VCG mechanism is significantly
more challenging.

Lemma 4. Let α, β ∈ Rn≥, where αj > 0 and βj > 0 for j ∈ {1, . . . , k}. Suppose valuations
are drawn from a distribution with support [0, v̄], probability density function f , and cumulative
distribution function F . Then, an efficient equilibrium of the α-GFP mechanism must use a bidding
function bF with

bF (v) =

∑k
s=1 βs

∫ v
0
dPs(t)
dt t dt∑k

s=1 αsPs(v)
.

If bF is increasing almost everywhere, it constitutes the unique efficient equilibrium. Otherwise no
efficient equilibrium exists.

Lemma 5. Let α, β ∈ Rn≥, where αj > 0 and βj > 0 for j ∈ {1, . . . , k}. Suppose valuations
are drawn from a distribution with support [0, v̄], probability density function f , and cumulative
distribution function F . Then, an efficient equilibrium of the α-VCG mechanism must use a bidding
function bV with

bV (v) =

∑k
s=1 βs

dPs(v)
dv v∑k

s=1 αs
dPs(v)
dv

.

If bV is increasing almost everywhere, it constitutes the unique efficient equilibrium. Otherwise no
efficient equilibrium exists.

Even with the candidate bidding functions bF and bV in hand, the cases where the α-GFP and
α-VCG mechanisms respectively admit an efficient equilibrium seem difficult to compare. What
will ultimately drive the proof of Theorem 2 is a rather curious relationship between the two bidding
functions that is straightforward to verify given Lemma 4 and Lemma 5: the numerator of bV is
equal to the derivative of the numerator of bF , and the denominator of bV is equal to the derivative
of the denominator of bF .

Corollary 1. Let bF : R → R and bV : R → R be the candidate equilibrium bidding functions for
the α-GFP and α-VCG mechanisms as defined in Lemma 4 and Lemma 5. Then

bF (v) =
A(v)

B(v)
and bV (v) =

A′(v)

B′(v)
,

where A(v) =
∑k

s=1 βs
∫ v
0
dPs(t)
dt t dt and B(v) =

∑k
s=1 αsPs(v).

To show that the α-GFP mechanism possesses an efficient equilibrium whenever the α-VCG
mechanism does we recall that equilibrium existence is equivalent to a bidding function that is
increasing almost everywhere. We first consider the candidate bidding function for the α-GFP
mechanism and show that at v = 0, either its derivative is positive or both its derivative and
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Figure 4: Possible forms of the derivative of the candidate equilibrium bidding function bF when the
α-GFP mechanism does not possess an equilibrium. Both the derivative and the second derivative
are non-negative at zero, so if the former is non-positive anywhere on (0, v̄] there must be a value
v∗ > 0 where it either touches or cuts the x-axis from above.

second derivative are non-negative. Failure to possess an equilibrium thus implies existence of a
value v∗ > 0 where the derivative cuts the x-axis from above, or of a set of such values with positive
measure where it touches the x-axis. In a second step we then show that the candidate bidding
function for the α-VCG mechanism behaves roughly in the same way at these values. The situation
is illustrated in Figure 4.

Lemma 6. Let bF : R → R be the candidate equilibrium bidding function for the α-GFP mecha-
nisms as defined in Lemma 4. Then,

dbF (v)

dv

∣∣∣∣
v=0

=
n− k

n− k + 1
· βk
αk
.

Lemma 7. Let bF : R → R be the candidate equilibrium bidding function for the α-GFP mecha-
nisms as defined in Lemma 4. Then, for n = k,

d2bF (v)

dv2

∣∣∣∣
v=0

≥ 0.

Proof of Theorem 2. Assume that the α-GFP mechanism does not possess an equilibrium, and
recall that this implies the existence of a set of value with positive measure where the derivative
of bF is not strictly increasing. By Lemmas 6 and 7, there must thus exist a set of values v∗ > 0
with positive measure where

dbF (v)

dv

∣∣∣∣
v=v∗

= 0 and
d2bF (v)

dv2

∣∣∣∣
v=v∗
≤ 0,

or one such value where the equality holds and the inequality is strict.
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For an arbitrary value v,

dbF (v)

dv
=
A′(v)B(v)−B′(v)A(v)

