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Abstract

We present a fuzzy (or quantitative) version of the van
Benthem theorem, which characterizes propositional modal
logic as the bisimulation-invariant fragment of first-order
logic. Specifically, we consider a first-order fuzzy predicate
logic alongwith its modal fragment, and show that the fuzzy
first-order formulas that are non-expansive w.r.t. the natu-
ral notion of bisimulation distance are exactly those that can
be approximated by fuzzy modal formulas.
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1 Introduction

Fuzzy logic is a form of multi-valued logic originally stud-
ied by Łukasiewicz and Tarski [27] and later popularized
as a logic of vagueness by Zadeh [52]. It is based on replac-
ing the standard set of Boolean truth values with a different
lattice, most often, like in the present paper, the unit inter-
val. Saying that a formula ϕ has truth value r ∈ [0, 1] then
means that ϕ holds with degree r , which would apply to typ-
ical vague qualifications such as a given person being tall
(in contrast to assigning a probability p ∈ [0, 1] to ϕ, which
would be read as saying thatϕ is either completely true with
probability p or completely false with probability 1 − p, as
in ‘the die under the cup shows a 3 with probability p’).
Beyond the original propositional setup, fuzzy truth val-

ues appear in variants of more expressive logics, notably in
fuzzy first-order logics [10, 20, 31] and in various fuzzymodal

logics. The latter go back to many-valuedmodal logics based
onmaking valuations in Kripkemodels [29, 30, 32, 35, 38, 41]
or additionally also the accessibility relation [19] many-
valued, and are nowadays maybe most popular in their in-
carnation as fuzzy description logics (e.g. [21, 37, 42, 45, 51];
see [28] for an overview). Many-valued modal fixpoint log-
ics are also used in software model checking (e.g. [7, 26]).

Like in the classical case, fuzzy modal logics typically em-
bed into their first-order counterparts. In the classical set-
ting, the core result on this embedding is van Benthem’s the-

orem, which states that a first-order formula ϕ is equivalent
to a modal formula if and only ifϕ is invariant under bisimu-
lation [46]. This is a form of expressive completeness: Modal
logic expresses only bisimulation-invariant properties, but
for such properties it is as expressive as first-order logic.
Briefly, the aim of the current paper is to provide a coun-
terpart of this theorem for a fuzzy modal logic.
There is a wide variety of possible semantics for the fuzzy

propositional connectives (see [28] for an overview), em-
ploying, e.g., the additive structure (Łukasiewicz logic), the
multiplicative structure (product logic) or the Heyting alge-
bra structure (Gödel logic) of the unit interval. For techni-
cal reasons, we work with the simplest possible semantics
where conjunction is interpreted as minimum and all other
connectives are derived using the classical encodings, effec-
tively a fragment of Łukasiewicz logic often called Zadeh

logic. That is, we consider Zadeh fuzzy modal logic, more
precisely Zadeh fuzzy K or in description logic terminology
Zadeh fuzzy ALC [42], with Zadeh fuzzy first-order logic

as the first-order correspondence language, essentially the
Zadeh fragment of Novak’s Łukasiewicz fuzzy first order
logic [31].
It has long been recognized that for quantitative systems,

notions of behavioural distance are more natural than two-
valued bisimilarity [48]. In such a metric setting, bisimula-
tion invariance becomes non-expansivity w.r.t. behavioural
distance (e.g. if one views classical bisimilarity as a {0, 1}-
valued pseudometric, then non-expansivity means that dis-
tance 0 is preserved, which is precisely bisimulation invari-
ance). The first step in our program is therefore to estab-
lish a notion of behavioural distance for fuzzy relational
systems. We consider three different ways to define such
a behavioural metric: via the modal logic, via a bisimulation
game (similarly as in work on probabilistic systems [13]), or
via a fixpoint characterization based on the Kantorovich lift-
ing (similarly as in [4]). We show that they all coincide; in
particular we obtain a Hennessy-Milner type theorem (be-
havioural distance equals logical distance). This gives us a
stable notion of behavioural metric for fuzzy relational sys-
tems.

http://arxiv.org/abs/1802.00478v2
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Our main result then says that the fuzzy modal formu-

las lie dense in the bisimulation-invariant first-order formu-

las, where by bisimulation-invariant we now mean non-
expansive w.r.t. behavioural distance. In other words, ev-
ery bisimulation-invariant fuzzy first-order formula can be
modally approximated. The proof follows a strategy intro-
duced for the classical case by Otto [33], going via locality
w.r.t. an adapted notion of Gaifman distance to show that
every bisimulation-invariant fuzzy first-order formula is al-
ready non-expansive w.r.t. depth-k behavioural distance for
some k (this distance arises, e.g., by limiting the bisimula-
tion game to k rounds). The key part of our technical devel-
opment is, then, to establish a fuzzy counterpart of what in
the classical case is a triviality: The classical proof ends in
remarking that every state property (without any assump-
tion of first-order definability) of relational transition sys-
tems that is invariant under depth-k bisimilarity is express-
ible by a modal formula of modal rank k . In the fuzzy set-
ting, this becomes a non-trivial result of independent inter-
est: The fuzzy modal formulas of modal rank k lie dense in

the fuzzy state properties that are non-expansive w.r.t. depth-

k behavioural distance.

Proofs are mostly omitted or only sketched; full proofs
are in the appendix.

Related Work Van Benthem’s theorem was later shown
by Rosen [34] to hold also over finite structures. Modal
characterization theorems have since been proved in var-
ious settings, e.g. logics with frame conditions [11], coal-
gebraic modal logics [40], fragments of XPath [1, 18, 44],
neighbourhood logic [22], modal logic with team seman-
tics [24], modal µ-calculi (within monadic second order log-
ics) [15, 23], PDL (within weak chain logic) [9], modal first-
order logics [43, 47], and two-dimensional modal logicswith
an S5-modality [50]. All these results concern two-valued
logics; we are not aware of any previous work of this type
for fuzzy modal logics.
There is, however, work on behavioural distances and

fuzzy bisimulation in connectionwith fuzzymodal logic.We
discuss only fuzzy notions of bisimulation, omitting work
on classical behavioural equivalence for fuzzy transition sys-
tems and fuzzy automata. Balle et al. [5] consider bisimula-
tion metrics for weighted automata in order to characterize
approximate minimization. Cao et al. [8] study a notion of
behavioural distance for fuzzy transition systems, where the
lifting of the metric is derived from a transportation prob-
lem (the dual of the Kantorovich metric), but without con-
sidering modal logics. Fan [16] proves a Hennessy-Milner
type theorem for a fuzzy modal logic with Gödel seman-
tics and a notion of fuzzy bisimilarity. In [17] she considers
an application to social network analysis and also observes
that Łukasiewicz logic is problematic in this context (since
the operators do not preserve non-expansivity). Eleftheriou

et al. [14] show a Hennessy-Milner theorem for Heyting-
valued modal logics as introduced by Fitting [19].

While we work in a fuzzy setting, we were inspired
by related work on probabilistic systems: Desharnais et al.
studied behavioural distances on logics [12] as well as a
game characterization of probabilistic bisimulation [13]. A
Hennessy-Milner theorem for the probabilistic case is pre-
sented in [48], based on a coalgebraic semantics.

2 Fuzzy Modal Logic

We proceed to recall the syntax and semantics of Zadeh
fuzzy K or equivalently Zadeh fuzzyALC [42], along with
its first-order correspondence language. For simplicity we
restrict the exposition to the unimodal case; the develop-
ment extends straightforwardly to the multimodal case by
just adding more indices. Formulas ϕ,ψ of fuzzy modal logic

are given by grammar

ϕ,ψ ::= c | p | ϕ ⊖ c | ¬ϕ | ϕ ∧ψ | ^ϕ

where p ranges over a fixed set At of propositional atoms

and c ∈ Q ∩ [0, 1] over rational truth constants. The syntax
is thus mostly the same as for standard modal logic; the only
additional ingredients are the truth constants and modified

subtraction ⊖ as used in real-valued modal logics for proba-
bilistic systems [48]. Further logical connectives are defined
by the classical encodings, e.g. ϕ∨ψ abbreviates ¬(¬ϕ∧¬ψ ),
and ϕ → ψ abbreviates ¬ϕ ∨ ψ ; also, we introduce a dual
modality � as �ϕ := ¬^¬ϕ. The rank rk(ϕ) of a formula ϕ
is the maximal nesting depth of the modality ^ and proposi-

tional atoms in ϕ. Formally, rk(ϕ) is thus defined recursively
by rk(c) = 0, rk(p) = 1, rk(^ϕ) = 1 + rk(ϕ), and obvious
clauses for the remaining constructs. We write Lk for the
set of modal formulas of rank at most k .
The semantics of the logic is defined over fuzzy relational

models (or just models)

A = (A, (pA)p ∈At,R
A)

consisting of a set A of states, a map pA : A → [0, 1] for
each p ∈ At, and a map RA : A×A→ [0, 1]; we will drop su-
perscripts A when clear from the context. That is, proposi-
tional atoms are interpreted as fuzzy predicates on the state
set, and states are connected by a binary fuzzy transition
relation, where fuzzy is short for [0, 1]-valued (as usual, we
use crisp as an informal opposite of fuzzy, i.e. crisp means
two-valued). Fuzzy relational models are a natural fuzzifi-
cation of Kripke models, and in fact the instantiation of lat-
ticed Kripkemodels over DeMorgan lattices [7, 26] to the lat-
tice [0, 1]; they arise from fuzzy transition systems (e.g. [8];
fuzzy automata go back as far as [49]) by adding proposi-
tional atoms. Unless stated otherwise, we adhere to the con-
vention that models are denoted by calligraphic letters and
their state sets by the corresponding italic.
We use ∧, ∨ to denote meets and joins in [0, 1]. A modal

formulaϕ is then assigned a fuzzy truth value ϕA(a), or just
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ϕ(a), at every state a ∈ A, defined inductively by

c(a) = c p(a) = pA(a)

(ϕ ⊖ c)(a) = max(ϕ(a) − c, 0)

(¬ϕ)(a) = 1 − ϕ(a)

(ϕ ∧ψ )(a) = ϕ(a) ∧ψ (a)

(^ϕ)(a) =
∨

a′∈A(R
A(a,a′) ∧ ϕ(a′)).

