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Abstract

The separation between the public and private spheres on online social networks is known

to be at best blurred. On the one hand, previous studies have shown how it is possible to

infer private attributes from publicly available data. On the other hand, no distinction

exists between public and private data when we consider the ability of the OSN provider to

access them. Even when OSN users go to great lengths to protect their privacy, such as by

using encryption or communication obfuscation, correlations between data may render these

solutions useless. In this paper, we study the relationship between private communication

patterns and publicly available OSN data. Such relationship informs both privacy-invasive

inferences as well as OSN communication modelling, the latter being key towards developing

effective obfuscation tools. We propose an inference model based on Bayesian analysis and

evaluate, using a real social network dataset, how archetypal social graph features can lead

to inferences about private communication. Our results indicate that both friendship graph

and public traffic data may not be informative enough to enable these inferences, with time

analysis having a non-negligible impact on their precision.

1 Introduction

Privacy breaches in online social networks (OSNs) have become commonplace. Context col-

lision Danah Boyd (2008), unexpected or regrettable disclosures Wang et al. (2011), cyber-

stalking Gross and Acquisti (2005), blackmailing Gross and Acquisti (2005) or law enforcement

∗This is an author generated postprint of the article: Balsa, E., Pérez-Solà, C., & Diaz, C. (2017). Towards

inferring communication patterns in Online Social Networks. ACM Transactions on Internet Technology (TOIT),

17(3), 32. The final publication is available on https://dl.acm.org/citation.cfm?id=3093897.
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prowling Marks (2006) are only a few of the privacy threats users may face in OSNs. Inferences

are a particular type of privacy threat that rely on correlations between data to learn private,

non available data from publicly available data Heatherly et al. (2013); Zheleva and Getoor

(2009). Information publicly available on social networks enables inferences about data that

users have not publicly shared, such as their sexual orientations Jernigan and Mistree (2009),

their political views, or the use of illegal substances Kosinski et al. (2013), among other types

of attributes.

In order to shield themselves from these privacy threats, OSN users may use a range of

privacy preserving tools and strategies, e.g., they may plainly refrain from uploading certain

information to the site or deliberately lie in order to blur certain details of their persona. They

may use privacy settings that enable them to control the visibility of their data, choosing between

posting information publicly, or communicating privately with a small subset of their friends.

Privacy settings effectively allow users to limit the amount of information publicly available;

yet the service provider is still able to access privately shared information. More stringent

cryptographic access control tools such as Scramble Beato et al. (2011), can effectively prevent

the service provider from accessing the OSN users’ private information. Still, encryption does

not conceal traffic data. Even when all data and communications are encrypted, the service

provider is still able to monitor the users’ communication patterns, namely, who the users

communicate with, how much, and how often, as well as other activities performed by the users

on the site.

Communication patterns potentially reveal who users are most intimate with, their affinity

in terms of age, religion and kinship, or their political views, among other attributes. They

may also expose the strength of the users’ relationships and how they evolve with time. In

particular, users may choose to favour private messaging over public communication (i.e., posts)

to hide discreditable or sensitive information. Examples include two people having a romantic

affair, community leaders secretly organising an event, hiding from the broader public who the

leaders and their social circle are in the community, or users reaching out to others for help with

sensitive issues (e.g., bullying, medical advise).

Yet hiding communication patterns in the same way that encryption hides messages is im-

possible, and alternative strategies must be devised, such as obfuscation. Obfuscation tools send

dummy traffic on behalf of the users to conceal their communication patterns: an eavesdropper,

such as the OSN provider, observes a mix of real and dummy traffic; and is as a result no longer

able to retrieve an accurate representation of the users’ real communication patterns.

For dummy traffic to work, it must be indistinguishable from real traffic. Even if encryption

prevents the service provider from distinguishing between real and dummy traffic based on

the content of the messages, other attributes such as the timing or size of the messages may
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be exploitable. In particular, OSNs pose a particularly challenging scenario as the wealth

of data available may give away information about how users communicate. Do two users

communicate more when they have more friends in common? Does their number of friends

affect their communication patterns? Can we tell how a user communicates by looking at other

publicly available information in the OSN?

Previous research has focused on modelling the OSN structure and studying inferences of

private attributes from publicly available data. However, little is known about the feasibility of

inferring communication patterns.

In this paper, we take the first steps towards this goal by performing, to the best of our

knowledge, a first study on the feasibility of inferring private communication patterns from

publicly available friendship and communication traffic data. To this end, we propose a model

for communication inference in OSNs and analyse a dataset from a Belgian social network,

Netlog1, to determine how both friendship graph and public traffic data can expose private

communication patterns.

This paper provides several contributions. Firstly, we study the likelihood with which an

adversary can infer the private communication patterns of a user even when it only has access

to OSN encrypted data or data stripped from its content. Examples of such scenario include

an OSN analyst that only obtains metadata from the service provider or an OSN provider that

implements end-to-end encryption and provides traffic data to a law enforcement agency.

Secondly, we provide an analysis of the topological and communication properties of Netlog,

partially replicating previous studies. This allows us to further confirm the existence of key OSN

properties such as the power-law degree distribution or the fact that users only communicate

with a small subset of their friends.

Lastly, our results inform design strategies of obfuscation tools to achieve indistinguishability

between real and dummy traffic, e.g., preventing dummy traffic to be filtered out when it does not

match expected correlations with other available OSN data. Besides, our study can also inform

OSN communication models, and thus allow researchers to simulate realistic communication

patterns in OSNs.

2 Related work

In this section we shortly review how our work extends, differs from and complements previous

work on the field.

1Netlog was merged with Twoo in 2015. Accessing en.netlog.com in April 2017 automatically redirects to
www.twoo.com.
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2.1 Modelling of online social networks

The problem of inferring communication patterns is analogous to deriving a model of communi-

cation in OSNs. Most efforts on OSN modelling have however been devoted to derive a model

of the topology of the social graph, namely, a model of the characteristics of the network struc-

ture Ahn et al. (2007); Kossinets and Watts (2006); Kumar et al. (2010); Mislove et al. (2008,

2007), while fewer works have attempted to model activity and communication behaviour.

