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ABSTRACT
3D digital city models, important for urban planning, are currently
constructed from massive point clouds obtained through airborne
LiDAR (Light Detection and Ranging). They are semantically
enriched with information obtained from auxiliary GIS data like
Cadastral data which contains information about the boundaries of
properties, road networks, rivers, lakes etc.

Technical advances in the LiDAR data acquisition systems made
possible the rapid acquisition of high resolution topographical in-
formation for an entire country. Such data sets are now reaching
the trillion points barrier. To cope with this data deluge and pro-
vide up-to-date 3D digital city models on demand current geospa-
tial management strategies should be re-thought.

This work presents a column-oriented Spatial Database Manage-
ment System which provides in-situ data access, effective data skip-
ping, efficient spatial operations, and interactive data visualization.
Its efficiency and scalability is demonstrated using a dense LiDAR
scan of The Netherlands consisting of 640 billion points and the
latest Cadastral information, and compared with PostGIS.

1. INTRODUCTION
Continuous monitoring of manufactured structures in search of

small deviations or small breaches, assessment of an urban area
re-organization, and under- and over- ground formation analysis
are key activities for urban planning, risk management and natural
resource management. Such studies are conducted on 3D digital
city models, which consist of large collections of semantically rich
objects with many properties such as material and color.

3D digital city models are currently constructed from massive
point clouds obtained through airborne LiDAR (Light Detection

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL’16 October 31 - November 03, 2016, Burlingame, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4589-7/16/10.

DOI: http://dx.doi.org/10.1145/2996913.2997005

and Ranging) or terrestrial scanning campaigns. They are con-
structed through segmentation and triangulation of a point cloud
thereby creating a surface representation. Their semantical infor-
mation is obtained from auxiliary GIS data like Cadastral data,
which contains information about the boundaries of properties,
topographical data that describe buildings, road networks, rivers,
lakes, etc.

Technical advances in the LiDAR data acquisition systems made
possible the acquisition of high resolution topological information
for an entire country. As an example, the topology of the Nether-
lands, the Actueel Hoogtebestand Nederland 2 (AHN2) [1] which
is stored and distributed in more than 60,000 LAZ files, contains
640 billion points and it has in average 10 points per square meter.

With Cadastral data being constantly updated and LiDAR data
being extended with periodic scans, 3D digital city models must be
reconstructed periodically, i.e., not being generated anymore with
a onetime large pre-computation job, and allow user interaction.
Such demands made us to re-think on how spatial computations,
data management and data processing is performed in large scale.
Our goal is to modernize the generation and manipulation of 3D
digital city models by extending a Geospatial Database Manage-
ment System (DBMS) with all necessary functionality to access
directly raw data sets without requiring data to be pre-loaded and
take advantage of GPUs to accelerate the 3D digital city models
generation thereby vastly improving flexibility and performance.

To step away from traditional Spatial Database Management
Systems (SDBMS) which are all record-oriented architectures,
known to perform worse than column-oriented architectures, we
have extended a modern column-store, MonetDB [11]. Through
vertical partitioning of relational tables, column-stores significantly
reduce cost of data access. In our case, vertical partitioning is
exploited to reduce the number of columns to be imported in the
database. Such data organization improves data compression, sim-
plifies data skipping strategies and is well suited for vector process-
ing.

For in-situ data access, the MonetDB geospatial module was ex-
tended to access directly large spatial data repositories, i.e., it keeps
data in its original format while scalable processing functionality is
offered through the DBMS. For efficient spatial selections and near
real time 3D model generation some of these operators are comple-
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mented with a GPU version.
The efficiency and scalability of our work is demonstrated

through a web-application, which does on-demand classification
of a dense nationwide LiDAR scan of The Netherlands (640 billion
points) with Cadastral information. For demonstrating the perfor-
mance of our approach we use PostGIS boosted by its new Block
Range Index (BRIN) [2] as an alternative database solution.

The remainder of the paper is as follows. Section 2 discusses the
general architecture. In Section 3 we use multiple use case scenar-
ios, to demonstrate the flexibility and efficiency of generating and
exploring 3D city digital models using our approach. Finally, in
Section 4 we conclude the paper.

2. ARCHITECTURE
In this section we outline the architectural extensions to a

column-oriented SDBMS to provide effective data skipping and
efficient spatial processing. The effective data skipping is part of
our strategy for in-situ data access where data is kept in its origi-
nal format while scalable and distributed processing functionality
is offered through a DBMS. For efficiency purposes we push spa-
tial processing down into the columnar-oriented kernel for exploit-
ing inter- and intra- operator parallelism while certain operators are
GPU-accelerated.

