
Integrated Model, Batch, and Domain Parallelism in Training
Neural Networks

Amir Gholami
EECS Department, UC Berkeley

amirgh@eecs.berkeley.edu

Ariful Azad
CRD, Lawrence Berkeley Lab

azad@lbl.gov

Peter Jin
EECS Department, UC Berkeley

phj@eecs.berkeley.edu

Kurt Keutzer
EECS Department, UC Berkeley
keutzer@eecs.berkeley.edu

Aydın Buluç
CRD, Lawrence Berkeley Lab

abuluc@lbl.gov

ABSTRACT
We propose a new integrated method of exploiting model, batch
and domain parallelism for the training of deep neural networks
(DNNs) on large distributed-memory computers using minibatch
stochastic gradient descent (SGD). Our goal is to find an efficient
parallelization strategy for a fixed batch size using P processes. Our
method is inspired by the communication-avoiding algorithms in
numerical linear algebra. We see P processes as logically divided
into a Pr ×Pc grid where the Pr dimension is implicitly responsible
for model/domain parallelism and the Pc dimension is implicitly
responsible for batch parallelism. In practice, the integrated matrix-
based parallel algorithm encapsulates these types of parallelism
automatically. We analyze the communication complexity and an-
alytically demonstrate that the lowest communication costs are
often achieved neither with pure model nor with pure data paral-
lelism. We also show how the domain parallel approach can help in
extending the theoretical scaling limit of the typical batch parallel
method.

1 INTRODUCTION AND BACKGROUND
Neural Networks (NNs) have proved to be very effective in diverse
applications ranging from semantic segmentation [17, 27] and de-
tection [20, 26] to medical image segmentation [9, 18]. In most cases
the hardware limits have been reached for most of the kernels, and
the next milestone is in distributed computing. This is becoming
increasingly important with renewed attention to super resolution
machine learning [14], as well as significant increase in the training
dataset in cases such as autonomous driving. Effective use of these
datasets in a reasonable time is not possible without a scalable
parallel method.

Given N empirical samples, the DNN training procedure seeks
to find the model parameters, w , such that the forward pass on
sample inputs would produce outputs that are similar to ground
truth outputs and that it generalizes well for unseen test samples.
The weights are initialized randomly and SGD algorithm updates
them iteratively as:wn+1 = wn − η∇fi , where i is an index chosen
randomly (with replacement) from [1,N], η is the learning rate,
and f is the loss function. In practice, one can use a mini-batch
SGD by drawing a set of indices i ∈ Batch at each iteration, chosen

©[Gholami et al.] [2018] This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive version was published in SPAA ’18:
30th ACM Symposium on Parallelism in Algorithms and Architectures,
2018. https://doi.org/10.1145/3210377.3210394

randomly from [1,N] and update the parameters as follows:

wn+1 = wn − η
1
B

∑
i ∈Batch

∇fi , (1)

where B is the mini-batch size. This whole SGD-based training
requires a “forward pass” where the network’s output and the cor-
responding loss functional is computed given the current model
parameters, and a “backward pass” (commonly referred to as back-
propagation or simply backprop) where the gradient of the loss is
computed with respect to the model parameters,w .

The forward phase of DNN training is a sequential combination
of affine transformation Yi =WiXi , followed by nonlinear trans-
forms Xi+1 = f (Yi) . Each column of Xi ∈ Rdi−1×B holds input
activations for one sample and similarly each column ofYi ∈ Rdi×B
holds output activations for one sample. Notice that Xi+1 and Yi
have the same shape. The matrixWi ∈ Rdi×di−1 holds the weights
of the neural network between the ith and (i − 1)th layer. The
number of neurons in the ith DNN layer is denoted by di .

Forward phase is followed by backpropagation that can also be
written in matrix form as ∆Xi = WT

i ∆Yi . Here, ∆Xi and ∆Yi are
the gradients of the loss function, with respect to input and output
activations, respectively. Finally, the gradient of the loss function
with respect to model weights is calculated using ∆Wi = ∆YiX

T
i .

Consequently, DNN training requires 3 matrix multiplications, in-
cluding gradient computations.1 The derivations of the forward
pass and the backpropagation are shown in detail in Sections 7.1
and 7.2, respectively.

A single pass over the whole data (also called an epoch) requires
N /B iterations. It takes many iterations until the training error is
sufficiently small. Consequently, DNN training is computationally
expensive. To accelerate training, one can change the training algo-
rithm with an aim to reduce the number of epochs, or make each
epoch run faster through distributed training. We are focusing on
the latter.

Two well-known techniques for distributed SGD based DNN
training are model parallelism and data parallelism. In simplest
terms, model parallelism is the partitioning of the weights of the
neural network to processes. Data parallelism corresponds to parti-
tioning of the input data to processes. The existing literature merely
considers data parallelism to be the assignment of groups of whole
data points, such as images, to individual processes. However, one

1Note that our approach does not require each individual convolution to be computed
using matrix multiplication, but we view it as this way for simplicity and connection
to high performance computing literature.

ar
X

iv
:1

71
2.

