
Multidimensional RangeQueries on Modern Hardware
Stefan Sprenger

Humboldt-Universität zu Berlin
Berlin, Germany

sprengsz@informatik.hu-berlin.de

Patrick Schäfer
Humboldt-Universität zu Berlin

Berlin, Germany
schaefpa@informatik.hu-berlin.de

Ulf Leser
Humboldt-Universität zu Berlin

Berlin, Germany
leser@informatik.hu-berlin.de

ABSTRACT
Range queries over multidimensional data are an important part
of database workloads in many applications. Their execution may
be accelerated by using multidimensional index structures (MDIS),
such as kd-trees or R-trees. As for most index structures, the useful-
ness of this approach depends on the selectivity of the queries, and
common wisdom told that a simple scan beats MDIS for queries
accessing more than 15%-20% of a dataset. However, this wisdom
is largely based on evaluations that are almost two decades old,
performed on data being held on disks, applying IO-optimized data
structures, and using single-core systems. The question is whether
this rule of thumb still holds when multidimensional range queries
(MDRQ) are performed on modern architectures with large main
memories holding all data, multi-core CPUs and data-parallel in-
struction sets.

In this paper, we study the question whether and how much
modern hardware influences the performance ratio between index
structures and scans for MDRQ. To this end, we conservatively
adapted three popular MDIS, namely the R∗-tree, the kd-tree, and
the VA-file, to exploit features of modern servers and compared
their performance to different flavors of parallel scans using multi-
ple (synthetic and real-world) analytical workloads over multiple
(synthetic and real-world) datasets of varying size, dimensionality,
and skew. We find that all approaches benefit considerably from
using main memory and parallelization, yet to varying degrees. Our
evaluation indicates that, on current machines, scanning should
be favored over parallel versions of classical MDIS even for very
selective queries.

KEYWORDS
Multidimensional Index Structures, Modern Hardware

1 INTRODUCTION
Multidimensional range queries (MDRQ) are selection queries that
specify a query interval for some or all dimensions of a multidimen-
sional data space. MDRQ are an extremely common part of many
workloads; important application areas include:

OLAP. Data warehouses use a multidimensional data model.
Queries against this model very often result in MDRQ [17, 27]. For
instance, a query may ask for sales in a certain price range within
a certain period and within a certain range of products.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
preprint, 2018
© 2018 Copyright held by the owner/author(s).

Sensor Data. Recent technologies like Internet of Things or
cyber-physical systems are based on large numbers of sensors,
which typically measure multiple features of their surveilled enti-
ties [25]. Often, only entities characterized by feature values within
certain intervals are of interest for further analysis, like all locations
within certain ranges regarding temperature, humidity, average
and peak wind speed, and sunshine intensity.

Genomics. Precision medicine is largely based on analyzing the
mutational landscape of entire populations or disease cohorts. Indi-
vidual mutations are described using a broad range of features, like
genomic location, functional impact, known disease associations,
or properties of the person where it was found [16]. Researchers
analyze these data using MDRQ, searching for instance all muta-
tions in the coding regions of a certain cluster of genes present
in patients of a certain age and weight range who suffer from a
certain disease [24, 38]. Characteristic for these data and workloads
are (a) a large number of tuples, (b) a moderate number of dimen-
sions (3-100), and (c) range predicates over all or some of these
dimensions1.

MDRQ can be answered either by scanning all data or by em-
ploying multidimensional index structures (MDIS), of which quite
a number have been proposed over the last decades [3, 6, 12, 15, 41,
42]. For historical reasons, most MDIS were designed for machines
that feature single-core CPUs and small main memory capacities
leading to single-threaded execution and IO reduction as major
design goals. For such systems, Weber et al. [41] have shown that
sequential scans should be favored over MDIS when roughly 20% or
more of all indexed data need to be visited, assuming that accessing
consecutive blocks (as in a scan) is at least 5 times faster than ran-
dom access (as necessary for most MDIS). It seems that since then,
this threshold has been used as the basic rule of thumb for choosing
access paths in MDRQ. However, the capabilities of typical database
servers have changed considerably over the last decades. Modern
hardware features particularly interesting for MDRQ are large main
memory capacities, multi-core and multi-threaded machines, and
SIMD instructions: (1) Main memory has grown so large that most
applications can hold all their data in memory, using disk only for
persistence and fault tolerance [11, 19]. (2) Modern CPUs support
many ways of parallelization, e. g., thread-level parallelism [23], or
data-level parallelism [32]. Furthermore, we see a change in the
typical workloads applied on MDIS. All use cases described above
are analytical, i.e., their predominant access operations are reads.
Data are updated rarely, essentially never deleted, and inserts are
almost always performed in bulk [34]. In the database community,
the shift to analytical workloads handled in main memory resulted
in increased popularity of a column-wise storage layout [37]; in