(B(v))2
= 0

requires that

A′(v)B(v)−B′(v)A(v) = 0. (9)

Assuming (9),

d2bF (v)

dv2
=
A′′(v)B(v)−B′′(v)A(v)

(B(v))2
≤ 0

requires that

A′′(v)B(v)−B′′(v)A(v) ≤ 0, (10)

Consider any v∗ > 0, and observe that A(v∗) > 0 and A′(v∗) > 0. For v = v∗ we can thus rewrite (9)

as B(v∗) = B′(v∗)A(v∗)
A′(v) , and substitute this into (10) to obtain

A′′(v∗)
B′(v∗)A(v∗)
A′(v∗)

−B′′(v∗)A(v∗) ≤ 0.

Dividing by A(v∗) > 0 and multiplying by A′(v∗) > 0 yields

A′′(v∗)B′(v∗)−A′(v∗)B′′(v∗) ≤ 0,

and thus

bV (v)

dv

∣∣∣∣
v=v∗

=
A′′(v∗)B′(v∗)−A′(v∗)B′′(v∗)

(B′(v∗))2
≤ 0.

It is, moreover, easily verified that the inequality holds strictly when d2bF (v)/dv2|v=v∗ < 0. There

thus exists a set of values v∗ with positive measure where bV (v)
dv ≤ 0, and the claim follows.

A Proof of Lemma 1

First assume that (a) is satisfied. Efficiency requires that b1 ≥ b2 ≥ · · · ≥ bk ≥ b(k+1), and implies
that the payment of agent j ∈ {1, . . . , n} in the α-GSP mechanism is equal to αjb(j+1). It follows

that αjb(j+1) = pβj (v) and thus either αj = 0 and pβj (v) = 0 or b(j+1) = pβj (v)/αj .
Now assume that (b) is satisfied, and observe that b1 ≥ b2 ≥ · · · ≥ bk ≥ b(k+1) leads to an

efficient assignment. Moreover, either αj = pβj (v) = 0 or b(j+1) = pβj (v)/αj , so in both cases

αjb(j+1) = pβj (v). It remains to be shown that b yields an equilibrium. To this end, assume for
contradiction that some agent i ∈ {1, . . . , n} would benefit strictly from changing its bid and being
assigned position i′ 6= i as a consequence. The agent would then pay αi′b(i′) ≥ αi′b(i′+1) if i′ < i,
and αi′b(i′+1) if i′ > i. This is at least the payment of the agent assigned position i′ in the efficient
allocation, contradicting envy-freeness of the VCG payments [e.g., 24].
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B Proof of Lemma 2

First assume that (a) is satisfied. Efficiency requires that b1 ≥ b2 ≥ · · · ≥ bk ≥ b(k+1), and implies
that the payment of agent k in the α-VCG mechanism is equal to αkb(k+1). If αk = αk+1 = 0,

this means that pβk(v) = pβk+1(v) = 0. Otherwise αk − αk+1 > 0, and rearranging yields that

b(k+1) = pβk(θ)/αk. For the remaining bids we can now argue inductively. Consider s ∈ {1, . . . , n},
and suppose that any agent j ∈ {s + 1, . . . , k} pays pβj (v). If αs 6= αs+1, then agent s pays

(αs − αs+1)bs+1 + pαs+1(b) = (αs − αs+1)bs+1 + pβs+1(v) = pβs (v), and thus bs+1 =
pβs (v)−pβs+1(v)

αs−αs+1
as

claimed. If instead αs = αs+1, then agents s and s+1 must pay the same and thus pβs (v) = pβs+1(v).
Now assume that (b) is satisfied, and observe that b1 ≥ b2 ≥ · · · ≥ bk ≥ b(k+1) leads to an

efficient assignment. That payments are as required again follows by induction. For the base case
observe that either αk = αk+1 = 0 and agent k pays 0 = pβk(v), or αk − αk+1 > 0 and agent k

pays αkb(k+1) = (αk − αk+1)
pβk (v)

αk−αk+1
= pβk(v). For the inductive step assume that payments are as

required up to position s+ 1. Then either αs 6= αs+1 and bs+1 =
pβs (v)−pβs+1(v)

αs−αs+1
so that agent s pays

(αs − αs+1)bs+1 + pβs+1(v) = (αs − αs+1)
pβs (v)− pβs+1(v)

αs − αs+1
+ pβs+1(v) = pβs (v),

or αs = αs+1 and pβs (v) = pβs+1(v) so that agent s pays

(αs − αs+1)bs+1 + pβs+1(v) = pβs+1(v) = pβs (v).

