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ABSTRACT
A recent study on the topic of additivity addresses the task of search
result diversi�cation and concludes that while weaker baselines are
almost always signi�cantly improved by the evaluated diversi�ca-
tion methods, for stronger baselines, just the opposite happens, i.e.,
no signi�cant improvement can be observed. Due to the importance
of the issue in shaping future research directions and evaluation
strategies in search results diversi�cation, in this work, we �rst aim
to reproduce the �ndings reported in the previous study, and then
investigate its possible limitations. Our extensive experiments �rst
reveal that under the same experimental se�ing with that previous
study, we can reach similar results. Next, we hypothesize that for
stronger baselines, tuning the parameters of some methods (i.e.,
the trade-o� parameter between the relevance and diversity of the
results in this particular scenario) should be done in a more �ne-
grained manner. With trade-o� parameters that are speci�cally
determined for each baseline run, we show that the percentage
of signi�cant improvements even over the strong baselines can
be doubled. As a further issue, we discuss the possible impact of
using the same strong baseline retrieval function for the diversity
computations of the methods. Our takeaway message is that in the
case of a strong baseline, it is more crucial to tune the parameters
of the diversi�cation methods to be evaluated; but once this is done,
additivity is achievable.
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1 INTRODUCTION
Search result diversi�cation in Information Retrieval (IR) is the
process of (re-) ranking the retrieved documents for a query so that
the top-ranked results would satisfy the users who all issue the
same query but with diverse intents [22]. In the literature, search
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result diversi�cation methods are broadly categorized as explicit
and implicit [24]. In a nutshell, implicit methods only rely on the
initially retrieved document list (the so-called candidate documents)
to infer di�erent subtopics (a.k.a., aspects or intents) of the query
and re-rank the list. In contrast, explicit methods assume that query
subtopics are made available (i.e., via using a topical taxonomy [1]
or mining query logs [24]) and aim to use these subtopics to re-
rank the candidate result list to surface results corresponding to
di�erent interpretations higher up the result list. In the last decade,
several diversi�cation methods have been investigated for and
applied to adhoc text retrieval (e.g., web search [3, 14, 24], tweet
search [12, 15]) but also in many other contexts, such as image
search [16, 26], database and data stream querying [4, 10], and even
recommender systems [25, 27, 28].

In a recent study, Kharazmi et al. [7] investigated the additivity
of the �ndings with respect to di�erent types of baselines for var-
ious IR tasks. First coined by Armstrong et al. [2], the additivity
of a method refers to its capability to improve a strong baseline
given an improvement over a weak one. Besides several other very
useful and inspiring analyses and discussions, Kharazmi et al. also
focussed on diversi�cation, by employing three implicit and three
explicit methods, and several baseline runs (i.e., adhoc runs sub-
mi�ed to TREC between 2009 and 2011 without any diversi�cation
e�ort) to investigate the additivity of the possible improvements
made by these methods over weak and strong baselines. We em-
phasize that in this context, the term baseline refers to an adhoc
retrieval method/system that returns a candidate result list (i.e., a
run in TREC terminology) to be diversi�ed, and a weak baseline
run is such a list with a relatively low initial diversity performance
(with respect to well-known evaluation metrics such as α-nDCG or
ERR-IA). �eir �ndings are quite striking: even when the diversi�-
cation methods are found to consistently and signi�cantly improve
the weak baselines (and this only holds for the explicit diversi�-
cation methods using the TREC o�cial subtopics), these methods
rarely improve the stronger ones; i.e., additivity does not occur.

�e implications of the above conclusion are important. It says
that in the future, researchers should use stronger baselines even for
the initial retrieval stage to demonstrate the power of their diversi�-
cation method, i.e., a simple adhoc run produced by a typical system
(say, Lucene, Terrier or other research prototypes) or method (say,
BM25) cannot be considered adequate. Given that at least some



of these stronger baseline runs may involve several additional fea-
tures that are extracted from external resources, such as proprietary
datasets or even public ones that are no longer available (e.g., a modi-
�ed web site or taxonomy), the necessity of such baselines may slow
down the pace of experimentation in this subject area. �erefore,
we believe that it is mandatory to repeat the procedure described by
Kharazmi et al., and investigate their �ndings in a timely manner.