For brevity, we often conflate formulas and their evaluation
functions in both notation and vernacular, e.g. in statements
claiming that certain modal formulas form a dense subset of
some set of state properties.

Remark 2.1. As indicated above, we thus equip the propo-
sitional connectives with Zadeh semantics. This corre-
sponds to widespread usage but is not without disadvan-
tages in comparison to Łukasiewicz semantics, which de-
fines the conjunction of a,b ∈ [0, 1] as max(a +b − 1, 0); e.g.
implication is the residual of conjunction in Łukasiewicz se-
mantics but not in Zadeh semantics (see [25] for a more de-
tailed discussion). We will later point out where this choice
becomes most relevant; roughly speaking, Łukasiewicz se-
mantics is not easily reconciled with behavioural distance.
The modal syntax as given above is essentially identical

to the one used by van Breughel andWorrell to characterize
behavioural distance in probabilistic transition systems [48].
Semantically, fuzzy models differ from probabilistic ones in
that they do not require truth values of successor edges to
sum up to 1, and moreover in the probabilistic setting the
modality ^ is interpreted by expected truth values instead
of suprema. The semantics of the propositional connectives,
on the other hand, is in fact the same in both cases.

Example 2.2. We can see fuzzy K as a logic of fuzzy transi-
tion systems (e.g. [8]). E.g. the formula ^�0 then describes,
roughly speaking, the degree to which a deadlocked state
can be reached in one step. Formally, (�0)(y) is the degree
to which a state y in a model A is deadlocked, i.e. the infi-
mum over 1− r where r ranges over the degrees RA(y, z) to
which any state z is a successor of y. Then, (^�0)(x) is the
supremum of min(RA(x ,y), (�0)(y)) over all y.
In the reading of fuzzy K as the description logic

fuzzy ALC [42] (with only one role for simplicity), the un-
derlying fuzzy relation would be seen as a vague connection
between individuals, such as a ‘likes’ relation between per-
sons. In this reading, the formula

�(so�-spoken∧ ^reasonable)

describes people who only like people who are soft-spoken
and like some reasonable person, with all these terms under-
stood in a vague sense.

As indicated previously, the first-order correspondence lan-
guage for fuzzy modal logic in this sense is Zadeh fuzzy first-
order logic over a single binary predicate R and a unary pred-
icatep for every propositional atomp. Formulasϕ,ψ of what

we briefly term fuzzy first-order logic or fuzzy FOL are thus
given by the grammar

ϕ,ψ ::= c | p(x) | R(x ,y) | x = y | ϕ ⊖ c | ¬ϕ | ϕ ∧ψ | ∃x .ϕ

where c ∈ [0, 1] ∩ Q, p ∈ At, and x ,y range over a fixed
countably infinite set of variables. We have the usual no-
tions of free and bound variables. The quantifier rank qr(ϕ)

of a formula ϕ is defined, as usual, as the maximal nesting
depth of quantifiers in ϕ (unlike for the modal rank, we do
not let atomic formulas count towards the quantifier rank).
The semantics is determined as the evident extension of
the modal semantics, with the existential quantifier inter-
preted as supremum and ‘=’ as crisp equality. Formally, a
formula ϕ(x1, . . . , xn) with free variables among x1, . . . , xn
is interpreted, given a fuzzy relational modelA and a vector
ā = (a1, . . . ,an) of values for the free variables, as a truth
value ϕ(ā) ∈ [0, 1], given by

p(xi )(ā) = p
A(ai ) R(xi , x j )(ā) = R

A(ai ,aj )

(xi = x j )(ā) = 1 if ai = aj , and 0 otherwise

(∃x0.ϕ(x0, . . . , xn))(ā) =
∨

a0 ∈A ϕ(a0, ā)

and essentially the same clauses as in the modal case for the
other connectives.
We thus have a variant of the classical standard trans-

lation, that is, a truth-value preserving embedding STx of
fuzzy K into fuzzy FOL, indexed over a variable x naming
the current state and defined inductively by STx (p) = p(x),

STx (^ϕ) = ∃y. (R(x ,y) ∧ STy (ϕ)),

and commutationwith all other constructs. FuzzyK thus be-
comes a fragment of fuzzy FOL, and the object of the present
paper is to characterize their relationship.

Coalgebraic view Recall that an F -coalgebra (A,α) for a
set functor F : Set → Set consists of a set A of states and
a map α : A → FA. The set FA is thought of as contain-
ing structured collections over A, so that α assigns to each
state a a structured collection α(a) of successors. Coalge-
bras thus provide a general framework for state-based sys-
tems [36]. We will partly use coalgebraic techniques in our
proofs, in particular final chain arguments. We therefore
note that fuzzy relational models are coalgebras for the set
functor G given by

G = [0, 1]At × F

where FX = [0, 1]X is the fuzzy version of the covariant
powerset functor. That is, F acts on maps f : X → Y by
taking fuzzy direct images,

Ff (д)(y) =
∨

f (x )=y д(x).

Explicitly, a fuzzy relational modelA corresponds to the G-
coalgebra (A,α) given by α(a) = (h,д) where h(p) = pA(a)
for p ∈ At and д(a′) = RA(a,a′) for a′ ∈ A.
A G-coalgebra morphism f : (A,α) → (B, β) between G-

coalgebras (A,α), (B, β) (i.e. fuzzy relational modelsA,B) is
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amap f : A→ B such thatGf α = β f . Explicitly, this means
that f is a bounded morphism, i.e. pB(f (a)) = pA(a) for all
atoms p and all a ∈ A, and RB (f (a),b) =

∨

f (a′)=b R
A(a,a′)

for every b ∈ B. For models A and B, we define their
disjoint union A + B as the model with domain A + B

(disjoint union of sets), pA+B(c) = pA(c) for c ∈ A and
pA+B(c) = pB(c) otherwise, and RA+B(c, c ′) = RA(c, c ′) if
c, c ′ ∈ A, RA+B(c, c ′) = RB(c, c ′) if c, c ′ ∈ B, RA+B(c, c ′) = 0
otherwise. This is precisely the categorical coproduct of A
and B as G-coalgebras; in particular, the injection maps
A → A + B and B → A + B are bounded morphisms.

3 Pseudometric Spaces

We recall some basics on pseudometric spaces, which dif-
fer from metric spaces in that distinct points can have dis-
tance 0:

Definition 3.1 (Pseudometric space, non-expansive maps).
Given a non-empty set X , a (bounded) pseudometric on X is
a function d : X ×X → [0, 1] such that for all x ,y, z ∈ X , the
following axioms hold: d(x , x) = 0 (reflexivity), d(x ,y) =
d(y, x) (symmetry), d(x , z) ≤ d(x ,y) + d(y, z) (triangle in-

equality). If additionally d(x ,y) = 0 implies x = y, then d is
ametric. A (pseudo)metric space is a pair (X ,d)where X is a
set and d is a (pseudo)metric on X . The diameter of A ⊆ X

is
∨

x,y∈A d(x ,y). We equip the unit interval [0, 1] with the
standard Euclidean distance de ,

de (x ,y) = |x − y |.

A function f : X → Y between pseudometric spaces
(X ,d1), (Y ,d2) is non-expansive if d2 ◦ (f × f ) ≤ d1, i.e.
d2(f (x), f (y)) ≤ d1(x ,y) for all x ,y. We then write

f : (X ,d1) →1 (Y ,d2).

The space of non-expansive functions (X ,d1) →1 (Y ,d2) is
equipped with the supremum (pseudo)metric d∞ defined by

d∞(f ,д) = sup
x ∈X

d2(f (x),д(x))

In the special case (Y ,d2) = ([0, 1],de), we will also denote
d∞(f ,д) as ‖ f − д‖∞.

As usual we denote by Bϵ (a) = {x ∈ X | d(a, x) ≤ ϵ}

the ball of radius ϵ around a in (X ,d). The space (X ,d) is
totally bounded if for every ϵ > 0 there exists a finite ϵ-
cover, i.e. finitely many elements a1, . . . ,an ∈ X such that
X =

⋃n
i=1 Bϵ (ai ).

Recall that a metric space is compact iff it is complete and
totally bounded.
Given a fuzzy relational model A, we extend the seman-

tics of ^ to arbitrary functions f : A→ [0, 1] by

^ f : A→ [0, 1], (^ f )(a) =
∨

a′∈A

RA(a,a′) ∧ f (a′).

Lemma 3.1. The map f 7→ ^ f is non-expansive.