It remains to be shown that b yields an equilibrium. To this end, assume for contradiction that
some agent i ∈ {1, . . . , n} would benefit strictly from changing its bid and being assigned position

i′ 6= i as a consequence. The agent would then pay
∑i−1

s=i′(αs − αs+1)b(s) + pβi (v) ≥ ∑i−1
s=i′(αs −

αs+1)b(s+1) + pβi (v) if i′ < i, and pβi′(v) if i′ > i. This is at least the payment of the agent assigned
position i′ in the efficient allocation, contradicting envy-freeness of the VCG payments [e.g., 24].

C Proof of Lemma 4

Since efficient equilibria must be symmetric, we can write an efficient equilibrium of the α-GFP
mechanism in terms of a bidding function bF : [0, v̄]→ R≥0. An agent with value v who is allocated
position s then pays αsb

F (v), and we have that

E
[
pF (v)

]
=

k∑
s=1

αsPs(v)bF (v). (11)

The expected payment in an efficient equilibrium is given by Lemma 3, and by equating (11) with
(5) and solving for bF (v) we obtain

bF (v) =

∑k
s=1 βs

∫ v
0
dPs(t)
dt t dt∑k

s=1 αsPs(v)
.

Bidding below bF (0) = 0 is impossible and bidding above bF (v̄) is dominated, so the claim follows
from Lemma 3.
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D Proof of Lemma 5

Efficiency again requires symmetry, so any efficient equilibrium of the α-VCG mechanism can be
described by a bidding function bV : [0, v̄]→ R≥0.

Denote by pV (v) the payment in the α-VCG mechanism of an agent with value v, and by
pVs (v) the same payment under the condition that the agent has the s-highest value overall. These
quantities are random variables that depend on the values of n− 1 other agents, and we have that

E[pV (v)] =

k∑
s=1

Ps(v) · E[pVs (v)], (12)

where, as before, Ps(v) is the probability that v is the s-highest of n values drawn independently
from F . The conditional payment pVs (v) depends on the conditional densities of the valuations of
agents assigned lower positions, and on their resulting bids. For s ∈ {1, . . . , k} and ` ∈ {s, . . . , k},
denote by

I`,s(v, t) =
(n− s)f(t)

(
n−s−1
n−`−1

)
F (t)n−`−1(F (v)− F (t))`−s

F (v)n−s

the density at t of the (`+ 1)-highest of n values drawn independently from F , under the condition
that the s-highest value is equal to v. Then

E[pVs (v)] =

k∑
`=s

(α` − α`+1) ·
∫ v

0
I`,s(v, t) b

V (t) dt,

and by substituting into (12), exchanging the order of summation and integration, and grouping
by coefficients of αs, we obtain

E[pV (v)] =
k∑
s=1

Ps(v)
k∑
`=s

(α` − α`+1)

∫ v

0
I`,s(v, t) b

V (t) dt

=

∫ v

0

k∑
s=1

αs

[ s∑
`=1

P`(v) · Is,`(v, t)−
s−1∑
`=1

P`(v) · Is−1,`(v, t)
]
bV (t) dt. (13)

Note that the roles of s and ` have been reversed, such that s ≥ ` henceforth. We now recall that

P`(v) =

(
n− 1

`− 1

)
(1− F (v))`−1F (v)n−`

and consider each of the two sums inside the parentheses in turn.
Denoting

J`,s =

(
n− 1

`− 1

)(
n− `− 1

n− s− 1

)
(n− `),

we have that
s∑
`=1

P`(v) · Is,`(v, t) =

s∑
`=1

J`,s · (1− F (v))`−1f(t)F (t)n−s−1(F (v)− F (t))s−`

=
∑

1≤`≤s
0≤x≤`−1
0≤y≤s−`

J`,s

(
`− 1

x

)(
s− `
y

)
(−1)`+y−x−1f(t)F (v)s−x−y−1F (t)n+y−s−1,
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where the second equality holds because by the binomial theorem

(1− F (v))`−1 =
`−1∑
x=0

(
`− 1

x

)
(−F (v))`−x−1 and

(F (v)− F (t))s−` =

s−∑̀
y=0

(
s− `
y

)
F (v)s−`−y(−F (t))y.

