
ar
X

iv
:1

60
7.

00
90

5v
1 

 [
cs

.S
E

] 
 4

 J
ul

 2
01

6

Observing Custom Software Modifications: A Quantitative
Approach of Tracking the Evolution of Patch Stacks

Ralf Ramsauer
Technical University of Applied

Sciences Regensburg
ralf.ramsauer@othr.de

Daniel Lohmann
Friedrich-Alexander University

Erlangen-Nuremberg
lohmann@cs.fau.de

Wolfgang Mauerer
Technical University of Applied

Sciences Regensburg
Siemens AG, Munich

wolfgang.mauerer@othr.de

ABSTRACT
Modifications to open-source software (OSS) are often pro-
vided in the form of“patch stacks”– sets of changes (patches)
that modify a given body of source code. Maintaining patch
stacks over extended periods of time is problematic when
the underlying base project changes frequently. This neces-
sitates a continuous and engineering-intensive adaptation of
the stack. Nonetheless, long-term maintenance is an im-
portant problem for changes that are not integrated into
projects, for instance when they are controversial or only of
value to a limited group of users.

We present and implement a methodology to systemati-
cally examine the temporal evolution of patch stacks, track
non-functional properties like integrability and maintain-
ability, and estimate the eventual economic and engineering
effort required to successfully develop and maintain patch
stacks. Our results provide a basis for quantitative research
on patch stacks, including statistical analyses and other meth-
ods that lead to actionable advice on the construction and
long-term maintenance of custom extensions to OSS.

1. INTRODUCTION
Special-purpose software, like industrial control, medical

analysis, or other domain-specific applications, is often com-
posed of contributions from general-purpose projects that
provide basic building blocks. Custom modifications im-
plemented on top of them fulfill certain additional require-
ments, while the development ofmainline, the primary branch
of the base project, proceeds independently.

Especially for software with high dependability require-
ments, it is crucial to keep up to date with mainline: latest
fixes must be applied and new general features have to be
introduced, as diverging software branches are hard to main-
tain and lead to inflexible systems [6]. Parallel development
often evolves in the form of patch stacks: feature-granular
modifications of mainline releases. Because of the dynamics
exhibited by modern software projects, maintaining patch
stacks can become a significant issue in terms of effort and
costs.

Our toolkit PaStA1 (Patch Stack Analysis) quantitatively
analyses the evolution of patch stacks by mining git [5] repos-
itories and produces data that can serve as input for statis-
tical analysis. It compares different releases of stacks and
groups similar patches (patches that lead to similar modifi-
cations) into equivalence classes. This allows us to compare

1https://github.com/lfd/PaStA

those classes against the base project to measure integra-
bility and influence of the patch stack on the base project.
Patches that remain on the external stack across releases
are classified as invariant and are hypothesised to reflect
the maintenance cost of the whole stack. A fine grained
classification of different patch types that depends on the
actual modifications could function as a measure for the in-
vasiveness of the stack.

In summary, we claim the following contributions:

• We provide an approach and tool for observing the
evolution of patch stacks.

• We propose a language-independent semi-automatic
algorithm based on string distances that is suitable
for detecting similar patches on patch stacks.

• We provide a case study on Preempt-RT [10], a real-
time extension of the Linux kernel that enjoys wide-
spread use in industrial appliances for more than a
decade, yet has not been integrated into standard Linux.
We measure its influence on mainline and visualise the
development dynamics of the stack.

2. APPROACH
In general, a patch stack (also known as patch set) is de-

fined as a set of patches (commits) that are developed and
maintained independently of the base project. Well-known
examples include the Preempt-RT Linux realtime extension,
the Linux LTSI (Long Term Support Initiative) kernel, and
vendor-specific Android stacks needed to port the system to
a particular hardware. In many cases, patch stacks are ap-
plied on top of individual releases of an upstream version,
but they do not necessarily have to be developed in a lin-
ear way [1]. The commits of the patched version of a base
project are identified as the set of commit hashes that do
not occur in the mainline project.

Our analysis is based on the following assumptions:

• Mainline upstream development takes place in one sin-
gle branch.

• Every release of the patch stack is represented by a
separate branch.

The work flow of PaStA consists of the following steps:
(1) Set up a repository containing all releases of the patch
stacks. (2) Identify and group similar patches across differ-
ent versions of the patch stacks. (3) Compare representa-
tives of those groups against mainline. (4) Use statistical

http://arxiv.org/abs/1607.00905v1
https://github.com/lfd/PaStA


methods to draw conclusions on the development and evo-
lution of the patch stacks.