Our goal in this paper is to reproduce the major �ndings of the
aforementioned previous work regarding the result diversi�cation
task, and question the validity of the resulting claims on additivity
via additional experiments and analysis. In the previous works on
explicit result diversi�cation, it is widely reported that the o�cial
TREC subtopics yield much higher e�ectiveness than using subtopic
de�nitions from other resources, such as web search engine sug-
gestions (e.g., see [3, 14, 24]). It is also shown that explicit diversi�-
cation, not surprisingly, outperforms the implicit approaches, espe-
cially when the o�cial TREC subtopics are employed (e.g., see [11]).
�ese observations are also veri�ed by Kharazmi et al. in that
signi�cant improvements are either rare or even non-existent for
the implicit methods and for the explicit methods with ODP-based
subtopics even on the weaker baselines (see Fig. 3 in [7]). �us,
in this paper, we essentially focus on repeating the experiments
employing explicit diversi�cation methods and the o�cial TREC
subtopics, to investigate the new additivity claims of Kharazmi et al.

In doing so, our contributions are three-fold: (1) our experimen-
tal �ndings under exactly the same setup verify the results in [7]; (2)
Moreover, our additional experiments where we set the λ trade-o�
parameter of some diversi�cation methods (i.e. the parameter that
balances the relevance to the main query and the diversity with re-
spect to the query subtopics) for each baseline separately show that
these methods can actually still signi�cantly improve a non-trivial
percentage of strong baselines, too; (3) We discuss the possible
impact of using the same strong baseline retrieval function inside
the diversi�cation methods, i.e., to compute the relevance of a doc-
ument to a subtopic, and provide some indirect evidence. Overall,
our additional experiments and discussions show the potential of
additivity of these diversi�cation methods on strong baselines; and
pinpoint the subtle issues (such as parameter tuning and relevance
computation of documents to subtopics) that should be carefully
handled while applying a diversi�cation method to such baselines.

�is paper is organized as follows. In Section 2, we brie�y review
the explicit diversi�cation methods implemented for this work. In
Section 3, we describe our experimental setup following the blue-
print in [7]. Section 4 provides results of the repeated and additional
experiments. In Section 5, we discuss the impact of modeling the
document-subtopic relevance in this context. Finally, in Section 6,
we conclude and summarize the main lessons learnt from this work.

2 EXPLICIT RESULT DIVERSIFICATION
In a typical result diversi�cation scenario, for a query q, the adhoc
retrieval results (i.e., a candidate ranking that typically includes
from 50 up to 1000 documents) are given. �e goal is to create a �nal
ranking S of top-k documents (in practice, k is usually at most 20)
that both maximizes the relevance to query q and its subtopics qi ,
and minimizes the redundancy with respect to these subtopics [6].
As discussed above, both the earlier studies and Kharazmi et al.
reported that the best diversi�cation performance is obtained by

the methods that utilize an explicitly modeled set of the query’s
subtopics, Tq , provided beforehand. �erefore, in this work, we
implement three explicit diversi�cation approaches, namely, IA-
Select [1] and x�AD [19] as employed in [7], as well as CombSum,
as a recently proposed method that is shown to be comparable to or
be�er than both of the former methods [14] and PM2 [3], which is
another state-of-the-art approach. Note that, in [7], another variant
of x�AD (referred to as x�ADRel [29]) has also been considered,
but since their experiments revealed that it is always inferior to
IA-Select and x�AD in yielding signi�cant improvements over the
baseline runs, we use CombSum instead of x�ADRel. In the follow-
ing, we brie�y review these methods as implemented in our setup:
IA-Select �is is a best-�rst greedy method [1] that scores the
documents in each iteration and selects the one that is most likely to
cover all query subtopics that are not yet covered by the documents
that have already been selected for the �nal top-k results, S , in the
previous iterations. While the original de�nition of the IA-Select’s
scoring function employs a slightly di�erent notation, following
the practice in [14, 19], we present it as follows:

