
HAL Id: hal-01751823
https://inria.hal.science/hal-01751823v1

Submitted on 29 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the conflicting demands of parallelism and
Temporal/Spatial locality in affine scheduling

Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako, Tobias
Grosser, Vivek Sarkar, Albert Cohen

To cite this version:
Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako, Tobias Grosser, et al.. Mod-
eling the conflicting demands of parallelism and Temporal/Spatial locality in affine scheduling.
CC’18 - 27th International Conference on Compiler Construction, Feb 2018, Vienna, Austria.
�10.1145/3178372.3179507�. �hal-01751823�

https://inria.hal.science/hal-01751823v1
https://hal.archives-ouvertes.fr

Modeling the Conflicting Demands of Parallelism and
Temporal/Spatial Locality in Affine Scheduling

Oleksandr Zinenko

Inria & DI ENS

Paris, France

oleksandr.zinenko@inria.fr

Sven Verdoolaege

Polly Labs & KU Leuven

Leuven, Belgium

sven@cs.kuleuven.be

Chandan Reddy

Inria & DI ENS

Paris, France

chandan.reddy@inria.fr

Jun Shirako

Georgia Tech

Atlanta, Georgia, US

shirako@gatech.edu

Tobias Grosser

ETH Zürich

Zürich, Switzerland

tobias.grosser@inf.ethz.ch

Vivek Sarkar

Georgia Tech

Atlanta, Georgia, US

vsarkar@gatech.edu

Albert Cohen

Inria & DI ENS

Paris, France

albert.cohen@inria.fr

Abstract
The construction of effective loop nest optimizers and par-

allelizers remains challenging despite decades of work in

the area. Due to the increasing diversity of loop-intensive

applications and to the complex memory/computation hi-

erarchies in modern processors, optimization heuristics are

pulled towards conflicting goals, highlighting the lack of a

systematic approach to optimizing locality and parallelism.

Acknowledging these conflicting demands on loop nest op-

timization, we propose an algorithmic template capable of

modeling themulti-level parallelism and the temporal/spatial

locality of multiprocessors and accelerators. This algorithmic

template orchestrates a collection of parameterizable, linear

optimization problems over a polyhedral space of semantics-

preserving transformations. While the overall problem is

not convex, effective algorithms can be derived from this

template delivering unprecedented performance portability

over GPU and multicore CPU. We discuss the rationale for

this algorithmic template and validate it on representative

computational kernels/benchmarks.

CCS Concepts • Software and its engineering→Com-
pilers;

Keywords Polyhedral Model, Compiler Optimizations

ACM Reference Format:
Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shi-

rako, Tobias Grosser, Vivek Sarkar, and Albert Cohen. 2018. Model-

ing the Conflicting Demands of Parallelism and Temporal/Spatial

Locality in Affine Scheduling. In Proceedings of 27th International
Conference on Compiler Construction (CC’18). ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3178372.3179507

CC’18, February 24–25, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published

in Proceedings of 27th International Conference on Compiler Construction
(CC’18), https://doi.org/10.1145/3178372.3179507.

1 Introduction
Computer architectures continue to grow in complexity,

stacking levels of parallelism and deepening their memory hi-

erarchies to mitigate physical bandwidth and latency limita-

tions. Harnessing the performance offered by such systems is

a task of ever growing difficulty. Optimizing compilers trans-

form a high-level, easy-to-read program into more complex

but efficient, target-specific code. Performance portability re-

quires modeling architectural effects that do not fit a convex

optimization problem, and may require conflicting transfor-

mations. In this context, the systematic exploration of the

space of semantics-preserving transformations remains a

primary challenge in compiler construction.

Ten years ago, the Pluto algorithm made a significant con-

tribution to the theory and practice of affine scheduling for

locality and parallelism [7]. It is rooted in the polyhedral
framework of compilation, a rigorous formalism to repre-

sent and operate on the control and data flow of a growing

class of loop-based programs [11]. It provides a unified ap-

proach to loop nest optimization, offering precise analyses,

aggressive transformations and code generation. The past

decade saw the emergence of robust and scalable imple-

mentations and integration of polyhedral techniques into

general-purpose compilers [4, 12, 22]. However, modern pro-

cessor architectures made it imperative to model deep mem-

ory hierarchies that favor consecutive accesses to improve

performance. Our work revisits the design of Pluto in light

of these architectural features. We build a model of these

features suitable for affine scheduling with heuristics based

on linear programming, leveraging positive effects (e.g., lo-

cality) and avoiding the negative ones (e.g., false sharing).

Rather than a unified algorithm, we propose a template built

upon a parameterizable scheduling problem and a pair of

interchangeable optimization objectives. In particular, we

contribute a “clustering” technique for loop fusion, intertwin-

ing the iterations of different statements while maintaining

the execution order within each loop, and we extend the

loop sinking options when aligning imperfectly nested loops

to the same depth. We address spatial effects by extending

https://doi.org/10.1145/3178372.3179507
https://doi.org/10.1145/3178372.3179507

CC’18, February 24–25, 2018, Vienna, Austria Zinenko, Verdoolaege, Reddy, Shirako, Grosser, Sarkar and Cohen

the optimization objective and allowing for linearly depen-

dent dimensions in affine schedules that are out of reach of a

typical polyhedral optimizer. Our iterative approach to non-

convex optimization does not restrict the optimization space

and is particularly effective when negative coefficients are

necessary to tile iteration spaces while aligning dimensions

with the direction of consecutive memory accesses.

We evaluate two target-specific instances of our template,

modeling complex loop nest transformations as a single

affine schedule, where the state of the art required a combi-

nation of polyhedral and syntactic transformations [26].

2 Background
The polyhedral framework is a linear algebraic representa-

tion of the program parts that are “sufficiently regular”. It

may represent imperative statements surrounded by loops

and branches whose conditions are affine functions of outer

loop iterators and runtime constants [11]. These constants,

referred to as parameters, may be unknown at compilation

time and are treated symbolically. Expressions may read and

write to multidimensional arrays with the same restrictions

on the subscripts as on control flow.

The individual executions of statements inside loops, or

statement instances, are identified by a named multidimen-

sional vector, where the name identifies the statement and

the coordinates correspond to iteration variables of the sur-

rounding loops. The set of all named vectors is called the

iteration domain of the statement, and can be expressed using

Presburger formulas [24]. For example, a R surrounded by

three loops i, j, j all iterating from 0 to N has the domain

DR(N) = {R(i, j,k) | 0 ≤ i, j,k < N }. We use parametric

named relations as proposed in iscc [31]; note that set vec-

tors in are prefixed with the statement name. Unless other-

wise specified, we assume all values to be integer, i, j, · · · ∈ Z.
Polyhedral modeling of the control flow maps statement

instances to multidimensional logical execution dates [10].

The instances are executed following the lexicographic order

of their execution dates. This mapping is called a schedule, a
piecewise (quasi-)affine function over the iteration domain

TS(ppp) = {iii → ttt | {tj = ϕS, j (iii,ppp)} ∧ iii ∈ DS}, which are dis-

joint unions of affine functions defined on a finite partition of

the iteration domain, allowing integer division by constants.

They capture arbitrary loop traversals and interleavings of

statement instances. In this paper, xxx denotes a row vector

and ®x denotes a column vector.