Network Topology

Several distinguishing properties of social graph topology have been identified in the literature.

Power-law degree distributions Barabási and Albert (1999), small diameters Watts and Strogatz

(1998), assortativity Mislove et al. (2007), community structure and network modularity Ferrara

and Fiumara (2012) are among the most representative. These properties have in turn informed

social network graphs generators that attempt to generate synthetic yet realistic social network

graphs Sala et al. (2010). Still, these models are limited in that they only describe the topology

of the network and do not capture users’ activity, this is, how users communicate and the actions

they perform in the OSN.

Users’ Activity

Benevenuto et al. have proposed a model of OSN user behaviour that, to the best of our knowl-

edge, is the most ambitious and comprehensive so far Benevenuto et al. (2009, 2012). They

provide, among other features, a characterisation of session timing, the frequency and type

of activities performed in the OSN and the number of friends users interact with. Similarly,

Gyarmati and Trinh Gyarmati and Trinh (2010) have proposed a model of the number of logins

and session duration per user based on their analysis of four popular social networks. These

models however do not study how these activity features relate to one another or to other OSN

data (e.g., topology). We provide a first contribution in this direction.

Despite the fact that no general model for user interaction has been proposed so far, social

network activity has received significant attention in the literature, unveiling recurrent, char-

acteristic patterns. Users have been found to typically communicate with a small subset of

their friends Chun et al. (2008); Golder et al. (2006); Wilson et al. (2009) and to reply to most

messages and posts received on the OSN, i.e., OSN interactions feature high reciprocity Chun

et al. (2008); Jiang et al. (2010); Wilson et al. (2009). User communication also exhibits marked

temporal patterns, e.g., differences between workdays and weekends Golder et al. (2006), or the

fact that communication between two users seldom persists over time Viswanath et al. (2009). In

this paper we analyse a different OSN dataset to confirm many of these findings. Moreover, we
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also take up these previously identified OSN properties to carry out our work on the feasibility

of inferences.

2.2 Inferences on OSNs

In this paper we study the feasibility of inferring private communication patterns on an OSN.

Previous works have focused instead on inferring sensitive attributes such as sexual orientation

or political affiliation. Their methodology is however very similar to ours, namely, based on

Bayesian analysis. We shortly review some of these prior contributions.

He et al. He et al. (2006) have proposed an analysis framework based on Bayesian networks

to infer personal attributes of OSN users based on the attribute values their friends declare.

To test the suitability of the framework, they synthetically generate attributes for a network

of users in LiveJournal2, demonstrating that their framework successfully exposes relationships

between the attributes of a user and her friends. Heatherly et al. Heatherly et al. (2013) show

that combining both non sensitive attribute values and friendship links leads to more accurate

inferences of sensitive values. Moreover, they propose countermeasures based on the removal of

links and attributes to thwart potential inferences based on them.

Mislove et al. on the other hand use community detection to infer the attributes of the

users in the network Mislove et al. (2010). Relying on the assumption that unknown users’

attributes can be inferred from the attributes of the people in their community, Mislove et al.

show that as few as 20% users with known attributes may allow very accurate inferences over

the attributes of the remaining users. Zheleva and Getoor combine both community detection

techniques and Bayesian analysis to infer, among other attributes, gender, location and marital

status; suggesting that whereas friendship links do not necessarily enable accurate inferences,

community membership does Zheleva and Getoor (2009). Chaabane et al. exploit semantic

relationships between user data to infer unknown attributes Chaabane et al. (2012). They rely

on a measure of similarity to assign to the unknown attributes of a user the known value of

other, similar users.

Inferences may also allow to learn not only private information about the present state of the

OSN and its users, but also about future events, e.g., the evolution of the OSN. Link prediction

attempts to infer future interactions between OSN users taking into account the current state

of the OSN. Some of the existing approaches Liben-Nowell and Kleinberg (2003); Al Hasan and

J. Zaki (2011) are based on assigning a score to pairs of nodes to represent their proximity or

similarity, an idea we also leverage in this paper.

2http://www.livejournal.com/
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2.3 Obfuscation tools for traffic analysis resistance

Our work is further inspired by the design of obfuscation tools for traffic analysis resistance in

online social networks Balsa et al. (2012). The goal of these tools is to prevent an adversary (be it

the service provider or an external adversary) from profiling the users’ communication patterns,

namely, to accurately determine with whom and how often OSN users communicate. In order

to do that, these tools generate and send out dummy traffic, i.e., fake, cover traffic that prevents

an observer from accurately determining with whom the user actually communicates. To do this

effectively, dummy messages must be indistinguishable from real ones. A first step to achieve

this is to encrypt all communications, so that the adversary cannot distinguish real and dummy

messages based on their content. Content is however not the only piece of information that may

leak information about which messages are real and which ones are not. Correlations between

the number of messages a user sends to a friend and other types of features may undermine the

plausibility of the dummy traffic being generated. For example, if the number of private messages

two users exchange and the number of posts that they leave on each other’s wall are correlated,

an obfuscation tool needs to take this into account to generate dummy traffic. Otherwise, if

Alice does not communicate with Charlie and Alice’s obfuscation tool sends dummy messages

to Charlie, the adversary can potentially dismiss those dummy messages as obfuscation because

she knows that if Alice had actually sent messages to Charlie she would have also posted on

his wall. Our work therefore aims to inform the design of obfuscation tools for traffic analysis

resistance by providing a first analysis of the relationship between OSN communication and

other OSN features.

3 Communication Inference in Online Social Networks

3.1 A model of communication in online social networks

We model an online social network (OSN) as a mixed multigraph G := (V, F, P,M). The set

of nodes V represents the OSN users. The set of friendships F represents friend relations

between the OSN users. The multiset of posts P , represents messages publicly posted on users’

walls. The multiset of messages M represents the private messages sent on the OSN. Friendship

relationships are represented with undirected edges while posts and messages are represented

with arcs (directed edges).