S(q,d) =
∑
qiϵTq

P(qi |q)P(d |qi )
∏
djϵS

(1 − P(dj ,qi )) (1)

In IA-Select, P(qi |q) is the likelihood (or, importance) of subtopic
qi for the query q. �e probability P(d |qi ) represents the likelihood
of observing document d for the subtopic qi and is usually modeled
based on the relevance score rel(d,qi ) (normalized to the [0, 1]
range) of the retrieval system that generates the candidate ranking
(see Sections 3 and 5 for further discussions).
x�AD Again operating in iterations, eXplicit �ery Aspect Diver-
si�cation (x�AD) [19] is based on a probabilistic mixture frame-
work that takes into account the relevance to the main query q
as well as the relevance and diversity with respect to the query’s
subtopics. Its scoring function is as follows:

S(q,d) = (1−λ)P(d |q)+λ
∑
qiϵTq

P(qi |q)P(d |qi )
∏
djϵS

(1 − P(dj |qi ))


(2)
where P(d |q) is typically modeled as rel(d,q), i.e., the (normalized)
relevance score of d for q as generated by a retrieval system, while
the other probabilities are de�ned as in the case of IA-Select. Note
that there is a trade-o� parameter λ to balance the relevance and
diversity of the results in the �nal ranking. For λ = 0, the �nal
ranking is exactly the same as the candidate ranking, and for λ = 1,
the P(d |q) component is totally discarded, as in IA-Select.
CombSum �is method is an adaptation of the score-based rank-
ing aggregation technique CombSum [5, 9] to the diversi�cation
problem [14]. Instead of running in iterations, CombSum �rst ranks
the documents for each subtopic by computing P(d |qi ), and then
combines these rankings and the ranking for the main query using
the following function, where the probabilities are de�ned as above:

S(q,d) = (1 − λ)P(d |q) + λ
∑
qiϵTq

P(qi |q)P(d |qi ) (3)

In summary, each of the diversi�cation methods contains a no-
tion of document-query relevance estimation (e.g. P(d |q)), which
we denote as rel(d,q), as well as a document-subtopic relevance (e.g.
P(d |qi )), which we denote as rel(d,qi ). Furthermore, both x�AD



Table 1: Score intervals for categorizing baseline runs.

Baseline level ERR-IA@20 α-nDCG@20 P-IA@20
Weak 6 0.18 6 0.23 6 0.10
Medium >0.18 & 6 0.33 >0.23 & 6 0.41 >0.10 & 6 0.19
Strong >0.33 >0.41 >0.19

Table 2: Number of baseline runs in each year and level w.r.t.
each metric.

Dataset Baseline
level ERR-IA α-nDCG P-IA Total

TREC2009
Weak 31 16 25

31Medium 0 15 6
Strong 0 0 0

TREC2010
Weak 11 3 7

26Medium 15 22 18
Strong 0 1 1

TREC2011
Weak 0 0 0

14Medium 6 5 3
Strong 8 9 11

Total
Weak 42 19 32

71Medium 21 42 27
Strong 8 10 12

and CombSum have a parameter λ, which controls the trade-o�
between the importance between a document’s relevance to the
original query, and the coverage of subtopics. In the rest of this
paper, we study the se�ing and instantiation of the methods with
respect to rel(d,qi ) and λ.

3 REPRODUCED EXPERIMENTAL SETUP
FOR THE ANALYSIS OF ADDITIVITY IN
DIVERSIFICATION

Baseline runs and categories. As in [7], we only use the TREC
Web Track adhoc retrieval track submissions that are on the ClueWeb09
collection (Part-B) and employs no diversi�cation methods. �ere
were 34, 26 and 16 such runs submi�ed to TREC 2009, 2010 and
2011, respectively. Following [7], we remove the �ve lowest scoring
(w.r.t. α-nDCG@20) of these 76 runs, to obtain a total of 71 runs.