To preserve the program semantics during transformation,

it is sufficient to ensure that the order of writes and reads

of the same memory cell remains the same [15]. Accesses to

array elements (a scalar being a zero-dimensional array) are

expressed as multidimensional relations between iteration

domain points and named cells. For example, the statement S
has one write access relation Awrite

S→C = {S(i, j) → C(a1,a2) |
a1 = i∧a2 = j}. Then, inmemory-based dependence analysis,

pairs of statement instances accessing the same array ele-

ment where at least one access is a write combined to define

a dependence relation. For example, the dependence between

statements S and R is defined by a relation PS→R = {S(i, j) →
R(i ′, j ′,k) | i = i ′ ∧ j = j ′ ∧ (i, j) ∈ DS ∧ (i ′, j ′,k) ∈ DR}.
From this relation, one may compute exact data flow given

a schedule using value-based dependence analysis [9].

A dependence relation is satisfied by a schedule if all the

statement instances in its domain are scheduled before their

counterparts in its range. To transform a program in the

polyhedral framework, one defines a new schedule. A pro-

gram transformation is valid, i.e., preserves original program
semantics, if all dependences are satisfied. Optimization al-

gorithms navigate the set of valid schedules, optimizing for

latency [10], parallelism [7] or locality [5].

3 Polyhedral Scheduling in isl
We present a template for polyhedral scheduling algorithms,

inspired by Pluto [5] and implemented in the isl library [30].1

We occasionally refer to the embedding of the scheduling

algorithm in a parallelizing compiler called ppcg [32]. Let us
first present the algorithmic template and discuss key contri-

butions before the extension for spatial locality in Section 4.

3.1 Scheduling Problem Formulation in isl
Our scheduler offers more control through different groups

of relations suitable for specific optimization purposes: (1) va-
lidity relations impose a partial execution order on statement

instances, i.e., they are dependences sufficient to preserve

program semantics; (2) proximity relations connect statement

instances that should be executed as close to each other as

possible in time; (3) coincidence relations connect statement

instances that, if not executed at the same time, prevent par-

allel execution. In the simplest case, all relations are the same

and come directly from dependence analysis; live range re-
ordering uses different relations to remove false dependences
due to reusing the same variables for different values [33].

The scheduler iteratively determines sequences of state-

ment-wise schedule functions of the form ϕSj = iii®c j +ppp
®dj +D

where ®c j , ®dj ,D are (vectors of) unknown integer values.

Consider the affine form (ϕR, j (iii,ppp) − ϕS, j (iii,ppp)), defined
for a dependence between sources S and sinks R. This form
represents the distance between dependent statement in-

stances. Positive distance means the dependence is strongly
satisfied (carried), zero distance— weakly satisfied and neg-

ative distance—violated. Using the affine form of Farkas’s

lemma—a fundamental result in linear algebra that states

that an affine form ccc ®x + d is non-negative everywhere in

the (non-empty) set defined by A®x + ®b ≥ 0 if it is a linear

1
Many of these features have been available since isl-0.06-43-g1192654,
but the algorithm has seen multiple improvements up until the current ver-

sion; we present these features as contributions specifically geared towards

the construction of better schedules for locality and parallelism.

Modeling the Conflicting Demands of Parallelism and . . . CC’18, February 24–25, 2018, Vienna, Austria

combination ccc ®x + d ≡ λ0 + λλλ(A®x + ®b), where λ0,λλλ ≥ 0—to

dependence distance relations, one can obtain constraints
on schedule coefficients ccc j under which the dependences

have non-negative distance, i.e., are weakly satisfied over

the iteration domain. One can then apply integer linear pro-

gramming (ILP) to optimize a linear objective function over

the constrained space of schedule coefficients.

3.2 Affine Transformations
Affine transformation is based on the observation, made in

Pluto [5], that dependences distances are also reuse distances.
Henceminimizing themmay improve locality. Zero distances

imply that all accesses are performed within the same itera-

tion and thus parallelization is possible. An upper bound on

the dependence distance (ϕR, j (iii,ppp) − ϕS, j (iii,ppp)) ≤ uuu ®p +w can

be obtained using Farkas’ lemma and used in a minimization

objective of an ILP problem. The bound may involve neg-

ative coefficients without necessarily being negative itself.

Schedule coefficients may also become negative, driving the

minimization to negative infinity; at the same time, all-zero

coefficients would not constitute a loop. In practice, we want

to obtain their minimum non-zero absolute value.

Negative Coefficients isl introduces support for negative
coefficients by substituting dimension x with its negative and

positive part x = x+−x−,where x+,x− ≥ 0 in a non-negative

optimization problem. This decomposition is performed for

schedule coefficients c and bound coefficients u.

Prefix Dimensions To minimize multiple values simulta-

neously, isl scheduler uses a special lexmin objective, pro-

posed in PIP tool and resulting in the lexicographically small-

est vector of the search space [8]. Intuitively, it minimizes the

foremost component before moving to the next one. Such be-

havior may be undesirable for schedule coefficients as it will

prefer (a1,a2) over (b1,b2) if a1 < b1 even though a2 ≫ b2,
yet large coefficients yield worse performance [23]. There-

fore, isl introduces as leading components (1) sum of all

parameter coefficients in the distance bound; (2) constant

term of the distance bound; (3) sum of all parameter coeffi-

cients in all per-statement schedule functions; (4) sum of all

variable coefficients in all per-statement schedule functions.

They allow isl to compute schedules independent of the

order of appearance of coefficients in the lexmin formulation.

ILP Formulation The isl scheduler optimizes

lexmin

np∑
i=1

(u−i +u
+
i),w,

np∑
i=1

ns∑
j=1

dj,i ,
ns∑
j=1

dimDSj∑
i=1

(c−j,i+c
+
j,i)... (1)

in the space constrained by applying Farkas’ lemma to valid-
ity relations. Coefficients ui andw are obtained from apply-

ing Farkas’ lemma to proximity relations. Distances along

coincidence relations are required to be zero. If the ILP prob-

lem does not admit a solution, this requirement is relaxed. If

the problem remains unsolvable, isl performs band splitting

as described in the following subsection.

Individual coefficients are included in the trailing positions

and also minimized. In particular, negative parts c−i immedi-

ately precede respective positive parts c+i . Lexicographical
minimization will thus prefer a solution with c−i = 0 when

possible, resulting in non-negative coefficients ci .

3.3 Ensuring Progress and Flexibility
Iteratively optimizing the same function over the same space

produces the same result, whichwould not prevent the sched-

uler from progressing. Therefore, for each subsequent sched-

ule function, isl further constrains the schedule coefficients

so that a vector thereof is linearly independent from the

previous ones. We refer to linearly-dependent (and zero) ILP

solution vectors as trivial.

Lazy Enforcement of Linear Independence isl computes

a subspace with a basis rrrk orthogonal to the vectors of al-

ready computed schedule coefficients. For another vector to

be linearly independent from previous ones, it is sufficient

to have a non-zero component along one of rrrk .
isl tries to find a solution xxx directly and only enforces

non-triviality if an actual trivial solution was found. More

specifically, it defines non-triviality regions in the solution

vectorxxx that correspond to schedule coefficients for a particu-

lar statement. A solution is trivial in the region if ∀k,rrrk ®x = 0.

In this case, the scheduler introduces constraints on the signs

of rrrk ®x , invalidating the current (trivial) solution and requir-

ing the ILP solver to continue looking for a solution. Back-

tracking is used to handle different cases, in the orderrrr 1®x > 0,

then rrr 1®x < 0, then rrr 1®x = 0∧rrr 2®x > 0, etc. When a non-trivial

solution is found, the isl scheduler further constrains the
prefix of the next solution,

∑
i ui ,w, to be lexicographically

smaller than the current one before continuing iteration.

