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Abstract

We study the optimization problem faced by a perfectly informed principal in a Bayesian
game, who reveals information to the players about the state of nature to obtain a desirable
equilibrium. This signaling problem is the natural design question motivated by uncertainty in
games and has attracted much recent attention. We present new hardness results for signaling
problems in (a) Bayesian two-player zero-sum games, and (b) Bayesian network routing games.

For Bayesian zero-sum games, when the principal seeks to maximize the equilibrium utility of
a player, we show that it is NP-hard to obtain an additive FPTAS. Our hardness proof exploits
duality and the equivalence of separation and optimization in a novel way. Further, we rule
out an additive PTAS assuming planted clique hardness, which states that no polynomial time
algorithm can recover a planted clique from an Erdős-Rényi random graph. Complementing
these, we obtain a PTAS for a structured class of zero-sum games (where obtaining an FPTAS
is still NP-hard) when the payoff matrices obey a Lipschitz condition. Previous results ruled
out an FPTAS assuming planted-clique hardness, and a PTAS only for implicit games with
quasi-polynomial-size strategy sets.

For Bayesian network routing games, wherein the principal seeks to minimize the average
latency of the Nash flow, we show that it is NP-hard to obtain a (multiplicative)

(

4

3
− ǫ

)

-
approximation, even for linear latency functions. This is the optimal inapproximability result
for linear latencies, since we show that full revelation achieves a 4

3
-approximation for linear

latencies.

1 Introduction

In Bayesian games, players’ payoffs depend on the state of nature, which may be hidden from the
players. Instead, players receive a signal regarding the state of nature which they use to form beliefs
about their payoffs, and choose their strategies. Thus the strategic decisions and payoffs of the
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players depend crucially on the information available from the signal they receive. Since applications
are often rife with uncertainty, understanding the effect of information available to players is a
fundamental problem in game theory; see, e.g., [Bla51, Ake70, Hir71, MW82, LRS10, BBM13].
Whereas for a single player, it is known that more information leads to better payoffs [Bla51], with
multiple players, outcomes are more complex and often counterintuitive with “more” (information)
not necessarily translating to “better” (payoffs). The latter was first observed by Hirshleifer [Hir71];
recently, Dughmi [Dug14] gave an example where neither full-revelation nor no-revelation is optimal.

While classical work has focused on the role of information in influencing strategies, the compu-
tational problem of designing optimal information structures for Bayesian games, commonly called
the signaling problem, has received much recent attention [BMS12, DIR14, EFG+12, GD13]. Here,
a perfectly-informed principal seeks to reveal selective information to the players to optimize some
function of the resulting equilibrium, such as the revenue, or payoff of a particular player. Two-
player zero-sum games and network routing games are natural starting points for investigating
the signaling problem due to their fundamental importance and appealing structure. They admit
a canonical, tractable choice of equilibrium; this also decouples the concerns of optimal-signaling
computation and equilibrium computation.

Our results We study signaling in two widely studied classes of games: two-player zero-sum
games, and network routing games. As in much of previous work, in our setting players share
the same prior belief on the state of nature, and signaling schemes are symmetric: the principal
reveals the same information to all players. Further, as previously, our results are for additive
approximations in Bayesian zero-sum games, and for multiplicative approximations in Bayesian
network routing games. Our main contribution is to derive hardness results for these classes of
games that close the gap between what is achievable in polytime (or quasi-polytime) and what is
intractable.

In Section 4, we consider Bayesian (two-player) zero-sum games, in which the principal seeks
to maximize the value of the game — the equilibrium payoff of the row player.1 First, we settle the
complexity of the signaling problem with respect to NP-hardness by showing that it is NP-hard
to obtain an additive FPTAS (Theorem 4.1). Previous work by Dughmi [Dug14] ruled out an
FPTAS assuming the planted clique hardness (see Conjecture 1). Thus, we replace an average-case
hardness assumption with the much more conventional worst-case assumption of NP-hardness.

Next, we consider the hardness of obtaining a PTAS for the signaling problem. Since there is a
quasi-polytime approximation scheme for signaling given by Cheng et al. [CCD+15], it is unlikely
that a PTAS for signaling is NP-hard. We show that assuming planted-clique hardness, there does
not exist a PTAS for the signaling problem (Theorem 4.4). Previously, the non-existence of a
PTAS was shown (assuming planted-clique hardness) only for implicit zero-sum games with quasi-
polynomial-size strategy sets [Dug14]. Complementing these hardness results, we devise a PTAS
for a structured class of Bayesian zero-sum games (Theorem 4.14), when the payoff matrices obey
a Lipschitz condition.

In Section 5, we consider the signaling problem in (nonatomic, selfish) Bayesian network routing
games, wherein the principal seeks to reveal partial information to minimize the average latency of
the equilibrium flow. We show that it is NP-hard to obtain any multiplicative approximation better
than 4

3 , even with linear latency functions (Theorem 5.1). This yields an optimal inapproximability

1In zero-sum games, this also captures the problem of maximizing a weighted combination of players’ equilibrium
payoffs.

2



result for linear latencies, since we show that full revelation obtains the price of anarchy of the rout-
ing game as its approximation ratio (Theorem 5.4), which is 4

3 for linear latency functions [RT02].
These are the first results for the complexity of signaling in Bayesian network routing games.

We also obtain hardness results for two related signaling problems in Bayesian zero-sum games
(Section 6). Firstly, we rule out a PTAS for computing the best prior (the maximum prior problem),
under the exponential time hypothesis (ETH). Previously, [CCD+15] studied a mixture-selection
problem and showed that in the absence of a property called noise-stability, obtaining a PTAS was
hard, assuming planted-clique hardness. Our result shows that in their setting a QPTAS is in fact
the best possible approximation obtainable, assuming the ETH. Finally, if the principal’s value
depends on the players’ strategies, and not just their payoffs, we show that obtaining a PTAS is
NP-hard (Theorem 6.1).

Our techniques Our results for Bayesian zero-sum games are obtained via two main ideas. Our
NP-hardness result, the PTAS for a structured class of games, and the PTAS-hardness for the
maximum prior problem, all follow by considering the signaling problem from a dual perspective.
The signaling problem can be written as a mathematical program (P) with linear objective and
constraints, but an infinite number of variables. Ignoring this issue, we can consider the dual
problem (D). Motivated by the separation problem for the dual, we consider the dual signaling
problem (Section 3). Our key insight is that the dual signaling problem is a rather useful tool for
both deriving hardness results and devising approximation algorithms. This usefulness stems from
the equivalence of separation and optimization [GLS93], which shows that an algorithm for the
separation problem can be used to solve the optimization problem and vice versa. We exploit and
build upon this equivalence. We prove that this equivalence holds despite the infinite-dimensionality
of (P), and furthermore, is approximation preserving: an FPTAS for signaling yields an FPTAS
for the dual signaling problem (Theorem 4.2), and a PTAS for the dual signaling problem yields a
PTAS for signaling (Theorem 4.10).

This equivalence paves the way for our results. Whereas, typically, an (approximate) separation
oracle is used to (approximately) solve the optimization problem, we exploit this equivalence in an
unorthodox fashion by also leveraging the hardness of the dual signaling problem to prove hardness
results for the signaling (i.e., primal optimization) problem. We show that it is NP-hard to obtain
an FPTAS for the dual signaling problem, and thus obtain that it is NP-hard to obtain an FPTAS
for the signaling problem. Notably, in contrast to the (weaker) planted-clique hardness result
in [Dug14] for the signaling problem, we obtain our NP-hardness result with minimal effort, a fact
that underscores the benefits of moving to the dual signaling problem.

On the positive side, we obtain a PTAS for the dual signaling problem for our structured class
of Bayesian zero-sum games, which thus yields a PTAS for the signaling problem for this class.
Interestingly, when cast in the mixture-selection framework of Cheng et al. [CCD+15], the signaling
problem for our structured class does not satisfy the noise-stability property stated in [CCD+15].
In the absence of noise-stability, [CCD+15] showed planted-clique hardness for obtaining a PTAS.
Our result bypasses this hardness result, and obtains a PTAS for a problem for which noise-stability
does not hold. Finally, we show that a PTAS for the maximum-prior problem yields a PTAS for
the dual signaling problem, and we rule out the latter via a simple, clean reduction from the best-
Nash problem and the recent result of Braverman et al. [BKW15]. This result also strengthens the
hardness result from [CCD+15] mentioned above, by showing that in the absence of noise-stability,
a QPTAS is the best-possible approximation for the mixture selection problem, assuming the ETH.
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Our second main idea, used to rule out a PTAS assuming planted-clique hardness, is a “direct”
reduction that combines and strengthens techniques from [Dug14, FNS07]. We utilize the planted
clique cover problem defined in [Dug14] — multiple cliques are now planted and one seeks to recover
a constant fraction of them — and shown to be at least as hard as the planted clique problem.
The idea is to set up a Bayesian zero-sum game where both the principal and the row player
must randomize over Ω(log n)-size high-density node sets for the signaling scheme to achieve large
value; recovering these large-density sets from a near-optimal signaling scheme allows one to solve
the planted-clique cover (and hence, the planted clique) problem. The FPTAS-hardness reduction
in [Dug14] creates a network security game (see Section 2) with payoffs of absolute value Ω(log2 n)
(or alternatively, a quasi-polynomial-size strategy set for the column player) to enforce the above
property. Payoffs of magnitude Ω(log n) seem necessary with this kind of approach, which therefore
only yields an O(1/log n) gap that is insufficient to rule out a PTAS. We abandon the use of network
security games and instead leverage a device from [FNS07] to ensure the above “large-spreading”
property. This idea is also used to show planted-clique hardness for the best-Nash problem [HK11];
however we are constrained to work with zero-sum games, and therefore need to apply this idea
carefully. A subtle, but crucial, technical issue is that we need to significantly tighten the planted-
clique recovery result in [Dug14]. To recover a specific planted clique S of size k = ω(log2 n) (in the
presence of other such planted cliques), [Dug14] requires a set T with |T | = Θ(k), |S ∩ T | = Ω(k),
whereas we only require that |T |, |S ∩ T | = Ω(log n), and this is crucial since we can only ensure
that spreading takes place over O(log n)-size sets.

Our hardness result for Bayesian routing games is a direct reduction from the problem of
computing edge tolls that minimize the total (latency + toll)-cost of the resulting equilibrium flow,
which is inapproximable within a factor of 4

3 .