Kharazmi et al. [7] categorized these runs into three levels,
namely, weak, medium and strong baselines, based on the scores
of certain evaluation metrics. In particular, for a given evaluation
metric, the score range (i.e., the range between the minimum and
maximum scores of the baseline runs) is partitioned into three
equally sized regions to form these groups. We consider the ranges
for α-nDCG and ERR-IA as proposed in [7], and further employ
a third metric, P-IA, for additional insights. Table 1 provides the
score boundaries, and Table 2 shows the number of runs that fall
into each range with respect to each metric. Note that, the number
of runs in each level with respect to α-nDCG and ERR-IA metrics
(cf. Table 2) exactly match to those values reported in Table 3 of [7].

Diversi�cation methods, query sets and subtopics. As dis-
cussed before, we focus on the most-e�ective diversi�cation sce-
nario, namely explicit diversi�cation with the o�cial TREC subtopics.
We pre-process the subtopic descriptions so that they look like real

user queries, as has been performed in the literature [21]. In partic-
ular, we remove stopwords and generic terms like “�nd”, “look for”
and “information”. We implement x�AD, CombSum and IA-Select,
as described in Section 2.

�e query sets and their o�cial subtopics from TREC 2009 to
2011 are used to diversify the top-100 candidate documents from
the baseline runs of the corresponding year. As discussed in Section
2, all the aforementioned methods need to compute rel(d,q) and
rel(d,qi ), i.e., the relevance score of the query and its subtopics to
a candidate document, respectively. As all of the baseline runs pro-
vide the actual scores along with the candidate document ranking,
we use the normalized version of these scores (by the sum of the
scores of top-100 documents) for the former component, rel(d,q)
(Note that some runs involve negative scores that required further
pre-processing before normalization).

For the la�er component, rel(d,qi ), the ideal case would be to
obtain the document-subtopic scores using the exact retrieval sys-
tem that yielded the candidate documents in each run. However,
given the number and complexity of the methods in the baseline
runs, this is practically una�ainable. �us, to compute document-
subtopic scores, we employ a variant of the well-known Okapi BM25
weighting model [17], se�ing its parameters as follows k1 = 1.2
and b = 0.50 (again, the actual BM25 scores are sum-normalized
over the top-100 documents1). To do so, we use an index of
ClueWeb09 Part-B collection using the open source Ze�air retrieval
system [30]. Although Kharazmi et al. [7] do not specify how ex-
actly these computations are made, we veri�ed through a personal
communication [8] that they employed Indri with Okapi BM25 for
computing rel(d,qi ) in their work. Having said that, we further
discuss the impact of this choice in Section 5.

In all our experiments, following [19], the subtopic probabilities
P(qi |q) are computed uniformly as 1/|Tq |, where Tq is the set of
subtopics for a given query q. For x�AD and CombSum, we set
the trade-o� parameter λ in three ways: First, we use the �xed
value of λ = 0.9 reported in [7], which is said to be obtained via a
5-fold cross-validation process and by testing all values in the [0,1]
range with a step size of 0.1 over the training sets. As con�rmed
by Kharazmi et al. [8], in their work the cross-validation has been
applied over the runs, i.e., the best-performing λ parameter is de-
termined over the training runs and then applied for the test runs
in each fold. Second, we applied a similar procedure (i.e., a 5-fold
cross-validation and scanning the [0,1] range) to determine the λ
value that maximizes the α-nDCG@20 speci�cally for each run,
i.e., in a localized fashion. In this case, for each run, we determine
the best-performing λ over the training queries and then apply
to the test queries—this mimics typical deployment of a run in a
production environment, as well as in various research papers such
as [19, 20]. Our λ parameter is more likely to be adjusted to the
particular characteristics of a given run, rather than set for all runs
in a training fold, as performed by [7]. �irdly, we also report the
performance using the best λ, which is again obtained per run but
without using cross validation, as an upper-bound.