04
43

2v
4

 [
cs

.L
G

]
 1

6
M

ay
 2

01
8

https://doi.org/10.1145/3210377.3210394

P0

P1

P0
P1

P0
P1 *

di/P

di-1 B

P0

P1
Local

matmul
AllGather
on P sized

groups

di/P

B

W XYintermediateY

P0, P1P0
P1

*

XT
∇Y

Local
matmul

P0

P1

di/P

∇W

P0 P1
P0
P1

P0
P1 *

di-1

B

Local
matmul

WT∇X
intermediate ∇Y∇X

di/P

Low rank
intermediate
matrices
(one per
process)AllReduce

on P sized
groups

Figure 1: Illustration of matrix multiplications for the pure model
parallel training using P = 2 (top: forward pass, middle/bottom:
weight gradient computation).

can instead assign fractions of data points to processes as well. For
example, training a convolutional neural network (CNN) on two
processes with domain parallelism can assign all the top halves
of the images to the first processor and all the bottom halves of
the images to the second processor [11]. Consequently, there are
two subtypes of data parallelism: batch parallelism, which is the
commonly studied option in literature, is the assignment of groups
of data points in whole to processes and domain parallelism is the
subdivision of individual data points to processes.

This paper presents a new method for integrated model, batch,
and domain parallelism. There are existing approaches that exploit
both model and batch parallelism but they often only provide ad-
hoc solutions to hard engineering constraints such as the model no
longer fitting into a single GPU or the mini batch sizes hitting a
convergence limit. Our method, by contrast, is amenable to precise
communication analysis and covers the whole spectrum between
pure data parallelism (which includes batch parallelism as a special
case) and pure model parallelism. It often finds favorable perfor-
mance regimes that are better than pure batch parallelism and
pure model parallelism, even in the absence of hard engineering
constraints.

Limitations. We find it useful and necessary to describe the lim-
itations in our analysis. For the communication complexity we
assume that all the compute nodes are connected and thus do not
consider the topology of the interconnect, and we also do not con-
sider network conflicts in our model [3]. However, the effects of this
can be approximated by adjusting the latency and bandwidth terms
accordingly, as a detailed analysis will become network specific.

While the presented simulated results are based on AlexNet, the
mathematical analysis we present for the integrated framework

is generally applicable to any neural network. For instance, cases
with Recurrent Neural Networks mainly consist of fully connected
layers and our analysis naturally extends to those cases. Moreover,
we empirically measure the computation time. A more detailed
analysis of the computation time would require a hardware specific
execution model which is outside the scope of this work. Finally, we
present simulation results based on the complexity analysis. Those
simulation results assume idealized network behavior (i.e. perfect
utilization of bandwidth, no additional software overheads, and per-
fect overlap of communication and computation when considered),
and hence provide an upper bound on achievable performance.

2 PARALLELISM IN DNN TRAINING
Deep Neural Networks are typically trained using first-order meth-
ods, i.e. those that rely on first order derivatives. SGD is the canoni-
cal example of first-order methods used in DNN training. Regardless
of the specific approach, all methods calculate activations using
forward propagation and calculate derivatives using backprop. Con-
sequently, our results generalize to other first-order methods even
though we will describe it using SGD for simplicity.

The SGD iterations have a sequential dependency. One possi-
bility to break this barrier for parallel training is the family of
asynchronous SGD methods [4, 7, 12, 19, 21, 30]. Here, this depen-
dency is broken and each process is allowed to use stale parameters
and update either its weights or that of a parameter server. However,
these approaches often do not converge to the same performance
as in the synchronous SGD cases. Here, we focus only on the latter
which obeys the sequential consistency of the original algorithm.
However, the framework that we present can be used to accelerate
asynchronous methods as well.

In terms of terminology, we use the word “process" to refer to
the program running on a compute node. It is often the case that
a compute node has many processing elements (or cores); thus
one can map multiple processes, each with its own local private
memory, to a compute node. The exact nature of process to compute
node mapping is immaterial to our analysis.

2.1 Layers of Deep Neural Networks
Deep Neural Networks are composed of many layers. Typically
each layer is either a convolutional layer, a fully connected layer,
activation layer, or a dropout layer. A convolutional layer is com-
posed of a number of filters (also called kernels), applied in a sliding
window fashion with a stride length s over the whole input sample.
The application of each filter in a convolutional layer results in
a distinct channel in the output layer. Hence, we will use X i

C to
denote the number of channels in the ith layer. The number of input
channels in the first layer is equal to the number of channels in the
input data (usually three channels for RGB). A convolutional filter
in the ith layer takes a tensor input kih×k

i
w ×X i

C and creates a single
scalar value (Here kih , k

i
w are the kernel convolution kernel’s size).

There are Y iC such different filters in the ith convolutional layer.
Consequently an input of dimensions X i

H , X
i
W , X

i
C is transformed

into an output of dimensions Y iW , Y
i
H , Y

i
C where

Y iW =

⌈
X i
W − kw

s

⌉
,Y iH =

⌈
X i
H − kh

s

⌉
.

2

P0,	P1,	P2 P0 P1 P2*P0 P1 P2 di

di-1 B/P

Local
matmul

B/P

W XY

P0

P1

P2

P0 P1 P2 *

XT
∇Y

Local
matmul

Low rank
intermediate
matrices
(one per
process)

AllReduce
on P sized

groups

∇W

P0,	P1,	P2

P0
P1
P2

P0 P1 P2P00 P01 P02 *di-1

B/P

Local
matmul

WT ∇Y∇X

di

Figure 2: Illustration of matrix multiplications for the pure batch
parallel training using P = 3 (top: forward pass, middle/bottom:
weight gradient computation).

With proper padding, it simplifies to Y iW =
⌈
X i
W /s

⌉
and Y iH =⌈

X i
H /s

⌉
.

The number of distinct parameters between two convolutional
layers is equal to the number of nonzeros inW if they are repre-
sented compactly without redundancy. Hence,

|Wi | = (khkwX i
C)Y

i
C ,

di−1 = X i
HX

i
W X i

C ,

di = Y
i
HY

i
W Y iC =

⌈
X i
W /s

⌉⌈
X i
H /s

⌉
Y iC .