4 Behavioural Distance
and Bisimulation Games

We proceed to define our notion of behavioural distance for
fuzzy relational models. We opt for a game-based definition
as the basic notion, and relate it to logical distance, showing
that fuzzy modal logic is non-expansive w.r.t. behavioural
distance. In Section 5 we will give an equivalent character-
ization in terms of fixed points, and show that all distances
coincide at finite depth. Following ideas used in probabilistic
bisimulation metrics [13], we use bisimulation games that
have crisp outcomes but are parametrized over a maximal
allowed deviation; we will then define the distance as the
least parameter for which duplicator wins.

Definition4.1. LetA,B be fuzzy relational models, and let
a0 ∈ A,b0 ∈ B. The ϵ-bisimulation game for A,a0 and B,b0
(or just for a0,b0) played by S (spoiler) and D (duplicator) is
given as follows.

• Configurations: pairs (a,b) ∈ A × B of states.
• Initial configuration: (a0,b0).
• Moves: Player S needs to pick a new state in one of the
models A or B, say a′ ∈ A, such that RA(a,a′) > ϵ ,
and then D needs to pick a state in the other model,
say b ′ ∈ B, such that RB(b,b ′) ≥ RA(a,a′) − ϵ . The
new configuration is then (a′,b ′).

• Winning condition:Any player who needs tomove but
cannot, loses. PlayerD additionally needs to maintain
the following winning condition before every round:
For every p ∈ At, |pA(a) − pB(b)| ≤ ϵ .

There are two variants of the game, the unrestricted game in
which D wins infinite plays, and the depth-n ϵ-bisimulation

game, which is restricted to n rounds, meaning that D wins
after n rounds have been played.

Remark 4.2. Note that, since the invariant only needs to
hold before every round actually played, D always wins the
depth-0 game regardless of a0 and b0.

The usual composition lemma for bisimulations then takes
the following form:

Lemma 4.3. Let A,B, C be models and a0 ∈ A,b0 ∈ B, c0 ∈

C such that D wins the ϵ-bisimulation game for (a0,b0) and

the δ -bisimulation game for (b0, c0). Then D also wins the

(ϵ + δ )-bisimulation game for (a0, c0). The same holds for the

corresponding depth-n bisimulation games.

As indicated above, we then obtain a notion of behavioural
distance by taking infima:

Definition 4.4 (Behavioural distance). Let A,a0 and B,b0
be as in Definition 4.1. The behavioural distance dG (a0,b0)

of a0 and b0 is the infimum over all ϵ such that D wins the
ϵ-bisimulation game for a0 and b0. The depth-n behavioural

distance dGn (a0,b0) of a0 and b0 is defined analogously, using
the depth-n bisimulation game.
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This definition is justified by the following lemma, which
follows from Lemma 4.3:

Lemma 4.5. The behavioural distance dG and all depth-n

behavioural distances dGn are pseudometrics.

Remark 4.6. We emphasize that dG (a,b) = 0 does not in
general imply that D wins the 0-bisimulation game on a,b.
In this sense, the notion of ϵ-bisimulation is thus what en-
ables us to avoid restricting tomodels that arewitnessed [21]
in the sense that all suprema appearing in the evaluation of
existential quantifiers are actually maxima.

We have the expected relationship between the various be-
havioural pseudometrics:

Lemma 4.7. For all models A,B, states a ∈ A, b ∈ B, and

n ≥ m ≥ 0, we have

dGm(a,b) ≤ dGn (a,b) ≤ dG (a,b).

As usual, behavioural equivalence is invariant under coalge-
bra morphisms; this can now be phrased as follows:

Lemma 4.8. Let A,B be fuzzy relational models, and let

f : A → B be a bounded morphism. Then for every a ∈ A,

dG (a, f (a)) = 0.

Proof (sketch). Player D wins the depth-n ϵ-bisimulation
game for every ϵ > 0. �

Since coproduct injections are bounded morphisms, a spe-
cial case is

Lemma 4.9. Given modelsA,B and a ∈ A, the state a inA

and the corresponding state a inA +B have behavioural dis-

tance 0.

Behavioural distance determines our notion of bisimulation
invariance, whichwe take tomean non-expansivity w.r.t. be-
havioural distance. To match this with the standard notion,
interpret classical crisp bisimilarity as a discrete pseudomet-
ric d assigning distance 0 to pairs of bisimilar states and
1 to non-bisimilar ones, and similarly interpret crisp predi-
cates P as maps into {0, 1}; then P is bisimulation-invariant
in the usual sense iff P is non-expansive w.r.t. d . Formal def-
initions for the fuzzy setting are as follows.

Definition 4.10 (Bisimulation-invariant formulas and pred-
icates). A formula ϕ (either in fuzzy modal logic or in fuzzy
FOL, with a single free variable) is bisimulation-invariant if
for all modelsA,B and all states a ∈ A, b ∈ B,

|ϕ(a) − ϕ(b)| ≤ dG (a,b).

Similarly, given a model A, a (fuzzy) state predicate on A,
i.e. a function P : A → [0, 1], is bisimulation-invariant if P
is non-expansive w.r.t. the bisimulation distance dG . In both
cases, depth-n bisimulation invariance is defined in the same
way using depth-n behavioural distance.

As expected, Zadeh fuzzy modal logic is bisimulation invari-
ant; more precisely:

Lemma 4.11 (Bisimulation invariance). Every fuzzy modal

formula of rank at most n is depth-n bisimulation-invariant.

In particular, for every rank-n modal formula ϕ and ev-
ery fuzzy relational model A, the evaluation map ϕA :
A → [0, 1] is a non-expansive map (A,dGn ) →1 ([0, 1],de).
A forteriori (Lemma 4.7), every fuzzy modal formula ϕ

is bisimulation-invariant, i.e. ϕ(·) is non-expansive w.r.t.
(unbounded-depth) behavioural distance dG .

Example 4.12. The formula R(x , x) in fuzzy FOL fails
to be bisimulation-invariant (compare a loop with an infi-
nite chain), and is therefore neither expressible nor approx-
imable by fuzzy modal formulas.

Definition 4.13 (Logical distance). We further define log-

ical distances dL (w.r.t. all modal formulas) and dLn (w.r.t.
modal formulas of rank at most n) by

dL(a,b) =
∨

ϕ modal |ϕ(a) − ϕ(b)|,

dLn (a,b) =
∨

rk(ϕ )≤n |ϕ(a) − ϕ(b)|.

We clearly have

dLm(a,b) ≤ dLn (a,b) ≤ dL(a,b) for n ≥ m ≥ 0,

as well as

dL(a,b) =
∨

n≥0 d
L
n (a,b). (1)

Using (1) and Lemma 4.7, we can then rephrase bisimulation
invariance (Lemma 4.11) as

Lemma 4.14. For models A,B, states a ∈ A, b ∈ B, and

n ≥ 0, we have

dLn (a,b) ≤ dGn (a,b) and dL(a,b) ≤ dG (a,b).

Remark 4.15. Under Łukasiewicz semantics (Remark 2.1),
non-expansivity clearly breaks; e.g. if a and b are states
without successors in models A and B, respectively, such
that pA(a) = 0.9, pA(b) = 0.8, and a and b agree on all
other atoms, then dG (a,b) = 0.1 but |ϕ(a) − ϕ(b)| = 0.2
for the formula ϕ = p ∧ p, since under Łukasiewicz seman-
tics, ϕ(a) = pA(a) + pA(a) − 1 = 0.8 and ϕ(b) = pB(b) +

pB(b) − 1 = 0.6. See also a similar example in [17]. For a
treatment of Łukasiewicz fuzzy modal logic, one would thus
need to replace non-expansivity with Lipschitz continuity
(see also [39]). Additional problems, however, arise with log-
ical distance: Defining a logical distance for Łukasiewicz
modal logic in analogy to the above definition of dL gives a
discrete pseudometric. The reason is that small behavioural
differences between models can be amplified arbitrarily in
Łukasiewicz logic using conjunction, as illustrated precisely
by the above example (where we could also use p∧p∧p etc.).
The statement of a van Benthem theorem for Łukasiewicz
modal logic would thus presumably become quite compli-
cated, e.g. would need to stratify over Lipschitz constants.
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We now launch into the proof of our target result, which
states that every bisimulation-invariant fuzzy first-order

property can be approximated by fuzzy modal formulas, a
converse to bisimulation-invariance of fuzzy modal formu-
las. As already indicated, we follow a proof strategy estab-
lished for the classical setting by Otto [33]: We show that

• every bisimulation-invariant fuzzy first-order prop-
erty is ℓ-local for some ℓ, w.r.t. a suitable notion of
Gaifman distance (Section 7);

• every ℓ-local bisimulation-invariant fuzzy first-order
property is already depth-n bisimulation-invariant for
some n (Section 8); and

• every depth-n bisimulation-invariant fuzzy state
property is approximable by fuzzy modal formulas of
rank at most n (Section 5).

We begin with the last step of this program.

5 Modal Approximation at Finite Depth

Having seen game-based and logical behavioural distances
dL , dG in the previous section, we proceed to introduce a
third, fixed-point based definition, and then show that all
three distances agree at finite depth. This happens in a large
simultaneous induction, in which we also prove that every
depth-n bisimulation-invariant fuzzy state property is approx-

imable bymodal formulas of rankn. As indicated in the intro-
duction, this is in fact the technical core of the paper. This is
in sharp contrast with the classical setting, where the corre-
sponding statement – every depth-n bisimulation-invariant
crisp state property is expressible by a crisp modal formula
– is completely straightforward.