This iterative approach allows isl to support negative co-
efficients without limiting their absolute values while avoid-

ing the trivial zero solution. However, it requires the sched-

uler to closely interact with the ILP solver. In the worst

case this approach considers an exponential number of sign

constraints. Practically however, as validity constraints are

derived from a loop-based program, ensuring non-triviality

for one region often makes other regions non-trivial as well.

Slack for Smaller-Dimensional Statements Ann-dimen-

sional schedule for anm-dimensional domain only needsm
linearly independent dimensions ifm < n. Given a sched-

ule with k linearly independent dimensions, isl does not

enforce linear independence until the last (m−k) dimensions.

3.4 Permutable Bands and Tiling
In general, isl scheduler looks for a sequence of schedule
functions that satisfy the same set of constraints. Such se-

quences are referred to as permutable bands since individual
functions in them can be interchanged without affecting

CC’18, February 24–25, 2018, Vienna, Austria Zinenko, Verdoolaege, Reddy, Shirako, Grosser, Sarkar and Cohen

the semantics of the program. Permutable bands satisfy the

sufficient condition for loop tiling, an important locality-

improving loop transformation [14]. The scheduler itself

does not perform loop tiling, delegating it to the ppcg com-

piler. The latter tiles outermost permutable bands along with

parallelization and GPU mapping if requested [32].

Band Splitting If the ILP problem does not admit a solu-

tion, isl finishes the current band, removes fully carried

dependences and starts a new band. If the first function in

the band cannot be computed, the scheduler applies a vari-

ant of Feautrier’s scheduler [10]. The general idea of this

algorithm is to carry as many dependences as possible, en-

suring progress. It does so by introducing a penalty ek for

each non-carried dependence, ek ≤ ϕRk , j (iii,ppp) − ϕSk , j (iii,ppp). It
then solves the the ILP problem

lexmin

∑
k

(1 − ek),
ns∑
j=1

np∑
i=1

dj,i ,
ns∑
j=1

dimDSj∑
i=1

c j,i , e1...ek ... (2)

where np = dim ®p and ns is the number of statements. The

search space is constrained using Farkas’ lemma to values of

c j,i that weakly satisfy the validity and coincidence relations
as constraints [34]. Feautrier’s algorithm is used as a fallback

for isl scheduler guaranteeing its termination.

3.5 Data-Dependence Graph Clustering
On the outer level, isl scheduler operates on a data-depen-

dence graph (DDG) whose nodes are statements and (typed)

edges correspond to dependences between them. Before per-

forming affine transformations, the scheduler separates the

graph into strongly-connected components. For each of them,

it computes per-statement schedules. Then it selects a pair

of clusters that have a proximity edge between them. The

selection is extended to all the clusters that form a (tran-

sitive) validity dependence between these two. Then, the

isl scheduler tries to compute a schedule between clusters,

that respects inter-cluster validity dependences using the

same ILP problem as inside clusters. If such a schedule exists,

isl combines clusters after checking several profitability

heuristics. Otherwise, the scheduler advances to the next

candidate pair. The process continues until a single cluster

is formed or until all edges are considered. Cluster combina-

tion is essentially loop fusion, where per-statement schedules

are composed with schedules between clusters, reschedul-

ing individual clusters with respect to each other. The final

clusters are topologically sorted using the validity edges.

Clustering Heuristics Clustering provides control over

parallelism preservation and locality improvement during

fusion. The scheduler prefers pairs of clusters where sched-

ule dimensions can be completely aligned. Then it checks

whether clustering makes the dependence distance along

at least one proximity edge constant and sufficiently small.

Finally, when parallelism is the objective, isl checks that

the schedule between clusters contains at least as many co-

incident dimensions on all individual clusters.

4 Unified Model for Spatial Effects
Modern architectures feature deep memory hierarchies that

may affect performance in both positive and negative ways.

CPUs typically have multiple levels of cache memory that

speed up repeated accesses to the samememory cells—tempo-
ral locality. Because loads into caches are performed with

cache-line granularity, accesses to subsequent memory cells

are also sped up—spatial locality. However, parallel accesses
to adjacentmemory addressesmay cause false sharing: caches
are invalidated and data is re-read from more distant mem-

ory even if parallel threads access different addresses that
belong to the same line. GPUs feature memory coalescing
that groups simultaneous accesses from parallel threads to

adjacent locations into a single memory request in order

to compensate for very long access times. Current polyhe-

dral scheduling algorithms mostly account for the temporal
locality and leave out other aspects of the memory hierarchy.

We propose to manage all these aspects in a unified way

by introducing new spatial proximity relations into the isl
scheduler. They connect pairs of statement instances that

access adjacent array elements. Unlike dependences, spatial

proximity relations do not constrain the execution order.

However absolute values of distances along them character-

ize (spatial) reuse potential, with the value equal to access

stride. We loosely refer to a spatial proximity relations as

carried when the distance along it is not zero.

Spatial proximity relations are used to set up two different

ILP problems: one is designed as a variant of (1) to carry

as little spatial proximity as possible; another is a variant

of (2) intended to carry spatial proximity relations while

discouraging skewed schedules. Choosing between these

problems allows isl to account for memory effects.

4.1 Modeling Line-Based Access
The general feature of the memory hierarchies we model

is that groups of C subsequent memory cells rather than

individual elements can be accessed. For example if C = 4,

different instances of A[5*i] are not spatially related.

Conventionally for polyhedral compilation, we assume

not to have any information on the internal array struc-

ture, in particular whether a multidimensional array was

allocated as a single block. Therefore, we can limit modi-

fications to the last dimension of the access relation. Line-

based access relations are defined as A ′ = A ◦ C where

C = {aaa → aaa′ | a′
1..(n−1) = a1..(n−1) ∧ a′n = ⌊

an
C ⌋}, and

n = dim ®a = dim(DomA). This operation replaces the last

array index with a virtual number that identifies memory

accesses mapped to the same cache line. We use integer di-

vision with rounding to zero to compute the desired value.

An individual memory reference now accesses a set of array

Modeling the Conflicting Demands of Parallelism and . . . CC’18, February 24–25, 2018, Vienna, Austria

elements, and multiple memory references that originally

accessed distinct array elements now access the same set.

We use the over-approximative nature of the scheduler to

mitigate the actual dynamically-assigned cache lines not be-

ing aligned with those we model statically. Before constrain-

ing the space of schedule coefficients using Farkas’ lemma,

isl eliminates existentially-quantified variables necessary to

express integer division. Combined with transitively-covered

dependence elimination, it results in a relations between

pairs of (adjacent in time) statement instances potentially

accessing the same line. The over-approximation is that the

line may start at any element and is arbitrarily large. While

this can be encoded directly, our approach has two benefits.

First, if C is large enough, the division-based approach will

cover strided accesses. Second, it limits the distance at which

fusionmay be considered beneficial to exploit spatial locality

between accesses to disjoint sets of array elements.

Accesses to scalars, treated as zero-dimensional arrays,

are excluded from line-based access relation transformation

since we cannot know in advance their position in memory.