(2)

The number of parameters between two fully-connected layers,
or between a convolutional layer and a fully-connected layer is sim-
ply |Wi | = didi−1. Dropout is sometimes applied to fully-connected
layers and has the effect of pruning a certain percentage of both
the input and output activations.

2.2 Communication Cost Analysis of Pure
Batch, Pure Model, and Pure
Domain-Parallel Approaches

Two possibilities for parallel computations in synchronous SGD is
model and data parallel. The latter can be subdivided into batch
parallelism and domain parallelism as explained in the previous
section.

Communication costs of pure model parallelism. In the
model parallel case, the computation of the loss in the forward pass
can be computed by distributing the model parametersW as shown
in Fig. 1.

Consider a convolutional layer without loss of generality: each
process performs a subset of the convolutions on the input activa-
tions and computes a subset of the output activations. For instance,
assume one of the layers consists of YC kh ×kw ×XC convolutions,
where kh , kw is the size of each convolution filter and XC , YC are
the sizes of input and output channels. In the model parallel case,
the kernels are distributed so that each process gets YC/P filters
and computes the corresponding YC/P channels of the output acti-
vation. As computations of the other layers would require access to
all of the previous activations, one needs to perform an all-gather
operation per layer. Backpropagation also requires an all-reduce
communication during ∆X calculation (details are discussed in ap-
pendix). This yields the following communication complexity for
the model parallel case:

Tcomm(model) =
L∑
i=1

(
α ⌈log(P)⌉ + βB P − 1

P
di

)
+ 2

L∑
i=2

(
α ⌈log(P)⌉ + βB P − 1

P
di−1

)
,

(3)

where P is the number of processes, L is the number of DNN layers,
α is the network latency, and β is the inverse bandwidth. The first
sum considers the cost for all-gather required after every layer, and
the second sum considers the all-reduce cost for backpropagating
activation gradients. Note that the second sum starts from i = 2 as
we do not need to backpropagate the gradient beyond the first layer.
This analysis assumes the use of Bruck’s algorithm for all-gather
and ring algorithm for all-reduce [24]. We note that the complexity
depends on the mini-batch size. The model parallel approach was
partially used in AlexNet [16], where the model was split into
two GPUs. The original GoogLeNet work also exploited a certain
amount ofmodel parallelism [23]. DistributedDNN training engines
that rely solely on model parallelism also exist [5], especially for
low-latency high-bandwidth systems.

The other possibility for distributing the SGD computation is
data parallelism. This can be performed either by distributing the
data over the batch size, or partition each individual image. We
refer to the latter as domain parallelism, which will be discussed
further below.

Communication costs of pure batch parallelism. For the
batch parallel case, the reduction for the gradient computation over
the mini-batch sum (1) can be computed independently by each
process. This approach is known as batch parallel method, where
each process computes a partial sum, followed by an all-reduce to
compute the mini-batch gradient. This communication cost is due
to the reduction that is needed to form ∆W = ∆YX

T product. The
communication complexity for the batch parallel approach using
ring algorithm for all-reduce [24] is:

Tcomm(batch) = 2
L∑
i=0

(
α ⌈log(P)⌉ + β P − 1

P
|Wi |

)
, (4)

where |Wi | is the total number of model parameters in the ith layer.
Here, the factor of 2 is merely due to the all-reduce algorithm [24].
Note that for P ≫ 1 the bandwidth costs are independent of P
and unlike the model parallel case does not depend on the batch

3

Figure 3: Illustration of domain parallel approach for P = 4. For NCHW format, it is best to distribute along the height to avoid non-contiguous
memory accesses. NCHW format corresponds to the data layout in the memory, where the data runs fastest in width, height, channel size, and
then across batch size.

size. Most of the current work on distributed training uses batch
parallel to scale training [8, 29]. The DistBelief paper [7] provides
easy-to-understand descriptions of model and batch parallelism.

For a convolutional layer, based on Equation 2, the ratio of com-
munication volume between pure model and batch parallelism
becomes

Tcomm−volume(batch)
Tcomm−volume(model) =

2|Wi |
3Bdi

=
(2khkwX i

C)Y
i
C

3BY iHY
i
W Y iC

=
2khkwX i

C

3BY iHY
i
W

(5)

Consequently, whenever B > (2khkwX i
C/3Y

i
HY

i
W), pure batch

parallelism is favorable to pure model parallelism. Surprisingly, it
is not a foregone conclusion that batch parallelism is always fa-
vorable to model parallelism for convolutional layers. For several
convolutional layers that are used in practice (such as those found
in AlexNet with 3x3 filters on 13x13x384 activations), model paral-
lelism has lower communication volume than batch parallelism for
B ≤ 12.

If one were to switch from a data parallel distribution shown in
Figure 2 to a model parallel distribution shown in Figure 1, the only
added communication cost is the redistribution of X to processes
using an all-gather operation, with an associated cost of

Tcomm(redistribute batch to model) = α ⌈log(P)⌉+βB P − 1
P

di . (6)

It is important to note that this redistribution cost is asymptoti-
cally free because the subsequent model parallel step has commu-
nication cost that is three times of the cost of the redistribution.