1Queries over high-dimensional datasets or using similarity predicates are out of scope
of this work; for supporting such use cases, we refer the reader to excellent surveys,
like [6].

ar
X

iv
:1

80
1.

03
64

4v
2

 [
cs

.D
B

]
 1

4
M

ay
 2

01
8

preprint, 2018

Old Hardware Modern Hardware

Single-Core CPU

Main Memory

Hard Disk Drive
MDIS

Multi-Core CPU

Main Memory
MDIS

- one thread
- scalar instructions

- many threads
- scalar/SIMD instructions

Figure 1: Classical disk-based set-up for MDIS (left) versus
an adaptation to modern hardware (right).

contrast, the classical MDIS were designed for row-wise data lay-
outs. Thus, it is time to re-evaluate the performance of MDIS for
MDRQ to see if the traditional rule of thumb still holds. Clearly,
such a re-evaluation requires an adaptation of the original index
structures to the features of modern hardware (see Figure 1) and
should be carried out using analytical workloads.

In this experimental analysis, we study the question whether
and how much the changes in hardware and workloads influence
the performance of MDIS compared to sequential scans. To this end,
we adapted three popular MDIS to be executed in a parallel and
in-memory setting, namely (1) the R∗-tree [2], an optimized variant
of the R-tree [15], (2) the kd-tree [3], an index structure already
originally designed for in-memory computations, and (3) the VA-
file [41], which can be considered as a mixture between a MDIS and
a sequential scan. Our adaptation is conservative in the sense that
we withstood the temptation to design new, highly-tuned parallel
MDIS, because our aim is to evaluate the classical approaches, which
are still in use quite a lot and also included in many mature database
systems, e. g., SQLite (R∗-tree2), PostgreSQL (R-tree3, kd-tree4), or
Oracle (R-tree5). Our aim is to propose techniques, where existing
implementations can be re-used with minimal adaptation, thus
raising the practical relevance of our results.

We compare the adapted MDIS to the performance of a par-
allel, in-memory scan-based MDRQ implementation using both
real-world and synthetic analytical workloads over datasets of
varying size, dimensionality, and skew. Again, we employ only
simple parallelization schemes and refrain from using highly-tuned
scan implementations, like BitWeaving [26]. For providing a more
realistic evaluation, we also devise a novel MDRQ benchmark de-
rived from a genomic use case, consisting of eight parameterized
classes of queries over a real-world dataset from the 1000 Genomes
Project [8], consisting of 10 Million data points with 19 dimensions.
This benchmark as well as all implementations, other workloads
and datasets are freely available on our website6.

Our results indicate that, although all approaches benefit con-
siderably from modern hardware features, this effect is much more
pronounced for simple scans than for MDIS. Accordingly, the rule

2https://sqlite.org/rtree.html
3https://www.postgresql.org/docs/9.6/static/xindex.html
4https://www.postgresql.org/docs/9.6/static/spgist.html
5http://docs.oracle.com/html/A88805_01/sdo_intr.htm
6https://www2.informatik.hu-berlin.de/~sprengsz/mdrq

of thumb to choose between a traditional MDIS and a scan based on
query selectivities of MDRQ should be adjusted: from the classical
15%-20% down to around 1%.