4.2 Spatial and Temporal Proximity Relations
Given line-based read and write access relations, we com-

pute the spatial proximity relation using a variant of the

dataflow-based procedure to eliminate transitively-covered

dependences [9] (s.t. the only statement instances in spatial

or temporal relation were adjacent in time in the original

program). Note that we also consider spatial Read-After-

Read (RAR) “dependence” relations as they are an important

source of spatial reuse, and they do not limit parallelism

extraction since it is only affected by coincidence relations.

Access Pattern Separation The S1 statement A[i][j] +=
B[i][j] + B[i-1][j], surrounded by two loops, i and j,
features a spatial proximity RAR relation on B characterized

by PS1→S1,B = {(i, j) → (i ′, j ′) | (i ′ = i + 1 ∧ ⌊j ′/C⌋ =
⌊j/C⌋) ∨ (i ′ = i ∧ ⌊j ′/C⌋ = ⌊j/C⌋)}. The first disjunct con-
nects two references that access different parts of the array

B. Therefore, spatial locality effects are unlikely to appear.

Consider now a statement S2: C[i][j] += D[i][k] *
D[i][j] enclosed by three loops, i, j and k. Its spatial prox-
imity relation on D is PS2→S2,D = {(i, j,k) → (i ′, j ′,k ′) |

(i ′ = i ∧ ⌊k ′/C⌋ = ⌊j/C⌋) ∨ (i ′ = i ∧ ⌊j ′/C⌋ = ⌊k/C⌋)}.
Spatial locality may hold only for |k − j | ≤ C , a significantly
smaller number of instances than the iteration domain. The

schedule would have to handle this case separately, resulting

in inefficient branching control flow.

Generalizing these cases, (group-)spatial locality between

access with different access patterns is difficult to exploit

efficiently in an affine schedule. Two access relations are

considered to have different patterns if there is at least one

access function that differs between them. The last function

is considered without the constant factor, that is D[i][j]
has the same pattern as D[i][j+2], but not as D[i][j+N].

Access Completion Consider the matrix multiplication

core statement C[i][j] += A[i][k] * B[k][j], surrounded
by three loops. There exists, among others, a spatial RAR rela-

tion between its instances induced by reuse on B: PR→R,B =

{(i, j,k) → (i ′, j ′,k ′) | ((i ′ = i ∧ j ′ = j + 1 ∧ ⌊j ′/C⌋ =
⌊j/C⌋ ∧ k ′ = k) ∨ (∃ℓ ∈ Z : i ′ = i + 1 ∧ j ′ = Cℓ ∧ j =
Cℓ +C − 1∧k ′ = k))}. The second disjunct expresses spatial
reuse between iterations of the outer loop, i, which, again,
only exists for a small number of statement instances if the

trip count is larger thanC . To exploit this reuse, the scheduler
may skew the inner loop by (C − 1) resulting in inefficient

control flow. Pattern separation is useless in this case since

B[k][j] is the only reference with the same pattern. How-

ever, we can prepend an access function i to simulate that

different iterations of the loop i access disjoint parts of B.
Note that the array reference B[k][j] only uses two it-

erators out of three available. Collecting the coefficients of

affine access functions as rows of matrix A, we observe that
such problematic accesses do not have full column rank.

Therefore, we complete this matrix by prepending linearly
independent rows until it reaches full column rank. We pro-

ceed by computing the Hermite Normal Form H = A · Q
whereQ is n ×n unimodular matrix and H is anm ×n lower

triangular matrix, i.e. hi j = 0 for j > i . Any row-vector v
with at least one non-zero element vk , 0,k > m is linearly

independent from all rows of H . We pick (n −m) standard

unit vectors êk = (0 . . . 0, 1, 0, . . . 0),m < k ≤ n to complete

the triangular matrix to an n-dimensional basis. Transform-

ing the basis with unimodular Q preserves its completeness.

In our example, it performs the desired transformation from

B[k][j] to B[i][k][j].
The combination of access pattern separation and access

completion keeps a reasonable subset of spatial proximity

relations, exploitable by an affine scheduler, while limiting

the number of constraints the ILP solver has to handle.

4.3 Carrying Few Spatial Proximity Relations
Depending on the target architecture and on the scheduling

step, we need an affine schedule function that carries either

few or many spatial proximity relations. Let us first describe

an ILP problem for carrying few spatial proximity, which cor-

responds to making the distance zero along many relations.

Unlike coincidence relations, some of them may be carried

and unlike proximity relations, small non-zero distances are

seldom beneficial. Therefore, we systematically remove car-

ried spatial proximity relations from further consideration.

In presence of contradictory requirements, e.g. spatial

locality for A[i][j] and B[j][i], minimizing the sum of

distance bounds (as for temporal proximity) makes ϕk = i
and ϕk = j indistinguishable for the ILP. Instead, we con-

sider bounds for separate groups of spatial proximity rela-

tions, each of which is carried independently of others These

groups will be described in Section 4.4 below.

CC’18, February 24–25, 2018, Vienna, Austria Zinenko, Verdoolaege, Reddy, Shirako, Grosser, Sarkar and Cohen

Attempting to force zero distances for the largest possible

number of groups with relaxation on failure is combinatori-

ally complex. Instead, we minimize the distances and only

keep the relations for which the distance is zero. Intuitively,

this removes the first group that must be carried if the pre-

vious groups are not. This encoding does not guarantee a

minimal number of groups is carried, however it allows for
an external non-linear input to the scheduler by means of

ordering the groups in the lexmin formulation.

Combining Temporal and Spatial Proximity Generally,

we expect spatial locality to be less beneficial for performance

than temporal locality, which we prioritize. We achieve this

by grouping temporal proximity relations in the same way

as spatial ones and placing the temporal proximity distance

bound immediately before the spatial proximity distance

bound. Thus lexmin will attempt to exploit temporal locality

first. If it is impossible, it will further attempt to exploit spa-

tial locality. Any proximity relations carried by the current

partial schedule are removed iteratively.

The new ILP minimization objective is

lexmin

∑np
i=1(u

T+
1,i + u

T−
1,i),w

T
1
,
∑np

i=1(u
S+
1,i + u

S−
1,i)...,∑np

i=1(u
T+
nд,i + u

T−
nд,i),w

T
nд ,

∑np
i=1(u

S+
nд,i + u

S−
nд,i),w

S
nд ...

(3)

where uTj,i are coefficients of the parameters and wT
j is the

constant factor in the distance bound for the jth group of

proximity relations, 1 ≤ j ≤ nд , and u
S
j,i ,w

S
j are their coun-

terparts for temporal proximity relations. The remaining

non-bound variables are similar to those of (1): the sum of

schedule coefficients and parameters, and coefficient values.

4.4 Grouping and Prioritizing for Spatial Proximity
Proximity relation grouping resolves carry-conflicts by prior-

itization and reduces the number of ILP variables. Therefore,

it is performed except if, at some minimization step, one of

the relations must be carried while the other should not.

Initial Groups Consider again the statement C[i][j] +=
A[i][k] * B[k][j] surrounded by three loops, i, j and

k. It features spatial reuse on A carried by k as well as on B
and C carried by j. Considering relations that characterize it
together would prevent the scheduler from taking reason-

able decisions and make it choose the original loop order:

(i, j, k). However, inverting k and j loops will exploit spatial
locality for B and C and temporal locality for A. Therefore,
we introduce a group for each array reference.

Dependence distance bounds are computed per group and

ordered in the lexmin to prioritize carrying those groups that

are potentially less profitable in case of conflict. We avoid

carrying groups in which reuse can still be exploited and

those that correspond to multiple references. This is achieved

by lexicographically sorting them following the decreasing

access rank and multiplicity, which are defined below.