For a specific OSN user a ∈ V , say Alice, F (a) denotes Alice’s set of friend relationships.

The set of posts sent and received by Alice are denoted as P−→(a) and P←−(a), respectively. The

sets of sent and received messages are analogously represented as M−→(a) and M←−(a). The absence

of an arrow indicates that both directions are considered thus M(a) = {M−→(a) ∪ M←−(a)} and
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Table 1: Notation summary

Symbol Definition

G := (V, F, P,M) Mixed multigraph representing the OSN

V Set of OSN users (nodes)
F Set of friendships (edges)
P Multiset of public posts (arcs)
M Multiset of private messages (arcs)

F (a) Alice’s set of friend relationships
P−→(a) Multiset of posts sent by Alice

M←−(a) Multiset of messages received by Alice

P (a) {P−→(a) ∪ P←−(a)}
M(a) {M−→(a) ∪M←−(a)}

P−→(a,b) Multiset of posts Alice sent to Bob

M(a, b) Multiset of messages exchanged between Alice to Bob,
i.e., M(a,b) = {M−→(a, b) ∪M←−(a, b)}

VF (a) Set of nodes that are friends with Alice
VP−→

(a) Set of nodes to whom Alice sent posts

VM (a) Set of nodes that sent to or received messages from Alice,
i.e., VM (a) = {VM−→(a) ∪ VM←−(a)}

¯̄S Cardinality of the set S

Superscript T Specifies time frame

P (a) = {P−→(a) ∪ P←−(a)}.
The set P−→(a, b) represents the posts Alice sent to Bob and, in the same way, M−→(a,b)

represents the messages Alice sent to Bob.

We denote as VF (a) the set of nodes in the induced subgraph formed by the set of friendships

of Alice, this is, the set of nodes representing the friends of Alice. In the same way, VP (a)

(respectively, VM (a)) is the set of nodes in the induced subgraph formed by the multiset of

posts P (analogously, messages M) sent and received by Alice, this is, the set of users that sent

and received posts (correspondingly, messages) to and from Alice.

We denote as ¯̄S the cardinality of a set S, e.g., ¯̄VF (a) denotes the number of friends Alice

has on the OSN.

We use a superscript T to refer to communication taking place on a specific time period T ,

e.g., VM−→
T (a) represents the set of users Alice sent a message to during time period T .

Table 1 presents a summary of all the notation described above.
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3.2 Evaluating the feasibility of communication inference in online social

networks

We model as random variables, R, both unknown variables to be inferred and evidence variables

to perform inferences from. We denote the probability distribution of a random variable as

P[R = x ], e.g., P[ ¯̄M−→(a,b) = x ] represents the probability of a number x of messages sent by

Alice to Bob. Similarly, P[R1 | R2, R3, . . . , Rk ] denotes the conditional probability of R1 given

evidence from random variables {R2, R3, . . . , Rk}, e.g., P[ ¯̄M−→(a, b) = z | ¯̄P←−(b, a) = x ] represents

the probability that Alice sends z messages to Bob given that Bob left x posts on Alice’s wall.

We use Shannon entropy Shannon (1948), denoted as H(R), to measure the amount of

uncertainty about the expected value of a random variable R. In other words, we use entropy

to measure how easy it would be to infer the value of R. Low values of entropy represent

easy inferences, namely, some values R = r are far more likely than others. Conversely, high

values of entropy indicate harder inference problems, as there is significant uncertainty about

the actual value that R may take. The conditional entropy, denoted as H(R1 | R2, R3, . . . , Rk ),

measures the uncertainty about the expected value of R1 when information about random

variables {R2, R3, . . . , Rk} is available. Conditional entropy ranges from 0 to H(R1). When

values R2 = r2, R3 = r3, . . . , Rk = rk univocally determine R1 = r1, conditional entropy

is 0. Conversely, when values of R2, R3, . . . , Rk provide no additional information about R1,

conditional entropy equals H(R1), as values R2, R3, . . . , Rk reveal nothing about R1.

Both entropy and conditional entropy are related to mutual information through the follow-

ing expression: I(R1;R2) = H(R1) − H(R1|R2). We have favoured mutual information over

other measures of statistical dependence, such as correlation coefficients, for its equitability, i.e.,

its ability to detect general, not only linear or monotonic, dependence Khan et al. (2007); Kin-

ney and Atwal (2014). We have chosen however to present results in this paper in terms of

conditional entropy, which is trivial to obtain from the corresponding mutual information.

Practicalities The computation of both entropy and conditional entropy depends on the

estimation of the probability distribution of the random variables involved. We quantise random

variables to reduce the set of values they may take Balsa et al. (2012). Quantisation collapses

several values on one category of values, effectively increasing the number of samples available per

category. This reduces the error on the probability distribution estimation, albeit at the expense

of coarser random variable values. Moreover, shorter lists of values allow for a speedier thus

more efficient computation of the mutual information. To measure the underlying estimation

error we resort to Bayesian Inference, using the methods described in Balsa et al. (2012).
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Table 2: Description of the Netlog interaction dataset

Type Data Time period

Friendship User 1 ID User 2 ID Day & time Dec’02 - Oct’11
Posts Poster ID Recipient ID Day & time Dec’02 - Oct’11
Messages Sender ID Recipient ID Day & time May’11 - Oct’11

4 A Case Study: Netlog

4.1 The Netlog dataset

We have performed our study using a dataset from Netlog, a Belgian OSN.3 Our dataset com-

prises communication data from the Dutch-speaking subnetwork in Netlog. Specifically, it in-

cludes three different sets of interaction data4:

Friendship requests and acceptances In Sect. 3.1 we have modeled friendship as an undi-

rected edge between two users. We consider two users Alice and Bob to be friends (and

thus a friendship edge is added to the social graph between the node representing Alice

and the node representing Bob) when the dataset contains both a friendship request from

Alice to Bob and a friendship acceptance from Bob to Alice.