Evaluation metrics. To evaluate the diversi�cation e�ective-
ness, we compute three common metrics, namely, α-nDCG (with
the default α = 0.5), ERR-IA and Precision-IA, at the cut-o� value of
20, using the ndeval so�ware. We provide the evaluation results for
our experiments at github.com/altingovde/ICTIR2017-DivAdditivity.

1�is normalization is used in [14]; Santos [18] uses a slightly di�erent normalization.

github.com/altingovde/ICTIR2017-DivAdditivity
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Figure 1: Scatter plots showing e�ectiveness of x�AD and CombSum with trade-o� parameter λ = 0.9. X- and y-axis show
α-nDCG@20 scores for the baseline run and its diversi�ed version, respectively. Points plotted as blue crosses are statistically
signi�cant improvements over the baseline, while red diamonds indicate no signi�ciant di�erence.

4 EXPERIMENTS AND EVALUATION
As our �rst goal is reproducing the �ndings of Kharazmi et al.,
Section 4.1 presents our experiments conducted in the same setup
as theirs (to the greatest extent possible) and employing the reported
Global λ value of 0.9 for x�AD and CombSum methods. In the
additional experiments given in Section 4.2, keeping all the other
setup details the same, we demonstrate the impact of using the
Local and Best λ values during diversi�cation.

4.1 Reproduced Results using Global Trade-o�
Parameter

In this section, we report our �ndings for all three diversi�cation
methods using the global λ value of 0.9. Figure 1 presents the per-
formances of the diversi�cation methods applied over the baseline
(non-diversi�ed) runs in terms of the α-nDCG metric. From the
�gure, we observe that, as in [7], while weaker baselines (closer
to y-axis in the plots) are almost always signi�cantly improved



Table 3: Ratio of runs signi�cantly improved for each baseline level using x�AD and CombSum. Note that [7] did not report
the CombSum method or P-IA metric.

Level Method Results from [7] Our results (Global λ = 0.9)
ERR-IA α-nDCG P-IA ERR-IA α-nDCG P-IA

Weak x�AD 34/42 18/19 N/A 30/42 17/19 21/32
CombSum N/A N/A N/A 30/42 17/19 22/32

Medium x�AD 3/21 25/42 N/A 13/21 33/42 14/27
CombSum N/A N/A N/A 13/21 33/42 12/27

Strong x�AD 0/8 1/10 N/A 1/8 3/10 7/12
CombSum N/A N/A N/A 1/8 3/10 7/12

Table 4: Ratio of runs signi�cantly improved for each base-
line level using IA-Select.

Level Results from [7] Our results
ERR-IA α-nDCG P-IA ERR-IA α-nDCG P-IA

Weak 35/42 18/19 N/A 30/42 18/19 22/32
Medium 9/21 29/42 N/A 13/21 32/42 13/27
Strong 1/8 3/10 N/A 1/8 3/10 6/12

by the application of the diversi�cation method (measured using
a paired two-tailed t-test for p < 0.05), the improvements for the
stronger baselines are not signi�cant in most of the cases for all
three methods. �e trends across IA-Select, x�AD and CombSum
are similar, and for x�AD and IA-Select they are consistent with
the previously reported �ndings (see the top row of Fig. 3 in [7]).

As in [7], none of the diversi�cation methods (with o�cial
subtopics) yields a signi�cant degradation in the performance com-
pared to their baseline runs; i.e, all the signi�cant changes are
improvements. We report the ratio of runs that are statistically
signi�cantly improved for each method per baseline category, i.e.,
weak, medium and strong, with respect to three evaluation metrics
in Table 3 (for x�AD and CombSum, with λ = 0.9) & Table 4
(for IA-Select2). Note that, the denominator of the ratios in the
la�er results denotes the number of baseline runs at each level
for each metric, as provided in Table 2. Both Tables 3 & 4 report
the respective results repeated from Table 5 in [7]. By compar-
ing the columns across Tables 3 & 4, we note that our �ndings
are generally consistent with the previous work: almost all weak
baselines and the majority of the medium-level baselines are im-
proved by the diversi�cation methods, while the improvements
for the strong baselines are rather moderate (i.e., no more than
30% for α-nDCG and ERR-IA). Having said that, for x�AD, we
�nd a considerably larger number of signi�cant improvements over
the medium and strong runs in terms of the ERR-IA metric. Yet
another interesting �nding is that, when the P-IA metric (which is
not reported in [7]) is considered, the percentage of signi�cantly
improved strong baselines exceeds 50%, i.e., not really a moderate
ratio as for the other two metrics. Overall, we conclude that we
can successfully reproduce the main results of [7] for the result
diversi�cation task.