Access Rank Each array reference is characterized by an

access relation A ⊆ (®i → ®a). If all subscripts are already
fixed by the current partial schedule, subsequent decisions

will not modify the locality of this reference. Non-fixed sub-

scripts can still be aligned with schedule dimensions to ex-

ploit locality, and their number defines the access rank. Given
the partial schedule T ⊆ (®i → ®o), we compute the scheduled

access relation A ◦ T −1 ⊆ (®o → ®a). Fixed subscripts corre-

spond to equations defining this relation. Therefore, the rank
is computed as difference between the number of subscripts

dim ®a and the number of equations in A ◦ T −1
.

AccessMultiplicity For equal ranks, our model prioritizes

repeated accesses to the same cell of the same array. Access

multiplicity is defined as the number of access relations to

the same array that have the same affine hull after removing
the constant term. The multiplicity is computed across groups.

For example, two references A[i][j] and A[i][j+2] both
have multiplicity = 2. Read and write accesses caused by

compound assignment contribute to multiplicity twice.

Combining Groups The definition of access multiplicity
naturally leads to the criterion for group combination: groups

that contribute to each others’multiplicity are combined, and

their multiplicities are added.

4.5 Carrying Many Spatial Proximity Relations
Let us now describe the ILP problem for carrying many spa-

tial proximity relations, with small (reuse) distance. Feautrier’s

ILP formulation (2) produces affine functions that carry as

many dependences as possible but often does so by skewing.

However, skewing often leads to loss of locality by introduc-

ing additional iterators in the array subscripts. Therefore,

we modify (2) to discourage skewing by swapping the first

lexmin components: first, minimize the sum of schedule co-

efficients thus discouraging skewing without avoiding it

completely; second, minimize the number of non-carried de-

pendence groups. Because the minimal achievable sum of

schedule coefficients is zero, we also include the linear in-

dependence method of Section 3.3. It is slightly modified to

remain in effect even if “dimension slack” is available. The

objective defined for groups of Section 4.4 becomes

lexmin

max dimDS∑
i=1

ns∑
j=1

(c−j,i+c
+
j,i),

nд∑
k=1

(1−ek),

np∑
i=1

ns∑
j=1

dj,i ... (4)

where ns is the number of statements, np is the number of

parameters, ek are defined similarly to (2) for each of nд
groups. Validity constraints must be respected, distances

along coincidence relations are to be made zero if requested.

4.6 Scheduling for CPU Targets
On CPUs, spatial locality is likely to be exploited if the inner-

most loop accesses subsequent array elements. False shar-

ing may be avoided if parallel loops do not access adjacent

Modeling the Conflicting Demands of Parallelism and . . . CC’18, February 24–25, 2018, Vienna, Austria

elements. We expect to produce a good CPU schedule by us-

ing (3) for all dimensions except the last, where we apply (4).

Parallelism/Locality Trade-off As we exploit only one

coarse-grained degree of parallelism with OpenMP pragmas,

we relax coincident relations if one coincident dimension

was found. The clustering mechanism now tolerates loss of

parallelism as long as one coincident dimension is left.

Coarse-grained parallelism is featured by schedules with

outer coincident dimensions. Unlike the default isl heuristic

(see Section 3.2), CPUs require deeper tilable bands with

the non-coincident outermost dimension. Instead, wavefront
parallelism is extracted by skewing the outermost dimension

by the subsequent one, which then becomes parallel.

Finally, marking innermost loops OpenMP parallel often

results in excessive barrier synchronization. Therefore, we

relax coincidence relations when two dimensions remain to

schedule, even if no coincident dimension was found.

Post-tile Reordering We modified ppcg to optionally per-

form the post-tile reordering, borrowed from Pluto. If a sched-

ule dimension is coincident and carries spatial proximity, it

is likely to be placed outermost by the scheduler, exploiting

parallelism. After tiling, the point loop dimension still carries

spatial proximity and may be safely placed innermost, addi-

tionally exploiting spatial locality. The dimension to sink is

chosen based on the number of scheduled accesses it carries.

Carrying Dependences to Avoid Fusion The band split-
ting procedure (see Section 3.4) often leads to separation of

the DDG into components, which corresponds to loop distri-
bution. We leverage this side effect to control the increase

of register pressure caused by excessive fusion. We define the

following heuristich=
∑

i,k : aff ASi→kunique
dim(DomASi→k)

whereASi→k have unique affine hulls across the SCC. Unique-

ness is required to consider repeated accesses to the same

array with the same subscripts once. This heuristic is based

on the assumption that each supplementary array access

uses a register. It also penalizes deeply nested accesses by

accounting for the input dimension of the access relation.

This heuristic applies when (3) does not produce an outer

coincident dimension. When h > hlim we apply (2) to com-

pute the outer dimension instead of (3). Otherwise, we relax

the zero-distance constraint for coincidence relations and

continue the band similarly to inner parallelism avoidance.

Tuning hlim to a particular system prevents some fusion with

outermost parallel loops and thus decrease register pressure.

4.7 Scheduling for GPU Targets
Efficient scheduling for GPUs requires the scheduler to ex-

pose three or more degrees of parallelism and to be aware

of how loops are mapped to blocks and threads. After tiling,

ppcg maps the three outermost coincident tile(point) dimen-

sions to blocks(threads) in inverse order, i.e., z, y, x.

We first apply (4) while enforcing zero distance along coin-
cidence relations. The outer coincident dimension is preferred

as offers the largest choice of spatial proximity relations to

carry for coalescing. If no solution is found, we apply (2) in

an attempt to expose multiple levels of inner parallelism. If

a coincident solution is found, but it does not carry spatial

proximity, we discard it and minimize (1) instead. In any case,

we discard spatial proximity relations after one coincident

dimension: if spatial reuse can be exploited, it will be present

in the first member of the band because all members must

carry the same relations. The following bands are produced

using (1) and (2) as they are not mapped to blocks or threads.

Finally, we alter the mapping if the outermost coincident

dimension carries spatial proximity and place it to x threads.

5 Experimental Evaluation
We compared speedups obtained by our approach with those

of other polyhedral schedulers on CPUs and GPUs. We in-

stantiated our algorithmic template with and without spatial

locality support, to highlight its specific performance impact.

5.1 Implementation Details
Our proposed algorithm is implemented as an extension to

isl-0.18-730-gd6628369 and ppcg-0.07.2

Miscellaneous improvementswere introduced to isl along-
side the design and implementation of the new scheduler.

Optimizing (2) in integers instead of a rationals if the latter

gives rational solutions avoids large schedule coefficients.

Original loop iterator order is used in case of cost function

ties. The sum of coefficients for original, rather than newly

computed loop iterators is minimized in (1).

5.2 Experimental Protocol
The target platforms include multi-core CPUs and GPUs,

strating from the same code to demonstrate performance

portability. Our testbed includes:

ivy/kepler: 4× Intel Xeon E5-2630v2 (Ivy Bridge, 6 cores,

15MB L3 cache), NVidia Quadro K4000 (Kepler, 768 CUDA

cores) on CentOS Linux 7.2.1511 with gcc 4.9 and nvcc 8.0.61.

skylake, Intel Core i7-6600u on Ubuntu 17.04 with gcc 6.3.0.

westmere, 2× Intel Xeon X5660 (Westmere, 6 cores, 12MB

L3 cache) running RHEL Server 6.5 with icc 15.0.2.