We claim that the terms with x+ y < s− 1 cancel out, i.e., that∑
1≤`≤s

0≤x≤`−1
0≤y≤s−`
x+y<s−1

J`,s

(
`− 1

x

)(
s− `
y

)
(−1)`+y−x−1f(t)F (v)s−x−y−1F (t)n+y−s−1

=
∑

0≤z≤s−2
0≤y≤z

z−y+1≤`≤s−y

J`,s

(
`− 1

z − y

)(
s− `
y

)
(−1)`+2y−z−1F (v)s−z−1f(t)F (t)n+y−s−1 = 0.

Indeed, the first equality follows by setting z = x + y and observing that in both sums ` takes
exactly the values between x+ 1 = z − y+ 1 and s− y. The second equality holds because for any
z and y with 0 ≤ z ≤ s− 2 and 0 ≤ y ≤ z,

s−y∑
`=z−y+1

J`,s

(
`− 1

z − y

)(
s− `
y

)
(−1)`+2y−z−1

=

s−y∑
`=z−y+1

(
n− 1

`− 1

)(
n− `− 1

n− s− 1

)
(n− `)

(
`− 1

z − y

)(
s− `
y

)
(−1)`+2y−z−1

=
(n− 1)!

(n− s− 1)!(z − y)!y!

s−y∑
`=z−y+1

(−1)`+2y−z−1

(`− z + y − 1)!(s− `− y)!

=
(n− 1)!

(n− s− 1)!(z − y)!y!

m∑
j=0

(−1)j+y

j!(m− j)!

=
(n− 1)!(−1)y

(n− s− 1)!(z − y)!y!m!

m∑
j=0

(−1)j
(
m

j

)
=

(n− 1)!(−1)y

(n− s− 1)!(z − y)!y!m!
(1 + (−1))m = 0, (14)

where the third equality follows by setting j = `−z+y−1 and m = s−z−1 and the fifth equality
holds by the binomial theorem. Thus, actually,

s∑
`=1

P`(v) · Is,`(v, t) =
∑

1≤`≤s
0≤x≤`−1
0≤y≤s−`
x+y=s−1

J`,s

(
`− 1

x

)(
s− `
y

)
(−1)`+y−x−1f(t)F (v)s−x−y−1F (t)n+y−s−1

=

s∑
`=1

J`,s

(
`− 1

`− 1

)(
s− `
s− `

)
(−1)s−`f(t)F (v)0F (t)n−`−1
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=

s∑
`=1

J`,s · (−1)s−`F (t)n−`−1f(t)

=

s∑
`=1

(
n− 1

s− 1

)
(n− s)

(
s− 1

`− 1

)
(−1)s−`F (t)n−`−1f(t)

=

s−1∑
`=0

(
n− 1

s− 1

)
(n− s)

(
s− 1

`

)
(−1)s−`−1F (t)n−`−2f(t)

=

(
n− 1

s− 1

)
(1− F (t))s−1(n− s)F (t)n−s−1f(t), (15)

where the third equality holds because

J`,s =

(
n− 1

`− 1

)(
n− `− 1

n− s− 1

)
(n− `) =

(n− 1)!

(n− `)!(l − 1)!

(n− `− 1)!

(s− `)!(n− s− 1)!
(n− `)

=
(n− 1)!

(l − 1)!(s− `)!(n− s− 1)!
=

(n− 1)!

(n− s)!(s− 1)!

(s− 1)!

(s− `)!(`− 1)!
(n− s)

=

(
n− 1

s− 1

)(
s− 1

`− 1

)
(n− s)

and the fifth equality because by the binomial theorem

s−1∑
`=0

(
s− 1

`

)
(−1)s−`−1F (t)s−`−1 = (1− F (t))s−1.