Private messages Messages that are only visible to the sender and recipient of the message.

The dataset contains traffic data of both sent and received private messages.

Public posts Messages that users leave on other users’ personal pages and are publicly avail-

able. The dataset contains traffic data of both sent and received private messages.

Table 2 outlines the data obtained for each type of interaction and the time period for which

complete data is available. Note that the dataset contains no personal attributes or the contents

of any message or post, but only metadata. Moreover, the dataset was de-identified, namely,

names were replaced by a random identifier.

Figure 1 sums up some statistics about the dataset. We use the acronym ‘AT’ (All Time)

to tag those figures that refer to all the time for which data are available. Otherwise, figures

refer to the six-month period of messages data. We use the terms posting and messaging users

to refer to users that posted and sent at least one post or message, respectively. Active users

either posted or sent at least one message and strictly active sent at least one of each. Note

that active users are a small fraction of the total number of users in the network, as previously

reported in the literature Benevenuto et al. (2009).

3See Footnote 1 in page 3.
4The dataset includes additional datafields which are not used for the study performed in this paper.
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Number of users 3 834 304
Number of posts (AT) 175 731 008

Number of messages 70 170 964

Posting users (AT) 1 763 931
Posting users 180 182

Messaging users 379 611
Active users 443 398

Strictly active users 270 327

Average friend. degree 24.96
Std. dev. friend. degree 161.1

Figure 1: Dataset statistics
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100

Figure 2: Degree probability distribution

Next we provide an analysis of the main features of both social graph and communication

activity in the network, discussing to what extent they match or deviate from the previous

studies we have referred to in Sect. 2. These features are the ones we use below in Sect. 4.2 to

perform our evaluation on the feasibility of inferring private communication patterns.

4.1.1 Social graph topology

Figure 2 displays the distribution of the number of friends each user has, P[ ¯̄Vf (a) ], which

approximately follows a power-law with α = 2.2.

Figure 3 represents the probability distribution of different features of Netlog’s social graph

topology. Figure 3a shows the probability distribution of the number of friends Alice has in

common with each of her friends, namely —slightly abusing notation5—, P[ ¯̄VF (a∩ b) | ¯̄VF (a) ].

Figure 3b shows the probability of the number of different people that two friends, Alice

and Bob, can jointly count among their friends, i.e., P[ ¯̄VF (a ∪ b) | ¯̄VF (a) ]. That number is

strongly correlated with the degree of Alice because users tend to become friends with people

that have a similar amount of friends in the OSN. This has been referred in the literature as

homophily Mislove et al. (2010) and is shown in Fig. 3c, which shows the probability of the

average degree of Alice’s friends given Alice’s own degree, namely, P[
∑

b∈F (a)
¯̄VF (b)

¯̄VF (a)
| ¯̄VF (a) ].

Lastly, Fig. 3d shows the probability distribution of the Jaccard coefficient between any two

friends, i.e., P[ JF (a, b) | ¯̄VF (a) ], where JF (a, b) =
¯̄VF (a∩b)
¯̄VF (a∪b)

. Note that the greater the degree of

Alice the lower the Jaccard coefficient is likely to be. The probability that Alice and Bob have

the same friends decreases as the degree of any of them increases.

5According to our notation rules the correct form should be P[VF (a) ∩ VF (b) | ¯̄VF (a) ]
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Figure 3: Graph Features

4.1.2 Users’ Communication Activity

Figure 4 shows the distribution of the number of friends each user Alice communicates with,

depending on her number of friends ¯̄VF (a), showing that the more friends a user has, the greater

the number of people ¯̄VM−→
(a) and ¯̄VP−→

(a) she sends messages or posts to, respectively. Not

surprisingly, the number of people a user communicates with increases over time, as shown in

Fig. 4c. Yet all three figures show that OSN users only communicate with a small subset of

their friends, confirming previous results Golder et al. (2006); Huberman et al. (2008); Viswanath

et al. (2009).

Figure 5 shows the probability distribution of the number of messages and posts a user Alice

sends to each of her friends. Figure 5a shows that the number of messages does not depend on

the number of friends Alice has, whereas Fig. 5b shows there is a slight dependency between

the number of posts Alice sends to Bob and her number of friends, i.e., the fewer friends Alice

has, the less posts she will send to each of them. Interestingly, this trend tends to disappear
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(a) Number of people Alice messages.
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(b) Number of people Alice posts to.
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(AT).

Figure 4: Distributions of the number of people a user sends messages and posts to.

over time, as shown in Fig. 5c.

Figure 6 describes the probability distribution of the total number of messages (Fig. 6a) and

posts (Figs. 6b and 6c) sent by Alice, supporting Fig. 4 in that the total number of messages

and posts a user sends depends on the number of friends she has.

Lastly, Fig. 7 represents the degree of reciprocity for both messages (7a) and posts (7b

and 7c). The figures represent the histogram of the pairs of counts of messages (or posts,

according to the figure) that Alice sent to Bob and Bob sent to Alice. Darker areas represent

a higher incidence of those pairs of values in the network. For example, the number of times

that Alice sends 3 messages to Bob and Bob sends 3 messages to Alice is much higher (in the

dark area of the figures) than the number of times that Alice sends 3 messages to Bob and Bob

sends 100 messages to Alice (in the light area of the figures). As shown in all three figures and

confirming what has been previously reported Chun et al. (2008); Jiang et al. (2010); Wilson

et al. (2009), users have a strong tendency to reciprocate the messages and posts they receive.
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Figure 5: Distributions of the number of messages and posts Alice sends to Bob.
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Figure 6: Probability distributions of the total number of messages and posts Alice sends.