We evaluate our tools on PolyBench/C 4.2.1.We removed a

typedef from nussinov benchmark and introduced variants

of symm, deriche, doitgen and ludcmp benchmarks with

scalar/array expansion applied to expose more parallelism.

On CPUs, all benchmarks are executed with LARGE data sizes
to represent more realistic workloads. On GPUs, we used

custom, often larger data sizes for GPUs reported in Figure 3.

Since the Pluto+ implementation cannot handle several of

the Polybench 4.2.1 benchmarks, we compare against Pluto

given that [4] reports that Pluto+ and Pluto generate identical

2
Available at git://repo.or.cz/ppcg.git and git://repo.or.cz/isl.git

git://repo.or.cz/ppcg.git
git://repo.or.cz/isl.git

CC’18, February 24–25, 2018, Vienna, Austria Zinenko, Verdoolaege, Reddy, Shirako, Grosser, Sarkar and Cohen

schedules for PolyBench. We compare

• ppcg stable: latest ppcg release (ppcg-0.07, isl-0.18)
• ppcg w/o spatial: see implementation details;

• ppcg spatial: Section 4, w/ and w/o post-tile reordering;3

• Pluto: Pluto 0.11.4 with --parallel --tile options;

• PolyAST : disabling reduction and DoAcross parallelism.
4

Loops were tiled with size 32 on CPUs and 16 on GPUs to

better fit into memory. No tile size tuning was performed.

We collected execution times using the PolyBench timing

facility on CPU, and using the NVidia CUDA profiler on

GPUs (total kernel execution time reported). We report a

median of 5 measurements for each condition.

5.3 Sequential Code Performance
The skylake systemwith AVX2 instruction set allowed us to

evalute performance improvements on sequential programs

with vector parallelism and multi-level caches. For all sched-

ulers, we requested tiling and post-tile optimizations. For

ppcg, we additionally considered spatial proximity for fusion.

The speedups are shown in Figure 1(top).

Spatial effects-aware scheduling improved performance

with two ppcg versions for 2mm, 3mm, gemver, mvt and symm.
Pluto was unable to transform symm while our flow achieves

2.4× speedup. For atax, deriche, jacobi-1d, ludcmp, all
variants of ppcg generate faster code due to (1) a differ-

ent loop fusion structure thanks to clustering and (2) live-

range reordering. Small performance changes between Pluto

and ppcg-spatial, in covariance, correlation or trmm, are
due to the differences in code generation algorithms: ppcg
may generate simpler control flow than CLooG, used in

Pluto. Finally, Pluto outperforms ppcg for adi, gesummv and

gramschmidt since it may tile imperfectly nested loops, con-

trary to ppcg. Post-tile reordering had only a marginal effect.

5.4 Parallel CPU Code Performance
The ivy system running 24 threads allowed us to expore

the interplay between parallelism and locality. We requested

parallelization, tiling and post-tile reordering in all cases,

and enabled all heuristics presented in this paper in ppcg.
The speedups are reported in Figure 1(middle).

Our flow results in significant speedup over Pluto for nu-

merous benchmarks. For example, speedup for 3mm grows

from 6.5× to 16.7×. Both the clustering technique and the spa-
tial effects-aware model contribute to these imporvements.

Furthermore, spatial model corrects performance of multiple

cases where baseline ppcg was counterproductive. It is also

able to achieve up to 1.4× for stencil-like codes heat-3d and
jacobi-1d where Pluto yields a 2× slowdown. Similarly to

sequential version, Pluto outperforms ppcg on gramschmidt
(8.8× and 2.9× speedup, respectively) and nussinov due to
ppcg’s inability to tile imperfectly nested loops.

3
Available at https://pollylabs.org/spatial.html

4
Parallel reductions ignored and DoAcross converted into wavefront DoAll.

Syntactic post-tile reordering is not always beneficial in

our flow: it increases the speedup for covariance from 30.5×
to 32.4× and decreases it from 33× to 28.7× for correlation.

5.5 Comparison with Affine+Syntactic Approach
We compared our results with those of PolyAST, a state-

of-the-art hybrid tool that combines affine scheduling for

locality and syntactic transformations for parallelism. The

speedups on westmere are shown in Figure 1(bottom).

Overall, the observed performances for PolyAST and ppcg
are very close and so are the schedules, which confirms

our intuition that a fully-polyhedral scheduler can compute

schedules comparable to a hybrid approach. Identical sched-

ules were produced for 2mm, 3mm and floyd-warshall with

minor performance variations for the latter due to differences

in code generation. Without tuning to westmere, the regis-
ter pressure reduction heuristic was less efficient: while ppcg
obtains 2.9× speedup on heat-3d where PolyAST has 1.2×,
it obtains only 3.7× on jacobi-2d where PolyAST has 6.5×.
Setting hlim = 32 for this system would produce identical

schedules. For atax and trmm, both Pluto and ppcg-spatial
outperform PolyAST as the latter places non-doall loops out-

ermost and loses outer parallelism. Finally, PolyAST could

not handle adi and nussinov in the polyhedral framework.

5.6 Parallel GPU Code Performance
We only evaluated variants of ppcg on keplerGPUs as Pluto
and PolyAST-GPU rely on drastically different code genera-

tion schemes for GPUs. Spatial effects modeling affected the

schedule in six benchmarks, see Figure 2.

For all cases except lu, ppcg discovers no outer paral-

lelism and resorts to repeated kernel calls, see Figure 3 for

cumulative numbers. Thanks to different fusion structure

for, our flow reduces the number of kernel calls and the re-

lated overhead for lu and gramschmidt. Kernel execution is

faster thanks to improved memory coalescing, e.g. on symm.
For trisolv, the kernel execution time is marginal in the

total execution time, resulting in close to zero speedups.

Finally, for seidel-2d, ppcg witnesses performance regres-

sions. In fact, the values of the cost function for the two

innermost loops are identical and the stable ppcg happened

to interchange them while the two others always preserve

the original loop order. Thus, the superior performance of

stable ppcg was accidental, and not a result of a scheduling

decision. Correcting this regression requires the scheduling

algorithm to jointly optimize for different memory spaces.

Beyond these cases, spatial effects modeling did not affect

the schedule since parallelism is prioritized over locality for

GPUs. Larger benchmarks with longer execution time would

be necessary to fully assess the benefits of our flow on GPUs.

https://pollylabs.org/spatial.html

Modeling the Conflicting Demands of Parallelism and . . . CC’18, February 24–25, 2018, Vienna, Austria

Figure 1. Speedup of the optimized tiled code over the original code with different scheduling algorithms; top: sequential

code on skylake, middle: parallel code on ivy; bottom: parallel code on westmere.

Figure 2. Left and center: total kernel execution time and program execution

time (lower is better). Right: speedup over sequential CPU (higher is better).

adi gram. lu

parameter value 512 2048 4096

Original: # kernels 14 7 3

invocations 7168 28643 20471

Spatial # kernels 6 7 2

invocations 3072 12287 8190

seidel-

2d

symm trisolv

parameter value 1k×4k 2048 4096

Original: # kernels 1 2 3

invocations 16372 2 12286

Spatial: # kernels 1 2 3

invocations 16372 2 8192

Figure 3. Parameter values, # of kernels

generated and cumulative kernel invoca-

tions (lower is better).