A commit hash provides a unique identifier for every com-
mit: In the following, U is the set of all commit hashes of
the base project, while Pi is the set of the commit hashes
of a release i of the patch stacks. P ≡

⋃
i
Pi denotes all

commit hashes on the patch stacks. Note that P ∩ U = ∅.
Let H ≡ P ∪ U be the set of all commit hashes of interest.
A semi-automatic classification function comp : P × H →
{True,False} decides whether two patches are similar or not.
A detailed description of the function comp can be found in
Section 2.3.

In the implementation, PaStAmines git repositories. With-
out loss on generality, we focus on this particular version
control system because it is widely employed in current OSS
development.

2.1 Grouping Similar Patches
Patch stacks change as they are being aligned with the

changes in base project and additionally integrate or loose
functionalities. New patches are pushed on top of the stack,
existing patches may be amended to follow up with API
changes, or patches are dropped. Because of the rapid dy-
namics and growth of Open Source projects [3], a significant
amount of patches must manually be ported from one re-
lease of the base project to the next. Since the base project
changes over time, it is necessary to continuously adapt the
details of individual patches. Those adaptations can be clas-
sified in textual and higher-order conflicts [2]. Textual con-
flicts can be solved by manually porting the patch to the
next version. In a series of patches, patches may depend
on each other, so that textual conflicts in one patch lead
to follow-up conflicts in further patches. Higher-order con-
flicts occur when a patch obtains a new (erroneous) semantic
meaning after changes in the base project diverged, despite
a lack of textual conflicts. Both types are known to induce
high maintenance cost [9].

Even if the semantics of patches remain invariant over
time (e.g., a patch introduces identical functional modifi-
cations in subsequent revisions of the patch), their textual
content can change considerably over time. To track patches
with unchanged semantics over time, we introduce the clas-
sifier function comp that places similar patches into equiv-
alence classes Rj , so that P =

⋃
j
Rj . If comp were able

to track the exact semantics of patches, it would hold that
comp(a, b) = yes ⇔ a ∼ b. But as comp can only compare
textual changes, it follows that comp(a, b) = yes ⇒ a ∼ b.
This results from the fact that two similar patches between
two successive versions usually have less textual changes
than the first and last occurrence of the same patch. We
approximate P ≈

⋃
j
R̂j .

2.2 Comparing Groups Against Mainline
After grouping all patches on the stacks in equivalence

classes R̂j , a complete representative system R ⊆ P is cho-
sen and compared against the commits in the base project.
As representative of an equivalence class, we choose the
patch with the latest version. Q = {(r, u)|r ∈ R, u ∈
U, comp(r, u) = 1} denotes the set of all patches that are
found in the base project.

2.3 Detecting Similar Patches
To group patches into equivalence classes and find them

in the base project, it is necessary to detect similar commits.
Generally, a commit consists of a unique hash, a descriptive
message that informally summarises the modifications, and
so called diffs [8] that describe the actual changes of the
code.

Existing work on detecting similar code fragments pri-
marily targets on detecting code duplicates [4] or on reveal-
ing code plagiarism. Possible approaches include language-
dependent lexical analysis, code fingerprinting [11], or the
comparison of abstract syntax trees [7]. However, all these
approaches concentrate on the comparison of code fragments
and not on the comparison of similar diffs or commits, as
required in our case.

A diff of a file consists of a sequence of hunks that de-
scribe the changes at a textual level. Every hunk h is intro-
duced by a range information that determines the location
of the changes within a file and contains a section heading
hhead. Section headings display “the nearest unchanged line
that precedes each hunk” [8] and are determined by a regu-
lar expression. Range information is followed by the actual
changes: lines h+ that are added to the new resulting file are
preceded by ’+’, lines h− that are removed from the original
file are preceded by ’−’ and lines h◦ that did not change are
preceded by a whitespace ’ ’.

For the projects considered in the case study, we observed
the following properties:

• Commit messages of upstream patches tend to be more
verbose, but still are similar to those on patch stacks.

• Variable and identifier names do not significantly change
between different versions.

• Range information of similar hunks changes between
different releases.

• Section headings tend to stay similar between different
releases.

In contrast to the detection of code plagiarism or the de-
tection of code duplicates, in our case the the textual content
of diffs between successive releases of the patch stack tends
to stay very close. For this case, string or edit distances
provide an easy but powerful language independent method
for detecting similar code fragments.

Comparing n diffs against each other requires O(n2) com-
parison operations. As the necessary string operations are
computationally intensive, we employ a coarse-grained pre-
evaluation that serves as a filter: Two commits can only
be similar if both touch at least one common file. If the
intersection of touched files is disjoint the two commits are
automatically considered to be not similar.