Related work Whereas understanding the role of information in influencing strategies is a classi-
cal problem in game theory, the computational problem of designing optimal information structures
has been studied more recently. Much of this work has focused on signaling in auctions, where the
goal is to maximize revenue [EFG+12, BMS12, GD13] or social welfare [DIR14]. Dughmi [Dug14]
initiated the computational study of signaling in Bayesian zero-sum games, and obtained various
hardness results under the planted-clique hardness assumption. This work left open the question of
whether hardness results can be obtained under standard worst-case assumptions, such as P 6=NP,
a question that we answer in the affirmative. On the positive side, Cheng et al. [CCD+15] showed
that for Bayesian normal form games with a constant number of players and for general objectives of
the principal, an ǫ-approximate signaling scheme that maximizes the objective at an ǫ-approximate
Nash equilibrium can be computed in quasi-polynomial time. This work left open the question of
whether a PTAS is possible for signaling in Bayesian zero-sum games. We preclude this under the
planted-clique hardness assumption, and complementing this, design a PTAS for a structured class
of games. As noted earlier, the latter result does not follow from [CCD+15] since the resulting
signaling problem fails to have small noise stability.

The planted-clique problem was introduced by Jerrum [Jer92] and Kuc̆era [Kuč95], and despite
extensive efforts (see, e.g., [AV14, FR10, DGGP11] and the references therein), no polytime al-
gorithm is known for recovering cliques of size k = o(

√
n). There is a quasi-polytime algorithm

known when k ≥ 2 log2 n; on the other hand, various algorithmic strategies have been ruled out for
this problem [Jer92, FK03, FGR+13]. The planted-clique problem has thus been used in various
reductions (see, e.g., [HK11, JP00]), and is an example where an average-case hardness assumption
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has been used to derive hardness results.
Recently, Rubinstein [Rub15] has independently also obtained hardness results for signaling

in zero-sum games. He shows that there is no additive PTAS assuming ETH, and obtaining
a multiplicative PTAS is NP-hard. These results are orthogonal to ours, as there is no known
reduction between ETH and planted-clique hardness. Further, NP-hardness of a multiplicative
PTAS does not rule out an additive FPTAS.

In Bayesian network routing games, [VFH15] study the ability of signaling to reduce the average
latency. They define the mediation ratio as the average latency at equilibrium for the best (private)
signaling scheme, to the average latency for the social optimum, and give tight bounds on the
mediation ratio with graphs consisting of parallel links. On these simple networks, navigation
services (such as Waze or Google Maps) cannot do anything to improve the latency of the Nash
flow. Our work, in contrast, studies the computational complexity of obtaining the best (public)
signaling scheme in general graphs, and conclude that finding an

(

4
3 −ǫ

)

-approximation is NP-hard.

2 Preliminaries and notation

We use R+ for the set of nonnegative reals. For integer n, [n] := {1, 2, . . . , n}. If n ≥ 1, we use ∆n

to denote the (n − 1)-dimensional simplex {x ∈ R
n
+ :

∑

i xi = 1}. Let 1n ∈ R
n be the vector with

1 in all its entries, In×n be the n× n identity matrix, and ei be the vector containing 1 as its i-th
entry and 0 elsewhere.

Bayesian zero-sum games and signaling schemes A Bayesian zero-sum game is specified
by a tuple

(

Θ, {Aθ}θ∈Θ, λ
)

, where Θ = {1, . . . ,M} denotes the states of nature, and λ is a prior
distribution on the states of nature (thus λ ∈ ∆M ). We assume the row and column player has r, c
pure strategies respectively. For each state of nature θ ∈ Θ, Aθ ∈ [−1, 1]r×c specifies the payoffs of
the row player in a zero-sum game. Let µ ∈ ∆M be an arbitrary distribution over states of nature.
Then Aµ :=

∑

θ∈Θ µθAθ is the matrix of expected payoffs for the row player under distribution µ.
A signaling scheme is a policy by which a principal reveals (partial) information about the

state of nature. We focus on symmetric signaling schemes which reveals the same information to
all the players. A signaling scheme specifies a set of signals Σ and a map ϕ : Θ 7→ ∆|Σ| from the
states of nature Θ to distributions over the signals in Σ. Thus, ϕ(θ)σ is the probability that the
principal selects signal σ when the state of nature is θ. When the state θ is revealed, the principal
computes a signal σ ∼ ϕ(θ). Both players receive σ and correspondingly update their belief on the
state-distribution to µσ, where for each state θ,

µσθ =
Pr(σ|θ) Pr(θ)

Pr(σ)
=

ϕ(θ)σλθ
∑

θ′∈Θ ϕ(θ
′)σ

.

The players then, based on their posterior belief, play the zero-sum game given by Aµσ
.

Each signal σ thus yields a posterior distribution µσ ∈ ∆M , and these posterior distributions
form a convex decomposition of the prior λ =

∑

σ Pr(σ)µ
σ . As observed in [Dug14], specifying a

signaling scheme (Σ, ϕ) is in fact equivalent to specifying a distribution α over posterior distributions
µ ∈ ∆M that yield a convex decomposition of the prior λ. Thus, a signaling scheme can also be
described as α := (αµ)µ∈∆M

, where
∑

µ∈∆M
αµµ = λ. The signals Σ in such a signaling scheme

are described implicitly, and correspond to the posteriors µ for which αµ > 0. This will be our
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perspective on signaling schemes throughout. In Section 4.2, we will explicitly need to describe the
signals, and then use µσ for the posterior corresponding to signal σ and ασ for Pr(σ).

Let val : ∆M 7→ R be the principal’s objective function. For the bulk of our results, we consider
the objective function val(µ) for µ ∈ ∆M that evaluates to the row-player’s payoff at equilibrium in
the zero-sum game specified by Aµ. Note that val(µ) is unique, val(µ) := maxx∈∆r minj∈[c](x

TAµ)j ,
although there could be multiple Nash equilibria.

The quality of a signaling scheme α for a Bayesian zero-sum game is then given by
∑

µ∈∆M
αµ val(µ).

The signaling problem in a Bayesian zero-sum game is to find a signaling scheme α that maximizes
∑

µ∈∆M
αµ val(µ). Let opt(I) denote the value of the optimal signaling scheme for a Bayesian

zero-sum game I. We note that opt(I) is a concave function of the prior λ, since if λ1 and λ2

form a convex decomposition of λ, so do the optimal posteriors for λ1 and λ2. By Caratheodory’s
theorem, M +1 posteriors (equivalently, signals) suffice to specify any convex decomposition of the
prior. Together, this implies that an optimal signaling scheme can be specified by at most M + 1
posteriors.

We say that an algorithm for the signaling problem is an (additive) ε-approximation algorithm
if for every instance I the algorithm runs in polytime and returns a signaling scheme of value at
least opt(I)− ε. A polytime approximation scheme (PTAS) is an algorithm that runs in polytime
and returns a solution of value at least opt(I) − ε for every instance I and constant ε > 0; an
FPTAS is a PTAS whose running time for an instance I and parameter ε is poly

(

size of I, 1ε
)

.

Security games Some of our results utilize a class of zero-sum games that we call extended
security games, wherein the payoff matrix for state θ is given by

Aθ := A+ bθ1T
c + 1r(d

θ)T , where bθ ∈ R
r, dθ ∈ R

c. (1)

Let B and D be matrices having columns {b1, . . . , bM}, and {d1, . . . , dM} respectively. We obtain
the following expressions for Aµ and val(µ) for µ ∈ ∆M .

Aµ= A+ (Bµ)1T
c + 1r(µ

TDT ), val(µ) = max
x∈∆r

{

xTBµ+min
j∈[c]

(

xTA+ µTDT
)

j

}

. (2)

A special case of an extended security game (and the reason for this terminology) is the network
security game defined by [Dug14]. Given an undirected graph G = (V,E) with n = |V | and a
parameter ρ ≥ 0, the states of nature correspond to the vertices of the graph. The row and column
players are called attacker and defender respectively. The attacker and defender’s pure strategies
correspond to nodes of G. Let B be the adjacency matrix of G, and set A = DT = −ρIn×n. Then,
for a given state of nature θ ∈ V , and pure strategies a, d ∈ V of the attacker and defender, the
payoff of the attacker is given by eTaBeθ − ρ(eTa + eTθ )ed. The interpretation is that the attacker
gets a payoff of 1 if he selects a vertex a that is adjacent to θ. This payoff is reduced by ρ if the
defender’s vertex d lies in {θ, a}, and by 2ρ if d = θ = a.

Planted clique and planted clique cover Some of our hardness results are based on the
hardness of the planted-clique and planted clique cover problems. The latter problem was introduced
by Dughmi [Dug14].

Definition 2.1 (Planted clique cover problem PCover(n, p, k, r) [Dug14]). Let G ∼ G(n, p, k, r)
be a random graph generated by: (1) including every edge independently with probability p; and

6



(2) for i = 1, . . . , r, picking a set Si of k vertices uniformly at random, adding all edges having
both endpoints in Si. We call the Sis the planted cliques and p the background density. We seek
to recover a constant fraction of the planted cliques S1, . . . , Sr, given G ∼ G(n, p, k, r).

In the planted clique problem PClique(n, p, k), there is a single planted clique (r = 1) and the
goal is to recover this clique. The following hardness assumption for the planted-clique problem
has been used in deriving various hardness results.

Conjecture 1 (Planted-clique conjecture). For some k = k(n) satisfying k = ω(log n) and
k = o(

√
n), there is no probabilistic polytime algorithm that solves PClique

(

n, 12 , k
)

with constant
success probability.

The ellipsoid method. We utilize the ellipsoid method to translate hardness and approximation
results for the dual of the signaling problem to signaling.

Theorem 2.2 (Chapters 4, 6 in [GLS93]; Section 9.2 in [NY83]). Let X ⊆ R
n be a polytope

described by constraints having encoding length at most L. Suppose that for each y ∈ R
n, we can

determine in time poly(size of y, L) if y /∈ X and if so, return a hyperplane of encoding length at
most L separating y from X.

(i) The ellipsoid method can find a point x ∈ X or determine that X = ∅ in time poly(n,L).

(ii) Let h : R
n 7→ R be a concave function and K = supx∈X h(x)− infx∈X h(x). Suppose we have

a value oracle for h that for every x ∈ X, returns ψ(x) satisfying |ψ(x) − h(x)| ≤ δ. There
exists a polynomial p(n) such that for any ǫ ≥ p(n)δ, we can use the shallow-cut ellipsoid
method to find x∗ ∈ X such that h(x∗) ≥ maxx∈X h(x) − 2ǫ (or determine X = ∅) in time
T = poly

(

n,L, log(Kǫ )
)

and using at most T queries to the value oracle for h.