6 Discussion and Future Work
Before summarizing our findings, let us discuss some of the

algorithmic design choices hinting at possible extensions.

Filtering Spatial Proximity Relations Defining the spa-

tial proximity relations, we filter out some (non-uniform,

single-statement) relations that we deemed unexploitable by

the affine scheduler. Yet these relations encode spatial reuse

information that might have been useful, e.g., for fusion.

Dependence Analysis for Spatial Proximity Relations
Proximity relations result from a typical dependence analysis,

pruning transitively closed dependences. They only capture

statement instances that have spatial proximity in the original
program; it may eliminate a read-after-read relation transi-

tively covered by other relations. This allows to associate

each relation with a constant access stride. While it it pos-

sible to preserve the full relations by pruning locally when

computing access strides, this would damage algorithmic

complexity with no significant performance improvement.

CC’18, February 24–25, 2018, Vienna, Austria Zinenko, Verdoolaege, Reddy, Shirako, Grosser, Sarkar and Cohen

Ordering Access Groups Our approach reorders access

groups before each ILP to prioritize those groups that can

still feature some locality given the current schedule. Lexi-

cographical minimization does not guarantee that the maxi-

mum number of access groups will be optimized for locality.

We see this ordering as a possibility to tweak the behavior of

the algorithm without modifying the ILP formulation itself.

A weighted cost function would be preferable to ordering,

yet it is difficult to propose one without limiting the possible

reuse distances and thus the schedule coefficients.

Reducing Register Pressure Register pressure turned out

to be one of the performance bottlenecks—on both CPU and

GPU—even though our benchmarks remain relatively small.

We proposed a simple tunable heuristic to choose between

two alternative ILPs and to leverage their side effects. Other,

complementary approaches may be used to reduce register

pressure further [13, 27].

Post-Tile Reordering Some benchmarks require additional

transformation after tiling. However, one of the scheduling

objectives is to maximize the depth of tilable bands. A two-

phase affine scheduling may be required to produce more

profitable schedules, the second phase being applied after

tiling and preserving the band structure. It will provide a

more robust alternative to post-tile heuristics for locality

and wavefront parallelization, and allow for simultaneous

fusion and rescheduling after tiling.

7 Related Work
Within the polyhedral framework, automatic scheduling

has been the subject of active research over the past three

decades. Feautrier’s algorithm [10] produces minimal-delay

schedules with fine-grained parallelism by forcing the outer-

most loops to carry the maximum number of dependences.

Lim and Lam’s algorithm [18] aims to minimize synchroniza-

tions, hence maximizing coarse-grain parallelism. Pluto [7]

combines parallelization and locality optimization through

tiling. It resorts to a post-scheduling loop reordering heuris-

tic to account for spatial locality whereas our approach con-

sistently models spatial effects in the ILP allowing to avoid

undesirable effects such as false sharing. Recent work on

Pluto+ [4] introduces support for negative coefficients but,

unlike our approach, imposes constant bounds on the opti-

mization space. Recent work integrates access consecutivity

as a polyhedral scheduling objective. Trifunovic et al. [28]

propose a scheduling strategy for automatic vectorization,

but consider loop permutations only. Kong et al. [17] en-

code vectorizability of point loops as an ILP and rely on a

domain-specific SIMD code generator. Building on a work

by Bastoul et al. [2], Vasilache et al. [29] proposed contiguity

constraints to capture innermost reuse along one dimen-

sion of an arary reference. All aforementioned approaches

restrict the space of possible schedules which, as we demon-

strated, misses profitable opportunities that rely on linearly

dependent dimensions or exploit non-contiguous accesses.

Much of the past work focused on specific transformations,

such as loop fusion [16, 21], initially designed as a locality-

enhancing optimization in isolation from other loop nest

transformations. These techniques often model temporal

locality [3, 6] and introduce criteria similar to those of our

clustering method [19]. Clustering combines fusion with

scheduling to reduce the size of the linear problems to solve.

Outside the polyhedral framework, loop nest optimization

holds a particular place in optimizing compilers [15]. Numer-

ous syntactic locality-improving loop transformations were

proposed, including loop interchange [1] and tiling [14, 36].

Syntactic methods apply a sequence of individual loop trans-

formations driven by analytical cost models [20, 25], for

parallelization or vectorization [35]. PolyAST [26] employs

a two-stage approach: first, the polyhedral affine scheduling

optimizes temporal and spatial locality, guided by the DL cost

model [25]; second stage detects outermost forall, reduction,

or doacross loop parallelism, using syntactic information

on commutativity and associativity and on polyhedral de-

pendence information. In isolation, optimization stages may

end up undoing each other’s work, hitting a compiler phase

ordering problem. Our approach combines both optimiza-

tion criteria in a single problem and prioritizes parallelism

or locality if conflicting transformations are required.

8 Conclusion
Weproposed a template for the construction of affine schedul-

ing algorithms that accounts for multiple levels of parallelism

and deep memory hierarchies. Our approach models both

temporal and spatial effects, orchestrating a collection of pa-

rameterizable optimization problems with configurable con-

straints and objectives. The algorithmic template addresses

non-convexity without increasing the number of discrete

variables in linear programs, without imposing a priori lim-

its on the space of possible transformations, and modeling

schedules with linearly-depedendent dimensions that are

out of reach of a typical polyhedral optimizer.

Our algorithmic template generates sequential, parallel,

or accelerator code in a single optimization pass, matching

or outperforming comparable frameworks, whether polyhe-

dral, syntactic, or a combination of both. We discussed the

rationale for this unified algorithm, as well as its validation

on representative benchmarks.

Our results restore hope in the design of performance-

portable loop nest optimizer that are also simpler and more

elegant. We also believe our approach applies to domain-

specific optimization, mapping high-level equations occur-

ring in numerical simulations as well as machine learning

algorithms, on both dense and sparse structures, targeting

manycore and reconfigurable hardware.

Modeling the Conflicting Demands of Parallelism and . . . CC’18, February 24–25, 2018, Vienna, Austria

Acknowledgments
This work was partly supported by the European Commis-

sion via the Eurolab-4-HPC coordination action id. 671610, by

the French ANR through the European CHIST-ERA project

DIVIDEND, by Swiss Universities in the context of ComPASC

and by US DOE Exascale Computing Project in the context of

SOLLVE.We also acknowledge the support of ARMHoldings

PLC through the Polly Labs initiative. This work benefited

from numerous discussions with Nicolas Vasilache.

References
[1] John R. Allen and Ken Kennedy. 1984. Automatic Loop Interchange. In

Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction
(SIGPLAN ’84). ACM, New York, NY, USA, 233–246.

[2] Cédric Bastoul and Paul Feautrier. 2003. Improving Data Locality by

Chunking. In Compiler Construction, Görel Hedin (Ed.). Number 2622

in Lecture Notes in Computer Science. Springer Berlin, 320–334.

[3] Cédric Bastoul and Paul Feautrier. 2005. Adjusting a program transfor-

mation for legality. Parallel processing letters 15, 01n02 (2005), 3–17.
[4] Uday Bondhugula, Aravind Acharya, and Albert Cohen. 2016. The

Pluto+ Algorithm: A Practical Approach for Parallelization and Local-

ity Optimization of Affine Loop Nests. ACM Transactions on Program-
ming Languages and Systems 38, 3 (April 2016), 12:1–12:32.

[5] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, Jagan-

nathan Ramanujam, Atanas Rountev, and Ponnuswamy Sadayappan.