Analogously, for the second term in the parentheses of (13),

s−1∑
`=1

P`(v) · Is−1,`(v, t) =
s−1∑
`=1

J`,s−1 · (1− F (v))`−1f(t)F (t)n−s(F (v)− F (t))s−`−1

=
∑

1≤`≤s−1
0≤x≤`−1

0≤y≤s−`−1

J`,s−1 ·
(
`− 1

x

)(
s− `− 1

y

)
(−1)`+y−x−1f(t)F (v)s−x−y−2F (t)n+y−s,

where the second equality holds because by the binomial theorem

(1− F (v))`−1 =

`−1∑
x=0

(
`− 1

x

)
(−F (v))`−x−1 and

(F (v)− F (t))s−`−1 =
s−`−1∑
y=0

(
s− `− 1

y

)
F (v)s−`−y−1(−F (t))y.
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We claim that the terms with x+ y < s− 2 cancel out, i.e., that∑
1≤`≤s−1
0≤x≤`−1

0≤y≤s−`−1
x+y<s−2

J`,s−1

(
`− 1

x

)(
s− `− 1

y

)
(−1)`+y−x−1f(t)F (v)s−x−y−2F (t)n+y−s

=
∑

0≤z≤s−3
0≤y≤z

z−y+1≤`≤s−y−1

J`,s−1

(
`− 1

z − y

)(
s− `− 1

y

)
(−1)`+2y−z−1f(t)F (v)s−z−2F (t)n+y−s = 0.

Indeed, the first equality follows by setting z = x + y and observing that in both sums ` takes
exactly the values between x+ 1 = z − y + 1 and s− y − 1. The second equality holds because for
any z and y with 0 ≤ z ≤ s− 3 and 0 ≤ y ≤ z,

s−y−1∑
`=z−y+1

J`,s−1

(
`− 1

z − y

)(
s− `− 1

y

)
(−1)`+2y−z−1 =

r−y∑
`=z−y+1

J`,r

(
`− 1

z − y

)(
r − `
y

)
(−1)`+2y−z−1 = 0,

where the first equality follows by setting r = s − 1 and the second equality holds by (14). Thus,
actually,

s−1∑
`=1

P`(v) · Is−1,`(v, t) =
∑

1≤`≤s−1
0≤x≤`−1

0≤y≤s−`−1
x+y=s−2

J`,s−1

(
`− 1

x

)(
s− `− 1

y

)
(−1)`+y−x−1f(t)F (v)s−x−y−2F (t)n+y−s

=
s−1∑
`=1

J`,s−1

(
`− 1

`− 1

)(
s− `− 1

s− `− 1

)
(−1)s−`−1f(t)F (v)0F (t)n−`−1

=
s−1∑
`=1

J`,s−1 · (−1)s−`−1F (t)n−`−1f(t)

=

s−1∑
`=1

(
n− 1

s− 1

)
(s− 1)

(
s− 2

`− 1

)
(−1)s−`−1F (t)n−`−1f(t)

=
s−2∑
`=0

(
n− 1

s− 1

)
(s− 1)

(
s− 2

`

)
(−1)s−`−2F (t)n−`−2f(t)

=

(
n− 1

s− 1

)
(1− F (t))s−2(s− 1)F (t)n−sf(t), (16)

where the third equality holds because

J`,s−1 =

(
n− 1

`− 1

)(
n− `− 1

n− s

)
(n− `) =

(n− 1)!

(n− `)!(l − 1)!

(n− `− 1)!

(s− `− 1)!(n− s)! (n− `)

=
(n− 1)!

(l − 1)!(s− `− 1)!(n− s)! =
(n− 1)!

(n− s)!(s− 1)!

(s− 2)!

(s− `− 1)!(`− 1)!
(s− 1)

=

(
n− 1

s− 1

)(
s− 2

`− 1

)
(s− 1)
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and the fifth equality because by the binomial theorem

s−2∑
`=0

(
s− 2

`

)
(−1)s−`−2F (t)s−`−2 = (1− F (t))s−2.

By substituting (15) and (16) into (13), we conclude that

E
[
pV (v)

]
=

∫ v

0

k∑
s=1

αs

((
n− 1

s− 1

)
(1− F (t))s−1(n− s)F (t)n−s−1f(t)−(
n− 1

s− 1

)
(1− F (t))s−2(s− 1)F (t)n−sf(t)

)
bV (t) dt

=
k∑
s=1

αs

∫ v

0

dPs(t)

dt
bV (t) dt. (17)

The expected payment in an efficient equilibrium is again given by Lemma 3. We can thus
equate (17) with (5), take derivatives on both sides, and solve for bV (v) to obtain

bV (v) =

∑k
s=1 βs

dPs(v)
dv v∑k

s=1 αs
dPs(v)
dv

.