3 The dual signaling problem

The signaling problem can be formulated as the following mathematical program,

max
∑

µ∈∆M

αµ val(µ) s.t.
∑

µ∈∆M

αµµθ = λθ for all θ ∈ Θ, α ≥ 0. (P)

Notice that any feasible α must also satisfy
∑

µ∈∆M
αµ = 1; hence, α is indeed a distribution over

∆M , and a feasible solution to (P) yields a signaling scheme. Let opt(λ) denote the optimal value
of (P), and note that this is a concave function of λ. Although (P) has a linear objective and linear
constraints, it is not quite a linear program (LP) since there are an infinite number of variables.
Ignoring this issue for now, we consider the following dual of (P).

min wTλ s.t. wTµ ≥ val(µ) for all µ ∈ ∆M , w ∈ R
M . (D)

The separation problem for (D) motivates the following dual signaling problem.

Definition 3.1 (Dual signaling with precision parameter ε). Given a Bayesian zero-sum game
(

Θ, {Aθ}θ∈Θ, λ
)

, w ∈ R
M , and ε > 0, distinguish between:

(i) val(µ) ≥ wTµ+ ε for some µ ∈ ∆M ; if so return µ ∈ ∆M s.t. val(µ) ≥ wTµ− ε;
(ii) val(µ) < wTµ− ε for all µ ∈ ∆M .

The threshold signaling problem is the special case of dual signaling where w = η1M for some
η ∈ R.

Notice that the dual signaling problem is unconstrained: λ plays no role.

7



4 Bayesian zero-sum games

We now prove the following results for signaling in Bayesian zero-sum games. We show that the sig-
naling problem does not admit an FPTAS unless P=NP (Theorem 4.1) and does not admit a PTAS
assuming the hardness of the planted-clique problem (Theorem 4.4). Complementing these hardness
results, we present a PTAS for a structured class of extended security games (Theorem 4.14).

4.1 NP-hardness of obtaining an FPTAS

Theorem 4.1 (Corollary of Theorems 4.2 and 4.3). There is no FPTAS for the signaling problem,
even for network security games, unless P=NP.

Theorem 4.2. There is a polynomial q(M) such that an ε
q(M)-approximation algorithm B for the

signaling problem I yields a polytime algorithm for the threshold signaling problem (I, η1M , ε).
Thus, an FPTAS for the signaling problem yields an FPTAS for the threshold signaling problem.

Proof. Let
(

Θ, {Aθ}, λ
)

, η1M , ε be the input to the threshold signaling problem, with precision
parameter ε. Note that for any µ ∈ ∆M , we have −1 ≤ opt(µ) ≤ 1 since |Aθ

i,j| ≤ 1 for all θ, i, j.
Let p(M) be the polynomial given by part (ii) of Theorem 2.2. Set q(M) = p(M) + 1. We utilize
part (ii) of Theorem 2.2 with X = ∆M , δ = ε

q(M) , h(·) = opt(·) (which is concave, as noted

earlier), K = 2, and using B as the imperfect value oracle, to find z ∈ ∆M in polytime such that
opt(z) ≥ maxµ∈∆M

opt(µ) − p(M)δ. We run B on the prior z to obtain a signaling scheme α of
value v ≥ opt(z)− ε. If v ≥ η, then we return that we are in case (i) and one of the points µ ∈ ∆M

with αµ > 0 must satisfy val(µ) ≥ η. If v < η, then we have maxµ∈∆M
val(µ) ≤ maxµ∈∆M

opt(µ) <
η +

(

p(M) + 1)δ, so we return that we are in case (ii). �

Theorem 4.3. There is no FPTAS for the threshold signaling problem, even for network security
games, unless P=NP.

Proof. The proof follows readily via a reduction from the balanced complete bipartite subgraph
(BCBS) problem [GJ79], which illustrates the convenience of working with the dual signaling prob-
lem. In BCBS, given a bipartite graph G = (V ∪W,E) and an integer r ≥ 0, we want to determine
if G contains Kr,r (i.e., an r×r biclique). Given a BCBS instance, set ε = 1

2n8 , where n = |V |+|W |,
and η = 1 − (2n + 1)ε. We create a Bayesian network security game by letting G be the graph
in the network security game, and setting ρ = 2rnε. Recall that this means that states of nature
correspond to nodes of G, so Θ = V ∪W , and the payoff matrix for a distribution µ ∈ ∆Θ is given
by (2) where B is the adjacency matrix of G and A = DT = −ρIn×n. This creates an instance of
the threshold signaling problem with precision parameter ε; the prior λ is irrelevant. We show that
solving this instance would decide the BCBS-instance.

If G has the required subgraph V ′, W ′, set µv = 1/r for all v ∈ V ′ and xv = 1/r for all v ∈W ′.
Then, by (2), we have val(µ) ≥ xTBµ − ρ‖µ + x‖∞ ≥ 1− ρ/r = η + ε. where we have xTBµ = 1
since V ′, W ′ form a complete bipartite subgraph.

Suppose there exists µ ∈ ∆M so that val(µ) ≥ η− ε. We show then that G contains Kr,r. Let x
be the equilibrium strategy of the attacker, so val(µ) = xTBµ−ρ‖µ+x‖∞. Let V ′ := {v ∈ V ∪W :
µv ≥ 1/n3} and W ′ := {v ∈ V ∪W : xv ≥ 1/n3}. Then

∑

v∈V ′ µv = 1 − ∑

v 6∈V ′ µv > 1 − 1/n2.

Similarly
∑

v∈W ′ xv > 1 − 1/n2. Every vertex in V ′ must be adjacent to every vertex in W ′,
otherwise xTBµ ≤ 1− 1/n6 < η. Thus, V ′ and W ′ must be in different partitions. Assume V ′ ⊆ V
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and W ′ ⊆ W . For each vertex v, µv + xv ≤ (1+1/n)
r , otherwise val(µ) < 1 − (2n + 2)ε. Hence,

|V ′| ≥
∑

v∈V ′ µv

(1+1/n)/r > r 1−1/n2

(1+1/n) = r(1−1/n), and therefore |V ′| ≥ r. Similarly |W ′| ≥ r, and this yields
the r × r biclique. �

We conjecture that Theorem 4.2 can, in fact, be strengthened to show that an ε-approximation
for signaling yields an O(ε)-approximation for threshold signaling, so that a PTAS for signaling
yields a PTAS for threshold signaling. This would rule out a sub-quasipolytime approximation

scheme (i.e., an nΩ̃(log1−o(1) n)-time approximation scheme) for signaling under the (deterministic)
exponential time hypothesis (ETH), since we prove in Section 6 that there is no sub-quasi-PTAS
for threshold signaling assuming ETH.

This would be an optimal hardness result since a quasi-PTAS follows from [CCD+15]. Recently,
Rubinstein [Rub15] obtains this hardness result via a direct reduction that builds upon ideas in
[AIM14]. However, tightening part (ii) of Theorem 2.2 would give a much simpler proof. We leave
this as an intriguing open question. Below, we rule out a PTAS for signaling under an orthogonal
hardness assumption.

4.2 Planted-clique hardness of obtaining a PTAS

Theorem 4.4. There is a constant ε0 such that, assuming the planted-clique hardness conjecture
(Conjecture 1), there is no ε0-approximation for the signaling problem in Bayesian zero-sum games.

Our hardness result strengthens the one in [Dug14], which rules out an FPTAS assuming the
planted-clique conjecture. The reduction therein creates a network security game from a graph
G ∼ G

(

n, 12 , k, r
)

(see Section 2). The idea is that if a signaling scheme achieves value close to 1,
then it must place a large weight on posteriors and attacker mixed-strategies that randomize over a
large set of nodes. Further, the posterior and attacker must essentially identify dense components of
G, as otherwise the attacker’s value would be close to the background density 1

2 . As noted earlier,
a limitation of this type of construction is that the parameter ρ used in the network security
game needs to be roughly Ω(log n) to ensure that the posterior and the attacker’s mixed strategies
are supported on an Ω(log n)-size set of nodes. This only yields an Θ

(

1
polylog(n)

)

gap, which is
insufficient to rule out a PTAS. We overcome this obstacle by moving away from a network security
game, and instead exploiting an idea of [FNS07] to eliminate all equilibria of O(log n)-size support
from the game. Theorem 4.4 follows immediately by combining Lemmas 4.5 and 4.6.

Lemma 4.5. Let ǫ > 0, k = k(n) satisfy k = ω(log n) and k = o(
√
n), and r = Θ(n/k). Suppose

there is a polytime algorithm that takes as input G ∼ G
(

n, 12 , k, r
)

with planted cliques {Si}, and
outputs a family T ⊆ 2V of clusters satisfying the following with constant probability, for any
constant c3 ≥ 103 :

for an ǫ-fraction of {Si}, ∃T ∈ T with |T ∩ Si| ≥ max
{

ǫ|T |, c3 log n
}

. (*)

Then there is a polynomial-time algorithm for PClique
(

n, 12 , k
)

having constant success probability.

Lemma 4.6. Let k = k(n) satisfy k = ω(log n) and k = o(
√
n), and r = 5n

k . There is a polynomial-
time randomized reduction that takes a graph G ∼ G

(

n, 12 , k, r
)

as input and outputs a Bayesian
zero-sum game such that the following hold with high probability.

(Completeness) There is a signaling scheme having value at least 0.99.

9



(Soundness) Given a signaling scheme of value at least 0.97, one can obtain in polytime a collection
T of clusters satisfying condition (*) in Lemma 4.5.

Above, and throughout this section, when we say with high probability, we mean success prob-
ability 1− 1

poly(n) . The Bayesian zero-sum game we construct always admits a signaling scheme of
large value; however finding a near-optimal signaling scheme in polytime would refute the planted-
clique conjecture. Lemma 4.5 (proved in Appendix A) is similar to a planted-clique recovery result
proved in [Dug14]. While we utilize similar ideas, our result works under much weaker require-
ments. Our lemma allows clusters in T to have size Θ(log n) — which is crucial for Lemma 4.6 —
whereas in [Dug14], the clusters need to have size ω(log2 n). In the rest of this section, we prove
Lemma 4.6. We use the following parameters.

Z = 20, c2 = 105, c1 = c2 log(4Z/3) + 2, N = nc1 . (3)

To keep the presentation simple, we give a construction where Aθ
i,j ∈ [−Z,Z] (as opposed to

[−1, 1]). Let AG denote the (n × n) adjacency matrix of G = (V,E). We split G into G− and
G+ with corresponding adjacency matrices A−

G and A+
G where G− are the background edges and

G+ are the clique edges added in steps (1) and (2) of Definition 2.1 respectively. The states of
nature and the row-player’s strategies correspond to the nodes of G. The prior λ is 1n/n, thus each
state of nature (each vertex) is equally likely to occur. For every θ ∈ Θ = V , the payoff matrix
Aθ ∈ [−Z,Z]n×(2N+1) is given by [aθ B 1n(d

θ)T ], which are defined as follows:

(1) aθ is the θ-th column of the adjacency matrix AG, so a
θ
i = 1 if (i, θ) ∈ E and is 0 otherwise.