2008. Automatic Transformations for Communication-Minimized Par-

allelization and Locality Optimization in the Polyhedral Model. In

Compiler Construction. Springer, Budapest, Hungary, 132–146.
[6] Uday Bondhugula, Oktay Günlük, Sanjeeb Dash, and Lakshmi-

narayanan Renganarayanan. 2010. Amodel for fusion and codemotion

in an automatic parallelizing compiler. In 19th International Conference
on Parallel Architecture and Compilation Techniques, PACT 2010, Vienna,
Austria, September 11-15, 2010. 343–352.

[7] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and P.

Sadayappan. 2008. A Practical Automatic Polyhedral Parallelizer and

Locality Optimizer. ACM SIGPLAN Notices 43, 6 (2008), 101–113.
[8] Paul Feautrier. 1988. Parametric Integer Programming. Revue française

d’automatique, d’informatique et de recherche opérationnelle. 22, 3
(1988), 243–268.

[9] Paul Feautrier. 1991. Dataflow Analysis of Array and Scalar References.

International Journal of Parallel Programming 20, 1 (1991), 23–53.

[10] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling

Problem. Part II. Multidimensional Time. International Journal of
Parallel Programming 21, 6 (1992), 389–420.

[11] Paul Feautrier and C. Lengauer. 2011. Polyhedron Model. In Encyclo-
pedia of Parallel Computing, D. Padua (Ed.). Springer, 1581–1592.

[12] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.

Polly — Performing Polyhedral Optimizations on a Low-Level Inter-

mediate Representation. Parallel Processing Letters 22, 04 (Dec. 2012).
[13] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J

Ramanujam, and P Sadayappan. 2011. Data layout transformation for

stencil computations on short-vector simd architectures. In Compiler
Construction. Springer Berlin/Heidelberg, 225–245.

[14] F. Irigoin and R. Triolet. 1988. Supernode Partitioning. In 15th Symp.
on Principles of Programming Languages. ACM, NY, USA, 319–329.

[15] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Mod-
ern Architectures: A Dependence-Based Approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

[16] K. Kennedy and K. McKinley. 1993. Maximizing loop parallelism and

improving data locality via loop fusion and distribution. In Languages
and Compilers for Parallel Computing. 301–320.

[17] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-

Noël Pouchet, and Ponnuswamy Sadayappan. 2013. When polyhedral

transformations meet SIMD code generation. InACM SIGPLAN Notices,
Vol. 48. ACM, 127–138.

[18] Amy W. Lim and Monica S. Lam. 1997. Maximizing Parallelism and

Minimizing Synchronization with Affine Transforms. In Proceedings
of the 24th ACM Symposium on Principles of Programming Languages
(POPL ’97). ACM, New York, NY, USA, 201–214.

[19] Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. 2001. Blocking

and Array Contraction Across Arbitrarily Nested Loops Using Affine

Partitioning. In Proceedings of the Eighth ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming (PPoPP ’01). ACM,

New York, NY, USA, 103–112.

[20] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Im-

proving Data Locality with Loop Transformations. ACM Trans. on
Programming Languages and Systems 18, 4 (July 1996), 424–453.

[21] NimrodMegiddo and V. Sarkar. 1997. Optimal weighted loop fusion for

parallel programs. In Parallel Algorithms and Architectures. 282–291.
[22] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-

André Silber, and Nicolas Vasilache. 2006. GRAPHITE: Polyhedral

Analyses and Optimizations for GCC. In Proceedings of the 2006 GCC
Developers Summit. 179–197.

[23] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen,

J. Ramanujam, P. Sadayappan, and Nicolas Vasilache. 2011. Loop

Transformations: Convexity, Pruning and Optimization. In Symp. on
Principles of Programming Languages. ACM, NY, USA, 549–562.

[24] William Pugh and David Wonnacott. 1994. Static Analysis of Upper

and Lower Bounds on Dependences and Parallelism. ACM Trans.
Program. Lang. Syst. 16, 4 (July 1994), 1248–1278.

[25] Vivek Sarkar. 1997. Automatic Selection of High Order Transforma-

tions in the IBM XL Fortran Compilers. IBM Journal of Research &
Development 41, 3 (May 1997).

[26] J. Shirako, L. N. Pouchet, and V. Sarkar. 2014. Oil and Water Can Mix:

An Integration of Polyhedral and AST-Based Transformations. In SC14:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 287–298.

[27] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fabrice

Rastello, J. Ramanujam, and P. Sadayappan. 2013. A Framework for

Enhancing Data Reuse via Associative Reordering. ACM Press, 65–76.

[28] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira

Rosen. 2009. Polyhedral-model guided loop-nest auto-vectorization. In

Conf. on Parallel Architectures and Compilation Techniques. 327–337.
[29] Nicolas Vasilache, Benoît Meister, Muthu Baskaran, and Richard Lethin.

2012. Joint Scheduling and Layout Optimization to Enable Multi-

Level Vectorization. In 2nd Intl. Workshop on Polyhedral Compilation
Techniques. Paris, France.

[30] Sven Verdoolaege. 2010. Isl: An Integer Set Library for the Polyhedral

Model. In Mathematical Software – ICMS 2010, K. Fukuda, J. van der

Hoeven, M. Joswig, and N. Takayama (Eds.). Number 6327 in Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 299–302.

[31] Sven Verdoolaege. 2011. Counting Affine Calculator and Applications.

In 1st Intl. W. on Polyhedral Compilation Techniques. Chamonix, France.

[32] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-

cio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral

Parallel Code Generation for CUDA. Transactions on Architecture and
Code Optimization 9, 4 (Jan. 2013), 54:1–54:23.

[33] Sven Verdoolaege and Albert Cohen. 2016. Live Range Reordering. In

6th W. on Polyhedral Compilation Techniques. Prague, Czech Republic.

[34] Sven Verdoolaege and Gerda Janssens. 2017. Scheduling for PPCG. Re-
port CW 706. Department of Computer Science, KU Leuven, Belgium.

[35] Michael Wolfe. 1986. Loop Skewing: The Wavefront Method Revisited.

Int. J. Parallel Program. 15, 4 (Oct. 1986), 279–293.
[36] Michael Wolfe. 1989. Iteration Space Tiling for Memory Hierarchies.

In 3rd Conference on Parallel Processing for Scientific Computing. SIAM,

Philadelphia, PA, USA, 357–361.

	Abstract
	1 Introduction
	2 Background
	3 Polyhedral Scheduling in isl
	3.1 Scheduling Problem Formulation in isl
	3.2 Affine Transformations
	3.3 Ensuring Progress and Flexibility
	3.4 Permutable Bands and Tiling
	3.5 Data-Dependence Graph Clustering

	4 Unified Model for Spatial Effects
	4.1 Modeling Line-Based Access
	4.2 Spatial and Temporal Proximity Relations
	4.3 Carrying Few Spatial Proximity Relations
	4.4 Grouping and Prioritizing for Spatial Proximity
	4.5 Carrying Many Spatial Proximity Relations
	4.6 Scheduling for CPU Targets
	4.7 Scheduling for GPU Targets

	5 Experimental Evaluation
	5.1 Implementation Details
	5.2 Experimental Protocol
	5.3 Sequential Code Performance
	5.4 Parallel CPU Code Performance
	5.5 Comparison with Affine+Syntactic Approach
	5.6 Parallel GPU Code Performance

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