Communication costs of pure domain parallelism. A third
possibility for parallelization is domain parallel [11], where one can
decompose the input activation map as shown in Fig. 3. Here each
process contains all of the model parameters (as in the pure batch
parallel case), but performs the convolutions only on a subset of
the input image, and writes a subset of the output activations. For
convolutions with filter size larger than one, we have to perform

a halo exchange to communicate the boundary points. This can
be performed as a non-blocking, pair-wise exchange while the
convolution is being applied to the rest of the image. This means
that the convolutions that do not require this boundary data could
be computed while the communication is being performed. The
cost of the communication in this case will be:

Tcomm(domain) =
L∑
i=0

(
α + βBX i

W X i
C ⌊k

i
h/2⌋

)
+

L∑
i=0

(
α + βBY iW Y iC ⌊k

i
w /2⌋

)
+2

L∑
i=0

(
α ⌈log(P)⌉ + β P − 1

P
|Wi |

)
,

(7)

whereX i
W , X

i
H , X

i
C ,Y

i
W , Y

i
H , Y

i
C are the input/output activation’s

width, height, and channel size in the ith layer, and kih , k
i
w is the

corresponding convolution size of that layer. Note that for a 1 × 1
convolution no communication is needed. For layers with large
input activation size and large number of convolution filters, this
approach can reduce the computation time with good strong scaling
efficiency. However, it is not effective for small image sizes and not
applicable to fully connected layers.

Model parallelism, as published in literature, corresponds to
performing a 1D distribution of the matrixWi , replicating Xi and
gathering Yi multivectors after multiplication. The kth processor
can perform its local matrix multiplication of the formWi (k, :)Xi
without any communication, but in order to fully assemble Yi , each
processor needs to gather other components from other processes.
Even if input/output multivectors were also distributed, the commu-
nication bounds stay the same, because while this communication
time would not be necessary for the output Yi , it would be needed
for gathering Xi before the local multiplication.

By contrast, in data parallelism, every process starts with the
same parameters, which get updated by the same gradient. In fact,
the forward pass of batch parallel training needs no communication.

4

The communication in this case happens during backpropagation,
where a collective all-reduce operation is needed to compute the
total sum of the partial gradients. The parallel matrix multiplica-
tions in the batch parallel case are illustrated in Figure 2, where the
input activations Xi and the output activations Yi are distributed
1D columnwise to processes.

2.3 Integrated Model and Batch Parallelism
We first discuss the integrated model and batch parallelism and
then discuss the full integration with domain parallelism which
extends the scalability limit of the pure batch method. Batch par-
allelism has a favorable communication complexity, but there is
an inherent limit on increasing the batch size. Furthermore, small
batch size training is not efficient in terms of hardware utiliza-
tion and ultimately training time. This is due to the fact that small
matrix-matrix operations (aka level-3 BLAS operations) cannot use
all the hardware resources, in terms of cores or vectorized units.
This is empirically shown in Fig. 4, where we report one epoch
training time of AlexNet for different batch sizes measured on a
single Intel Knights Landing (KNL) processor. The fastest training
time is achieved with a batch size of 256. With the batch parallel
approach one has no choice but to reduce per process batch size
for scaling before hitting the limit of 1 batch per process.

Best Workload

1 2 4 8 16 32 64 128 256 512 1024 2048

103.5

104

104.5

Batch Size→

O
n
e
E
p
o
ch

T
im

e
(s
ec
)→

Figure 4: One epoch training time of AlexNet computed on a single
KNL. Increasing batch size up to 256, reduces the time due to better
use of hardware resources and fewer SGD updates.

Our integrated batch and model parallel approach allows us to
reduce the communication overhead of the pure batch parallel case.
Here, we consider replicating a subset ofWi as opposed to all of it, a
concept that has been explored under the name of 1.5D algorithms
for matrix multiplication [15]. We think of our process grid logically
partitioned as P = Pr ×Pc . Each process holds (1/Pr)th piece ofWi ,
effectively replicatingWi matrix Pc times (as opposed to P times in
batch parallelism). Conversely, data matrices are replicated Pr times
and each process holds (1/Pc)th piece ofXi andYi . Communication
cost of this 1.5D algorithm, which is illustrated in Figure 5, is:

Tcomm =

L∑
i=1

(
α ⌈log(Pr)⌉ + β

B

Pc

Pr − 1
Pr

di

)
+2

L∑
i=2

(
α ⌈log(Pr)⌉ + β

B

Pc

Pr − 1
Pr

di−1

)
+2

L∑
i=0

(
α ⌈log(Pc)⌉ + β

Pc − 1
Pc

|Wi |
Pr

)
.

(8)

Note that unlike in Eq. 4, the all-reduce communication volume is
now reduced by a factor of Pr . This provides a theoretically sound
integration of batch and model parallelism. It can be especially
valuable for networks with many fully connected layers. Further-
more, this algorithm automatically selects the best configuration
to distribute the model and batch parallel work given a fixed batch
size on P processes. The closest approach to ours is the hybrid
model/batch parallel approach described by Das et al. [6], but that
paper does not describe the details of the partitioning of the data
and the model to the processes. In addition, the authors claim that
using any other dimension to extract parallelism would always be
sub-optimal, which we show not be true in general by using domain
parallelism.

Similar to the analysis of pure model and pure batch cases, the
cost of redistribution is asymptotically amortized in this integrated
batch and model parallel case as well. In particular, if one were to
switch process grids in between layers, say from a pure batch case
(1 × P grid) to a balanced case (√p × √

p) grid, the communication
costs would asymptotically stay constant.

For the curious reader familiar with the theory of parallel ma-
trix multiplication, we would like to clarify why we consider our
approach a 1.5D algorithm, as opposed to a 2D algorithm such as
Cannon’s algorithm [2] or SUMMA [25]. 2D matrix multiplication
algorithms are optimal in terms of their memory usage; that is,
each processor only holds (1/p)th of the total memory needed to
store all three matrices (2 inputs and 1 output). In other words,
there is no replication. The class of .5D algorithms (of which 1.5D
algorithm is a member), by contrast, are not optimal in terms of
memory consumption. At least one matrix is replicated multiple
times, which often results in an asymptotic reduction in communi-
cation costs [1]. This is indeed the case for the algorithm described
in Figure 5.