Our algorithm calculates a rating for the similarity of
the commit message and a rating for the similarity of the
diff. When comparing diffs, only similar hunks of commonly
changes files are compared. Insertions and deletions are
compared independently.

Algorithm 1 describes the evaluation of two patches. The
algorithm calculates two ratings, a message rating rm ∈ [0, 1]
and a diff rating rd ∈ [0, 1]. r is the weighted arithmetic
mean of rm and rd, weighted by a heuristic factor w ∈ [0, 1].
If the resulting rating r < ti, the two commit hashes are



classified as dissimilar, if ti ≤ r < ta, then manual evalu-
ation is required, and if r ≥ ta, the commits are classified
as similar. Given a commit hash, GetCommit returns the
corresponding message and diff. StripTags removes all tags
(CC:, Signed-off-by:, Acked-by:, . . . ) as they are not rele-
vant for comparing the content of commit messages. Given
the diff of a commit, ChangedFiles returns all touched files
of the diff. GetHunks returns all hunks of the diff of a file
while HunkByHeading searches for the closest hunk which
heading matches x with a rating of at least th given a sec-
tion heading x and the diff of a file. Dist takes either two
strings or two lists of strings and returns a rating between 0
and 1, where 0 denotes no commonalities and 1 denotes ab-
solute similarity. Our implementation uses the Levenshtein
distance, which is a well-known metric of measuring the sim-
ilarity of strings.

Algorithm 1 Detection of similar patches

1: function comp(a, b, ta, ti, th, w)
2: if not PreEval(a, b) then
3: return False
4: (msga,diffa)←GetCommit(a)
5: (msgb,diffb)←GetCommit(b)
6: rm ←Dist(StripTags(msga), StripTags(msgb))
7: rd ← []
8: for each file←ChangedFiles(diffa) do
9: hunksa ←GetHunks(diffa, file)
10: hunksb ←GetHunks(diffb, file)
11: rf ← []
12: for each lhunk← hunksa do
13: rhunk←HunkByHeading(hunksb, lhunkhead, th)
14: if rhunk is None then
15: continue
16: rf .append(Dist(lhunk+, rhunk+))
17: rf .append(Dist(lhunk−, rhunk−))

18: rd.append(Mean(rf))

19: rd ←Mean(rd)
20: r ← w · rm + (1− w) · rd
21: if r ≥ ta then
22: return True
23: else if r ≥ ti then
24: return InteractiveReview(a, b)

25: return False

3. DISCUSSION
After grouping all patches into equivalence classes and

linking them to optional commits of the base project, we can
distinguish between two temporal conditions: (1) Patches
that first appeared on the patch stack and later appeared in
the base project (ports or forwardports) and (2) patches that
first appeared in the base project and were ported back to
older versions of the stack (backports). Patches that are not
linked to a commit of the base project are called invariant,
as they only appear on the stack.

Across two releases of the patch stack, we observe a flow
of patches: (1) inflow – new patches on the patch stack
and backports. (2) outflow – patches that went upstream
or patches that were dropped. (3) invariant – patches that
remain on the stack.

In the follwing, we consider the evolution of the Preempt-
RT patch stack as a case study: First, we inspect the tem-

200

250

300

350

400

Ju
l
20
11

N
ov

20
11

A
p
r
20
12

O
ct

20
12

M
ar

20
13

A
u
g
20
13

N
ov

20
13

A
p
r
20
14

F
eb

20
15

M
ay

20
15

Ju
l
20
15

D
ec

20
15

M
ay

20
16

Timeline

N
u
m
b
er

o
f
p
a
tc
h
es

3.0-rt

3.2-rt

3.4-rt

3.6-rt

3.8-rt

3.10-rt

3.12-rt

3.14-rt

3.18-rt

4.0-rt

4.1-rt

4.4-rt

4.6-rt

Figure 1: Preempt-RT patch stack: Evolution of the
stack size since Linux kernel version 3.0

poral evolution of patch stack size, which is visualised in
Figure 1. Among all 554 releases of the patch stack pub-
lished since Jule 2011 (that in total consist of almost 173 000
patches), we detected 1042 different groups of patches. 195
of those groups were classified as backports, 153 groups were
classified as forwardports.

Knowledge of the stack history allows us to determine the
composition of older patch stacks in terms of the direction of
flow of constituents. Retroactively, we can determine which
patches of the stack went upstream at a later point in time,
and compute the amount of backported patches and invari-
ant patches. Figure 3 shows the composition of the latest re-
leases of major versions of the Preempt-RT[10] patch stack.
Green bars describe the amount of patches on the stack that
eventually are integrated into the upstream code base, red
bars describe the amount of backports, and the blue bars
give the number of invariant patches.