2 BACKGROUND AND FOUNDATIONS
2.1 Problem Definition
We study the performance ofmultidimensional range queries (MDRQ).
A dataset D = {t0,t1, ...,tn−1} is a collection of n data objects shar-
ing the same attributes. Each data object ti = {v0,v1, ...,vm−1} is a
sequence ofm attribute values. Alternatively, a data object can be
described as am-dimensional feature vector belonging to IRm . In
the following, we use the terms attribute, feature, and dimension
synonymously.

We assume that an MDRQ returns the unique identifiers of all
matching data objects. A complete-match multidimensional range
queryMDRQ (D) = {p0,p1, ...,pm−1} selects all qualifying data ob-
jects from D. For each dimension j, MDRQ specifies a predicate
pj = [lbj ,ubj] that consists of a lower (lbj) and upper (ubj) bound-
ary. A data object ti qualifies forMDRQ iff all predicates are evalu-
ated to true, i.e., ∀j : lbj ≤ ti [j] ≤ ubj . MDRQ that specify predi-
cates for only a subset of all dimensions are called partial-match
queries. A partial-match query can be interpreted as a complete-
match query that uses the predicate [−∞,+∞] for all dimensions
that are not queried.

The selectivity sel (MDRQ) of a range query is defined as the
percentage of data objects from D that match the query. Queries
that select only a small (large) portion of all data are considered
to have a high (low) selectivity [36]. In addition to sel (MDRQ), we
define selj (MDRQ) as the percentage of data objects from D that
match MDRQ for dimension j. If all dimensions are statistically
independent from each other, sel (MDRQ) =

∏m
j=0 selj (MDRQ).

For most real-world datasets this equation does not apply due to
correlated dimensions [14].

2.2 Multidimensional Index Structures
According to [13], MDIS can be divided into point access methods
(PAM) and spatial access methods (SAM). PAM are used to search
sets of multidimensional data points, whereas SAM may also store
objects with spatial extensions, such as rectangles. Nevertheless,
SAM are frequently used to store points, as we do in this paper.
To study whether and how much the features of modern hard-
ware change the performance characteristics of MDIS, we choose
three specific MDIS we consider as representative for their classes.
These are the R∗-tree (SAM), the kd-tree (PAM), and the VA-file.
The R∗-tree and the kd-tree are tree-based index structures, which
recursively partition the space or dataset using certain split strate-
gies. In contrast, the VA-file is a mixture between a flat partitioning
index, like the grid file [30], and a sequential scan. Decades after
their original publication, these three MDIS can still be considered
as the state of the art for range-querying multidimensional data
and are widely used in popular DBMS (see Introduction).

Defining these MDIS years after their invention is not as straight-
forward as one might think, as many variations have been proposed,
sometimes with identical and sometimes with different scopes. In
the following, we describe the specific variations we use in this
paper which are all very close to the published methods; their

Multidimensional RangeQueries on Modern Hardware preprint, 2018

adaptations to modern hardware will be explained in the subse-
quent sections. For completeness, at the end of the section, we also
describe our baseline implementation of scan-based MDRQ.

2.2.1 R-tree/R∗-tree. The R-tree [15] is a SAM that manages
multidimensional data objects in a balanced tree of hierarchically
organized minimum bounding rectangles (MBR). A MBR provides
the minimal enclosure of a set of objects. In an R-tree, leaf nodes
are blocks of data objects while inner nodes hold MBR enclosing
all objects of their respective subtree. The R-tree was designed as
a disk-based MDIS storing all data on disk. Thus, node sizes are
adjusted to disk page sizes such that one node fits into one disk
page. For executing a MDRQ, the search algorithm starts at the root
node and hierarchically traverses the tree down to the leaf nodes.
At each inner node, the algorithm intersects the query object with
the node’s MBR to determine those subtrees that may include data
objects matching the query; other subtrees are pruned. Whenever a
leaf node is reached, all data objects matching the query are added
to the result set.

The performance of an R-tree largely depends on the number of
subtrees that must be visited, which again depends on the way how
objects are placed within the tree during their insertion. The placing
of data objects is determined by a split strategy which decides how
to proceed whenever a leaf node overflows after insertion. The
split strategy of the R-tree led to many overlapping MBR and thus
rather slow retrieval times. The R∗-tree [2] is an optimized variant
of the R-tree that aggressively re-inserts data objects when a node
overflows leading to reduced MBR overlaps and faster queries at the
cost of higher build-up cost. Since we focus on analytical workloads,
we chose the R∗-tree as basis for our adaptations.