(2) B is an n×N matrix, where each Bi,j is set independently to 2− Z with probability 3
4Z , and

2 otherwise.

(3) dθ ∈ [−Z,Z]N , where each entry dθj is set independently to 2 − Z with probability 3
4Z , and 2

otherwise.

We use Row and Col to denote the row and column players respectively. Let D be the n×N
matrix having rows (dθ)T for θ ∈ Θ.

To gain some intuition, observe that for a posterior µ and Row’s mixed strategy x, the row
vector xTAµ yielding Col’s payoffs is [xTAGµ xTB µTD]. Thus, if Col plays action 1 (with
probability 1), the expected payoff of Row is equal to xTAGµ. If µ and x are uniform over
S, T ⊆ V , the expected payoff is exactly

bi-densityG(S, T ) :=
|{(u, v) ∈ S × T : {u, v} ∈ E}|

|S||T | .

The remaining 2N pure strategies of Col are used to force the principal and Row to choose a
posterior µ and mixed strategy x respectively that are “well spread out”.

The average of the entries in any column of B or D is 5
4 > maxi a

θ
i . Exploiting this, Claim 4.7(i)

implies that if x and µ both randomize uniformly over a large set of vertices, Col plays column 1.
The completeness proof now follows from the oft-used idea of (roughly speaking) choosing posteriors
and mixed strategies for Row that randomize uniformly over the planted cliques. Conversely, if x
or µ has support of size at most c2 log n, then Claim 4.7(ii) implies that Col can play some column
of B or D and make val(µ) negative Thus, in order to obtain value close to 1, both µ and Row

have to randomize over Ω(log n)-size sets of nodes. Using this, one can carefully extract a collection
of node-sets satisfying condition (*) of Lemma 4.5. This yields the soundness proof.

The following properties about the above construction will be useful.
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Claim 4.7. Let R ⊆ V . (i) If |R| = ω(log n), with high probability, for every j ∈ [N ], 1
|R|

∑

i∈RBi,j >

1 and 1
|R|

∑

i∈RDi,j > 1. (ii) If |R| ≤ c2 log n, with high probability, ∃j, k ∈ [N ] such that
Bi,j = 2− Z = Di,k for all i ∈ R.
Proof. We first prove (i). The proof is a standard application of Chernoff bounds, and is also
essentially shown in [HK11]. We prove the statement for B; the argument for D is identical. Fix a

column j ∈ [N ]. We have E
[

∑
i∈R Bi,j

|R|
]

= 5
4 , where the expectation is over the random construction

of B. Since |R| = ω(log n), the size of R is large enough so that Chernoff bounds imply that

Pr
[

∑
i∈R Bi,j

|R| < 9
8

]

≤ 1
2N poly(n) . The union bound over all N columns yields the claim.

We now prove (ii). The proof again follows from Chernoff bounds, and is the key insight
in [FNS07] (also utilized in [HK11]). Fix some R ⊆ V with |R| = c2 log n. We prove the statement
for B; the proof for D is identical. For a given j ∈ [N ], we have Pr[∃i ∈ R s.t. Bi,j 6= 2 − Z] =

1−
(

3
4Z

)|R|
. So

Pr[∀j ∈ [N ],∃i ∈ R s.t. Bi,j 6= 2− Z] =
[

1−
( 3

4Z

)|R|]N
.

Taking the union bound over all R ⊆ V with |R| = c2 log n, we obtain

Pr
[

∃R ⊆ V with |R| = c2 log n s.t. no j ∈ [N ] satisfies Bi,j = 2− Z for all i ∈ R
]

≤
(

n

c2 log n

)[

1−
(

3
4Z

)|R|
]N

≤ exp
(

c2 log
2 n−N

(

3
4Z

)c2 logn
)

≤ 1− 1/poly(n). �

Lemma 4.8 (Proposition B.2 in [Dug14] quantified). Let ε > 0, and c ≥ 24 · 2.1 · max
{

1, 1+ε
ε2

}

.
For all n ≥ 2, we have

Pr
[

∃S, T ⊆ V with |S|, |T | ≥ c log n, bi-densityG−(S, T ) >
1 + ε

2

]

≤ 2

n3

Lemma 4.9 (Corollary of Lemma 4.8). For c2 = 105 and ǫ = 0.03 With high probability, for all
S, T ⊆ V with |S|, |T | ≥ c2 log n, bi-densityG−(S, T ) ≤ 1+ǫ

2 .

4.2.1 Completeness proof in Lemma 4.6

We use a deterministic signaling scheme that groups together states of nature in the same planted
clique. Let S1, . . . , Sr be the planted cliques in G in some arbitrary order. Let S′

i = Si \
⋃

1≤j<i Sj
for i ∈ [r] be the set of vertices in Si that do not appear in earlier cliques. Define A := V \⋃j Sj as

the remaining vertices. Finally, S′
0 = A ∪

{

v ∈ S′
i : |S′

i| < k
104

}

. Our signaling scheme is (Σ, α, µ)

where the set of signals is Σ = {0} ∪
{

i ∈ [r] : |S′
i| ≥ k

104

}

. For each signal σ, ασ = |S′
σ |
n and µσ is

the uniform distribution over S′
σ. Note that the signaling scheme is independent of B and D.

For posterior µσ, where σ 6= 0, consider the strategy xσ where Row plays the uniform distri-
bution on S′

σ. Claim 4.7(i) implies that Col’s best response to xσ is to play column 1. Therefore,

val(µσ) ≥ bi-density(S′
σ, S

′
σ) = 1− 1

|S′
σ| ≥ 1− 104

k . With r = 5n
k , we have |A| ≤ e0.1 ·E[|A|] ≤ e−4.9n

with high probability due to standard Chernoff bounds (since the events {v ∈ A}v∈V are negatively
correlated). Therefore, for suitably large n, with high probability, |S′

0| ≤ |A| + 5n
k · k

104
≤ e−4.7n.

So, with high probability, the signaling scheme has value at least
∑

σ∈Σ∩[r] ασ

(

1 − 104

k

)

≥ (1 −
e−4.7)

(

1− 104

k

)

≥ 0.99.
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4.2.2 Soundness proof in Lemma 4.6

For a signal σ ∈ Σ with corresponding posterior µσ, let xσ denote Row’s equilibrium strategy
for Aµσ . We first filter out the set of “useful” signals, i.e., those with relatively high value. Let
Σ1 = {σ ∈ Σ : val(µσ) ≥ 1−√

ǫ}. We show that for all σ ∈ Σ1, µσ and xσ place a significant mass
over a large set of nodes, and use this insight to extract clusters. Fix ǫ = 0.03. For every signal

σ ∈ Σ1, define Tσ =
{

i : eTi AGµσ ≥ 1− Z
√
ǫ

Z−2

}

, and let x̃σ be the uniform distribution on Tσ. We

output T = {Tσ : σ ∈ Σ1}.
We show that T satisfies condition (*) in Lemma 4.5. The value of the signaling scheme is

∑

σ∈Σ ασ val(µσ) ≥ 1 − ǫ. Noting that val(µ) ≤ 1 for all µ, by Markov’s inequality, we have
α(Σ1) ≥ 1 − √

ǫ. (Given a vector v ∈ R
k, and S ⊆ [k], we use v(S) to denote

∑

i∈S vi.) Assume
that the high probability event in Claim 4.7(ii) happens.

Fix σ ∈ Σ1. For any R ⊆ V with |R| ≤ c2 log n, we must have xσ(R) ≤ 2
Z and µσ(R) ≤ 2

Z .
Otherwise, suppose xσ(R) >

2
Z (the argument for µσ is similar). Then, considering the column j

of B having Bi,j = 2−Z for all i ∈ R, we have
∑

i∈[n](xσ)iBi,j ≤ (2−Z)xσ(R)+2
(

1−xσ(R)
)

< 0,

which implies that val(µσ) < 0. Now since 1 − √
ǫ ≤ val(µσ) ≤ 1, by the definition of Tσ and

Markov’s inequality, we have xσ(Tσ) ≥ 2
Z , and hence |Tσ | ≥ c2 log n. We now switch from xσ to

x̃σ in order to relate the value of the signaling scheme to bi-density and deduce that T satisfies
condition (*). As before, G− are the background edges and G+ are the clique edges added in steps
(1) and (2) of Definition 2.1 respectively, and A−

G and A+
G are the corresponding adjacency matrices.

Let Ai
G be the adjacency matrix of the clique Si. Note that AG ≤ A−

G +A+
G ≤ A−

G +
∑r

i=1A
i
G.

Let R denote the c2 log n largest entries in x̃TσA
−
G, and let µ̃σ be the uniform distribution on

R. Since µ̃σ and x̃σ are uniform distributions over R and Tσ respectively (which have size at least
c2 log n), we have x̃TσA

−
Gµ̃σ = bi-density(Tσ, R) ≤ 1+ǫ

2 due to Lemma 4.9. Moreover, µσ(R) ≤ 1
10 ,

and since the maximum entry of x̃TσA
−
G outside of R is at most the average entry in R, we have

x̃TσA
−
Gµσ ≤ 1

10 + 9
10 · x̃TσA−

Gµ̃σ < 0.6.

Finally, we also have
∑

σ∈Σ1
ασ(x̃

T
σAGµσ) ≥ (1−√

ǫ)
(

1− Z
√
ǫ

Z−2

)

> 0.85. Therefore,

1

4
<

∑

σ∈Σ1

ασx̃
T
σ (AG −A−

G)µσ ≤
∑

σ∈Σ1

ασ

r
∑

i=1

x̃TσA
i
Gµσ

=

r
∑

i=1

∑

σ∈Σ1

ασµσ(Si)
|Tσ ∩ Si|

|Tσ|
≤

r
∑

i=1

(

∑

σ∈Σ1

ασµσ(Si)
)

(

max
T∈T

|T ∩ Si|
|T |

)

(∗∗)
≤

r
∑

i=1

|Si|
n

(

max
T∈T

|T ∩ Si|
|T |

)

=
5

r

r
∑

i=1

(

max
T∈T

|T ∩ Si|
|T |

)

.

Inequality (∗∗) follows since for every v ∈ Θ, we have
∑

σ∈Σ1
ασ(µσ)v is at most

∑

σ∈Σ ασ(µσ)v =

λv = 1
n . Therefore 1

r

∑r
i=1

(

maxT∈T
|T∩Si|
|T |

)

≥ 1
20 . This implies that at least a 1

39 -fraction of

S1, . . . , Sr satisfy maxT∈T
|T∩Si|
|T | ≥ 1

40 . Since |T | ≥ c2 log n for all T ∈ T , T satisfies condition (*)
in Lemma 4.5.