Assumption 5.1. As usual in proofs of van Benthem type
results, we assume from now on that At = {p1, . . . ,pk } is fi-
nite. This is w.l.o.g. for purposes of the proof of our main
result, as we will aim to show modal approximability of
a given formula, so only finitely many atoms are relevant.
Note that, e.g., Theorem 5.3.2 (total boundedness of finite-
depth behavioural distance) will presumably not hold with-
out this assumption.

The fixed-point definition of behavioural distance is based
on the Kantorovich lifting [4]. We first define an evaluation

function ev : F[0, 1] → [0, 1] (recall from Section 2 that FX =
[0, 1]X and GX = [0, 1]At × FX ) by

ev(д) =
∨

s ∈[0,1](д(s) ∧ s) for д : [0, 1] → [0, 1].

Given a pseudometric space (X ,d), we define the Kan-

torovich pseudometrics dF on FX and dG onGX , respectively,
by

dF(д1,д2) =
∨

f :(X ,d )→1([0,1],de )

|ev ◦ Ff (д1) − ev ◦ Ff (д2)|

dG((r1,д1), (r2,д2)) = d
F(д1,д2) ∨

∨

p ∈At |r1(p) − r2(p)|

for ri ∈ [0, 1]At and дi ∈ FX . It follows from general results
on lifting metrics along functors [4] that dF and dG are in-
deed pseudometrics.
Given a fuzzy relational model A = (A, (pA)p ∈At,R

A),
viewed as a coalgebra α : A → GA as discussed in Sec-
tion 2, we can inductively define a sequence of pseudomet-
rics (dKn )n≥0 on A via the Kantorovich lifting:

dK0 (a,b) = 0 and dKn+1 = (dKn )
G ◦ (α × α),

that is, expanding definitions,

dKn+1(a,b) =
∨

p ∈At

|p(a) − p(b)| ∨
∨

f :(A,dKn )→1([0,1],de )

|(^ f )(a) − (^ f )(b)|.

(ThedKn can be seen as approximants of a fixed point, which
is not itself needed here.)

Example 5.2. To illustrate the three forms of behavioural
distance (logical, game-based, and via the Kantorovich lift-
ing), we use the following model A with one propositional
atom p. In the diagram below, each state has the form x[p :
pA(x)], and transitions from x to y are labelled with their
truth values RA(x ,y).

1[p : 1]

0.5

��✄✄
✄✄
✄✄
✄

0.5

��
❃❃

❃❃
❃❃

❃
4[p : 1]

0.4

����
��
��
�

0.3

��
❃❃

❃❃
❃❃

❃

2[p : 1] 3[p : 0.9] 5[p : 0.8] 6[p : 0.9]

Clearly, it suffices to look at depth 2 in this example. The
game-based distance of 1, 4 is dG (1, 4) = dG2 (1, 4) = 0.2. To
see this, first note that D has a winning strategy for ϵ = 0.2:
Player S may pick any transition, and D then always has a
transition available as a reply; irrespective of their choices,
they end up in a pair of states with values of p differing by at
most 0.2, and then S needs tomove but cannot. The situation
is different for ϵ < 0.2: In this case, S can take the transition
from 1 to 2, whichD must answer by going from 4 to 5, since
RA(4, 6) � RA(1, 2) − ϵ . But |pA(2) −pA(5)| = 0.2 > ϵ , so S
wins.

This distance is witnessed by the formula ϕ = ^(p ⊖ 0.5):

ϕ(1) = (0.5 ∧ (pA(2) ⊖ 0.5)) ∨ (0.5 ∧ (pA(3) ⊖ 0.5)) = 0.5

ϕ(4) = (0.4 ∧ (pA(5) ⊖ 0.5)) ∨ (0.3 ∧ (pA(6) ⊖ 0.5)) = 0.3,

so dL(1, 4) = dL2 (1, 4) = 0.2 (recall rk(ϕ) = 2) by Lemma 4.14.
Note that ^p would only yield a difference of 0.1.
As to the Kantorovich distances, we have dK0 (1, 4) = 0,

so that the f over which the supremum in the definition of
dK1 (1, 4) is taken are all constant; it is then easily seen that

dK1 (1, 4) = 0.1, the difference between the maximal transi-
tion degree from 1 (0.5) and that from 4 (0.4). The function
corresponding to p ⊖ 0.5 then serves as a witness of the be-
havioural distance at depth 2, so thatdK2 (1, 4) ≥ 0.2; one can

check that in fact dK2 (1, 4) = 0.2.
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The main result proved in this section is then the follow-
ing theorem, which as indicated above states in particular
that the definitions of behavioural distance coincide at fi-
nite depth and that the modal formulas lie dense in the non-
expansive state properties:

Theorem 5.3. Let A be a fuzzy relational model. Then the

following holds for all n ≥ 0.

1. dGn = d
L
n = d

K
n =: dn on A.

2. The pseudometric space (A,dn) is totally bounded.

3. The modal formulas of rank at most n form a dense sub-

set of the space (A,dn) →1 ([0, 1],de).

(We note that the equality dLn = d
G
n is effectively the finite-

depth part of a Hennessy-Milner property; the infinite-
depth version will, of course, hold only under finite
branching. This contrasts somewhat with the probabilistic
case [48].)

Proof (sketch). We prove all claims simultaneously by induc-
tion on n. The base case n = 0 is trivial. The proof of the in-
duction step is split over a number of lemmas proved next:

• Item 1 is proved in Lemmas 5.4 and 5.5.
• Item 2 is proved in Lemma 5.7.
• Item 3 is proved in Lemma 5.9. �

For the remainder of this section, we fix a model A as in
Theorem 5.3 and n > 0, and assume as inductive hypothesis
that all claims in Theorem 5.3 already hold for all n′ < n.

Lemma 5.4. We have dLn = d
K
n on A.

Proof (sketch). Let a,b ∈ A and put F := (A,dn−1) →1

([0, 1],de). By Lemma 3.1, the map

H : (F ,d∞) → ([0, 1],de), f 7→ |(^ f )(a) − (^ f )(b)|

is continuous. Since by the induction hypothesis, Ln−1 is
dense in F , it follows that H [Ln−1] is dense in H [F ]. Thus,

dKn (a,b) =
∨

p ∈At

|p(a) − p(b)| ∨
∨

f :(A,dn−1)→1([0,1],de )

|(^ f )(a) − (^ f )(b)|

=

∨

p ∈At

|p(a) − p(b)| ∨
∨

rkϕ≤n−1

|(^ϕ)(a) − (^ϕ)(b)|

=

∨

rkϕ≤n

|ϕ(a) − ϕ(b)| = dLn (a,b). �

Lemma 5.5. We have dGn = d
K
n on A.

Proof (sketch). First, dKn (a,b) = dLn (a,b) ≤ dGn (a,b) for all
a,b by Lemmas 5.4 and 4.11.

In the other direction, if dKn (a,b) ≤ ϵ , we need to show
thatD wins the (ϵ+δ )-game on (a,b) for all δ > 0. W.l.o.g. S
moves from a to some a′. We can instantiate the function f

in the definition of dKn as

f : (A,dn−1) →1 ([0, 1],de), f (b
′) = R(a,a′) ⊖ dn−1(a

′
,b ′).

A winning reply for D can now be extracted by taking a
state b ′ that approximates the supremum in (^ f )(b) suffi-
ciently closely. One checks that b ′ is a legal move and that
dn−1(a

′,b ′) < ϵ + δ , so D wins. �

Having shown that the pseudometrics dLn , d
G
n , d

K
n coincide,

we will now use dn to denote any of them, as indicated in
Theorem 5.3.

The next lemma is a version of the Arzelà-Ascoli theo-
rem for total boundedness instead of compactness and non-
expansive instead of continuous functions; that is, we im-
pose weaker assumptions on the space but stronger assump-
tions on the functions.

Lemma 5.6. Let (X ,d1), (Y ,d2) be totally bounded pseudo-

metric spaces. Then the space (X ,d1) →1 (Y ,d2), equipped

with the supremum pseudometric, is totally bounded.

The following lemma, the inductive step for Theorem 5.3.2,
then guarantees that our variant of Arzelà-Ascoli will actu-
ally apply to (A,dn) in the next round of the induction.

Lemma 5.7. (A,dn) is a totally bounded pseudometric space.

Proof (sketch). Put F := (A,dn−1) →1 ([0, 1],de) and let ϵ >
0. By Lemma 5.6, F is totally bounded, so as Ln−1 is dense
in F , there exists a finite ϵ

6 -cover of F consisting of formulas
ϕ1, . . . ,ϕm ∈ Ln−1. One can now show that the map

I : A→ [0, 1]k+m

a 7→ (p1(a), . . . ,pk (a), (^ϕ1)(a), . . . , (^ϕm)(a))

is an ϵ
3 -isometry, i.e. for all a,b ∈ A,

|dn(a,b) − ‖I (a) − I (b)‖∞ | ≤
ϵ
3 .

Using pre-images under I and a simple triangle inequality
argument, we can then convert a finite ϵ

3 -cover of the com-

pact space ([0, 1]k+m,d∞) into a finite ϵ-cover of (A,dn). �

We next prove a variant of the lattice version of the Stone-
Weierstraß theorem (e.g. [3, Lemma A.7.2]). Again, we only
assume the space to be totally bounded instead of compact
but require functions to be non-expansive rather than only
continuous. (A Stone-Weierstraß argument appears also in
a probabilistic Hennessy-Milner result [48]).

Lemma 5.8. Let (X ,d) be a totally bounded pseudometric

space, and let L be a subset of F := (X ,d) →1 ([0, 1],de) such
that f1, f2 ∈ L implies min(f1, f2),max(f1, f2) ∈ L. If each

f ∈ F can be approximated at each pair of points by functions

in L, then L is dense in F .