2.2.2 kd-tree. The concept of a kd-tree [3] is similar to that of a
binary search tree, but it indexes k-dimensional objects. Every node
of a kd-tree holds a data object. Inner nodes split the data space into
two parts according to a delimiter dimension and a delimiter value.
For a delimiter dimension dj , the left subtree holds all data objects
having a smaller or equal value than the inner node’s data object in
this dimension, and the right subtree holds all data objects having
a greater value. Accordingly, every inner node could be understood
as an axis-aligned hyperplane whose dimensionality depends on
the depth of the node. When executing a range query, the search
algorithm recursively traverses the tree from the root node to the
leaf nodes. At each visited node, two actions are conducted. First,
the stored data object is added to the result set if it is contained in
the query range. Second, the delimiter dimension of the stored data
object is compared with the corresponding dimension of the query
object to determine which subtree needs to be taken to continue
searching. Note that, unlike for point queries, MDRQ usually have
to visit multiple parallel subtrees of a kd-tree.

We chose to use the original kd-tree (and not the kdb-tree [33]
which is more suited for classical, IO-based RDBMS) as basis for
our adaptation because it is an in-memory data structure by design.
Like for R-trees, the shape of the kd-tree is determined by the
split strategy used during insertions and, in turn, determines the
performance of queries. The main decision to take upon an insert is
the choice of the delimiter dimension of the next (new) inner node.
As in the original paper, we choose the delimiter dimensions in a

round-robin fashion, which promises a robust behavior over a wide
range of data distributions.

2.2.3 VA-file. TheVA-file [41] is a blend of a flat space-partitioning
index, like the grid file, and a sequential scan. It divides the m-
dimensional data space into 2b rectangular cells. Each cell is as-
sociated with a bucket that holds the actual objects. Data objects
are inserted by hashing their coordinates to obtain the respective
bucket; in the literature, this process is also called "approximation".
The b bits are distributed over them dimensions by assigning bj bits
to dimension dj such that b = ∑mj=0 bj , and the hash functions per
dimension should be chosen such that data objects are distributed
evenly over the buckets. Buckets are stored on disk, whereas point-
ers to the buckets are managed in an in-memory array of size 2b .
When executing a range query on a VA-file, the search algorithm
approximates the query object, determines all buckets that have a
non-empty intersection, and scans those buckets to find all objects
contained in the query.

As in the original proposal, we implement the VA-file as a non-
adaptive index. This implies that we statically assign the number
of bits per dimension, using bj = 2 for each dimension, and choose
the hash function per dimension by partitioning the range of values
evenly into 22 = 4 intervals. Note that this index can still be up-
dated, yet it would become unsuitable if future data objects follow
data distributions grossly different than the ones initially used for
determining the hash functions.

2.2.4 Sequential Scan. We compare the performance of MDIS
for MDRQ to that of a scan over the entire dataset. Listing 1 shows
the non-parallel version of a sequential scan which we use as basis
for all adaptations. Using a for loop, the search algorithm iterates
over all n data objects stored in an array named data. It compares
each data object with the range query object defined by the parame-
ters lower and upper. If allm dimensions match, the object identifier
(implicitly defined by the array index i) is added to the result set.

This simple implementation leaves room for further optimiza-
tions. First, the algorithm could compare the dimensions in the
order of the expected selectivities, i. e., querying highly selective
dimensions first, leading to an earlier break of the inner loop. This
would, however, require estimates about the selectivity of single-
dimension range queries. Second, we use the same algorithm for
partial-match and for complete-match queries, although for partial-
match queries, the comparisons with the ranges of the unspecified
dimensions always return TRUE. We could skip these comparisons.
However, we chose to use this unoptimized implementation be-
cause our intention is to compare a standard scan with different
standard MDIS. If we tuned our scan, we would also have to tune
our MDIS, which in turn would make existing implementations
unusable.