4.2 Inferring private communication in Netlog

In this section we present the results of our evaluation on the feasibility of inferring private

communication patterns. Unless otherwise stated, all figures included in this section follow the

same representation formula. They display conditional probability distributions P[Z | X ] where

Z represents the variable to be inferred (e.g., number of messages sent by Alice to Bob) and X

represents the evidence variable (e.g., the number of friends Alice and Bob have in common).

In the figures, the x-axis represents values of the independent variable X = x, and the y-axis

the probability P[Z = z | X = x ]. The figures may also feature error bars, which represent

the standard error on a 99% confidence interval. Table 3 summarises the features that we have

chosen to analyse in our study.

4.2.1 Messaging behaviour based on network topology features

We have analysed the relationship between the network topology and the number of private

messages users send.
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Figure 7: Communication Reciprocity

Table 3: List of features involved in our inference analysis. The posts graph is the communication
graph induced by the multiset of posts P

Data source Features Source visibility

Friendship ¯̄VF (a) ; ¯̄VF (a ∩ b) ; ¯̄VF (a ∪ b) ; JF (a,b) Public

Posts ¯̄P−→(a,b) ; ¯̄P−→(b, a)
¯̄P−→

T (a,b) ; ¯̄P−→
T (b, a)

Posts graph ¯̄VP (a ∩ b) ; ¯̄VP−→
(a ∩ b) ; ¯̄VP←−

(a ∩ b)
¯̄VPT (a ∩ b) ; ¯̄VP−→

T (a ∩ b) ; ¯̄VP←−
T (a ∩ b)

¯̄VPT (a ∪ b) ; ¯̄VP−→
T (a ∪ b) ; ¯̄VP←−

T (a ∪ b)

Private messages ¯̄M(a,b) ; ¯̄M−→(a, b) ; ¯̄M−→(b, a) Private

Messages sent given topological degree (number of friends) Figures 4 and 6 have

shown that with an increasing number of friends Alice is slightly more likely to send messages

to more of her friends as well as to send slightly more messages overall. However, those increases

are not linear with the number of friends, which means that Alice only communicates with a

small subset of her friends and distributes a limited “budget” of messages among them. We

analyse whether the number of Alice’s friends has an impact on this distribution, namely, Alice

may distribute her “budget” equally among her friends —sending less messages to each friend—,

or not —ignoring certain friends, whether old or new. Besides, if Alice has more friends, more

of those friends may send her messages and, considering strong reciprocity (cf. Fig. 7), that may

have an impact on how Alice chooses to communicate.

Figure 8a shows the conditional probability distribution of the number of messages Alice

sends to Bob given her number of friends, namely, P[ ¯̄M−→(a, b) | ¯̄VF (a) ]. Our results suggest that

the number of friends users have is not a good indicator of the number of messages they send to

any of their friends. Alice seems to choose the number of messages she sends to any of her friends
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(a) Probability distribution of the number of messages
Alice sends to Bob given Alice’s number of friends.
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(b) Probability distribution of the number of messages
Alice sends to Bob given Bob’s number of friends.

Figure 8: Inferring messages given topological degree

Table 4: Entropy of number of messages given topological degree

Bits

Ref.: H( ¯̄M−→(a,b)) 0.2044

H( ¯̄M−→(a, b) | ¯̄VF (a)) 0.2033

H( ¯̄M−→(a, b) | ¯̄VF (b)) 0.2037

regardless of her own number of friends. This is in line with previous results Golder et al. (2006);

Huberman et al. (2008); Viswanath et al. (2009) showing that not only Alice communicates with

just a small subset of friends regardless of the total number of friends amassed on the social

network, but also that the amount of messages she sends to any of her friends is neither affected.

We posit that most of those additional friends are mere acquaintances that Alice is not interested

in communicating with on a regular basis, i.e., additional friends do not disrupt Alice’s stable

communication patterns with a small circle of friends.

Besides, Alice may choose to message more popular friends (i.e., Bob has many friends and

contacts on the network) or on the contrary favour less well-connected people (e.g., Bob has

fewer friends and can therefore devote more of his attention to her). From our analysis, the

number of messages Alice sends to Bob is independent from the number of friends Bob has,

as shown in Fig 8b. The analysis of the entropies, as shown in Table 4, further confirms this.

Knowing the number of friends either Alice or Bob have barely reduces the uncertainty on the

number of messages Alice sends to Bob. This suggests that Alice’s motivation to message Bob

is neither determined by Bob’s popularity nor lack thereof.

Messages exchanged given subnetwork graph We have analysed the relationship between

the number of messages two friends exchange with respect to various features of their local
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number of messages Alice and Bob
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exchange given the size of the
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Figure 9: Messages exchanged given subnetwork graph.

subnetwork graph. This allows us to evaluate whether the network of friends surrounding two

users may reveal any information about the volume of their private communication. We posit

that if two users have several friends in common, they may belong to a tight social circle (e.g.,

their family) and may therefore be likely to be in touch and often communicate. On the other

hand, a very large number of common friends may also mean that both users belong to a large

and loose community of acquaintances (like a company’s employees or university alumni) and

may therefore seldom communicate.

The total number of friends two users have may also reveal information about how much

they communicate. Users that together total a small number of friends may message each other

more often, as they have few other friends to communicate with. Conversely, when either Alice

or Bob (or both) have a large number of friends, the probability that they message each other

might be smaller, as they have many other friends they can communicate with. Lastly, it may

be that users only communicate more with each other when the amount of common friends

they share make up a certain percentage of their friends. If Alice and Bob share many common

friends but those are all the friends they have, they may simply be using the social network to

keep in touch with a loose community of acquiantances. Conversely, if their common friends

represent just a fraction of their friends, they may be part of a tighter circle of friends and

communicate more often.

Figure 9 shows the probability of the number of messages two users exchange given their mu-

tual friends (Fig. 9a), the union of their friends, (Fig. 9b), and their Jaccard coefficient (Fig. 9c).