2Recall that IA-Select has no λ parameter.

4.2 Additional Results using Local Trade-o�
Parameter

In this section, we investigate the impact of the trade-o� parameter
λ on the performance of the x�AD and CombSum methods (recall
that IA-Select has no λ parameter). To this end, for each run, we
optimize λ (for the α-nDCG@20 metric) using a 5-fold cross val-
idation and scanning the [0, 1] range with a step size of 0.01 . In
Figure 2, we present the distribution of these Local λ values over
the training folds (i.e., given 71 runs and 5-fold CV, we consider
355 folds in total). �e plot clearly justi�es our choice of se�ing the
trade-o� parameter separately for each run, as the values are quite
sca�ered over the bins, e.g., even the largest bin (for the range [0.9,
1]) yields the best performance during the training for less than
one fourth of the total number of folds.

In Table 5, we report the diversi�cation performance using the
Local λ values per run, as described above. In comparison to the
Global λ column (repeated from Table 3 to facilitate comparison),
there is a clear increase in the ratio of signi�cantly improved runs
for all baseline levels and methods in terms of all metrics. We con-
centrate on the strong baselines, as the majority of the other base-
lines are shown to improve even when the Global λ value is utilized.
Table 5 reveals that x�AD and CombSum yields statistically signi�-
cant improvements for 70% and 60% (i.e., 7/10 and 6/10) of the strong
baselines for the α-nDCG metric, respectively. In terms of the ERR-
IA metric, both diversi�cation methods now signi�cantly improve
37.5% (i.e., 3/8) of the strong baselines. Even for P-IA, there is an
improvement in the ratio of signi�cantly improved strong runs (i.e.,
from 7/12 to 8/12). As before, we also plot the performance of diver-
si�cation methods (with Local λ) applied over the baseline runs in
Figure 3, which further reveals that none of the diversi�cation meth-
ods yield any drop in the performance, as well as pictorially showing
the larger number of signi�cant increases for the two methods.

�e Best λ column in Table 5 shows that when the optimal λ (for
the α-nDCG@20 metric) for each baseline run is set, the ratio of
signi�cantly improved strong runs reaches 62.5% and 80% in terms
of the ERR-IA and α-nDCG metrics (i.e., 5/8 and 8/10, respectively).
While we essentially provide this se�ing as an upper-bound, given
the small number of queries in the TREC campaigns, one could
use a leave-one-out cross validation strategy per run, which would
yield a similar performance to the Best λ. Finally note that all ex-
periments in this paper use the same λ value applied uniformly
over all the queries in the test fold. In the literature, it has been
shown that di�erent queries have di�erent levels of ambiguity, and
therefore bene�t from di�erent λ values [20] to further improve



Table 5: Ratio of runs that are signi�cantly improved for each baseline level using X�AD and CombSum with Global, Local
and Best λ values.

Level Diversity
method

Global λ = 0.90 Local λ Best λ
ERR-IA α-nDCG P-IA ERR-IA α-nDCG P-IA ERR-IA α-nDCG P-IA

Weak x�AD 30/42 17/19 21/32 33/42 19/19 24/32 37/42 19/19 28/32
CombSum 30/42 17/19 22/32 32/42 19/19 24/32 37/42 19/19 29/32

Medium x�AD 13/21 33/42 14/27 18/21 36/42 18/27 20/21 40/42 19/27
CombSum 13/21 33/42 12/27 17/21 36/42 18/27 20/21 40/42 20/27

Strong x�AD 1/8 3/10 7/12 3/8 7/10 8/12 5/8 8/10 8/12
CombSum 1/8 3/10 7/12 3/8 6/10 8/12 5/8 7/10 8/12

Figure 2: Distribution of trade-o� λ parameter values over the 355 training folds.
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Figure 3: Scatter plots showing e�ectiveness of x�ADandCombSumwith the Local λ trade-o� parameter. X- and y-axis show
α-nDCG@20 scores for the baseline run and its diversi�ed version, respectively. Points plotted as blue crosses are statistically
signi�cant improvements over the baseline, while red diamonds indicate no signi�ciant di�erence.