2.4 Integrated Model, Batch and Domain
Parallelism

The pure batch parallel method has a theoretical strong scaling
limit of B. In the limit each process gets a batch size of one (i.e.
it reads a single data). It is possible to extend this limit with the
integrated model and batch parallel approach discussed above. But
this approach is sub-optimal for early layers of the network, as the
all-gather communication volume is very high there (Eq. 8). This
is due to the fact that this communication volume depends on the
size of the activation map (i.e. Yi) which is prohibitively large in
the beginning layers.

However, as we show below the domain parallel approach has a
favorable communication complexity for early layers of a neural
network where the input activation size is large. For these layers it
is favorable to use domain parallelism instead of model parallelism,
as it leads to a smaller communication volume that can actually
be overlapped with part of the computation in both forward and
backward pass. Note that in model parallel one has to perform a
blocking all-gather operation which is detrimental for performance.
Moreover, the domain parallel approach does not require any com-
munication for 1 × 1 convolutions which are actually becoming
a dominant portion of the network in recent architectures [10].
However, for fully connected layers the halo exchange region will

5

P00,	P01,	P02

P10,	P11,	P12

P00
P10

P01
P11

P02
P12

P00
P10

P01
P11

P02
P12 *

di/Pr

di-1 B/Pc

P00 P01 P02

P10 P11
Local

matmul
AllGather

on Pr
sized

groups

di/Pr

B/Pc

W XYintermediateY

P12

P00, P10

P01, P11

P02, P12

P00
P10

P01
P11

P02
P12

*

XT
∇Y

Local
matmul

P00,	P01,	P02

P10,	P11,	P12

di/Pr Low rank
intermediate
matrices
(one per
process)

AllReduce
on Pc
sized

groups

∇W

P00
P01
P02

P10
P11
P12

P00
P10

P01
P11

P02
P12

P00
P10

P01
P11

P02
P12 *

di-1

B/Pc

Local
matmul

WT∇X
intermediate ∇Y∇X

di/Pr

Low rank
intermediate
matrices
(one per
process)AllReduce

on Pr
sized

groups

Figure 5: 1.5D matrix multiply illustration for integrated parallel
DNN training (top: forward pass, middle/bottom: weight gradient
computation) using a 2 × 3 process grid indexed as Pi j .

consist of all of the input activations. To avoid that large commu-
nication cost we can actually integrate all the three parallelism
methods. The communication complexity for integrating all the
three methods would then become:

Tcomm =
∑
i ∈LM

(
α ⌈log(Pr)⌉ + β

B

Pc

Pr − 1
Pr

di

)
+

2
∑
i ∈LM

(
α ⌈log(Pr)⌉ + β

B

Pc

Pr − 1
Pr

di−1

)
+

2
∑
i ∈LM

(
α ⌈log(Pc)⌉ + β

Pc − 1
Pc

|Wi |
Pr

)
+

∑
i ∈LD

(
α + β

B

Pc
X i
W X i

C ⌊k
i
h/2⌋

)
+

∑
i ∈LD

(
α + β

B

Pc
X i+1
W X i+1

C ⌊kiw /2⌋
)
+

2
∑
i ∈LD

(
α ⌈log(P)⌉ + β P − 1

P
|Wi |

)
,

(9)

where LM and LD refer to the list of layers where the Pr groups
are used to partition either the model or the domain. Note that for
LM = L, LD = 0, we get the integrated model and batch parallel
complexity as expected.

The choice of whether to partition the model or the domain can
be made by computing the communication complexity. Generally,

Fixed options Relevant parameters

Network AlexNet [16] 5 convolutional and
architecture parameters: 61M 3 fully connected layers

Training ImageNet training images: 1.2M
images LSVRC-2012 contest Number of categories: 1000

Computing
NERSC’s Cori2

Processor: Intel KNL
platform latency: α = 2µ s

inverse bw: 1/β = 6GB/s
Table 1: Fixed parameters used to simulate the cost of training neural
networks using integrated batch and model parallel approach. We
only change the mini-batch size and the number and configurations
of processes in the presented results.

it is better to use domain parallelism for the initial layers of the net-
work, since the activation size is large. However, the domain parallel
approach loses its communication advantage for fully connected
layers (for which kh = XH , kw = XW).

3 SIMULATED PERFORMANCE IN TRAINING
ALEXNET

Simulation setup.We analytically explore the spectrum of both
the integrated batch and model parallel approach, as well as the
full integration with domain parallelism by simulating Eq. 8 and
Eq. 9. To limit the number of variables, we fix a network (AlexNet),
a training set of images (ImageNet LSVRC-2012 contest), and a
computing platform (NERSC’s Cori supercomputer). These fixed
options, described in Table 1, are chosen just to develop a proof-of-
concept of our integrated batch and model parallel approach.

We considered two scenarios: (a) B ≥ P : here the relevant inte-
gration is between model and batch parallel approaches and domain
parallelism is not used as its communication overhead is higher
than batch parallel (Eq. 7) (b) B < P : This is the case where we
reach the maximum scaling limit of the batch parallel method, and
use domain parallelism to scale beyond this (Eq. 9). For the first
scenario, we considered two cases. At first, the same process grid
is used for all layers of the network, which means that if Pr > 1
then some amount of model parallelism will be used even in convo-
lutional layers. Then we considered the improved case where we
force Pr = 1, Pc = P for the convolutional layers and use varying
Pr × Pc grids for the fully connected layers.