3 PARTITIONING FOR PARALLELIZATION
As we will describe in detail in Section 5, we parallelize the scan
and MDIS implementations by partitioning the data. We use and
evaluate two different partitioning schemes, namely horizontal
partitioning and vertical partitioning.

Figure 2 illustrates the techniques when used to divide 20 5-
dimensional data objects into 5 partitions.

preprint, 2018

Listing 1: Multidimensional range scan.
1 std::vector <int >

2 mdrq(int [][] data , int n, int m, int[] lower , int[] upper) {

3 std::vector <int > results;

4 for (int i = 0; i < n; ++i) {

5 bool match = true;

6 for (int j = 0; j < m; ++j) {

7 if (data[i][j] < lower[j] || data[i][j] > upper[j]) {

8 match = false; break;

9 }

10 }

11 if (match)

12 results.push_back(i);

13 }

14
15 return results;

16 }

3.1 Horizontal Partitioning
Horizontal partitioning divides a dataset of n objects into p parti-
tions. Each partition holds a near-identical number of data objects,
i. e., partition size ≈ n/p. To obtain a robust load balancing, we
assign data objects at random to partitions and set p = t given that
t is the number of available hardware threads (virtual cores). Such
a scheme is simple to implement and maintain, also in the presence
of inserts or updates7. All approaches for MDRQ we consider in
this work treat the different partitions as independent (which, for
MDIS, means that actually p indexes are built), which allows using
existing implementations without any adaptations. At search time,
each partition is assigned to one CPU thread that produces a partial
result; once all threads have finished, these results are simply con-
catenated to produce the final result set. Horizontal partitioning
is thus similar to the approach proposed as Parallel VA-file [40],
except that here we target multi-threading provided by modern
CPUs instead of distributing queries to multiple physical machines.

A major advantage of horizontal partitioning is its simplicity.
Partitions are chosen at random which means that no further data
structures are necessary for managing them. Creation of the overall
result set requires only concatenating partial result sets, incurring
only minimal synchronization effort. Also the number of partitions
could be chosen freely to diminish the effect of stragglers, if present.
At the downside, for partial-match queries, whole data objects have
to be considered and must always be read entirely into the CPU
cache, although only a subset of all dimensions are queried.

3.2 Vertical Partitioning
Vertical partitioning slices data objects along their dimensions, cre-
ating one partition for each dimension. This scheme is similar to the
tree striping technique presented in [5] and also followed in column
stores, which have become quite popular for analytical workloads
in database systems [37]. In this scheme, the number of partitions
p is fixed and always equal to the dimensionality m of the data.
For query execution, anm−dimensional range query is split into
m one-dimensional range queries, which are executed in parallel
by distinct threads. Accordingly, also the degree of parallelism in

7Assuming that the workload follows certain known distributions, one could also
think of assigning data objects to partitions following a non-random fashion to arrive
at an optimal load balancing, as, for instance, described in [4]. Such a scheme would
have to be implemented individually for each approach considered. Again, we refrain
from applying such optimizations to keep our comparison fair.

data object

Dataset D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19tid

dimension

Horizontal Partitioning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

partition 0 partition 1 partition 2 partition 3 partition 4

Vertical Partitioning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 4

Figure 2: Horizontal and Vertical Partitioning used to divide
20 5-dimensional data objects into 5 partitions.

this phase is fixed at m. Eventually, the one-dimensional results
must be intersected to compute the final result set. In our imple-
mentation, we use a bitmask of size n for each partition to note
for each data object whether it matches in this dimension or not.
Once the bitmasks have been computed, we intersect them using a
bitwise AND operator to determine the final bitmask reflecting all
dimensions. This intersection is performed in parallel on different
partitions of the bitmasks.

Clearly, vertical partitioning is only meaningful for our scan-
based MDRQ implementation, as MDIS would degenerate to one-
dimensional indexes for the partitions that are created. The main
advantage of vertical partitioning is its built-in support for partial-
match queries, as only those partitions have to be accessed that
are referred to in the query. For complete-match queries, it offers
no advantage over horizontal partitioning in terms of data access,
as all values have to be accessed in both cases. It has the general
disadvantage that it requires large intermediate data structures (the
bitmasks) and also a more complex way of producing the final result
set. It is also rather complicated to achieve a good load balancing
whenm < t , since threads remain idle, orm > t , because then not
all partitions can be processed concurrently and some partitions
are scanned after other partitions. In both cases, one should start
to chop dimensions into subsets and parallelize on this finer level
of granularity. Again, we do not tune our implementation in such
manners but stick to the simple scheme of assigning one thread to
each partition.