Table 6: α-nDCG@20 scores of the diversi�ed results over ten strong baselines (wrt. α-nDCG) using x�AD. We compute
rel(d,q) either based on the original scores in the run or using BM25, while the rel(d,qi ) scores are always computed by BM25.
�e bold results are the ones that are higher within the same λ setup. �e underlined scores are the highest in that row.

Run id Original
α-nDCG@20

Global λ = 0.90 Local λ
Original+BM25 BM25+BM25 Original+BM25 BM25 + BM25

2011Si�R1 0.5483 0.5764 0.5433 0.5917 0.5357
2011Si�R2 0.5372 0.5793 0.5442 0.5615 0.5362
DFalah11 0.5021 0.5240 0.5266 0.5427 0.5336
Otago2011cn 0.4160 0.5170 0.5141 0.5286 0.5178
liaQEWikiGoo 0.4725 0.5548 0.5440 0.5490 0.5430
srchvrs11b 0.5546 0.5624 0.5618 0.5842 0.5663
UAmsM705tiLS 0.5298 0.5648 0.5342 0.5635 0.5527
uogTrB47Vm 0.5691 0.5375 0.5405 0.5795 0.5376
uwBBadhoc 0.4731 0.5397 0.5327 0.5788 0.5418
uogTrB67 0.4178 0.4310 0.4265 0.4674 0.4330

the diversi�cation performance – i.e. they can even outperform a
uniform Best λ se�ing.

Indeed, there are other factors that may a�ect and potentially
improve the diversi�cation performance, such as the normalization
of rel(d,q) and rel(d,qi ) scores, and se�ing the subtopic probabil-
ities, P(qi |q). For the former component, Santos [18] employs a
strategy that is again based on sum-normalization yet yields strict
probability values for P(d |q) and P(d |qi ), while Ozdemiray and Al-
tingovde [14] propose an alternative normalization strategy that
improves the diversi�cation e�ectiveness. It is also shown that
exploiting the score distribution of candidate documents for each
subtopic yields more accurate estimation of subtopic probabilities
and subsequently, higher diversi�cation performance [13]. With
such optimizations, even more runs in Table 5 could have yielded
statistically signi�cant improvements; yet this direction is not ex-
plored here and le� as a future work.

Our �ndings in this section imply that the diversi�cation meth-
ods in question may still signi�cantly improve the strong baselines
as they do for the weaker ones. However, one might need to be
more rigorous and careful tuning of the parameters in the case of
strong baselines in comparison to applying them over the weaker
baselines. �is is contradictory to the claim by Kharazmi et al. in [7],
that additivity “almost never” occurs for such diversi�cation meth-
ods for strong baselines. Although it is preferable/recommendable
to choose the stronger baselines whenever available, signi�cant
improvements over reasonable baselines may still be indicative, as
well. Note that we still strongly encourage the use of a stronger
baseline whenever available, as the actual improvements over the
la�er, albeit signi�cant or not, would make more sense in real-world
applications. We simply show that when such baselines are not
available, using a medium level baseline is still viable.

5 DISCUSSION: IMPACT OF
DOCUMENT-SUBTOPIC RELEVANCE

While we use BM25 to compute rel(d,qi ) in the experiments of
Section 4, this might be an important simpli�cation, and the overall
performance of the diversi�cation methods (both metric scores
and their statistical signi�cance) could be increased by computing

such scores using the exact retrieval function used to compute the
document-subtopic relevance score rel(d,q).