We compute the communication time for a single iteration with
various choices of the mini-batch size B, the number of processes,
and the configuration of process grid Pr × Pc . Using this data, we
then compute the communication time for a complete epoch by
multiplying the communication time form Eq. 4 by N /B. A typical
simulation of the Neural Network would require many epochs of
training (100 epochs in the case of AlexNet [16]).

Furthermore, we also consider the computational time by empir-
ically measuring the time needed for an SGD iteration for AlexNet
on a single KNL using Intel Caffe as shown in Fig. 4. We use this
data for cases with the same computational workload to compute
the total run time.

Strong scaling with a fixed mini-batch size. At first, we
present the strong scaling results for integrated model and batch.

6

Figure 6: Strong scaling analysis of integrated model and batch parallel approach using the simulated results. The orange bar shows the total
communication time, with the cross hatched portion representing the time spent in batch parallel communication (i.e. the ring all-reduce during
backprop). Here we use the same process grid for all layers, which means some amount of model parallelism is used for both convolutional and FC
layers when Pr > 1. The speedup for the total time compared to pure batch parallel is shown in bold text on top of the best bar chart. We also
report the corresponding speedup for communication time in parenthesis. In strong scaling, we keep the global batch size fixed, and increase the
number of processes to reduce the training time.

We initially apply the integrated method in a way that the same
process grid is used for all layers of the network, which means that
if Pr > 1 then some amount of model parallelism will be used even
in convolutional layers. The results are shown Fig. 6 where the
training was performed using P = 8 to P = 512 processes with a
fixed mini-batch size of B = 2, 048. In each subfigure in Fig. 6, only
the configurations of the process grid vary. We can see that even
in the naive format, better performance can be attained with an
integrated batch and model parallelism, especially for larger values
of P . For example, on P = 512 processes, the best performance is
observed with 16 × 32 process grid which results in 2.1× speed up
in the overall runtime and 5.0× speedup in communication (Fig-
ure 6-d). The improved performance is primarily driven by reduced
communication needed by the integrated model and batch parallel
approach (notice the reduction of the communication volume of
the parameters by Pr factor in Eq. 8). However, the benefit of the
integrated approach is not realized on a relatively small number
processors, such as with 8 processes in Figure 6(a). The first rea-
son is that here the main bottleneck is computation. Moreover, the
communication time for model parallel does not scale down since
per process batch size is very large (note the B/Pc term in Eq.8).

Next, we considered the improved case where we force Pr =
1, Pc = P for the convolutional layers and use varying Pr ×Pc grids

for the fully connected layers. For the configurations considered,
this results in using pure batch parallelism in convolutional layers
and both model and batch parallelism in FC layers as shown in
Figure 7. Making the convolutional layer pure batch parallel can re-
duce the communication significantly, as evident by comparing Fig.
7 and Fig. 6. For instance, the case with B = 2048, P = 512 results
in 2.5× speedup in overall runtime and 9.7× speedup in commu-
nication time (Figure 7-d). We also show how the results would
change if we consider a perfect overlap between communication
and computation as shown in Fig. 8. This overlapping can only be
performed with the backpropagation phase, where the all-reduce
communication can happen while the transpose convolution of
next layers are being performed (which accounts for two-thirds of
the communication). Even in this setting there is 2.0× speedup. We
believe that this speed up is actually going to increase, given the
new domain specific architectures optimized for accelerating the
computation part of neural network training/inference.

Scaling with a variable mini-batch size. We now consider
weak scaling by varying the mini-batch size and the process grid
simultaneously, as shown in Fig. 9. Here we use choose model/batch
parallel based on the complexity analysis of Eq. 8 (similar to the
strong scaling shown in Fig. 7). In each subfigure, only the con-
figurations of the process grid vary for a fixed P and B. Similar

7

Figure 7: Strong scaling analysis of integrated model and batch parallel approach using the simulated results. Model parallelism is used in FC
layers only. Notice the significant improvement in best time compared to Fig. 6 which uses model parallelism in both convolutional and FC layers.

Figure 8: Here we show results for perfect overlapping of communi-
cation with backpropagation part of the computations.

to the strong scaling results, we observe that the integrated ap-
proach can reduce the communication significantly as we change
the mini-batch size.

Scaling beyond batch size. The pure batch parallel method
has a scaling limit to the maximum batch size that one can use.
However, one cannot increase batch size indefinitely as it is known
to be detrimental to the performance of the Neural Network [13].

Recent works have tried to increase this limit by changing the hyper-
parameters of SGD [8, 28], but these methods also hit a limit and
have been only shown to work for certain applications in ImageNet
classification. So a natural question is how do we scale beyond this
theoretical limit with pure batch parallelism? One could use the
integrated approach and scale the model part for all layers, but as
shown above this results in sub-optimal communication time. A
better approach is to use an integrated batch, domain, and model
parallel where for the initial layers we use domain parallel instead
of the model. Note that the domain parallel approach requires
a much smaller communication as compared to model parallel,
and actually requires no communication for 1 × 1 convolutions
(Eq. 7). To illustrate this, we show the scaling results for B = 512
up to P = 4096 in Fig. 10. In Fig. 10(a), convolutional layers use
pure batch parallelism with per-process batch size set to one. By
contrast, in Fig. 10(c-d), each image is partitioned into 2,4, and 8
parts where each process works with one part of the image. Using
this integrated batch, domain, and model parallel approach, we
can continue scaling beyond the theoretical limit with pure batch
parallelism (beyond 512 processes in Fig. 10).