4 VECTORIZED INSTRUCTIONS
Modern CPUs support vectorized instructions, which process mul-
tiple values with a single instruction by using specialized registers,
a feature usually called Single Instruction Multiple Data (SIMD).
As opposed to multi-threading, which enables thread-level paral-
lelism, vectorized instructions enable data-level parallelism, where
the degree of parallelism depends on the width of the specialized
registers8. When working on a data type for which k values fit into

8We use the AVX instruction set through Intel’s Intrinsics.

Multidimensional RangeQueries on Modern Hardware preprint, 2018

Listing 2: Vectorized comparison of an m-dimensional MDRQ
search object with an m-dimensional data object.
1 bool match = true;

2 __m256 lower_reg , upper_reg , search_reg , lower_res , upper_res;

3 int i, mask_lower , mask_upper , mask;

4 const int compares = (m / 8) * 8;

5 for (i = 0; i < compares; i += 8) {

6 lower_reg = _mm256_loadu_ps (&lower[i]);

7 upper_reg = _mm256_loadu_ps (&upper[i]);

8 data_reg = _mm256_loadu_ps (&data[i]);

9 lower_res = _mm256_cmp_ps(lower_reg , data_reg , _CMP_LE_OQ);

10 upper_res = _mm256_cmp_ps(upper_reg , data_reg , _CMP_GE_OQ);

11 mask_lower = _mm256_movemask_ps(lower_res);

12 mask_upper = _mm256_movemask_ps(upper_res);

13 mask = mask_lower & mask_upper;

14 if (mask < 0xFF) {

15 match = false; i = m; break;

16 }

17 }

18
19 for (; i < m; ++i) {

20 if (data[i] < lower[i] || data[i] > upper[i]) {

21 match = false; break;

22 }

23 }

24
25 if (match)

26 // add data object to result set

these registers, SIMD offers a theoretical speed-up of k ; however,
this value is rarely achieved in practice as multiple other factors,
such as memory bandwidth and the concrete instruction to per-
form, play an important role [32]. For instance, AVX instructions,
which work on 256-bit SIMD registers, can process eight 32-bit
floating-point values in parallel with one instruction and offer a
theoretical speed-up of a factor of 8. The details of how we use
SIMD instructions are discussed in the next section. However, we
apply SIMD instructions to the basic operation of comparing a
MDRQ search object (with up tom dimensions) to a data object
(with m dimensions), as shown in Listing 2 for the case that all
dimensions are of type float. Obviously, vectorizing this operation
is only beneficial ifm ≥ k .

In the beginning (see Lines 1 to 4), SIMD registers and helper vari-
ables are initialized. On the machine we use for evaluation, SIMD
registers are 256 bits wide, which means that eight floating-point
values can be processed in parallel. We therefore process all values
in chunks of eight (see Lines 5 to 17) and the remaining values in
a separate loop (see Lines 19 to 23). The variable compares holds
the number of to-be-executed SIMD comparisons. After loading
chunks of eight dimensions of the data object, the query’s lower
boundary and the query’s upper boundary into SIMD registers,
the algorithm compares the lower boundary (lower_reд) and the
upper boundary (upper_reд) with the data object (data_reд) using
SIMD instructions. Results of the comparisons are stored in the
variablesmask_lower andmask_upper . SIMD-based comparisons
return bitmasks that indicate if a comparison, e. g., less or equal
(_CMP_LE_OQ), was successful. If all comparisons were successful
all bits are set to 1, which equals to 0xFF in our case (see Line 14).
Otherwise, we can abort (see Line 15) and prune further compar-
isons. Finally, if all dimensions of the data object match the given
search query, we add it to a result set (see Lines 25 to 26).