None of the three features seems to provide information about the number of private messages

two users exchange. The probability of any number of messages stays relatively constant for

numbers of mutual friends below 1024. Beyond that number the error increases significantly

—as few users have more than 1024 mutual friends—, yet nothing indicates a potential change

in trend.
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Table 5: Entropy of messages exchanged given subnetwork graph

Bits

Ref.: H( ¯̄M(a,b)) 0.2751

H( ¯̄M(a, b) | ¯̄VF (a ∩ b)) 0.2745

H( ¯̄M(a, b) | ¯̄VF (a ∪ b)) 0.2734

H( ¯̄M(a, b) | JF (a, b)) 0.2738

Table 5 displays the results of the entropies analysis. This confirms that all three features

provide little information, with the union of friends being only slightly more informative. Note

that the Jaccard index depends on both the number of mutual friends (non-informative) and

the union of friends (slightly more informative), thus the effect of the former may diminish the

amount of information provided by the latter.

We posit that because two users can often belong to several loose communities where they

share many common friends (e.g., colleagues, schoolmates, university alumni and neighbours, to

name a few) this is not a good indicator of the volume of communication between two people.

Similarly, the union of the set of friends and the Jaccard coefficient between two users do

not provide significant information about the number of messages they exchange. The former

supports previous results in that it seems that communication between users does not depend

on how many friends they have, i.e., users communication patterns with their close group of

friends is unaffected by the number of friends each of them has on the network. The latter is

on the other hand a combination of both the intersection and the union sets of friends. The

combination of both features does not seem to provide significant information about the amount

of private communication. Again, this may be due to the fact that users belong to different loose

communities that may or may not make up the great majority of their friends. High variability in

size, number and overlap of these communities may explain why the Jaccard coefficient provides

no additional information.

4.2.2 Messaging behaviour based on posting behaviour

We have analysed the relationship between private communication patterns and public commu-

nication patterns.

Messages sent given sent or received posts Users may choose to send private messages

to people they are not willing to publicly reveal they communicate with. On the other hand,

users may also largely use both messages and posts interchangeably to communicate with their
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friends. We have analysed whether any relationship exists between the number of posts and

messages two users exchange. Figure 10a represents the probability of the number of messages

Alice sends to Bob given the number of posts she writes to him in the same period of time (i.e.,

6 months). The probability of having sent at least one or more messages significantly rises when

Alice leaves a post on Bob’s wall, steadily increasing for even larger numbers of posts. The

same is true when we consider the number of posts Alice receives from Bob, shown in Fig. 10b,

suggesting that the number of posts Alice sends to Bob and the ones she receives from him are

equally informative to infer the number of messages they have exchanged. This is not surprising

given the high communication reciprocity observed in the network (cfr. Fig. 7). Knowing that

Alice sent a specific number of posts to Bob does not however precisely determine the number

of messages she has sent to him, as the probability to send any number of messages increases

with the number of posts at a rather similar and marginally incremental rate for any number of

messages.

Hence, these results suggest that private messaging is more likely to take place when public

posting has taken place. However, there is no correlation between the volume of public and

private communication, i.e., it is not possible to assume that if Alice leaves a large volume of

posts on Bob’s wall she will also send her a large number of messages. Therefore, users do

not interchangeably choose to send messages or posts to their friends, as if that was the case

there should be a correlation between both types of communication. Still, these results have

implications for communication modelling and obfuscation, namely, a realistic and plausible

model of user communication must consider overlapping subsets of friends for both private and

public communication.

We have tested whether having access to a longer history of posting behaviour enables better

inferences, the rationale being that long term observation of public behaviour enables to more

acurately determine who are a users’ “true” friends. Figure 10c represents the probability that

Alice sends z messages to Bob on a 6-month period given that Alice wrote to him x posts in

the previous 9 years. The probability that Alice sends messages to Bob still increases with the

number of posts she or he left on his or her wall. However, the relationship between posts and

messages seems to be weaker, suggesting that communication profiles are not stable and therefore

previous posting history may not be as reliable a predictor of recent messaging behaviour as

the evidence of recent posts. Another hypothesis suggests that users choose to message close,

long-term friends through alternative communication channels to social media, favouring the

latter for casual, sporadic conversation with a clique of friends.

Table 6 shows the entropies of the distributions represented above. Note that the entropy of

the messages probability distribution barely changes conditioned on the number of posts. This

highlights that, in spite of the trends shown in the pictures, information about the number of
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Table 6: Entropy of sent messages given sent/received posts

Bits

Ref.: H( ¯̄M−→(a,b)) 0.2044

H( ¯̄M−→(a,b) | ¯̄P−→(a,b)) 0.1989

H( ¯̄M−→(a,b) | ¯̄P−→(b, a)) 0.1996

H( ¯̄M−→(a,b) | ¯̄P−→
T (a, b)) (AT) 0.2031

H( ¯̄M−→(a,b) | ¯̄P−→
T (b, a)) (AT) 0.2033

publicly exchanged posts does not provide significant information about the private messages.

Still, this may predominantly be due to the fact that, in this OSN, users exchange no messages

regardless of the number of posts they have left for each other.

Lastly, we have analysed whether considering proportions or percentages instead of absolute

numbers may lead to better inferences. Figure 10e represents the probability that Alice sends

to Bob a certain percentage of all the messages she sends when she has written to Bob a certain

percentage of all the posts she wrote (when Alice has written at least 5 posts) and Fig. 10f when

she has received from Bob a certain percentage of all the posts people have posted to her (when

Alice has received at least 5 posts). Both figures show that considering proportions of posts

instead of absolute numbers do not enable better inferences either. This result further debunks

the idea that users interchangeably use posts and messages to communicate with their friends,

as otherwise both percentages would be correlated.

Exchanged messages given posting friends We have analysed the relationship between

the number of messages two friends exchange with respect to their shares of posting friends,

namely, those friends they send to or receive posts from. Specifically, we have considered the

number of mutual posting friends (Figs. 11a and 11b) and the union of posting friends (Fig. 11c).