2.1 Spatial DBMSs
To efficiently combine heterogeneous data sources each data

set should be stored under the same storage without changing the
users’ data structure perception, i.e., the conceptual schema [3]
should remain the same. The clear separation between the physical
and the conceptual schema creates the opportunity to have different
types of applications exploring the same data sets. Furthermore,
data organization at the physical storage system differs from the
conceptual schema to optimally exploit the hardware characteris-
tics. Such separation between the physical layout of the data and
its conceptual model is what made Database Management Systems
(DBMS) so successful for analytic workloads.

Many DBMSs have been successfully extended with support for
spatial and geo-spatial applications. For instance, the OGC imple-
mentation specification "Simple feature access: SQL option" [7]
that defines basic geometry types and operators is followed by
PostGIS, Oracle, MySQL, Microsoft SQL Server and MonetDB.
Due to the complexity of their software stack, such functionality is
provided through user-defined functions (UDF) and augmented in
some cases with spatial search accelerators. Deep integration with
the database engine is not always possible, therefore, most func-
tionality is brought in by dynamic linkage with external libraries
such as GEOS [4] and SFCGAL [5] libraries.

For our work we have extended the column-oriented SDBMS
MonetDB [11], which steps away from traditional SDBMSs that
are all record-oriented architectures. Through the works [10, 9, 15,
14, 18], MonetDB spatial features have been matured to provide
core technology components for geo-spatial analysis of large data
sets. Atomic spatial types and their operations are becoming part
of the relational kernel and not an add-on. All the operations are
available for spatial applications through integrated environments,
such as R and Python, and an SQL front-end. The spatial query
model that is used by MonetDB follows the well-established two-
step approach of filtering and refinement [9].

By being a column-oriented SDBMS, our solution offers ver-
tical partitioning of relational tables which significantly reduces
data access, improves data compression, simplifies data skipping
strategies, suits well vector processing and the integration of GPU-
accelerated operators (c.f., Section 2.3). In our case, vertical parti-

tioning is further exploited to reduce the number of columns to be
imported as we will explain in Section 2.2.

2.2 In-situ data access
Technical advances in the LiDAR data acquisition systems made

possible the acquisition of high resolution topology maps of an en-
tire country. As we mentioned earlier, a nationwide LiDAR dataset
like AHN2 comprises 640 billion points averaging 6-10 points per
square meter. For this dataset, the authors of [17] spent nearly 18
hours for extracting, transforming, and loading (ETL) the dataset
into MonetDB because the data was initially converted to the inter-
nal format of MonetDB and then imported through a bulk loading
operation. The same amount of time was spent for sorting and in-
dexing AHN2 to be able to query it efficiently using the well-known
LiDAR file-based solution Rapidlasso LAStools [8].

To reduce such a costly pre-query preparation step we decided
to keep data in its original format and access it through a lazy and
iterative import process that accesses the raw files directly. This
approach is a LiDAR extension of the strategy described in [10]
that discusses how to provide in-situ data access to large NetCDF
data repositories. The general concept was developed in the context
of the data-vaults framework [12].

The data-vaults framework defines that data access comprises
three phases: attaching a file, importing the file’s content, and col-
lecting statistics that boost query optimization. During the attach-
ment phase, the file’s metadata is loaded into a special DBMS cat-
alog. At query time, only a sub-set of the attached files is imported
according to a fast approximation of the spatial predicates that ap-
pear in the query.

We follow two strategies for importing data. If the file format de-
fines that each attribute is stored sequentially then the import pro-
cess memory maps each attribute as a column, otherwise, the data
is converted and loaded into the database as temporary data. In the
latter case, cache policies, such as Least Recently Used (LRU), are
used for data eviction. Once the attached files are imported dur-
ing the filtering step, most of the imported points are identified and
disregarded using secondary indexes such as column imprints [16].
Column-imprints resemble bitmaps that index ranges of values in
each cache line of each column. This makes them very efficient for
evaluating range queries since they allow skipping cache lines that
do not contain data for a desired range.

The refinement step operates on the results of the filtering step
that produced a superset of the solution. During this step, the spatial
predicate is evaluated against the precise geometry G. The refine-
ment step can be very expensive, especially when the geometries
are complex. To circumvent the issue, we exploit GPU technology
to speed up the refinement step.