Bidding below bV (0) = 0 is impossible and bidding above bV (v̄) is dominated, so the claim follows
from Lemma 3.

E Proof of Lemma 6

By Corollary 1, bF (v) = A(v)/B(v) with A(v) =
∑k

s=1 βs
∫ v
0
dPs(t)
dt t dt and B(v) =

∑k
s=1 αsPs(v).

Writing the derivative as a limit of difference quotients, applying l’Hospital’s rule to each of the
two resulting terms, and respectively substituting x for 2δ and δ we obtain

dbF (v)

dv

∣∣∣∣
v=0

= lim
δ→0

(
A(2δ)/B(2δ)−A(δ)/B(δ)

δ

)
= lim

δ→0

A(2δ)

δ ·B(2δ)
− lim
δ→0

A(δ)

δ ·B(δ)

= lim
δ→0

A′(2δ) · 2
δ ·B′(2δ) · 2 +B(2δ)

− lim
δ→0

A′(δ)
δ ·B′(δ) +B(δ)

= lim
x→0

(∑k
s=1 βs

dPs(x)
dx · x

)
· 2(∑k

s=1 αs
dPs(x)
dx · x

)
+
(∑k

s=1 αsPs(x)
) −

lim
x→0

(∑k
s=1 βs

dPs(x)
dx · x

)
(∑k

s=1 αs
dPs(x)
dx · x

)
+
(∑k

s=1 αsPs(x)
) .

To analyze these limits we extend by 1 = (F (x)n−k−1 ·x)−1/(F (x)n−k−1 ·x)−1, factor (F (x)n−k−1 ·
x)−1 into the numerator and denominator, and consider each of the terms in the numerator and
denominator in turn.
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Using γ as a placeholder for α or β and replacing Ps(x) by its definition,∑k
s=1 γs ·

dPs(x)
dx · x

Fn−k−1(x) · x =
k∑
s=1

γs

[(
n− 1

s− 1

)
(n− s)F k−s(x)(1− F (x))s−1f(x)

−
(
n− 1

s− 1

)
(s− 1)F k−s+1(x)(1− F (x))s−2f(x)

]
=

k∑
s=1

s−1∑
`=0

γs(−1)`
(
n− 1

s− 1

)
(n− s)

(
s− 1

`

)
F (x)k−s+`f(x)

−
k∑
s=1

s−2∑
`=0

γs(−1)`
(
n− 1

s− 1

)
(s− 1)

(
s− 2

`

)
F (x)k−s+`+1f(v).

Similarly, ∑k
s=1 αsPs(x)

Fn−k−1(x) · x =
1

x
·
k∑
s=1

αs

(
n− 1

s− 1

)
F (x)k−s+1(1− F (x))s−1

=
F (x)

x
·
k∑
s=1

s−1∑
`=0

αs(−1)`
(
n− 1

s− 1

)(
s− 1

`

)
F (x)k−s+`.

Since limv→0 F (x)d = 0 for d > 0, the only terms that survive in the limit are those where the
exponent of F (x) is zero. For s ∈ {1, . . . , k} and ` ∈ {0, . . . , s− 1}, k − s+ ` = 0 only if s = k and
` = 0. For s ∈ {1, . . . , k} and ` ∈ {0, . . . , s−2}, k−s+`−1 6= 0. Using that limx→0 F (x)/x = f(0),
we thus obtain

dbF (v)

dv

∣∣∣∣
v=0

=
βk
(
n−1
k−1
)
(n− k)f(0) · 2

αk
(
n−1
k−1
)
(n− k)f(0) + αk

(
n−1
k−1
)
f(0)

−
βk
(
n−1
k−1
)
(n− k)f(0)

αk
(
n−1
k−1
)
(n− k)f(0) + αk

(
n−1
k−1
)
f(0)

=
2(n− k)βk

(n− k + 1)αk
− (n− k)βk

(n− k + 1)αk
=

n− k
n− k + 1

· βk
αk

as claimed.