Note that this is a “hybrid” analysis that combines evidence of public communication with the

graph structure or network it induces. The first hypothesis is that if Alice and Bob leave posts

to the same set of people, they may be more likely to also communicate with each other. The

same reasoning we have proposed in section 4.2.1 applies to the analysis below of more complex

features such as intersection, union and Jaccard coefficient over sets of posting friends.

Our analysis of the data shows however that none of these features enable inferences of

private message communication. The number of friends that both Alice and Bob have sent

to or received messages from provides little information about the number of messages Alice

and Bob exchange, regardless of whether we consider the posts on the same period of time
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Figure 10: Probability distribution of messages sent given sent/received posts.

(Fig. 11a) or a longer history (Fig. 11b). The probability that Alice and Bob exchange at least

one message substantially increases when the number of mutual posting friends is greater than
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Figure 11: Probability distributions of exchanged messages given posting friends.

one. As for the exact number of messages exchanged, this evidence variable does not provide

enough information. The same occurs when considering the union of posting friends, namely,

those friends that at least Alice or Bob have sent to or received a post from. The analysis of the

conditional entropy confirms these results, as shown in Table 7 where we include the results of

further analyses which we have not represented in the figure mainly due to the high similarity

with the ones above.

There may be a number of reasons that explain this. The simpler is that users in this par-

ticular network favour public posting over private messaging, therefore exhibiting a generalised

lack of private communication that barely correlates with any other examined feature. A more

complex explanation is that the wide variety of types of users, the communities they belong

to and the contexts and situations in which they choose to communicate contribute to multi-

ple forms of communication that fail to emerge as consistent patterns to enable inferences. In

the next section we further discuss the results presented up to this point and their practical

implications.

5 Discussion

We mentioned in the introduction that our study has two main implications.

Firstly, regarding the feasibility of inferences, we set out to determine to what extent an

adversary could infer the private communication patterns of OSN users from OSN metadata.

Our analysis shows that it may not be possible to infer private communication patterns in OSNs

from publicly available data such as graph topology or public communication. In the particular

case of Netlog, an adversary would not be able to easily infer private communication patterns

from publicly available traffic patterns or the social graph topology. Were our results to be

confirmed for other social network data or features thereof, this would represent a “natural”

privacy protection against inferences. However, it is important to understand that it is not
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Table 7: Conditional entropies given posting friends sets

Bits

Ref.: H( ¯̄M(a,b)) 0.2751

H( ¯̄M(a,b) | ¯̄VPT (a ∩ b)) (AT) 0.2744

H( ¯̄M(a,b) | ¯̄VP−→
T (a ∩ b)) (AT) 0.2744

H( ¯̄M(a, b) | ¯̄VP←−
T (a ∩ b)) (AT) 0.2730

H( ¯̄M(a, b) | ¯̄VP (a ∩ b)) 0.2712

H( ¯̄M(a, b) | ¯̄VP−→
(a ∩ b)) 0.2726

H( ¯̄M(a, b) | ¯̄VP←−
(a ∩ b)) 0.2721

H( ¯̄M(a, b) | ¯̄VPT (a ∪ b)) (AT) 0.2736

H( ¯̄M(a, b) | ¯̄VP−→
T (a ∪ b)) (AT) 0.2737

H( ¯̄M(a, b) | ¯̄VP←−
T (a ∪ b)) (AT) 0.2731

possible to generalise the results of our study to all OSNs.

Whereas many of our results are consistent with previous findings (e.g., the fact that users

communicate with a small subset of their friends or the fact that their communication exhibits

a high degree of reciprocity Chun et al. (2008); Golder et al. (2006); Wilson et al. (2009)),

that should not lead us to assume that the absence of correlations between the OSN data and

features we have considered is a universal property of all OSNs. These results relate to one

particular social network (Netlog) and a subset of all posible features that we have chosen to

examine. Future studies may uncover relationships between OSN features that enable inferences

on private communication, be it in other social networks (e.g., Facebook, Twitter, Google+ or

Renren, to name a few), from other available data such as Likes, comments or tagged photos or

from more complex graph or communication features (e.g., eccentricity, clustering coefficients or

centrality). In this sense, and similarly to the initial models of OSN topological structure that

only captured one or two (sometimes even conflicting) features Newman et al. (2002); Backstrom

et al. (2006); Kumar et al. (2010), our study is a first step and contribution in this direction.

Having said that, our analysis of the entropy of the conditional probability distributions

between the features we have examined leaves little room for doubt: in this particular social

network publicly available information about the graph and communication does not improve

our ability to infer the number of private messages users exchange. Considering the low volume

of communication our best guess would be to assume that, with high probability, two users do

not communicate at all. As indicated above, OSN users tend to befriend a large number of

people but only communicate with a small subset of them.
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We may further advance some hypotheses to explain the absence of correlations. OSNs

are known to feature tight-knit social structures Mislove et al. (2010), namely, users belong to

different closed communities where members are akin to each other. Considering that many of

these members share the same OSN features but users still communicate with only a small subset

of them, the features would not help us infer who among those members users communicate

with. In this sense, identifying the specific communities (e.g., close friends, relatives, co-workers)

and the links across them may allow for better inferences than the features of the underlying

graph structure.

More generally, communication traffic data and topological features stripped off all content

or semantics may simply not be informative enough to perform inferences on who the users

privately communicate with. One may need to know whether the friends two users have in

common are co-workers or relatives, or whether the posts that two users exchange are meant to

be read by a wide audience or a reduced subset of their friends. Besides, the effemeral nature

of the users’ communication behaviour, i.e., the fact that users’ communication profiles rapidly

change, may further prevent patterns and correlations between features from emerging.

Secondly, our results have also implications for the modelling of OSN communication and

the design of obfuscation tools for traffic analysis resistance in OSNs.