Lemma 5.9. The modal formulas of rank at most n form a

dense subset of the space (A,dn) →1 ([0, 1],de).

Proof (sketch). We proceed as in [48], applying Lemma 5.8
to Ln :
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Given a function f : (A,dn) →1 ([0, 1],de) and points
a,b ∈ A, a formula ϕ approximating f at a and b can be con-
structed as follows: Letψ ∈ Ln be such that |ψ (a)−ψ (b)| ap-
proximates | f (a)− f (b)| (such aψ exists by non-expansivity
of f ). Then ϕ is defined from ψ by means of modified sub-
traction ⊖, which preserves the rank of formulas. �

This concludes the proof of Theorem 5.3. The theorem still
leaves one loose end: The modal formulas that approximate
a given depth-n bisimulation-invariant state property on a
modelAmight depend onA. We eliminate this dependency
in the next section, using the final chain construction.

6 The Final Chain

Thefinal chain [2, 6] of the functorG is a sequence of sets Fk
that represent all the possible depth-k behaviours. It is con-
structed as follows. We take F0 to be a singleton F0 = {∗}

(reflecting that all states are equivalent at depth 0), and

Fn+1 = GFn = [0, 1]At × FFn .

Given a model A, seen as a coalgebra α : A → GA, we can
now define a sequence of projections πn : A → Fn , to be
thought of as mapping states to their depth-n behaviours,
by

π0 =! and πn+1 = Gπn ◦ α ,

where ! denotes the unique map A → F0. Explicitly, πn+1 is
thus defined by

πn+1(a) = (λp.pA(a), λy.
∨

πn (a′)=y R
A(a,a′)). (2)

We next build a model F realizing all finite-depth be-
haviours by taking the union F =

⋃

k ∈N Fk (automatically
disjoint). We define the model structure on F by letting ev-
ery element behave as it claims to: For (h,д) ∈ Fk+1 =

[0, 1]At × FFk and y ∈ F , we put pF(h,д) = h(p) for p ∈ At

and

RF ((h,д),y) = д(y) if y ∈ Fk ,

and RF ((h,д),y) = 0 otherwise. For ∗ ∈ F0, we just put

pF(∗) = RF (∗,y) = 0.
In the proof of our main result (Theorem 8.4), the follow-

ing lemmawill allow us to choose approximating modal for-
mulas uniformly across models.

Lemma 6.1. LetA be a model. Then dGn (a, πn(a)) = 0 for all
a ∈ A.

Proof (sketch). Player D wins the depth-n ϵ-bisimulation
game for every ϵ > 0 by maintaining the invariant that
in round i , the configuration has the form (a′, πn−i (a

′)) for
somea′ ∈ A. One sees from (2) that this invariant implies the
winning condition and can actually be maintained byD. �

7 Locality

We proceed to show that every bisimulation-invariant for-
mula of fuzzy FOL is local. To this end, we introduce a no-
tion of Gaifman distance in fuzzy models, as well as a vari-
ant of Ehrenfeucht-Fraïssé games. The requisite notions of
Gaifman graph and neighbourhood, as well as the defini-
tion of locality, are, maybe unexpectedly, fairly crisp. This
is technically owed to the fact that unlike continuity, non-
expansivity does not go well with chains of ϵ-estimates.

Definition 7.1. Let A be a fuzzy relational model.

• The Gaifman graph of A is an undirected graph with
set A of nodes and an edge {a,b} for every a,b ∈ A such
that R(a,b) > 0 or R(a,b) > 0.
• For every a,b ∈ A, the Gaifman distance D(a,b) ∈ N ∪

{∞} is the minimal length (i.e. number of edges) of a path
between a and b in the Gaifman graph.
• For a ∈ A and ℓ ∈ N, the neighbourhood of a with ra-

dius ℓ is the setU ℓ(a) given by

U ℓ(a) = {b ∈ A | D(a,b) ≤ ℓ}.

For ā = (a1, . . . ,an), we putU
ℓ(ā) =

⋃

i≤n U
ℓ(ai ).

Definition 7.2. Let A be a fuzzy relational model and
U ⊆ A. The restriction A|U of A to U is the fuzzy rela-
tional model (U , (pA |U )p ∈At,R

A |U ) with pA |U (a) = pA(a)

and RA |U (a,b) = RA(a,b) for a,b ∈ U . If U = U ℓ(ā) for
some vector ā over A, we also write Aℓ

ā := A|U ℓ (ā).

As indicated, the ensuing notion of locality is on-the-nose:

Definition 7.3. A formula ϕ is ℓ-local for ℓ ∈ N if

ϕA(a) = ϕAℓ
a
(a)

for every fuzzy relational model A and every a ∈ A.

It is easy to see that depth-k behaviour depends only on k-
neighbourhoods, i.e.

Lemma 7.4. For any model A, a0 ∈ A, and k > 0, D wins

the depth-k 0-bisimulation game for A,a0 and Ak
a0
,a0.

In combination with Lemma 4.11, we obtain

Corollary 7.5. Every fuzzy modal formula of rank at most k

is k-local.

To establish the desired locality result, we employ
Ehrenfeucht-Fraïssé games, introduced next. We phrase
Ehrenfeucht-Fraïssé equivalence in terms of a pseudomet-
ric, in line with our treatment of behavioural distance, as
this is the right way of measuring equivalence w.r.t. fuzzy
FOL; in the further technical development, we will actually
need only the case with deviation ϵ = 0.

Definition 7.6. Let A,B be fuzzy relational models, and
let ā0 and b̄0 be vectors of equal length over A and B respec-
tively. The ϵ-Ehrenfeucht-Fraïssé game for A, ā0 and B, b̄0
played by S (spoiler) and D (duplicator) is given as follows.
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• Configurations: pairs (ā, b̄) of vectors ā over A and b̄
over B.

• Initial configuration: (ā0, b̄0).
• Moves: Player S needs to pick a new state in one of the
models, say a ∈ A, and then D needs to pick a state in
the other model, say b ∈ B. The new configuration is
then (āa, b̄b).

• Winning condition:Any playerwho needs tomove but
cannot, loses. PlayerD additionally needs to maintain
the condition that (ā, b̄) is a partial isomorphism up

to ϵ : For all 0 ≤ i, j ≤ n:
– ai = aj ⇐⇒ bi = bj
– |pA(ai ) − p

B(bi )| ≤ ϵ for all p ∈ At

– |RA(ai ,aj ) − R
B(bi ,bj )| ≤ ϵ .

Here, we need only the n-round ϵ-Ehrenfeucht-Fraïssé game,
which as the name indicates is played for at most n rounds,
and D wins after n rounds have been played.

In analogy to the classical setup, fuzzy FOL is invariant un-
der Ehrenfeucht-Fraïssé equivalence in the sense that for-
mula evaluation is non-expansive:

Lemma 7.7 (Ehrenfeucht-Fraïssé invariance). Let A,B be

fuzzy relational models and ā0, b̄0 vectors of lengthm over A

and B, respectively. If D wins the n-round ϵ-Ehrenfeucht-

Fraïssé game on ā0, b̄0, then for every first-order formula ϕ

with at mostm free variables and qr(ϕ) ≤ n,

|ϕ(ā0) − ϕ(b̄0)| ≤ ϵ .

Lemma 7.8. Let ϕ be a bisimulation-invariant formula of

fuzzy FOL with quantifier rank qr(ϕ) ≤ n. Then ϕ is k-local

for k = 3n .

Proof (sketch). Let A be a model, a0 ∈ A. Define models B
and C by extending both A and Ak

a0
by n disjoint copies of

both A and Ak
a0

each. By Lemmas 4.9 and 7.7, it suffices to
show that D wins the 0-Ehrenfeucht-Fraïssé game for B,a0
and C,a0. Indeed, D wins by maintaining the following in-
variant, where we put ki = 3n−i for 0 ≤ i ≤ n:

If (b̄, c̄) = ((b0, . . . ,bi ), (c0, . . . , ci )) is the cur-
rent configuration, then there is an isomor-

phism between B
ki
b̄

and C
ki
c̄ mapping each bj

to c j . �

8 A Fuzzy van Benthem Theorem

It remains only to establish the implication from locality and
bisimulation-invariance to finite-depth bisimulation invari-
ance, using a standard unravelling construction, to finish
the proof of our main result.

Definition 8.1. The unravelling A∗ of a model A is the
model with set A+ (non-empty lists over A) of states and

pA
∗

(ā) = pA(π (ā)),

RA∗

(ā, āa) = RA(π (ā),a),

for ā ∈ A+,a ∈ A, where π : A+ → A projects to the last
element and all other values of RA∗

are 0.

Lemma 8.2. For any model A and a0 ∈ A, D wins the 0-
bisimulation game for A,a0 and A∗,a0.

The following lemma then completes the last step in our
program as laid out in Section 4.

Lemma 8.3. Let ϕ be bisimulation-invariant and k-local.

Then ϕ is depth-(k + 1) bisimulation-invariant.

Proof (sketch). Use locality and unravelling (Lemma 8.2) to
reduce to tree models of depth k , and then exploit that in
suchmodels, winning the depth-(k+1) ϵ-bisimulation game
entails winning the unrestriced game. �

We finally state our main result:

Theorem 8.4 (Fuzzy van Benthem theorem). Let ϕ be a for-

mula of fuzzy FOL with one free variable and qr(ϕ) = n. Ifϕ is

bisimulation-invariant, then ϕ can by approximated by fuzzy

modal formulas of rank at most 3n + 1, uniformly over all

models; that is: For every ϵ > 0 there exists a fuzzy modal

formula ϕϵ such that for every fuzzy relational model A and

every a ∈ A, |ϕ(a) − ϕϵ (a)| ≤ ϵ .