2.3 Spatial DBMSs and GPUs
Arithmetic intensity is defined as the number of operations per-

formed per word of memory transferred. Operators with high arith-
metic intensity that consume a large stream of points with minimal
dependency between data elements should be executed on GPUs.
For spatial operations which process many vertices or geometries
in the same way, such as point in a polygon (PIP), GPUs provide
very effective processing since they can process many points in par-
allel. On the other hand, spatial operators that rely on algorithms
with many branches are better executed on CPUs.

At the best of our knowledge, none of the SDBMS, especially
column-oriented SDBMS, have integrated GPU-accelerated opera-
tors. All solutions with GPU-accelerated operators are simple stan-
dalone file-based libraries which are hard to integrate into existent
data workflows or record-oriented architectures.



(a) Architecture (b) Cadastral data (c) LiDAR data

Figure 1: Architecture and data sets

Our work integrates GPU aware spatial primitives into the
column-oriented kernel of MonetDB for efficient geo-spatial
querying. Within a single query the user has column-store efficient
I/O and massive GPU parallelism for spatial operators. MonetDB
allows a seamless integration due to two special features of its ar-
chitecture, the operator-at-the-time paradigm and late materializa-
tion. According to the operator-at-a-time execution paradigm, com-
plete intermediates are a by-product of every step in the query exe-
cution plan [13]. Hence, the scheduling of an operator for execution
only happens when all its arguments have been made available. The
feature simplifies the integration of a GPU operator since the in-
termediate materialization simplifies the data transfer between the
main-memory and the GPU memory while the dependencies on the
result to be fetched from the GPU are taken care by the scheduling
strategy followed by MonetDB.

For late materialization, tuples are re-constructed as late as pos-
sible in the query plan. This allows column-oriented architecture
to have a low memory footprint during query execution, especially
during the filtering phase. Such feature is kept intact by introduc-
ing GPU operators that consume and return candidate lists which
are then used by the following operators in the query plan.

2.4 Spatial Queries
Queries that involve spatial data are generally more complex

than normal relational queries. In this case, the queries describe
complex processing steps that transform data into a 3D model. The
most expensive operations involve a nearest neighbor search in the
point cloud for discovering the elevation of the vertex of each poly-
gon and triangulating the resulting 3D polygons. In addition, a
filtering algorithm is applied to the pointcloud data for classifying
vegetation points and computing the average roof height. The most
important feature of the queries however is finding the intersections
between polygons and points for which they make use of indexes

3. DEMONSTRATION
We propose a demonstration with a live interactive experience

using a X3D viewer to visualize 3D digital city models of The
Netherlands. Using the interface illustrated in Figure 2, the user
can select a city, angle of view, resolution, etc.

The data sets for the demo session are the latest topography of
The Netherlands, Actueel Hoogtebestand Nederland 3 (AHN3) [1]
and the latest Cadastral information for The Netherlands, Basisreg-
istratie Grootschalige Topografie (BGT) [6]. Our solution outlined
in Section 2 is the backend used for their integration, management,
and processing. Through three scenarios, the audience will see the
benefits of in-situ data access, GPU aware operators and compare
its efficiency with PostGIS.

3.1 User interaction
Our solution caters for multiple types of applications; SQL can

be used for analytical workloads, but also provides an integrated en-
vironment for R and Python. After processing the data our solution
has the option to export the results to standard formats to be loaded
into visualization tools. Examples are GeoJSON, LAS and X3D,
the latter being used by the web-application of our demo. Because
the X3D format is able to directly display the triangulated surfaces
in a web-browser it serves as a convenient way of sharing output.
In our demo, a user expresses an area of interest with a predicate on
the semantic attributes she wants to visualize. The request is trans-
lated into an SQL query and through a MonetDB node.js module it
is pushed down to the remote MonetDB server, layer D), C) and B)
in Figure 1a.

After query compilation, the database performs all the steps de-
scribed in Section 2.2 to make the necessary data available, i.e.,
in-situ access to the file repositories in layer A) Figure 1a. With
all relevant data available, the filtering and the refinement steps are
executed. The selected points are then grouped per object and each
object is triangulated using Constrained Delaunay Triangulation.
The query result is exported as X3D format and sent back to the
browser for rendering.