With respect to OSN modeling, not only have we confirmed, as shown in previous studies,

certain social graph topological properties such as the power-law nature of the friendship de-

gree distribution or the fact that users communicate with a small subset of their friends. Most

importantly, we have provided what to the best of our knowledge is the first analysis of the

relationship between private communication patterns and other OSN data such as public com-

munication traffic data and the social graph topology features, showing that, at least in the case

of Netlog, no direct relationship exists between these. The lack of correlations greatly simplifies

the modelling of OSN communication in OSNs, as each of the features can be generated and

simulated independently from each other.

We recall that our inference analysis was motivated by a particular threat model, namely, a

social network where users encrypt their communications and no content is available to either

the OSN service provider or an external adversary, “only” communication traffic and social

graph data. In this context, we wondered, would it be possible for these adversaries to infer

anything about the users’ private communications? And were this the case, what would it take

for users or privacy technology designers to prevent that from happening?

We must recall that Netlog itself provided to its users neither encryption tools nor com-

munication traffic or social graph data obfuscation tools. Yet none of these are limitations for

our study. On the one hand, by omitting the users’ communication content in our analyses we

have effectively “simulated” encrypted (and padded) communications. On the other hand, if
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Netlog provided communication traffic or social graph data obfuscation, it would have prevented

us from reliably determining whether correlations between these data existed (as we would be

measuring correlations between obfuscated data).

Analogously to the case of OSN communication modelling, the absence of correlations allows

a designer to treat these features independently Balsa et al. (2012). Effective obfuscation requires

plausibility. If OSN features are correlated, an obfuscation strategy must take this into account

as otherwise the adversary can exploit the correlation to filter the obfuscation out. The absence

of correlations thus not only prevents inferences but also simplifies the design of obfuscation

tools against more powerful adversaries.

Limitations Because our dataset was stripped off all content, we could not easily prune bots

and spammers off the dataset, thus their impact in our results cannot be accurately determined.

Still, our results are consistent across the whole range of topological degrees and number of

posts and messages sent and received, i.e., we have not identified a subset of users that exhibits

a different behaviour. We therefore assume that this kind of users would have had a limited

impact in our results.

6 Conclusion and future work

Users of online social networks are often provided with privacy settings that allow them to

control what is publicly visible and what is private on the site. Dependence between different

types of OSN data may however enable an adversary to perform inferences about the private

data based on other OSN available data.

Previous work has focused on inferences about private or non disclosed attributes of OSN

users. In this paper we have performed a first analysis on the feasibility of inferring private

communication patterns, i.e., with whom and how often a user communicates. We have focused

on traffic data because while users may use their privacy settings or use encryption to hide their

messages and sensitive attributes, traffic data cannot be easily hidden away from the service

provider or other external adversaries.

We have used both the friendship graph and public communication traffic data from Netlog,

a Belgian OSN, to evalute to what extent these publicly available data leak information about

the amount of private messages users exchange. We have found that, in Netlog, such leakage

of information is minimal as the number of messages users exchange is not related to the OSN

features we have examined. Still, our results cannot be generalised to all OSNs and further work

is needed to confirm whether or not this generally applies to user communication in other or all

OSNs.
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Future work could therefore go in three different directions. First, try to replicate our analysis

in other social networks. Are the results we have obtained observable in other platforms or are

our results particular of Netlog? Second, analyse the relationship between other features and

data. In this work we have focused on social graph topology and public communication traffic

data. Our inference analysis was motivated by a specific setting, namely, one where users

encrypt their communications and attributes such that the content of these are not available

to an adversary. However, this may not always be the case. Whenever content is available, it

may be exploitable by an adversary. The content of messages or personal attributes such as

age, marital status or gender may allow better inferences about users’ private communication.

Also, other social network data may be available depending on the OSN site itself, such as

Likes, comments, photo tags, shares and so on. These may also provide information about

users’ private communication. Third, future work should also examine alternative or more

complex analysis methodologies. We have relied on a Bayesian framework to determine to

what extent a given feature may leak information about another. Other methods should be

explored. Modeling the inference problem as a binary classification problem where the goal

is to predict whether there is any private communication between each pair of users may be

a promising avenue. Existing classification algorithms such as random forests, support vector

machines, or ensembles of classifiers could be applied to train the classifier. Besides, in terms

of features, the ones used in this paper represent just a starting point. Other more complex

features (e.g., eccentricity, centrality or clustering coefficient, among many others) may enable

better inferences.
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Fabŕıcio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virǵılio A. F. Almeida. 2012. Char-

acterizing user navigation and interactions in online social networks. Inf. Sci. 195 (2012),

1–24.

Abdelberi Chaabane, Gergely Acs, Mohamed Ali Kaafar, and others. 2012. You are what you

like! information leakage through users’ interests. In Proceedings of the 19th Annual Network

& Distributed System Security Symposium (NDSS).

Hyunwoo Chun, Haewoon Kwak, Young-Ho Eom, Yong-Yeol Ahn, Sue B. Moon, and Hawoong

Jeong. 2008. Comparison of online social relations in volume vs interaction: a case study of

cyworld. In Internet Measurement Comference, Konstantina Papagiannaki and Zhi-Li Zhang

(Eds.). ACM, 57–70.

Danah Boyd. 2008. Taken Out of Context: American Teen Sociality in Networked Publics. Ph.D.

Dissertation. University of California-Berkeley, School of Information. http://www.danah.

org/papers/TakenOutOfContext.pdf

26

http://www.danah.org/papers/TakenOutOfContext.pdf
http://www.danah.org/papers/TakenOutOfContext.pdf


Emilio Ferrara and Giacomo Fiumara. 2012. Topological Features of Online Social Networks.

CoRR abs/1202.0331 (2012).

Scott A. Golder, Dennis M. Wilkinson, and Bernardo A. Huberman. 2006. Rhythms of social

interaction: messaging within a massive online network. CoRR abs/cs/0611137 (2006).

Ralph Gross and Alessandro Acquisti. 2005. Information revelation and privacy in online social

networks. In WPES, Vijay Atluri, Sabrina De Capitani di Vimercati, and Roger Dingledine

(Eds.). ACM, 71–80.
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