Proof (sketch). By Lemmas 7.8 and 8.3, ϕ is depth-k
bisimulation-invariant for k = 3n + 1. By Theorem 5.3, ϕ
can be modally approximated in rank k on the model F con-
structed from the final chain in Section 6. The claim then
follows by Lemma 6.1. �

Remark 8.5. We leave the Rosen version of the characteri-
zation theorem, i.e. whether Theorem 8.4 remains true over
finite models, as an open problem. As in the classical case,
the unravelling construction is easily made to preserve fi-
nite models by using partial unravelling up to the locality
distance. However, the model construction from the final
chain in Section 6 and in fact already the stages of the fi-
nal chain are infinite, so cannot be used in this version. We
thus do obtain a local version of the Rosen theorem, stating
that on a fixed finite model, every first-order formula that
is bisimulation-invariant over finite models can be approx-
imated by modal formulas. However, it is unclear whether
the approximation then works uniformly over models, as in
Theorem 8.4.

9 Conclusions

We have established a fuzzy analogue of the classical van
Benthem theorem: Every fuzzy first-order formula that is
bisimulation-invariant in the sense that its evaluation map
is non-expansive w.r.t. a natural notion of behavioural dis-
tance can be approximated by fuzzy modal formulas. To our
knowledge this is the first modal characterization result of
this type for any multi-valued modal logic. We do point out
that we leave a nagging open problem: We currently do not
know whether the result can be sharpened to claim that
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every bisimulation-invariant fuzzy first-order formula is in
fact equivalent to a fuzzymodal formula. This contrasts with
the actual technical core of our argument: The key step in
our proof is to show that every state property that is non-
expansive w.r.t. depth-n behavioural distance can be approx-
imated, uniformly across models, by fuzzy modal formulas
of rank n, a result that certainly cannot be improved to on-
the-nose modal expressibility.
Further issues for future research include the question

whether our main result has a Rosen variant, i.e. holds also
over finite models, and coverage of other semantics of the
propositional operators, in particular Łukasiewicz logic. We
also aim to extend the modal characterization theorem to
further multi-valued logics, such as [0, 1]-valued probabilis-
tic modal logics [48], ideally at a coalgebraic level of gener-
ality.
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A Omitted Proofs

Proof of Lemma 3.1

Let ‖ f −д‖∞ ≤ ϵ . We need to show ‖^ f −^д‖∞ ≤ ϵ , so let
a ∈ A and we need to show |(^ f )(a) − (^д)(a)| ≤ ϵ .

Let a′ ∈ A. Then | f (a′) − д(a′)| ≤ ϵ by assumption. Thus,
also |RA(a,a′) ∧ f (a′) −RA(a,a′) ∧д(a′)| ≤ ϵ . Now we may
take the supremum over all a′ ∈ A and obtain |(^ f )(a) −

(^д)(a)| ≤ ϵ , as desired. �

Proof of Lemma 4.3

A winning strategy for D consists in following the two ex-
isting winning strategies in parallel. In detail, D maintains
the following invariant on configurations (a, c): There ex-
ists a state b such that (a,b) and (b, c) are winning positions
for D in the ϵ-game on A,B and in the δ -game on B, C,
respectively. By the triangle inequality, (a, c) then satisfies
the winning condition. It remains to show that D can main-
tain the invariant. Suppose that S makes a move from a to
some a′ (the case where S moves in C is entirely symmetric).
Let b ′ be D’s reply to a′ in the first game. Then b ′ is a valid
move for S in the second game, since R(b,b ′) ≥ R(a,a′)−ϵ >

ϵ + δ − ϵ = δ . So D has a reply c ′ to b ′ as a move by S in
the second game. and c ′ is also a valid move for D in the
(ϵ +δ )-game, since R(c, c ′) ≥ R(b,b ′) −δ ≥ R(a,a′) − (ϵ +δ ).
Of course, the new configuration (a′, c ′) then satisfies the
invariant, as witnessed by b ′. �

Proof of Lemma 4.5

Let A be a model. For a ∈ A, D wins the 0-bisimulation
game on a, a by copying every move of S . Thus dGn (a,a) = 0.
The symmetry of dG follows from that of Definition 4.1. The
triangle inequality follows from Lemma 4.3. �

Proof of Lemma 4.7

A winning strategy for D in the ϵ-bisimulation game
wins also the depth-n ϵ-bisimulation game, showing that
dGn (a,b) ≤ dG (a,b); the other inequality is shown in the
same way. �

Proof of Lemma 4.8

Let ϵ > 0; we show that D wins the ϵ-bisimulation game
on a and f (a). The winning strategy is given by main-
taining the invariant that configurations are of the form
(a′, f (a′)) with a′ ∈ A. This invariant holds initially, and
guarantees that D wins because f preserves truth values of
propositional atoms. It remains to show that D can main-
tain the invariant. So suppose that from a configuration
(a′, f (a′)), S moves in A along an edge RA(a′,a′′) > ϵ . By
the definition of bounded morphisms, RB (f (a′), f (a′′)) ≥

RA(a′,a′′), so D can answer with f (a′′), maintaining the
invariant. The remaining case is that S moves within B to
some stateb such thatRB (f (a′),b) > ϵ . SinceRB(f (a′),b) =
∨

f (a′′)=b R
A(a′,a′′), there is a′′ ∈ A such that f (a′′) = b
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and RA(a′,a′′) ≥ RB (f (a′),b) − ϵ ; then D can move to a′′,
maintaining the invariant. �

Full Proof of Lemma 4.11

Suppose that D wins the ϵ-bisimulation-game for (a,b). We
show that |ϕ(a)−ϕ(b)| ≤ ϵ for all ϕ ∈ Ln by induction on ϕ.
The case for c ∈ Q is trivial and the case for propositional
atoms p follows from the winning condition.
The inductive cases ϕ ⊖ c , ¬ϕ, and ϕ ∧ψ are as follows:

|(ϕ ⊖ c)(a) − (ϕ ⊖ c)(b)| = |(ϕ(a) − c) ∧ 0 − (ϕ(b) − c) ∧ 0|

≤ |ϕ(a) − ϕ(b)| ≤ ϵ

|(¬ϕ)(a) − (¬ϕ)(b)| = |(1 − ϕ(a)) − (1 − ϕ(b))|

= |ϕ(b) − ϕ(a)| ≤ ϵ

|(ϕ ∧ψ )(a) − (ϕ ∧ψ )(b)| = |ϕ(a) ∧ψ (a) − ϕ(b) ∧ψ (b)|

≤ |ϕ(a) − ϕ(b)| ∨ |ψ (a) −ψ (b)|

≤ ϵ,

in each case using the inductive hypothesis in the last step.
Finally, we treat the case for the modality ^: By sym-

metry, it suffices to show that (^ϕ)(b) ≥ (^ϕ)(a) − ϵ . If
(^ϕ)(a) ≤ ϵ , then this follows immediately, so assume
(^ϕ)(a) > ϵ . Let δ > 0; then there is a′ such thatR(a,a′) > ϵ
and (^ϕ)(a) − (R(a,a′) ∧ ϕ(a′)) < δ . Let b ′ be D’s winning
answer to S’s move a′. Then by induction, |ϕ(a′)−ϕ(b ′)| ≤ ϵ ,
and moreover R(b,b ′) ≥ R(a,a′)−ϵ by the rules of the game.
Thus,

(^ϕ)(b) ≥ R(b,b ′) ∧ ϕ(b ′) ≥ (R(a,a′) − ϵ) ∧ (ϕ(a′) − ϵ)

= (R(a,a′) ∧ ϕ(a′)) − ϵ > (^ϕ)(a) − ϵ − δ .

Since this holds for every δ , it follows that (^ϕ))(b) ≥

(^ϕ))(a) − ϵ . �

Proof Details for Theorem 5.3

We elaborate details for the base case n = 0. For Item 1, we
show that all distances are 0 for all pairs (a,b) ∈ A × A.
We have dG0 (a,b) = 0 by Remark 4.2. To see that dL0 (a,b) =
0, just note that the only modal formulas of rank 0 are the
constants c ∈ Q and Boolean combinations thereof. Finally,
dK0 (a,b) = 0 by definition.

Item 2 then follows trivially from the fact thatd0 vanishes.
For Item 3, since d0 is the zero pseudometric, the space

(A,d0) →1 ([0, 1],de) is just the space of constant func-
tions. The claim then follows, since the modal formulas
correspond to the rational-valued constant functions, and
[0, 1] ∩Q is a dense subset of [0, 1]. �

Full Proof of Lemma 5.4

Let a,b ∈ A, put F := (A,dn−1) →1 ([0, 1],de), and define
the map

H : (F ,d∞) → ([0, 1],de), f 7→ |(^ f )(a) − (^ f )(b)|.