4.3 A PTAS for structured extended security games

We now devise a PTAS for a structured class of extended security games (Theorem 4.14). First,
we reduce the signaling problem to the dual signaling problem using the ellipsoid method (Theo-
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rem 4.10). This reduction applies to all Bayesian zero-sum games. Next, we devise a PTAS for the
dual signaling problem for our class of extended network security games (Theorem 4.14).

Theorem 4.10 (Dual signaling to signaling). A polytime algorithm for the dual signaling problem
with precision ε gives a 5ε-approximation algorithm for the signaling problem. In particular, a
PTAS for the dual signaling problem yields a PTAS for the signaling problem.

To prove Theorem 4.10, we utilize the ellipsoid method, specifically, part (i) of Theorem 2.2,
adapting the standard transformation from separation to optimization to take into account the
additive error in the dual separation problem. To circumvent the technical difficulties caused
by the infinite-dimensionality of (P), we approximate (P) by a finite-dimensional LP, where we
restrict the variables in (P), and, analogously the constraints in (D) to a suitable δ-net of ∆M . Let
I =

(

Θ, {Aθ}, λ
)

be a Bayesian zero-sum game. Recall that |Aθ
i,j| ≤ 1 for all θ, i, j. For δ ∈ (0, 1]

with 1/δ ∈ Z, and µ ∈ ∆M , define

Sδ :=
{

µ′ ∈ ∆M : µ′θ/δ ∈ Z ∀θ ∈ Θ
}

, Sδ(µ) := {µ′ ∈ Sδ : ‖µ− µ′‖∞ ≤ δ}.
Claim 4.11. Fix µ ∈ ∆M . For any µ′ ∈ Sδ(µ), we have | val(µ) − val(µ′)| ≤ Mδ. Hence, we can
efficiently find µ̂ ∈ Sδ(µ) such that wT µ̂− val(µ̂) ≤ wTµ− val(µ) +Mδ.

Proof. The entries in Aµ and Aµ′
differ by at most Mδ. Hence for every mixed-strategy profile

(x, y) ∈ ∆r ×∆c, we have |xT (Aµ −Aµ′
)y| ≤Mδ, and therefore | val(µ)− val(µ′)| ≤Mδ.

We can efficiently find µ̂ ∈ Sδ(µ) that minimizes wTµ′ over µ′ ∈ Sδ(µ) since this can be cast as
an LP. Then, we have wT µ̂− val(µ̂) ≤ wTµ− (val(µ)−Mδ). �

We work with the following finite-dimensional counterparts of (P) and (D) and argue that this
approximation only yields a small error.

max
∑

µ∈Sδ

αµ val(µ)

s.t.
∑

µ∈Sδ

αµµ = λ; α ≥ 0.
(Pδ)

min wTλ

s.t. wTµ ≥ val(µ) ∀µ ∈ Sδ.
(Dδ)

Since λ ∈ conv(Sδ(λ)), (Pδ) is feasible for any λ ∈ ∆M . Clearly, any solution to (Pδ) gives a
solution to (P) of equal value. The converse is also approximately true.

Lemma 4.12. Any feasible solution α to (P) of value v gives a solution to (Pδ) of value at least
v −Mδ. Hence, opt (Pδ) ≥ opt (P)−Mδ.

Proof. This is an easy consequence of Claim 4.11. For any µ ∈ S, let τ (µ) ∈ ∆Sδ(µ) be some convex
decomposition of µ. Then

λθ =
∑

µ∈S
αµµθ =

∑

µ∈S
αµ

∑

µ′∈Sδ(µ)

τ
(µ)
µ′ µ

′
θ =

∑

µ′∈Sδ

µ′θ
∑

µ∈S
αµτ

(µ)
µ′ .

Thus, setting α′
µ′ :=

∑

µ∈S αµτ
(µ)
µ′ for all µ′ ∈ Sδ, we obtain that α′ is a feasible solution to (Pδ).

To compare the objective values of α and α′, note that
∑

µ∈S
αµ val(µ) =

∑

µ

αµ val(µ)
∑

µ′∈Sδ(µ)

τ
(µ)
µ′ ≤

∑

µ

αµ

∑

µ′∈Sδ(µ)

τ
(µ)
µ′

(

val(µ′) +Mδ
)

=
∑

µ′∈Sδ

α′
µ′ val(µ′) +Mδ . �
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Now the basic idea is to solve (Dδ) with the ellipsoid method using the algorithm B to obtain
a separation oracle for (Dδ) with an additive error. In the course of solving (Dδ), we also obtain a
polynomial-size LP consisting of the violated inequalities of (Dδ) returned by the separation oracle
during the execution of the ellipsoid method whose optimal value is the same as opt (Dδ). Taking
the dual of this compact LP yields an LP of the same form as (Pδ) but with αµ variables for only
polynomially many points in Sδ; solving this yields the desired approximate signaling scheme. The
additive error in the separation oracle for (Dδ) complicates the arguments slightly.

We now discuss the details. Set δ = ε/M . Let B be the algorithm for solving the dual signaling
problem with precision ε. For a given ν, ǫ ∈ R, consider the set Q(ν, ǫ) := {w ∈ R

M : wTλ ≤
ν, wTµ ≥ val(µ) − ǫ ∀µ ∈ Sδ}. Note that the constraints of Q(ν, ǫ) have encoding length
poly

(

M, size of (λ, ν, δ, ǫ)
)

. For a given ν and w ∈ R
M , we can determine if w ∈ Q(ν, ε), or find a

hyperplane separating w from Q(ν,−2ε), as follows. We first check if wTλ ≤ ν and if not, then
return this as the separating hyperplane. We run B on the input (I, w, ε). If B determines that
we are case (i), then it also returns µ ∈ ∆M with val(µ) ≥ wTµ − ε. By Claim 4.11, we can then
find µ̂ ∈ Sδ(µ) such that wT µ̂ − val(µ̂) ≤ 2ε, so we can use wT µ̂ − val(µ̂) ≥ 2ε to separate w from
Q(ν,−2ε). If B determines that we are in case (ii), then we are certainly not in case (i), so we have
val(µ) ≤ wTµ+ ε for all µ ∈ ∆M , which implies that w ∈ Q(ν, ε).

So for a fixed ν, in polynomial time, the ellipsoid method either certifies that Q(ν,−2ε) = ∅
or returns a point in Q(ν, ε). We find the smallest ν (via binary search) such that the latter case
happens; call this value ν∗. Then,

ν∗ ≥
(

min wTλ s.t. wTµ ≥ val(µ)− ε ∀µ ∈ Sδ

)

= opt (Pδ)− ε.

The equality above follows since the dual of the minimization LP is above is (Pδ) with the objective
function changed to

∑

µ∈Sδ
αµ

(

val(µ) − ε
)

=
∑

µ∈Sδ
αµ val(µ) − ε. For any ǫ > 0, running the

ellipsoid method for ν = ν∗ − ǫ yields a polynomial-size certificate for the emptiness of Q(ν∗ −
ǫ,−2ε) consisting of the inequality wTλ ≤ ν∗ − ǫ and the polynomially many violated inequalities
wTµ − val(µ) ≥ 2ε returned during the execution of the ellipsoid method. Let T ⊆ Sδ be the
polynomial-size set of points for which we obtain these violated inequalities. By duality,

ν∗ − ǫ <
(

minwTλ s.t. wTµ ≥ val(µ) + 2ε ∀µ ∈ T
)

= 2ε+
(

max
∑

µ∈T
αµ val(µ) s.t.

∑

µ∈T
µαµ = λ, α ≥ 0

)

.

Thus, solving the polynomial-size LP inside the parentheses yields a signaling scheme of value at
least opt (Pδ) − 3ε − ǫ, so taking ǫ = ε and using Lemma 4.12, we obtain a signaling scheme of
value at least opt (P)− 5ε. �

Definition 4.13 (γ-Lipschitz). A matrix A ∈ R
r×c is γ-Lipschitz if ‖xTA−x′TA‖∞ ≤ γ‖x−x′‖∞

for all x, x′ ∈ ∆r. An extended security game specified by matrices A,B,D (see (1), (2)) is
γ-Lipschitz if DT is γ-Lipschitz. We place no constraints on the matrices A and B.

Observe that an extended security game specified by matrices A,B,D (see (1), (2)) is γ-Lipschitz
if DT is γ-Lipschitz. We place no constraints on the matrices A and B. We design a simple
PTAS for the dual signaling problem on γ-Lipschitz extended security games, for constant γ. By
Theorem 4.10, this yields a PTAS for the signaling problem for γ-Lipschitz extended security games.
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Theorem 4.14. There is a PTAS for the dual signaling problem on γ-Lipschitz extended security
games. This yields a PTAS for the signaling problem on γ-Lipschitz extended-security games.

Proof. Given Theorem 4.10, we only need to prove the first statement. Let (I, w, ε) be the input
to the dual signaling problem where I is a γ-Lipschitz extended security game. Set ε′ = ε/γ. Our
algorithm simply finds µ̂ = argmaxµ∈Sε′

(

val(µ)−wTµ
)

by exhaustive search. If val(µ̂)−wT µ̂ ≥ 0,
we state that we are in case (i) and return µ̂; else we state that we are in case (ii).

First, note that the algorithm runs in time poly
(

size of I,M γ
ε

)

, since |Sε′ | ≤
( M
1/ε′

)(

1
ε′

)1/ε′
(there

are
( M
1/ε′

)

choices for the support, and at most 1
ε′ choices for each of the at most 1

ε′ coordinates in

the support).
Let µ∗ maximize val(µ) − wTµ, and x∗ be the equilibrium strategy for the row player in the

resulting zero-sum game. We claim that val(µ∗)−wTµ∗ ≤ val(µ̂)−wT µ̂+ ε, which shows that we
correctly solve the dual signaling problem: if case (i) applies, then val(µ̂) − wT µ̂ ≥ 0; if case (ii)
applies, then clearly, val(µ̂)−wT µ̂ < −ε.

We now prove the claim. Since µ∗ ∈ conv(Sε′(µ
∗)), there exists some µ′ ∈ Sε′(µ

∗) such that
x∗TBµ∗ − wTµ∗ ≤ x∗TBµ′ − wTµ′. Further, since DT is γ-Lipschitz, for all j ∈ [c],

(

x∗TA +
µ∗TDT

)

j
≤

(

x∗TA + µ′TDT
)

j
+ γε′. Combining these inequalities yields that val(µ′) − wTµ′ ≥

val(µ∗)− wTµ∗ − ε. �

5 Bayesian network routing games

We now consider the signaling problem in Bayesian network routing games and prove an optimal
inapproximability result for linear latency functions: It is NP-hard to obtain a multiplicative ap-
proximation better than 4/3 (Theorem 5.1), and this approximation is achieved for linear latency
functions by a simple signaling scheme that simply reveals the state of nature (Theorem 5.4).