In the web browser, the resulting scene shows a 3D extrusion
from the Cadastral data where the terrain is modelled along its ver-
tices and buildings are extruded to their average height. The scene
can be rotated and lighting, and colors can be changed. The most
important feature however is that the individual entities from the
Cadastral data (like roads, houses, bridges) can be highlighted or
otherwise individually dealt with. This gives way to more advanced
interaction with the database in the future, where users can add in-
formation to the data and send it back to the database to run more
advanced modelling (e.g. flood or noise modelling).

The users will notice that data processing requires only a few
seconds which gives users the option to react instantly to changes in
the data. For instance, when results differ from the expected ones,
the user can change some query parameters and see the difference
almost instantly.

3.2 Data sets
For data integration, we will be using BGT semantic information

and AHN3 point cloud data. The BGT data is a detailed 2D digital
map of The Netherlands. It contains the location and footprint of
objects such as buildings, roads, water, railways, and green areas as
illustrated in Figure 1b. The BGT data is freely distributed as open
data 1.

AHN3 dataset [1] is the latest LiDAR scan of The Netherlands
and it is also freely distributed as open data 2. The sample density
is 6 to 10 points per square meter for the entire country. Figure 1c
presents a 3D visualization of the AHN2 dataset. During our demo
1https://www.pdok.nl/nl/producten/pdok-downloads/
download-basisregistratie-grootschalige-topografie
2https://www.pdok.nl/nl/ahn3-downloads
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session the latest scan AHN3 is used.

3.3 First scenario
In the first scenario, the audience will be familiarized with the

data sets described in Section 3.2 and with the in-situ data access
followed by our solution. An attachment of the entire AHN3 file
repository will show how quickly metadata is extracted and inserted
into the DBMS catalog’s tables. Then the user will perform data
imports of different areas as large as Amsterdam City Center. Once
the data is imported, simple selections will be used to exemplify the
export of spatial selection results into a LAS/LAZ file for offline
visualization.

While executing each of the steps, the audience can visualize the
query plan to understand what happens in the background and the
cost of each operation. In addition, the users will have the option
to create and execute queries of their own, identifying relations of
their interest and obtaining further insights on the datasets. At the
same time, they will be introduced to X3D viewer and its naviga-
tion commands.

3.4 Second scenario
The second scenario is composed of three parts and shows how

GPU-accelerated operators contribute to a performance boost. In
the first part we show how easy it is to integrate a new GPU-
accelerated operator without side effects for existing operators and
to consider it in the optimization strategies of a query plan.

In the second part, we will test the performance improvement
achieved when the refinement step of spatial selection is done on
the GPU. The execution cost will be dissected to show the absolute
gains in using a GPU-accelerated refinement step instead of one
using the CPU. We perform the same study in the third part, but
applied to surface reconstruction.

3.5 Third scenario
The audience will have the opportunity to compare the perfor-

mance of our enhanced version of MonetDB geospatial module
with PostGIS boosted by a BRIN index [2]. Our aim is to demon-
strate the benefits of a column-oriented architecture having in-situ
data access and integration of spatial operators into the kernel in-
stead of adding the desired functionality through User Defined
Functions (UDF).

Using the interface illustrated in Figure 2 a 3D digital model
will be requested from different backends, namely MonetDB and
PostGIS. The cost of each step on each system will be presented
to the user. In order to demonstrate the benefits of having geospa-
tial functionality deeply integrated into the DBMS architecture, we
will perform the triangulation step using dynamic linkage to SFC-
GAL [5] and by exposing it to the kernel allowing the exploitation
of inline code, direct data access, and inter- and intra- operator par-
allelism. For performance isolation, the surface construction will
be done on materialized spatial selections.

4. SUMMARY
In this work we demonstrated a column-oriented SDBMS en-

hanced with a set of optimized operators for managing massive
point clouds. The SDBMS provides support for a flexible stor-
age schema that allows 2D/3D geospatial datasets to store seman-
tically rich objects that are needed for the customization (i.e., data
re-generation with user defined parameters) of 3D digital city mod-
els on a large scale.

It is the first work to extend a column-oriented architecture to
provide effective data skipping, efficient spatial operations, and in-
teractive data visualization. With spatial functionality pushed down

Figure 2: Web browser viewer
into the columnar-oriented kernel, scientists have now the oppor-
tunity to do efficient spatial analysis on data kept outside of the
DBMS.

Such features are exploited for 3D digital city models using latest
topography of The Netherlands and the latest Cadastral informa-
tion for The Netherlands. Through a web-interface exploiting X3D
technology, the user requests 3D digital city models with predicates
on the semantic attributes.
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