This map is continuous because of Lemma 3.1, and using
that function evaluation, subtraction, and taking the abso-
lute value are continuous operations.
By the induction hypothesis, Ln−1 is dense in F , so

H [Ln−1] is also dense in H [F ], and
∨

H [Ln−1] =
∨

H [F ].
Now:

dKn (a,b) =
∨

p ∈At

|p(a) − p(b)| ∨
∨

f :(A,dn−1)→1([0,1],de )

|(^ f )(a) − (^ f )(b)|

=

∨

p ∈At

|p(a) − p(b)| ∨
∨

rkϕ≤n−1

|(^ϕ)(a) − (^ϕ)(b)|

=

∨

rkϕ≤n

|ϕ(a) − ϕ(b)| = dLn (a,b).

In the second to last step, we have used the fact that Ln

is the set of Boolean combinations of formulas p ∈ At and
^ϕ with ϕ ∈ Ln−1. So the “≤” part of this step is clearly
true, and the “≥” part also holds by a simple induction
over the Boolean combinations, using that these are non-
expansive, as shown by the same calculations as in the proof
of Lemma 4.11. �

Proof Details for Lemma 5.5

Let a,b ∈ A and dLn (a,b) ≤ ϵ . We need to show dGn (a,b) ≤ ϵ ,
so it suffices to show that D wins the depth-n (ϵ + δ )-
bisimulation game for every δ > 0. The winning condi-
tion for the configuration (a,b) is satisfied by assumption,
so now suppose S makes the first move from a to a′. We
now consider the function

f : (A,dn−1) →1 ([0, 1],de), f (b
′) = R(a,a′) ⊖ dn−1(a

′
,b ′)

f is non-expansive because it is composed from non-
expansive functions: themap x 7→ c⊖x is non-expansive for
every c ∈ R, and the map b ′ 7→ dn−1(a

′,b ′) is non-expansive
by the triangle inequality.
Now,

|(^ f )(a) − (^ f )(b)| ≤ dKn (a,b) = d
L
n (a,b) ≤ ϵ

by Lemma 5.4, so, as R(a,a′) > ϵ by the rules of the game,

(^ f )(b) ≥ (^ f )(a)−ϵ ≥ R(a,a′)∧f (a′)−ϵ = R(a,a′)−ϵ > 0.

This means there exists some b ′ ∈ A such that f (b ′) > 0 and

R(a,a′) − ϵ ≤ (^ f )(b) ≤ R(b,b ′) ∧ f (b ′) + δ
2 .

Rearranging this, we get

ϵ + δ
2 ≥ R(a,a′) − (R(b,b ′) ∧ f (b ′))

= (R(a,a′) − R(b,b ′)) ∨ (R(a,a′) − f (b ′)).

So first, R(b,b ′) ≥ R(a,a′) − (ϵ + δ
2 ), which means that b ′ is

a legal reply for D. And second, since f (b ′) > 0,

ϵ + δ
2 ≥ R(a,a′) − f (b ′)

= R(a,a′) − (R(a,a′) − dn−1(a
′
,b ′)) = dn−1(a

′
,b ′).

So the configuration reached after the first round of the
game is (a′,b ′), and D has a winning strategy for the (ϵ +
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δ
2 +γ )-game for every γ > 0, in particularD wins the (ϵ+δ )-
game. An analogous argument can be used if S makes a
move from b to some b ′ instead. �

Proof of Lemma 5.6

Put F := (X ,d1) →1 (Y ,d2). Let ϵ > 0. We need to find
a finite cover of (X ,d1) →1 (Y ,d2) by sets of diameter at
most ϵ .
Since (X ,d1) and (Y ,d2) are totally bounded, there exist

finite ϵ
4 -covers x1, . . . , xn of X and y1, . . . ,yk of Y .

Now consider the set Φ of functions ρ : {1, . . . ,n} →

{1, . . . ,k}, and for every ρ ∈ Φ let

Fρ = { f ∈ F | f (xi ) ∈ B ϵ

4
(yρ (i )) for all 1 ≤ i ≤ n}.

Then clearly F =
⋃

ρ ∈Φ Fρ , so it remains to show that each
Fρ has diameter at most ϵ .
So let f ,д ∈ Fρ , and consider some x ∈ X . There exists

some i such that x ∈ B ϵ

4
(xi ). Now, by non-expansivity of f

and д, and the definition of Fρ ,

d2(f (x),д(x)) ≤ d2(f (x), f (xi )) + d2(f (xi ),yρ (i ))

+ d2(yρ (i ),д(xi )) + d2(д(xi ),д(x))

≤ d1(x , xi ) +
ϵ
4 +

ϵ
4 + d1(xi , x)

≤ ϵ
4 +

ϵ
4 +

ϵ
4 +

ϵ
4 = ϵ .

As f , д, and x were chosen arbitrarily, the diameter of Fρ is
at most ϵ . �

Proof Details for Lemma 5.7

We show that the map

I : A→ [0, 1]k+m

a 7→ (p1(a), . . . ,pk (a), (^ϕ1)(a), . . . , (^ϕm)(a))

is indeed an ϵ
3 -isometry. Let a,b ∈ A. We need to show that

|dn(a,b) − ‖I (a) − I (b)‖∞ | ≤
ϵ
3 .

Let f ∈ F and choose ϕi such that ‖ f −ϕi ‖∞ ≤ ϵ
6 . Then also

‖^ f −^ϕi ‖∞ ≤ ϵ
6 , by Lemma 3.1. By the triangle inequality,

it follows that
�

�|(^ f )(a) − (^ f )(b)| − |(^ϕi )(a) − (^ϕi )(b)|
�

� ≤ ϵ
3 ,

so, taking the supremum over all f ∈ F :
�

�

�

∨

f ∈F

|(^ f )(a) − (^ f )(b)| −
∨

i≤m

|(^ϕi )(a) − (^ϕi )(b)|
�

�

�
≤ ϵ

3 .

Recall from Assumption 5.1 that At = {p1, . . . ,pk } is finite;
then
�

�

�
dKn (a,b)−

∨

i≤k

|pi (a)−pi (b)|∨
∨

i≤m

|(^ϕi )(a)−(^ϕi )(b)|
�

�

�
≤ ϵ

3 ,

which is what we needed to show.
It remains to give a finite ϵ-cover of (A,dn). As [0, 1]

k+m

is compact under the supremum metric, it has a finite ϵ
3 -

coverv1, . . . ,vp . Then the pre-image of each ball B ϵ

3
(vi ) has

diameter at most ϵ : for any a,b ∈ I−1[B ϵ

3
(vi )],

dn(a,b) ≤ ‖I (a) − I (b)‖∞ +
ϵ
3

≤ ‖I (a) −vi ‖∞ + ‖vi − I (b)‖∞ +
ϵ
3 ≤ ϵ .

So a finite ϵ-cover of (A,dn) arises by taking one element
from each (non-empty) I−1[B ϵ

3
(vi )]. �

Proof of Lemma 5.8

Let f ∈ F and ϵ > 0. We need to find some fϵ ∈ L such that
‖ f − fϵ ‖∞ ≤ ϵ .
By total boundedness, there exists an ϵ

4 -cover x1, . . . , xn
of (X ,d). By assumption, for every i, j ∈ {1, . . . ,n} there
exists some fi j ∈ L such that | f (xi ) − fi j (xi )| ≤ ϵ

2 and
| f (x j ) − fi j (x j )| ≤

ϵ
2 . Now define fϵ =

∨

i≤n

∧

j≤n fi j ∈ L.
Then, for any x ∈ X there exists some k such that d(xk , x) ≤
ϵ
4 and thus:

fϵ (x) =
∨

i≤n

∧

j≤n

fi j (x) ≤
∨

i≤n

fik (x) ≤
∨

i≤n

fik (xk ) +
ϵ
4

≤
∨

i≤n

f (xk ) +
3ϵ
4 = f (xk ) +

3ϵ
4 ≤ f (x) + ϵ,

and, symmetrically:

fϵ (x) =
∨

i≤n

∧

j≤n

fi j (x) ≥
∧

j≤n

fk j (x) ≥
∧

j≤n

fk j (xk ) −
ϵ
4

≥
∧

j≤n

f (xk ) −
3ϵ
4 = f (xk ) −

3ϵ
4 ≥ f (x) − ϵ,

where we have used non-expansivity of f and the fi j as well
as the originally assumed property of the fi j . �

Proof Details for Lemma 5.9

Lemma 5.8 can be applied because (A,dn) is totally bounded
by Lemma5.7, and because the setLn is clearly closed under
∧ and ∨.
Given a function f : (A,dn) →1 ([0, 1],de), a,b ∈ A and

ϵ > 0, we need to find ϕ ∈ Ln such that | f (a) − ϕ(a)| ≤ ϵ

and | f (b) − ϕ(b)| ≤ ϵ .
W.l.o.g. f (a) ≥ f (b) (otherwise we can pass to 1 − f and

negate the resulting formula). Now put ∆ = f (a) − f (b).
Then ∆ ≤ dn(a,b) by non-expansivity of f . Since dn = d

L
n ,

there exists ψ ∈ Ln such that ∆ − ϵ
2 ≤ ψ (a) − ψ (b). Let

u,v,w ∈ Q ∩ [0, 1] such that

ψ (b) − ϵ
2 ≤ u ≤ ψ (b)

∆ − ϵ
2 ≤ v ≤ ∆

f (b) ≤ w ≤ f (b) + ϵ
2 .