Indeed, in a report on their TREC 2010 Web track participation
using x�AD, Santos et al. [23] showed that deploying a super-
vised learning-to-rank approach for both rel(d,q) and rel(d,qi )
could result in increased diversi�cation e�ectiveness, as measured
by α-nDCG, while outperforming the corresponding learned base-
line run by 6%. On the other hand, using learning-to-rank only for
rel(d,q) within x�AD only improved the baseline by 3.4%. As no
signi�cance tests were conducted in [23], this admi�edly anecdotal
evidence suggests that using strong baselines for both rel(d,q) and
rel(d,qi ) are important for properly a�aining the highest e�ective-
ness, a point not considered by [7].

To further investigate the impact of the rel(d,qi ) component
would involve implementing all of the adhoc retrieval methods used
in the baseline runs – unfortunately an unfeasible task. Instead, to
illustrate the impact, we undertake the reverse, and for the top-100
documents of each run, we also compute the rel(d,q) component
using the typical BM25 function (i.e., in e�ect, once the top 100 can-
didate documents are obtained from the corresponding TREC adhoc
run, we only use BM25 for diversi�cation). Interestingly, Kharazmi
et al. also applied this strategy [8] (i.e., computed both components
rel(d,q) and rel(d,qi ) using BM25), and hence our analysis here
may also help for shedding light on their �ndings in [7].

We experiment with the trade-o� parameter computed as glob-
ally and locally, as in Section 4, and focus only on the strong base-
lines (wrt. α-nDCG), as the others are improved anyway. Table 6
shows that for both ways of se�ing λ, using the original scores
of the run for the rel(d,q) component almost always yields bet-
ter α-nDCG scores (i.e., 18 out of 20 cases) and furthermore, for 7
(of 10) strong runs the highest scores are obtained by using their
original scores together with the Local λ values, con�rming the
�ndings in the previous section. More interestingly, even with the
Local or Best λ values, the percentage of statistically signi�cant
improvements over the non-diversi�ed baseline is very low (i.e.,
3/10) when BM25 is employed instead of the original scores (see
Table 7). We believe that this la�er observation further explains
the low number of signi�cant improvements for strong runs in [7].
Given the impact of the rel(d,q) function in this setup, we argue



Table 7: Ratio of strong runs that are signi�cantly improved (wrt. α-nDCG) using X�AD (with Global, Local and Best λs) and
rel(d,q) computed using the original scores or BM25.

Diversity
method

Global λ = 0.90 Local λ Best λ
Original+BM25 BM25+BM25 Original+BM25 BM25+BM25 Original+BM25 BM25+BM25

x�AD 3/10 2/10 7/10 3/10 8/10 3/10
CombSum 3/10 2/10 6/10 3/10 7/10 3/10

that this provides further evidence that using a rel(d,qi ) score that
matches the rel(d,q) score used by the actual run may further im-
prove the diversi�cation performance, and therefore change the
conclusions concerning the additivity of these methods.

6 CONCLUSIONS
In this work, we considered the additivity of search result diversi-
�cation methods in general, and in particular we reproduced the
recent study of Kharazmi et al. [7] which applied diversi�cation
methods to the TREC baselines runs. Going further than [7], we
showed that the se�ing of the relevance/diversity trade-o� param-
eter λ is key to the overall conclusions of the experiments. Indeed,
we found that additivity is more likely to occur when λ is set ap-
propriately for each baseline run, especially for the stronger runs.
Furthermore, we showed evidence that the mismatch of the re-
trieval models used to calculate the relevance of a document to a
query (denoted rel(d,q)) and to its subtopics (denoted rel(d,qi ))
has the e�ect of underestimating the additivity of the diversi�cation
methods. Overall, we have identi�ed and shown two confounding
aspects of the experiments reported in [7], which raise questions
about the authors’ conclusion that the diversi�cation methods “al-
most never” improve over strong baselines. In fact our study shows
that with the appropriate automatic tuning of the parameters of the
diversi�cation methods for each of the strong baselines (as might
be performed in a deployment se�ing), additivity is achievable.
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