A network routing game is a tuple Γ =
(

G = (V,E), {le}e∈E , {(si, ti, di)}i∈[k]
)

, where G is a
directed graph with latency function le : R+ 7→ R+ on each edge e. Each (si, ti, di) denotes a
commodity; di specifies the volume of flow routed from si to ti by self-interested agents, each of
whom controls an infinitesimal amount of flow and selects an si-ti path as her strategy. A strategy
profile thus corresponds to a multicommodity flow composed of si-ti flows of volume di for all i; we
call any such flow a feasible flow. The latency on edge e due to a flow f is given by le(fe), where fe
is the total flow on e. The latency of a path P is lP (f) :=

∑

e∈P le(fe). The total latency of a flow f
is C(l; f) :=

∑

e∈E fele(fe); an optimal flow is a feasible flow with minimum latency. A feasible flow
f in a routing game is a Nash flow (also called a Wardrop flow), if each player chooses a minimum
latency path; that is, for all i, all si-ti paths P , Q with fe > 0 for all e ∈ P , lP (f) ≤ lQ(f). All
Nash flows have the same total latency (see, e.g., [RT02]).

In a Bayesian network routing game, the edge latency functions {lθe}e∈E may depend on the
state of nature θ ∈ Θ (and, as before, we have a prior λ ∈ ∆Θ). The principal seeks to minimize
the latency of the Nash flow. Given µ ∈ ∆Θ, the expected latency function on each edge e
is lµe (xe) :=

∑

θ∈Θ µθl
θ
e(xe). Define val(µ) := C(lµ; fµ), where fµ is the Nash flow for latency

functions {lµe }. The signaling problem in a Bayesian routing game is to determine (αµ)µ∈∆M
≥ 0

of finite support specifying a convex decomposition of λ (i.e.,
∑

µ∈∆M
αµµ = λ) that minimizes the

expected latency of the Nash flow,
∑

µ∈∆M
αµ val(µ).
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Theorem 5.1. For any ǫ > 0, obtaining a (4/3 − ǫ)-approximation for the signaling problem in
Bayesian routing games is NP-hard, even in single-commodity games with linear latency functions.

Let
(

G, s, t, d
)

be a single-commodity routing game. We reduce from the problem of determining
edge tolls τ ∈ R

E
+ that minimize C

(

l + τ ; fNE (τ)
)

, where l + τ denotes the collection of latency
functions {le(x)+τe}e and fNE (τ) is the Nash flow for l+τ . Note that C(l+τ ; f) =

∑

e fe(le(fe)+τe)
takes into account the contribution from tolls; we refer to this as the total cost of f . By optimal
tolls, we mean tolls τ that minimize C

(

l + τ ; fNE (τ)
)

.

Theorem 5.2 ([CDR06]). There are optimal tolls where the toll on every edge is 0 or ∞. If P
6= NP, there is no

(

4
3 − ǫ

)

-approximation algorithm for the problem of computing optimal tolls in
networks with linear latency functions, for any ǫ > 0.

Let Γ =
(

G = (V,E), l, s, t, d
)

be an instance of a routing game with linear latencies. Let
m = |E| ≥ 2. By scaling latency functions suitably, we may assume that d = 1. Then, for any
latency functions l′, the latency of the Nash flow for l′ equals the common delay of all flow-carrying
s-t paths. Let L = C(l; fNE ) be the latency of the Nash flow for l. Let τ∗ be optimal {0,∞}-tolls,
L∗ = C

(

l + τ∗, fNE (τ∗)
)

be the optimal cost, and K∗ := {e ∈ E : τ∗e = ∞}. We can view τ∗ as
simulating the removal of edges in K∗.

We create the following Bayesian routing game. Let
(

G1 = (V1, E1), s1, t1
)

and
(

G2 = (V2, E2), s2, t2
)

be two copies of (G, l, s, t). Add vertices s, t, and edges (s, s1), (s, s2) and (t1, t), (t2, t). Call the
graph thus created H. For e ∈ E1 ∪E2 with corresponding edge e′ ∈ E, set the latency function in
the new graph he(x) = le′(x), and set he(x) = 0 for e = (s, s1), (s, s2), (t1, t), (t2, t). The states of
nature correspond to edges in H. We set λθ = 1/m2 for all θ ∈ E1 ∪E2; the remaining 1− 2

m mass
is spread equally on (s, s1), (s, s2). We set hθe(x) = he(x) + 8m3L if θ = e and he(x) otherwise.
Our Bayesian routing game is

(

(G, {hθe}θ,e, s, t, d), λ
)

.
The idea here is that state θ encodes the removal of edge θ: specifically, if µθ = Ω

(

1
m

)

for a
posterior µ, then hµ simulates removing edge θ due to the large constant term 8m3L. Let Ki be
the edge-set corresponding to K∗ in Gi, for i = 1, 2. The prior λ is set up so that: (a) it admits
a convex decomposition into posteriors µ1, µ2, where hµ

i
simulates that Gi \Ki is connected to s

and G3−i is disconnected from s; and (b) any convex-decomposition of λ must be such that a large
weight is placed on posteriors µ, where hµ simulates that only one of Gi is connected to s, so that
{µe8m3L}e∈Ei

yields tolls τ for edges in E such that C
(

l+ τ, fNE (τ)
)

≤ val(µ). Lemma 5.3 makes
the statements in (a) and (b) precise, and Theorem 5.1 follows immediately from Lemma 5.3 and
Theorem 5.2.

Lemma 5.3. There is a signaling scheme for the above Bayesian routing game with latency L∗.
Further, given a signaling scheme α for the above Bayesian routing game with expected latency L′,
one can obtain tolls τ such that the routing game (G, l+ τ, s, t, d) has Nash latency at most L′

1−4/m .

Proof. We first show the existence of a signaling scheme with latency L∗. Define posterior µ1 ∈ ∆EH

as: µ1θ = 2/m2 for all θ ∈ K1∪E2 \K2, µ
1
(s,s2)

= (1−2/m). Define µ2 symmetrically as: µ2θ = 2/m2

for all θ ∈ K2 ∪ E1 \ K1, µ
2
(s,s1)

= (1 − 2/m). Then λ = (µ1 + µ2)/2, and this is our signaling

scheme. We will show that val(µ1) = val(µ2) ≤ L∗, proving the lemma.
Consider distribution µ1; the argument for µ2 is symmetrical. The idea is that an edge e with

µ1e > 0 has hµ
1

e (x) ≥ 8mL, which effectively deletes e from H; other edges have hµ1
e (x) = he(x). So
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µ1 simulates retaining edges in G1 \K1. Let f = fNE (τ∗) be the Nash flow in the routing game
(G, l + τ∗, s, t, d). So C(l + τ∗; f) = L∗. Recall that d = 1, so every s-t path in G has latency at
least L∗. Then the flow that sends d on edges (s, s1) and (t1, t) and f on edges of G1, is feasible.
On every edge e ∈ E(H) with positive flow, µ1e = 0, so the latency of this flow under hµ

1
is L∗.

Further, this is a Nash flow for hµ
1
: any s-t path P either contains an edge with µ1e > 0, and if not,

contains an s1-t1 path; in the latter case, there is a corresponding s-t path Q in G, and the latency
of P under hµ

1
equals (l + τ∗)Q(f), which is at least L∗ since f is the Nash flow for l + τ∗.

Next, we show how to obtain the required tolls from the signaling scheme α (with expected
latency L′). Assume L′ ≤ L, otherwise τ = 0 suffices. At least (1− 4/m) of the probability mass of
α must be on posteriors µ with µ(s,s1) + µ(s,s2) ≥ 1/m. There must exist such a posterior µ′ with

val(µ′) ≤ L′

1−4/m . Assume µ′(s,s1) ≥
1
2m ; the other case is symmetric. Let f = fµ

′
be the Nash flow

for latency functions hµ
′
. (Again, since d = 1, every s-t path P in H with fe > 0 for all e ∈ P

satisfies hµ
′

P (f) = val(µ′).)

Since hµ
′

(s,s1)
≥ 4m2L > val(µ′), we must have f(s,s1) = 0, so f is supported on G2. Abusing

notation, for e ∈ E2, we also use e to denote the corresponding edge in E. For every e ∈ E2,

we have hµ
′

e (x) = le(x) + µ′e8m
3L. Thus, defining τe = µ′e8m

3L for all e ∈ E, we obtain that f
restricted to E2 is a Nash flow for (G, l+τ, s, t, d), and its latency is at most val(µ′). This is easy to

see, since every s-t path P in G corresponds to an s2-t2 path Q in H, and (l+ τ)P (f) = hµ
′

Q (f). �

Theorem 5.4. The full-revelation signaling scheme, i.e., revealing the state of nature, has the
price of anarchy for the underlying latency functions as its approximation ratio. In particular, for
linear latencies, it achieves a 4

3-approximation.

Proof. Recall that the price of anarchy (PoA) for a class of latency functions is the maximum ratio,
over all instances involving these latency functions, of the latencies of the Nash flow and optimal
flow. For linear latency functions, the PoA is 4

3 [RT02].
Intuitively, the result follows because full-revelation is the best signaling scheme if one seeks to

minimize the expected latency of the optimal flow, and the multiplicative error that results from
this change in objective (from the latency of the Nash flow to that of the optimal flow) cannot
exceed the price of anarchy.

Slightly abusing notation, we use f θ to denote the Nash flow with respect to the latency functions
{lθe}. We use f̃ θ to denote the optimal flow for latency functions {lθe}. Let ρ be the price of anarchy
for the collection {lθe}e∈E,θ∈Θ of latency functions, so we have C(lθ; f̃ θ) ≥ C(lθ; f θ)/ρ for all θ ∈ Θ.
The full-revelation signaling scheme has cost

∑

θ∈Θ λθC(lθ; f θ).
Consider any signaling scheme α. Its cost is

∑

µ∈∆M

αµ val(µ) =
∑

µ

αµC(lµ; fµ) =
∑

µ

αµ

∑

θ∈Θ
µθC(lθ; fµ) ≥

∑

µ,θ

αµµθC(lθ; f̃ θ)

≥
∑

µ,θ

αµµθC(lθ; f θ)/ρ =
∑

θ

λθC(lθ; f θ)/ρ. �
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6 Extensions: hardness results for related problems

6.1 Maximum prior problem

We study the closely-related problem of finding µ ∈ ∆M that maximizes opt(µ). The proof of
Theorem 4.2 in fact shows that a PTAS for the maximum-prior problem yields a PTAS for threshold
signaling. Theorem 6.1 uses this implication to rule out a PTAS for the maximum prior problem
under the exponential time hypothesis (ETH) by giving a simple, clean reduction from the best-Nash
problem in general-sum two-player games, for which a PTAS is ruled out by [BKW15]. Theorem 6.1
establishes the optimal hardness result for the maximum prior problem, since a quasi-PTAS for the
maximum prior problem was recently presented in [CCD+15].