Another covariate of interest is the duration a patch needs
to go upstream (i.e., the time between the first appear-
ance on the patch stack and the integration with the base
project). Figure 2 shows the result of this analysis for the
Preempt-RT project. Positive values on the x-axis describe
forwardports, negative values describe backports. There is
a prominent hot spot around zero days. We interpret this
spot to indicate close cooperation with the base project:
backporting of many patches only takes few days while the
author list of forward and backport patches overlaps.

4. CONCLUSIONS
We presented an approach and implementation for the

quantitative analysis of patch stacks and a semi-automatic
method for identifying similar commits. An evaluation and
visualisation of the Preempt-RT patch stack was presented
as case study.

In future work, we will concentrate on deeper statistical
analysis and comparing the properties and software-enginee-



0.000

0.003

0.006

0.009

-500 0 500 1000 1500

Days between release and upstream

U
p
st
re
a
m

p
a
tc
h
d
en

si
ty

[a
.u
.]

Figure 2: Preempt-RT patch stack: Distribution
of integration times (in days) for patches that are
eventually integrated in mainline. Positive values
indicate forwardports, negative values indicate back-
ports.

0

100

200

300

400

3.
0.
10
1-
rt
13
0

3.
2.
78
-r
t1
13

3.
4.
11
1-
rt
14
1

3.
6.
11
-r
t3
1

3.
8.
13
-r
t1
6

3.
10
.1
01
-r
t1
11

3.
12
.5
7-
rt
77

3.
14
.6
5-
rt
68

3.
18
.2
9-
rt
30

4.
0.
8-
rt
6

4.
1.
20
-r
t2
3

4.
4.
12
-r
t1
9

4.
6.
2-
rt
5

Stack Version

N
u
m
b
er

o
f
co
m
m
it
s

Types of patches backport forwardport invariant

Figure 3: Preempt-RT patch stack: Comparing the
composition of the last major releases of the patch
stacks

ring implications of patch stacks for a various projects. We
are also working on a measure to quantify the invasiveness
of patches and patch stacks, which will allow us to draw con-
clusions on the eventual maintenance cost of such stacks.

5. REFERENCES
[1] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton,

D. M. German, and P. Devanbu. The promises and
perils of mining git. In Mining Software Repositories,
2009. MSR ’09. 6th IEEE International Working
Conference on, pages 1–10, May 2009.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Proactive detection of collaboration conflicts. In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 168–178,
New York, NY, USA, 2011. ACM.

[3] A. Deshpande and D. Riehle. Open Source
Development, Communities and Quality: IFIP 20th
World Computer Congress, Working Group 2.3 on
Open Source Software, September 7-10, 2008, Milano,
Italy, chapter The Total Growth of Open Source,
pages 197–209. Springer US, Boston, MA, 2008.

[4] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In Software Maintenance, 1999.(ICSM’99)
Proceedings. IEEE International Conference on, pages
109–118. IEEE, 1999.

[5] git version control system. https://git-scm.com/.

[6] M. L. Guimarães and A. R. Silva. Improving early
detection of software merge conflicts. In Proceedings of
the 34th International Conference on Software
Engineering, ICSE ’12, pages 342–352, Piscataway,
NJ, USA, 2012. IEEE Press.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
Deckard: Scalable and accurate tree-based detection of
code clones. In Proceedings of the 29th international
conference on Software Engineering, pages 96–105.
IEEE Computer Society, 2007.

[8] D. MacKenzie, P. Eggert, and R. Stallman.
Comparing and Merging Files, 2013.
http://www.gnu.org/software/diffutils/manual/diffutils.pdf .

[9] H. Munakata and T. Shibata. The Economic Value of
the Long-Term Support Initiative (LTSI). Linux
Foundation, 2013.

[10] Preempt-RT Wiki. https://rt.wiki.kernel.org/.

[11] R. Smith and S. Horwitz. Detecting and measuring
similarity in code clones. In Proceedings of the
International Workshop on Software Clones (IWSC),
2009.

https://git-scm.com/
http://www.gnu.org/software/diffutils/manual/diffutils.pdf
https://rt.wiki.kernel.org/

	1 Introduction
	2 Approach
	2.1 Grouping Similar Patches
	2.2 Comparing Groups Against Mainline
	2.3 Detecting Similar Patches

	3 Discussion
	4 Conclusions
	5 References