4 DISCUSSION
One disadvantage of batch parallelism over model and domain
parallelism is that it tends to change the convergence characteristics
of DNN training algorithms as larger minibatches beyond a certain
point can hurt accuracy. Our integrated framework also provides
guidance on how to choose the right parallelization parameters if

8

Figure 9: Simulated cost of integrated model and batch parallel method. We present weak scaling results for the communication and computation
complexity when training AlexNet. The speedup for the total time compared to pure batch parallel is shown in bold text on top of the best bar
chart. We also report the corresponding speedup for communication time in parenthesis. Here we use the same process grid for all layers, which
results in using some amount of model parallelism (when Pr > 1) for convolutional layers as well, which is sub-optimal. A better approach is to
use pure batch parallelism for convolutional layers.

the user decides to limit the maximum allowable batch parallelism
in light of accuracy concerns related to large batch sizes.

Due to DNN training being computational intensive, memory
considerations have been secondary to performance. Solutions that
exploit pure data parallelism often replicate the wholemodel in each
node. By contrast, the 1.5D matrix-multiplication algorithms used
by our integrated parallel approach cut down the model replication
cost by a factor of pr , at the cost of an increase in data replication
by a factor of pc . Like our communication costs, our memory costs
are simply a linear combination of the memory costs of these two
extremes of pure data and pure model parallelism.

We also considered the alternative of using 2D matrix multi-
plication algorithms instead of the 1.5D algorithm. The popular
stationary-C variant of the 2D SUMMA algorithm [25] is symmet-
rical in nature; in the sense that it communicates equal proportions
of both input matrices for an operation C = AB. When matrices
A and B are of comparable sizes, this is a good fit. Often in deep
learning, one of the matrices is bigger than the other. For such
situations, there are other less-common variants of SUMMA that
keep another matrix stationary [22]. These algorithms are more
complicated that our 1.5D algorithm, and communicate more data
either asymptotically or by higher constants.

Consider stationary-A SUMMA, which is the best fit for the for-
ward propagationY =WX among all 2D algorithm variants. This al-
gorithm has 4 communication steps compared to a single step in our
algorithm. For simplicity assume that di = di−1. Also assume that
pr and pc are large enough such that (pr − 1)/pr ≈ (pc − 1)/pc ≈ 1.
When |Wi | > Bdi , it communicates 2B di/pr + B di/pc words, com-
pared to our 1.5D algorithm’s B di/pc words. In that sense, its com-
munication costs approach 1.5D when pr ≫ pc but never surpass
it. When |Wi | < Bdi , all possible 2D algorithms become asymp-
totically slower because they have to communicate two matrices
and no matter which two they choose, the costs become higher
than solely communicating the single smaller matrix. By contrast,
our 1.5D algorithm communicates only that single matrix. Hence,
there is no regime where 2D becomes strictly favorable in terms of
communication volume. The main advantage of 2D algorithms over
1.5D algorithm is that their memory consumption is optimal in the
sense that they do not perform any asymptotic data replication.
Memory consumption optimality might be a legitimate concern
depending on the platform and the DNN model size.

5 CONCLUSION
We presented an integrated parallel algorithm that exploits model,
batch, and domain parallelism in training deep neural networks

9

Figure 10: Illustration of how domain parallel can extend strong scaling limit of pure batch parallelism.

(DNNs). We discussed the associated communication complexity
by analyzing both forward and backwards pass, and showed that
theoretically the integrated parallel approach can achieve better run
time. Furthermore, the integrated parallel approach increases the
scalability limit of the pure batch parallel method that is commonly
used, by decomposing both along the weight matrix as well as
the domain. This approach allows optimal selection of per process
batch size and model size which results in better throughput as
compared to pure batch/model parallel algorithms.

Our analysis toolset is primarily comprised of parallel matrix
algorithms. In particular, the analysis of our integrated model and
batch parallel approach relies on a communication-avoiding 1.5D
matrix multiplication algorithm. This explicit connection between
parallel matrix algorithms and DNN training has the potential to
enable the discovery of new classes of parallel algorithms and lower
bounds for training DNNs.

6 ACKNOWLEGMENTS
This manuscript has been authored by an author at Lawrence Berke-
ley National Laboratory under Contract No. DE-AC02-05CH11231
with the U.S. Department of Energy. The U.S. Government retains,
and the publisher, by accepting the article for publication, acknowl-
edges, that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for U.S.
Government purposes.

This work was supported by the Laboratory Directed Research
and Development Program of Lawrence Berkeley National Labo-
ratory under U.S. Department of Energy Contract No. DE-AC02-
05CH11231.

The authors would also like to acknowledge generous support
from Intel’s VLAB team for providing access to KNLs.

REFERENCES
[1] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing

communication in numerical linear algebra. SIAM Journal on Matrix Analysis
and Applications, 32(3):866–901, 2011.

[2] Lynn Elliot Cannon. A cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State University, 1969.

[3] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Van De Geijn. Col-
lective communication: theory, practice, and experience. Concurrency and Com-
putation: Practice and Experience, 19(13):1749–1783, 2007.

[4] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system.
In OSDI, volume 14, pages 571–582, 2014.

[5] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng An-
drew. Deep learning with COTS HPC systems. In International Conference on
Machine Learning, pages 1337–1345, 2013.

[6] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidy-
nathan, Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey.
Distributed deep learning using synchronous stochastic gradient descent. arXiv
preprint arXiv:1602.06709, 2016.

[7] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed
deep networks. In Advances in neural information processing systems, pages
1223–1231, 2012.