Theorem 6.1 also implies that the general maximum prior problem studied in [CCD+15] does
not have a PTAS under the ETH, when the objective function is O(1)-Lipschitz but not O(1)-noise-
stable. (For this case, [CCD+15] ruled out a PTAS assuming hardness of planted clique.) This is
because the objective function (minimax value) for signaling in zero-sum games is O(1)-Lipschitz.

Theorem 6.1. Assuming ETH, there is a constant ε0 such that, any algorithm that returns an
(additive) ε0-approximation for the maximum prior problem, even for extended security games,

must run in quasipolynomial, i.e., nΩ̃(log1−o(1) n), time. In particular, assuming ETH, there is no
PTAS for the maximum prior problem, even for extended security games.

Recall that, as noted earlier, the proof of Theorem 4.2 shows that, for any ε, a polytime
ε-approximation for the maximum prior problem yields a polytime algorithm for the threshold
signaling problem with precision parameter 2ε. Thus, it suffices to show that, assuming ETH, there
is some constant ǫ0 such that solving the threshold signaling problem with precision parameter ǫ0,
even for extended security games, requires quasipolynomial running time. To show this, we reduce
from the problem of finding an ǫ-Nash equilibrium in a general two-player game with ǫ-approximate
social welfare, and utilize the following hardness result for this problem.

Theorem 6.2 ([BKW15]). Assuming ETH, there is a constant ǫ∗ > 0 such that any algorithm
for finding an ǫ∗-approximate Nash equilibrium with social welfare at least OPT − ǫ∗ in a general

bimatrix game requires nΩ̃(log1−o(1) n) time, where OPT is the optimal welfare of a Nash equilibrium.

Proof of Theorem 6.1. Let (R, C) be a bimatrix game, where R, C ∈ [−1, 1]m×n are the payoffs for
the row- and column- players respectively. To avoid confusion with the extended security game,
we refer to the row- and column- players in the bimatrix game as the R- and C- players. A pair of
mixed strategies (x, y) for the R- and C- players respectively is an ε-approximate equilibrium if:

xT (R+ C)y −max
i∈[m]

(Ry)i −max
j∈[n]

(xTC)j ≥ −ε. (4)

The social welfare of (x, y) is defined as xT (R+ C)y. Let OPT be the maximum social welfare of
a (mixed) Nash equilibrium of (R, C). Note that −2 ≤ OPT ≤ 2.

We construct an extended security game where the states of nature correspond to the pure
strategies of the C-player (in the bimatrix game), and the row-player’s pure strategies (in the
extended security game) correspond to the R-player’s strategies (in the bimatrix game). We will
set things up so that the expected payoff in the extended security game to the row player under a
posterior distribution µ and when he plays a mixed strategy x is a linear combination of the LHS of
(4) (viewing (x, µ) as a mixed-strategy profile for the bimatrix game (R, C)) and the social welfare

18



of (x, µ) in the bimatrix game (R, C). Let ǫ > 0 be a parameter. The payoffs in the extended
security game will have absolute value at most 1+O(1/ǫ). We will show that solving the threshold
signaling problem for the resulting extended security game with threshold η = η′− ǫ, and precision
parameter ǫ yields a 6ǫ-approximate Nash equilibrium of (R, C) with social welfare at least η′ − 2ǫ,
whenever there is a Nash equilibrium of (R, C) with social welfare at least η′ or we state that we are
in case (i) of the threshold signaling problem. So via binary search, we can obtain a 6ǫ-approximate
Nash equilibrium of (R, C) with social welfare at least OPT −3ǫ. Thus, setting ǫ0 = Θ(ǫ∗

2
),2 where

ǫ∗ is as given by Theorem 6.2, we obtain that, assuming ETH, the threshold signaling problem with
precision parameter ǫ0 requires quasipolynomial time, completing the proof.

We proceed to describe the extended security game and prove the desired claim. We set Θ = [n],
so M = n. The row-player’s pure strategy set is [m], and the column-player’s pure-strategy set is
[m] × [n], so the row- and column- players have r = m and c = mn pure strategies respectively.
The r × c matrix A, r ×M matrix B, and c×M matrix D in the extended security game are

Ai,(i′,j) = −1

ǫ
Ci,j ∀i ∈ [m], (i′, j) ∈ [m]× [n]

Bi,j =
(

1 +
1

ǫ

)

(Ri,j + Ci,j) ∀i ∈ [m], j ∈ [n]

D(i,j′),j = −1

ǫ
Ri,j ∀(i, j′) ∈ [m]× [n], i ∈ [m].

Claim 6.3. For all µ ∈ ∆M , x ∈ ∆r, we have

min
k∈[c]

(

xTA+ µTDT
)

j
= −1

ǫ

(

max
i∈[m]

(Rµ)i +max
j∈[n]

(xT C)j
)

.

Proof. Consider any column-player strategy k = (i′, j′) ∈ [m]× [n]. We have

(xTA)k + (µTDT )k =
∑

i∈[m]

xiAi,(i′,j′) +
∑

j∈[n]
µjD(i′,j′),j

= −1

ǫ

(

∑

i∈[m]

xiCi,j′ +
∑

j∈[n]
µjRi′,j

)

= −1

ǫ

(

(xT C)j′ + (Rµ)i′
)

. �

It follows from Claim 6.3 that for any µ ∈ ∆M , we have

val(µ) = max
x∈∆r

(

xTBµ+min
j∈[c]

(

xTA+ µTDT
)

j

)

= max
x∈∆m

[

(

1 +
1

ǫ

)

xT (R+ C)µ − 1

ǫ

(

max
i∈[m]

(Rµ)i +max
j∈[n]

(xTC)j
)

]

= max
x∈∆m

[

xT (R+ C)µ− 1

ǫ

(

max
i∈[m]

(Rµ)i +max
j∈[n]

(xTC)j − xT (R+ C)µ
)

]

(5)

Now suppose we solve the threshold signaling problem with threshold η = η′ − ǫ (where η′ ≤ 2)
and precision parameter ǫ. Suppose (x∗, µ∗) is a Nash equilibrium of (R, C) with social welfare at
least η′. It follows from (5) that val(µ∗) ≥ η′. So we are not in case (ii) of the threshold signaling

2The Θ(e∗
2

) is because we need additive error Θ(ǫ∗) when payoffs are bounded in absolute value by 1 +O(1/ǫ∗);

when we scale payoffs so that they lie in [−1, 1], this translates to an Θ(ǫ∗
2

)-approximation.
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problem, and must obtain µ ∈ ∆n such that val(µ) ≥ η − ǫ = η′ − 2ǫ. From (5), this implies that
there is x ∈ ∆m such that xT (R+ C)µ ≥ η′ − 2ǫ and

max
i∈[m]

(Rµ)i +max
j∈[n]

(xTC)j − xT (R+ C)µ ≤ ǫ
(

xT (R+ C)µ− η′ + 2ǫ
)

≤ 6ǫ

where the last inequality follows since R, C ∈ [−1, 1]m×n. The same calculation holds whenever we
state that we are in case (i) and return µ ∈ ∆n. �

6.2 Hardness with other equilibrium notions

It is known that in zero-sum games, correlated equilibria and Nash equilibria are payoff-equivalent,
that is, they yield the same payoffs (this was also noted in [Dug14]). Thus, our hardness results
extend to the case of correlated equilibria, as well as other notions of stability that are payoff-
equivalent to Nash equilibria in zero-sum games. To see this, note that for µ ∈ ∆M , due to
the payoff equivalence, val(µ) is also the payoff of the row player in any correlated equilibrium
in the zero-sum game specified by Aµ. Hence, the statement of the signaling problem and its
optimal value remain unchanged. Further, any signaling scheme for correlated equilibria gives a
signaling scheme for Nash equilibria of equal value. This immediately extends all our hardness
results (Theorem 4.1, Theorem 4.3, Theorem 4.4, Theorem 6.1) to correlated equilibria (and other
payoff-equivalent equilibria).

6.3 Signaling with general objective functions

We now consider a more general signaling problem in Bayesian zero-sum games, where the princi-
pal’s value may depend on the players’ strategies, and show that it is NP-hard to obtain a PTAS.
Formally, we have a Bayesian zero-sum game

(

Θ, {Aθ}θ∈Θ, λ
)

and a Θ × r × c principal objec-
tive tensor F =

(

Fθ(i, j)
)

; that is, Fθ ∈ [−1, 1]r×c for all θ ∈ Θ. We now define val(µ) =
max(xµ,yµ)∈NE(Aµ) x

T
µ (
∑

θ µθFθ)yµ, where NE(Aµ) is the set of all (exact) Nash equilibria of Aµ.
As before, we seek a signaling scheme (Σ, α, µ) that maximizes

∑

σ∈Σ ασ val(µσ).

Theorem 6.4. Given a Bayesian zero-sum game
(

Θ, {Aθ}θ∈Θ, λ
)

, and a principal objective tensor
F , it is NP-hard to distinguish whether the optimal signaling scheme has value 0 or at least 1

2 .

The NP-hardness proof follows from a reduction from the balanced vertex cover (BVC) problem
proposed in [CS06]. In BVC, we are given a graph G = (V,E), and we want to know if G has

a vertex cover of size |V |
2 . Given an instance of BVC with n nodes, we construct the following

Bayesian zero-sum game where the states of nature correspond to nodes of G and the prior is
λ = 1n/n.

The row player’s pure strategy is to pick a node v1 ∈ V , and the column player’s pure strategy
is to either pick a vertex v, an edge e, or a special strategy s. We design the column player’s payoff
as follows. The payoff for strategy

v is

{ n
n−2 if v /∈ {θ, v1},
0 otherwise.

e is

{ n
n−2 if e is not incident with θ,

0 otherwise.
s is 1.

The principal’s objective tensor is set up so that he is interested only in getting the column
player to play the strategy s, that is, Fθ(v, s) = 1 for all θ, v ∈ V ; all other entries of F are 0.
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Lemma 6.5. The Bayesian zero-sum game defined above has a signaling scheme of value at least
1
2 if and only if G has a vertex cover of size n

2 .