Put ϕ = ¬(¬((ψ ⊖ u) ∧v) ⊖w). Then ϕ approximates f at a
and b:

f (a) − ϵ
2 ≤ ϕ(a) ≤ f (a) + ϵ

2

f (b) ≤ ϕ(b) ≤ f (b) + ϵ .
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The detailed calculations for the above inequalities follow.
Evaluating subformulas at a gives:

ψ (a) −ψ (b) ≤ (ψ ⊖ u)(a) ≤ ψ (a) −ψ (b) + ϵ
2

∆ − ϵ
2 ≤ ((ψ ⊖ u) ∧ v)(a) ≤ ∆

1 − ∆ ≤ (¬((ψ ⊖ u) ∧ v))(a) ≤ 1 − ∆ +
ϵ
2

1 − f (a) − ϵ
2 ≤ (¬((ψ ⊖ u) ∧ v) ⊖ w)(a) ≤ 1 − f (a) + ϵ

2

f (a) − ϵ
2 ≤ ϕ(a) ≤ f (a) + ϵ

2 .

Evaluating subformulas at b gives:

0 ≤ (ψ ⊖ u)(b) ≤ 0 + ϵ
2

0 ≤ ((ψ ⊖ u) ∧ v)(b) ≤ 0 + ϵ
2

1 − ϵ
2 ≤ (¬((ψ ⊖ u) ∧ v))(b) ≤ 1

1 − f (b) − ϵ ≤ (¬((ψ ⊖ u) ∧ v) ⊖ w)(b) ≤ 1 − f (b)

f (b) ≤ ϕ(b) ≤ f (b) + ϵ .

�

Full Proof of Lemma 6.1

We show by induction on n that D wins the depth-n ϵ-
bisimulation game for every ϵ > 0. The base case is trivial
since the depth-0 game is an immediate win; we proceed
with the inductive step from n to n + 1. We need to show
that D wins the depth-(n + 1) ϵ-bisimulation game for A,a
and F , πn+1(a). By the explicit definition (2) of πn+1, it is
immediate that the winning condition holds in the initial
configuration.
If S makes the first move from a to some a′ ∈ A, then D

can reply with πn(a
′), since by (2),

RF (πn+1(a), πn(a
′)) =

∨

πn (a′′)=πn (a′) R
A(a,a′′) ≥ RA(a,a′).

By induction, dGn (a
′, πn(a

′)) = 0, so D wins.
If instead, S makes the first move from πn+1(a) to some

y ∈ F , then RF (πn+1(a),y) > 0 by the rules of the game, so

y ∈ Fn by construction of RF . By (2),

RF (πn+1(a),y) =
∨

πn (a′)=y R
A(a,a′)).

Thus, D can pick a′ ∈ A with πn(a
′) = y such that

RA(a,a′) ≥ RF (πn+1(a),y) − ϵ .

By induction, dGn (a
′,y) = 0, so D wins. �

Proof of Lemma 7.4

D wins the game by copying every move S makes. By the

definition of RAk
a0 and the pA

k
a0 it is clear that such a strat-

egy is winning as long as the game never leaves the neigh-
bourhoodU k (a0). By the rules of the game, S can only ever
move along positive edges of the model, so if the configura-
tion after round i is (ai ,ai ), it must hold that D(a0,ai ) ≤ i

and therefore ai ∈ U
k (a0). �

Proof of Lemma 7.7

Induction on ϕ. The cases for equality, propositional atoms
and the relation symbol R follow from the winning condi-
tion. The Boolean cases are proved just as in Lemma 4.11.
The remaining case is that of existential quantification:

Let (ā, b̄) be the current configuration. Now let δ > 0, let
a be such that

(∃x .ϕ)(ā) − ϕ(āa) < δ ,

and let b be D’s winning answer to S’s move a. Then by
induction, |ϕ(āa) − ϕ(b̄b)| ≤ ϵ . Thus,

(∃x .ϕ)(b̄) ≥ ϕ(b̄b) ≥ ϕ(āa) − ϵ > (∃x .ϕ)(ā) − ϵ − δ .

Since δ > 0 was arbitrary, it follows that

(∃x .ϕ)(b̄) ≥ (∃x .ϕ)(ā) − ϵ .

We show symmetrically that (∃x .ϕ)(ā) ≥ (∃x .ϕ)(b̄)−ϵ , that
is, |(∃x .ϕ)(ā) − (∃x .ϕ)(b̄)| ≤ ϵ as required. �

Proof Details for Lemma 7.8

Recall that D needs to maintain the following invariant:

If (b̄, c̄) = ((b0, . . . ,bi ), (c0, . . . , ci )) is the cur-
rent configuration then there is an isomorphism

between B
ki
b̄

and C
ki
c̄ mapping each bj to c j .

This invariant clearly holds at the beginning of the game:
the initial configuration is (a0,a0), and k0 = k , so the two
models in the invariant are both isomorphic toAk

a0
and the

isomorphism between them maps a0 to itself.
The invariant also implies the winning condition for D,

i.e. that the current configuration is a partial isomorphism
up to 0. This is because the isomorphism from the invariant
maps each bj to the corresponding c j .
It remains to show that D has a way to maintain the in-

variant. Suppose that i < n and the current configuration is
as in the invariant.
First, suppose that S picks b ∈ U 2ki+1 (b̄). Then D picks

a reply c according to the isomorphism. By the triangle
inequality for Gaifman distance, U ki+1(b) ⊆ U ki (b̄) (since
2ki+1 + ki+1 = 3ki+1 = ki ), and thus also U ki+1(c) ⊆ U ki (c̄)

by isomorphism. This implies that the domainU ki+1 (b̄b) and
range U ki+1 (c̄c) of the presumptive new isomorphism are
contained in the domain and range of the old one. So the
new isomorphism can be taken to be the restriction of the
old isomorphism to the new domain and range. The case
where S picks a new state c ∈ U 2ki+1 (c̄) is entirely symmet-
ric.
Otherwise, suppose S picks some b in B with b <

U 2ki+1 (b̄). Then, by the triangle inequality for Gaifman dis-
tance, U ki+1(b̄) ∩ U ki+1 (b) = ∅. In this case, D picks as his
reply c the copy of b in a fresh copy of either A or Ak

a0
(i.e. one that has not been played to in the previous rounds).
Such a fresh copy is always available, because at most one of
them gets visited in each round. Then the radius-ki+1 neigh-
bourhoods of b and c are isomorphic because b and c are
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the same element in isomorphic copies of either A or Ak
a0
.

The radius-ki+1 neighbourhoods of b̄ and c̄ are also isomor-
phic, by restriction of the old isomorphism. We thus have
two isomorphisms with disjoint domains and ranges, which
we combine to form the requested new isomorphism. Again,
the case where S plays in C instead is symmetric. �

Proof of Lemma 8.2

A winning strategy for D is given by π : A+ → A, i.e. pro-
jection to the last element. More precisely, D wins by main-
taining the invariant that the current configuration is of the
form (a, ā) with π (ā) = a. By definition of pA

∗

the invariant
implies the winning condition. If S moves from a to some a′,
then D can reply with a move from ā to āa′, which is legal
by definition of RA∗

. The situation is symmetric if S makes
a move in A∗ instead. �

Full Proof of Lemma 8.3

Let dG
k+1

(a,b) < ϵ ; we show that |ϕA(a)−ϕB(b)| ≤ ϵ , which
proves the claim. By assumption, D wins the ϵ-bisimulation-
game for A,a and B,b. By Lemmas 4.3, 7.4 and 8.2, D also

wins the depth-(k +1) ϵ-bisimulation game for (A∗)ka ,a and

(B∗)kb ,b.

The models (A∗)ka and (B
∗)kb both have the shape of trees

of depth k , so for every 0 ≤ i ≤ k , before the start of round
i + 1 of the above game, the two states on either side of the
current configuration are nodes at distance i from the root
of their tree (i.e. a or b). In particular, if round k + 1 needs
to be played, then S has no legal move, because the current
configuration consists of two leaf nodes.
Using this observation, we conclude that D’s winning

strategy for the depth-(k + 1) game is in fact also a win-
ning strategy for the unbounded ϵ-bisimulation game, so
|ϕ

(A∗)ka
(a) − ϕ

(B∗)k
b

(b)| ≤ ϵ , by bisimulation invariance of ϕ.

By locality and bisimulation invariance of ϕ, and again
Lemma 8.2, we have ϕ

(A∗)ka
(a) = ϕ(A∗)(a) = ϕA(a) as well

as ϕ
(B∗)k

b

(b) = ϕ(B∗)(b) = ϕB(b). Thus |ϕA(a) − ϕB(b)| ≤ ϵ ,

as claimed. �

Full Proof of Theorem 8.4

By Lemmas 7.8 and 8.3, ϕ is depth-k bisimulation-invariant
for k = 3n + 1. By Theorem 5.3, ϕ can be modally approx-
imated on the model F constructed from the final chain
in Section 6, i.e. for every ϵ > 0 there exists a modal for-
mula ϕϵ of rank at most k such that for every x ∈ F ,
|ϕ(x)−ϕϵ (x)| ≤ ϵ . Now letA be a fuzzy relational model and
a ∈ A. By Lemma 6.1,ϕ(a) = ϕ(πk (a)) andϕϵ (a) = ϕϵ (πk (a))
(whereπk is the projection into the final chain), so we obtain
|ϕ(a) − ϕϵ (a)| ≤ ϵ , as required. �

Details for Remark 8.5

In the version of Lemma 8.2 where A∗ is the partial unrav-
elling instead, D wins with a similar, but slightly more com-
plicated invariant: the current configuration is either of the
form (a, ā) with π (ā) = a or it is a pair of two equal states,
the second being from one of the disjoint copies ofA. D can
maintain this invariant for the first k + 1 rounds just as be-
fore, and after that can copy S’s moves indefinitely because
the game is now played between identical models.
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