[8] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

10

[9] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron
Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle.
Brain tumor segmentation with deep neural networks. Medical image analysis,
35:18–31, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[11] Peter Jin, Boris Ginsburg, and Kurt Keutzer. Spatially parallel convolutions. ICLR
2018 Workshop, 2018.

[12] Peter H Jin, Qiaochu Yuan, Forrest Iandola, and Kurt Keutzer. How to scale
distributed deep learning? arXiv preprint arXiv:1611.04581, 2016.

[13] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. On large-batch training for deep learning: Generaliza-
tion gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[14] Jiwon Kim, Jung Kwon Lee, and KyoungMu Lee. Accurate image super-resolution
using very deep convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1646–1654, 2016.

[15] Penporn Koanantakool, Ariful Azad, Aydın Buluç, Dmitriy Morozov, Sang-Yun
Oh, Leonid Oliker, and Katherine Yelick. Communication-avoiding parallel
sparse-dense matrix-matrix multiplication. In Proceedings of the IPDPS, 2016.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[18] A. Mang, S. Tharakan A. Gholami, N. Himthani, S. Subramanian, J. Levitt, M. Az-
mat, K. Scheufele, M. Mehl, C. Davatzikos, B. Barth, and G. Biros. SIBIA-GlS:
Scalable biophysics-based image analysis for glioma segmentation. The multi-
modal brain tumor image segmentation benchmark (BRATS), MICCAI, 2017.

[19] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693–701, 2011.

[20] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[21] RO Rogers and David B Skillicorn. Using the BSP cost model to optimise parallel
neural network training. Future Generation Computer Systems, 14(5):409–424,
1998.

[22] Martin D Schatz, Robert A Van de Geijn, and Jack Poulson. Parallel matrix
multiplication: A systematic journey. SIAM Journal on Scientific Computing,
38(6):C748–C781, 2016.

[23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

[24] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collec-
tive communication operations in MPICH. The International Journal of High
Performance Computing Applications, 19(1):49–66, 2005.

[25] Robert A Van De Geijn and Jerrell Watts. SUMMA: Scalable universal matrix
multiplication algorithm. Concurrency-Practice and Experience, 9(4):255–274,
1997.

[26] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. Squeezedet: Uni-
fied, small, low power fully convolutional neural networks for real-time object
detection for autonomous driving. arXiv preprint arXiv:1612.01051, 2016.

[27] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolu-
tional neural nets with recurrent crf for real-time road-object segmentation from
3d lidar point cloud. In In Review, 2017.

[28] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for
ImageNet training. arXiv preprint arXiv:1708.03888, 2017.

[29] Yang You, Zhao Zhang, C Hsieh, James Demmel, and Kurt Keutzer. ImageNet
training in minutes. CoRR, abs/1709.05011, 2017.

[30] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic
averaging SGD. In Advances in Neural Information Processing Systems, pages
685–693, 2015.

7 APPENDIX: DETAILED DERIVATIONS
7.1 Detailed Derivation of the Forward Pass
During the forward pass for data parallel, each process reads a mini-
batch size of B/P input images and the calculations are performed
as follows:

Yi =WXi ,

where Xi and Yi is the ith column of X and Y, respectively. Here,W
is shared and no communication is needed. However, in the model
parallel case we have:

Yp,i =WpXi ,

where p denotes the process id,Wp is the fraction of weights in
each process, and Yp,i is the fraction of output activation computed
locally. This local component needs to be communicated via an
all-gather operation to concatenate all partial activations for the
next layer’s computation.

7.2 Detailed Derivation of Backpropagation
During backpropagation, the gradient of the loss functional with
respect to output activations Y is given (∆Y = dJ

dY), and one has to
compute the gradient with respect to the weights (∆W) as well as
the input feature map (∆X). The latter is needed for propagating
the gradient to lower layers. We use capital letters for input and
output activation as we are mostly interested in the mini-batch
setting B > 1. Using chain rule we have:

∆W =
dJ
dW
=

B∑
i=1

dJ
dYi

dYi
dW
=

B∑
i=1

dJ
dYi

XT
i = ∆YX

T ,

Now in the distributed case, we have:

dJ
dW

p
=

B/Pc∑
i=1

dJ
dYi

XT
i ,

dJ
dW
=

Pc∑
k=1

dJ
dW

p
.

where p is the process id. Notice that the last step requires an all-
reduce between Pc processes, but no communication is needed for
the model parallel part as the input activation is already communi-
cated via the all-gather collective of forward pass. To backpropagate
the gradient, one needs to compute ∆X = dJ

dX as well. We derive
it for one column of ∆X below as each column can be computed
independently:

∆Xi =
dJ
dXi
=

dJ
dYi

dYi
dXi
=WT dJ

dYi
=WT ∆Yi ,

Here in the distributed model parallel part, the weight matrix is
distributed among Pr processes. To backpropagate the gradient,
every process computes its contribution to the gradient followed
by an all-reduce collective between Pr processes:

dJ
dXi

p
=WT dJ

dYi
,

dJ
dXi
=

Pr∑
k=1

dJ
dXi

k
.

11

	Abstract
	1 Introduction and Background
	2 Parallelism in DNN Training
	2.1 Layers of Deep Neural Networks
	2.2 Communication Cost Analysis of Pure Batch, Pure Model, and Pure Domain-Parallel Approaches
	2.3 Integrated Model and Batch Parallelism
	2.4 Integrated Model, Batch and Domain Parallelism

	3 Simulated Performance in Training AlexNet
	4 Discussion
	5 Conclusion
	6 Acknowlegments
	References
	7 Appendix: Detailed Derivations
	7.1 Detailed Derivation of the Forward Pass
	7.2 Detailed Derivation of Backpropagation