Proof. First, suppose G has a vertex cover C with |C| = n
2 . The principal simply signals if θ ∈ C

or not. That is, λ is decomposed as (µ1+µ2)/2, where µ1v = 2
n for all v ∈ C (and 0 otherwise), and

µ2v = 2
n for all v /∈ C. For posterior µ1, there is a Nash equilibrium where the row player chooses

the mixed strategy x that picks v1 ∈ V \ C uniformly at random and the column player chooses
strategy s; thus, the principal gets a value of 1. This is because every node and edge is “protected”
with probability at least 2

n ; the payoff of the column player for a pure strategy v or e is therefore at
most n

n−2

(

1 − 2
n

)

≤ 1. Since µ1 is chosen with probability 1
2 , this signaling scheme achieves value

at least 1
2 .

On the other hand, we show that if µ is a posterior with val(µ) > 0, then G has a BVC solution.
Let (x, y) be a Nash equilibrium that attains value val(µ), that is, val(µ) = xT (

∑

θ µθFθ)y. Since
val(µ) > 0, we must have ys > 0. For this to happen, every node in V must be protected with
probability at least 2

n . That is, we must have n
n−2(1 − xv)(1 − µv) ≤ 1 for all v ∈ V . Then,

n − 2 +
∑

v xvµv =
∑

v(1 − xv)(1 − µv) ≤ n − 2, which implies that we must have xvµv = 0 and
(1 − xv)(1 − µv) = 1 − 2

n for all v ∈ V . So it must be that for all v ∈ V , exactly one of µv and xv
is equal to 2

n . Let C = {v : µv > 0}. It follows that |C| = n
2 . The payoff of a column player for an

edge e = (u, v) is n
n−2(1 − µu − µv), which must be at most 1, so we have µu + µv ≥ 2

n . It follows
that C is a vertex cover of G. �

We remark that it is important to allow the principal’s payoff to depend on specific strategies,
and also to enforce exact Nash equilibrium. Intuitively, these two ingredients together make the
objective function val(µ) very “sensitive” in µ. Moreover, these two conditions are essentially
necessary for an NP-hardness result, as Cheng et al. [CCD+15] gave a bi-criteria quasi-PTAS for
this general signaling problem, i.e., a quasi-polytime algorithm that loses an additive ǫ in the
objective as well as in the Nash equilibrium constraints.
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[Kuč95] Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2):193–212, 1995.

[LRS10] Ehud Lehrer, Dinah Rosenberg, and Eran Shmaya. Signaling and mediation in games
with common interests. Games and Economic Behavior, 68(2), 2010.

[MW82] Paul R Milgrom and Robert J Weber. A theory of auctions and competitive bidding.
Econometrica, 50(5), 1982.
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A Proof of Lemma 4.5

Recall that ǫ > 0, c3 ≥ 103, and k = k(n) satisfies k = ω(log n) and k = o(
√
n), and r = Θ(n/k).

Let p = 1
2 .

First, we proceed as in [Dug14] to reduce the planted-clique problem to the planted-clique-
cover problem. Given an instance G of PClique(n, p, k), we can generate an instance G′ of
PCover(n, p, k, r) by planting r − 1 additional random k-cliques into G (as in step (2) of Defi-
nition 2.1). As noted in [Dug14], because the cliques S1, . . . , Sr are indistinguishable, recovering
a constant fraction of the planted cliques from G′ would recover each of S1, . . . , Sr with constant
probability. In particular, it can recover the original planted clique with constant probability.

So our task is the following. Given a graph G ∼ G(n, p, k, r), fix one of the planted k-cliques
S ⊆ V . We need to show that given a cluster T ⊆ V satisfying |S∩T | ≥ ǫ|T | and |S∩T | ≥ c3 log n,
we can recover S with high probability. We assume that r = 5n

k in the sequel. Our algorithm is
similar to (and in fact, simpler than) the one used in [Dug14] to prove a similar planted-clique
recovery result (Lemma 3.5 therein). However, we need to recover the planted clique under a much
weaker (both qualitatively and quantitatively) assumption. In our case, the above requirements on
|S ∩T | allow |T | = Θ(log n) (which is crucial for the soundness proof in Lemma 4.6 to go through);
in [Dug14], the requirement is that |S ∩ T | = Ω(|S ∪ T |) with |S| = ω(log2 n), so that we must
have |T | = ω(log2 n). This difference in the magnitude of |T | (and hence |S ∩ T |) poses certain
challenges and necessitates certain key changes to the analysis in [Dug14].

We use the following algorithm to recover S:

1. Pick an arbitrary set R of c3 log n vertices from S ∩ T .

2. Let S′ be all the common neighbors of R.

3. Let Ŝ be the vertices in S′ with at least k − 1 neighbors in S′.

Since S is unknown, we use the following process to simulate Step (1). We first sample roughly
c3 logn

ǫ vertices uniformly from T , and try Step (2) and (3) on every subset of c3 log n of the sampled
vertices. The number of subsets we need to check is polynomial. Moreover, because |S ∩T | ≥ ǫ|T |,
with high probability, the sampled subset of T will contain c3 log n vertices from S ∩ T , and will
encounter this set of c3 log n vertices from S ∩ T in our enumeration.

We partition the edges of G into E− and E+, where E− are the background edges added in
Step (1) of Definition 2.1, and E+ are the extra clique-related edges added in Step (2) of Definition
2.1. Let Ei denote the edges of Si. It is easy to verify that all the nodes in S will survive Step (2)
and (3), so S ⊆ Ŝ. We show that in fact, with high probability, no other vertices survive Step (2)
and (3) through the following claims.

Claim A.1. With high probability, we have |E−(v, S)| ≤ 0.6|S| for all v /∈ S.
Proof. Since |S| = ω(log n), this follows from a straightforward application of the Chernoff bound
and the union bound. �

Claim A.2. With high probability, there are at most c3 log n vertices v /∈ R with |E−(v,R)| ≥
0.8|R|.
Proof. Let A = {v /∈ R : |E−(v,R)| ≥ 0.8|R|}. Then, bi-densityG−(R,A) ≥ 0.8. The constant
c3 = 103 and ε = 0.3 satisfy the conditions of Lemma 4.8. So since |R| ≥ c3 log n, we have
|A| < c3 log n with high probability. �
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Claim A.3. With high probability, we have |E+(v, S)| ≤ 12 log n for all v /∈ S.

The following lemma will be useful in proving the above claim.

Lemma A.4 (see Ex. 1.13 in [DP09], Lemma 1.19 in [Doe11]). Let X1, . . . ,Xn be arbitrary binary
random variables. Suppose for every i, and every x1, . . . , xi−1 ∈ {0, 1}, we have Pr[Xi = 1 |X1 =
x1,X2 = x2, . . . ,Xi−1 = xi−1] ≤ pi. Let Y1, . . . , Yn be independent binary random variables with
Pr[Yi = 1] = pi for all i ∈ [n]. Then, for any M , we can upper bound Pr[

∑n
i=1Xi > M ] using the

upper-tail Chernoff bound for Pr[
∑n

i=1 Yi > M ].

In particular, for any ε ∈ (0, 1) and µ ≥ ∑n
i=1 pi, we have Pr[

∑n
i=1Xi > (1 + ε)µ] ≤ e−ε2µ/3.

Proof of Claim A.3. Fix v /∈ S, and let X denote the random variable |E+(v, S)|. Let S1, . . . , Sr−1

be the planted cliques other than S. Let I be the random index-set of cliques that contain v; that
is, I ⊆ [r−1] is such that v ∈ Si for all i ∈ I, and v /∈ Si for all i /∈ I. Notice that the events {i ∈ I}
for i ∈ [r−1] are independent Bernoulli trials with probability k

n . So we have Pr[|I| > 6 log n] ≤ 1
n2 .

Fix an index set J ⊆ [r − 1] with |J | ≤ 6 log n and consider Pr[X > 12 log n | I = J ]. We
use Pr′ and E′ to denote probabilities and expectations in the space where we condition on the
event I = J . Conditioned on I = J , we have X ≤ ∑

i∈J,u∈S Yi,u, where Yi,u is the random
variable indicating if u ∈ Si. Fix an ordering of the Yi,u random variables. If we consider the
random variable Yi,u, and any realization σ of the random variables appearing before Yi,u, we have

Pr′[Yi,u = 1 | realization σ of the variables before Yi,u] ≤ k
n . Since |J |k2

n < 6 log n, we can now use

Lemma A.4 and infer that Pr′[X > 12 log n] ≤ e−
6 log n

3 .
Finally, we have

Pr[X > 12 log n] =
∑

J⊆[r−1]

Pr[I = J ] ·Pr[X > 12 log n | I = J ]

≤
∑

J⊆[r−1]:
|J |>6 logn

Pr[I = J ] +
∑

J⊆[r−1]:
|J |≤6 logn

Pr[I = J ] ·Pr[X > 12 log n | I = J ]

≤ Pr[|I| > 6 log n] +
∑

J⊆[r−1]:
|J |≤6 logn

Pr[I = J ] · 1

n2
≤ 2

n2
. �

By Claims A.2 and A.3, and since |R| ≥ c3 log n, with high probability, for all but at most
c3 log n nodes v /∈ S, we have

|E(v,R)| = |E−(v,R)| + |E+(v,R)| ≤ 0.8|R|+ |E+(v, S)| ≤ 0.8|R|+ 12 log n ≤ 0.82|R|.

Hence, with high probability, at most c3 log n nodes outside of S survive Step (2), i.e., |S′ \ S| ≤
c3 log n.

Claim A.5. With high probability, we have |E(v, S)| ≤ 0.7|S| for all v /∈ S.

Proof. Since 12 log n = o(|S|) (for sufficiently large n), by Claims A.1 and A.3, with probability,
for all v /∈ S, we have |E(v, S)| = |E−(v, S)| + |E+(v, S)| ≤ 0.6|S| + o(|S|) ≤ 0.7|S|. �

By Claim A.5 and because |S′ \ S| ≤ c3 log n, with high probability, every node v ∈ S′ \ S has
|E(v, S′)| ≤ |E(v, S)| + c3 log n ≤ 0.8|S|. Therefore, no vertex v ∈ S′ \ S survives Step (3) and
Ŝ = S.

25


	1 Introduction
	2 Preliminaries and notation
	3 The dual signaling problem
	4 Bayesian zero-sum games
	4.1 NP-hardness of obtaining an FPTAS
	4.2 Planted-clique hardness of obtaining a PTAS
	4.2.1 Completeness proof in Lemma 4.6
	4.2.2 Soundness proof in Lemma 4.6

	4.3 A PTAS for structured extended security games

	5 Bayesian network routing games
	6 Extensions: hardness results for related problems
	6.1 Maximum prior problem
	6.2 Hardness with other equilibrium notions
	6.3 Signaling with general objective functions

	A Proof of Lemma 4.5