F Proof of Lemma 7

By Corollary 1, bF (v) = A(v)/B(v) with A(v) =
∑k

s=1 βs
∫ v
0
dPs(t)
dt t dt and B(v) =

∑k
s=1 αsPs(v).

For n = k, by Lemma 6,

dbF (v)

dv

∣∣∣∣
v=0

=
A′(v)B(v)−A(v)B′(v)

B(v)2

∣∣∣∣
v=0

= 0.

Since

B(0) =
k∑
s=1

αsPs(0) ≥ αkPk(0) = αk(1− F (0))n−1 = αk > 0,

this implies that (
A′(v)B(v)−A(v)B′(v)

)∣∣∣
v=0

= 0.
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Thus

d2bF (v)

dv2

∣∣∣∣
v=0

=
(A′′(v)B(v)−A(v)B′′(v))B(v)2 − (A′(v)B(v)

B(v)4

∣∣∣∣
v=0

− A(v)B′(v))2B(v)B′(v)

B(v)4

∣∣∣∣
v=0

=
A′′(v)B(v)−A(v)B′′(v)

B(v)2

∣∣∣∣
v=0

.

We have already seen that B(0) > 0. Moreover, A(0) = 0 by the definition of A and B′′(0) < ∞
by assumption on the value distributions, so it suffices to show that

A′′(0) =

(
k∑
s=1

βs
d2Ps(v)

dv2
· v +

k∑
s=1

βs
dPs(v)

dv

)∣∣∣∣∣
v=0

≥ 0.

Also by assumptions on the value distributions, d2Ps(v)/dv2 < ∞ for all v, so the first term
vanishes. The second term is

k∑
s=1

βs
dPs(v)

dv

∣∣∣∣∣
v=0

=
k∑
s=1

βs

((
n− 1

s− 1

)
(n− s)F (v)n−s−1(1− F (v))s−1f(v)

−
(
n− 1

s− 1

)
(s− 1)F (v)n−s(1− F (v))s−2f(v)

)∣∣∣∣
v=0

= βk−1(k − 1)f(0)− βk(k − 1)f(0) ≥ 0,

where we have used the definition of Ps(v) and the fact that the only non-zero terms are those
where the exponent of F (v) is zero. Since βk−1 ≥ bk and f(0) > 0, this shows the claim.

References

[1] S. Alaei, H. Fu, N. Haghpanah, and J. D. Hartline. The simple economics of approximately
optimal auctions. In Proceedings of the 54th Symposium on Foundations of Computer Science,
pages 628–637, 2013.

[2] L. M. Ausubel and P. Milgrom. The lovely but lonely Vickrey auction. In P. Cramton,
Y. Shoham, and P. Steinberg, editors, Combinatorial Auctions, chapter 1, pages 17–40. MIT
Press, 2006.

[3] M. Babaioff, N. Immorlica, B. Lucier, and S. M. Weinberg. A simple and approximately optimal
mechanism for an additive buyer. In Proceedings of the 55th Symposium on Foundations of
Computer Science, pages 21–30, 2014.

[4] D. Bergemann and S. Morris. An introduction to robust mechanism design. Foundations and
Trends in Microeconomics, 8(3):169–230, 2013.

[5] K. Bhawalkar and T. Roughgarden. Welfare guarantees for combinatorial auctions with item
bidding. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 700–709, 2011.

26



[6] M. Bisson. Bing Ads auction explained: How bid, cost-per-click and quality score work to-
gether, 2015. URL http://advertise.bingads.microsoft.com/en-us/blog/27821/. Ac-
cessed October 26, 2015.

[7] Y. Cai and C. H. Papadimitriou. Simultaneous bayesian auctions and computational com-
plexity. In Proceedings of the 15th ACM Conference on Economics and Computation, pages
895–910, 2014.

[8] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou. On the efficiency of
equilibria in generalized second price auctions. In Proceedings of the 12th ACM Conference on
Electronic Commerce, pages 81–90, 2011.

[9] S. Chawla and J. Hartline. Auctions with unique equilibria. In Proceedings of the 14th ACM
Conference on Electronic Commerce, pages 181–196, 2013.

[10] S. Chawla, J. D. Hartline, and D. Nekipelov. Mechanism design for data science. In Proceedings
of the 15th ACM Conference on Economics and Computation, pages 711–712, 2014.
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