5 CONSERVATIVE ADAPTATION OF MDIS TO
MODERN HARDWARE

In this section, we describe our conservative adaptations of the
R∗-tree, the kd-tree, and the VA-file to compare their performance
in executing MDRQ with that of a parallel scan using horizontal
partitioning or vertical partitioning. In particular, we describe our
changes to the original data structures performed to adapt (1) to
main-memory storage, (2) to the availability of multiple threads, and
(3) to SIMD instructions. As our evaluation focuses on analytical
workloads, we only discuss the search algorithms. In all cases we
tried to keep the original code untouched as much as possible to
allow re-usage of existing, proven implementations to the largest
possible degree.

Our overall strategy to adapting MDIS is to (a) keep the original
storage layout but hold all blocks in main memory, (b) partition the
data horizontally at random into almost-equally sized chunks and
build one MDIS per instance which work in parallel during MDRQ,
and (c) use SIMD only for the most time-consuming operation,
i.e., matching of data objects with the query. This strategy has the
advantage that it could also be applied to any other MDIS, as we
essentially build a conventional MDIS for every partition; only the
orchestration of the different MDIS (which does not require any
synchronization), the object matching using SIMD, and the result
concatenation for obtaining the final result set have to be added.
Furthermore, load balancing is quite simple as it only requires
adapting the size and number of partitions, which also suffices to
adapt to the number of available hardware threads on a machine.

On the downside, this scheme performs many comparisons re-
dundantly, as every partition-wise MDIS has to cover the entire
space, making pruning of entire MDIS instances impossible. Accord-
ingly, for the hierarchical MDIS (R*-tree, kd-tree) every search ini-
tially traverses similar layers, while for the VA-file multiple buckets
with the same approximation have to be searched. Note, however,
that this redundant work is performed in parallel. Eliminating these
redundant comparisons would require multiple threads to operate
on the same index structure, leading to wide-spread changes spe-
cific for each MDIS. Especially for the hierarchical MDIS, such a
strategy would also have to solve complex load balancing problems,
as the number of branches grows exponentially with the depth of
the tree, creating over-provisioning in the upper levels and under-
provisioning in the lower levels. Such schemes are beyond the scope
of our work but have been explored, for instance, in [22] or [35].

5.1 R∗-tree
We base our implementation of the R∗-tree (see Section 2.2.1) on the
open-source library libspatialindex9. We performed the following
adaptations: (1) We keep all nodes of the tree in main memory. We
do not adjust the node sizes to the sizes of disk blocks any more. In-
stead, we slightly adjust the default values of the used library from a
capacity of 100 to 96 data objects (MBR) for leaf nodes (inner nodes),
such that nodes are perfectly aligned with cache lines regardless of
the dimensionality of the dataset10. (2) We horizontally partition
the data at random into almost-equally sized chunks and build one

9https://libspatialindex.github.io/
10The used implementation stores dimension data as 8-byte double values. Hence,
choosing a capacity that is a multiple of 8 always aligns nodes to 64-byte cache lines.

preprint, 2018

Old Hardware Modern Hardware
range_query(...)

ti
m

e ...

...
...

R*-tree

result set

range_query(...)

...

...
...

R*-tree
partition 1

...

...
...

R*-tree
partition p

...

forward query
to partitions

result set

concatenate
partition results

Figure 3: Sequential execution of a MDRQ on a single-
threaded R∗-tree vs. parallel execution of a MDRQ on p
instances of an R∗-tree, where each instance manages the
data of a certain partition (horizontal partitioning) and is
searched with one thread (p threads in total).

R*-tree instance per partition. These are searched in parallel and
the (partial) result sets are concatenated once all R*-tree instances
have finished their search. We chose the number of partitions to be
equal to the number of hardware threads on the evaluation machine.
(3) We use Listing 2 to compare the query object with MBR in inner
nodes. Since the used R∗-tree implementation works with 64-bit
floating-point values, we can compare only four values (instead
of eight) with one SIMD instruction. Figure 3 illustrates the differ-
ences between sequentially querying a conventional R∗-tree and
executing a parallel MDRQ following our approach.

5.2 kd-tree
We implemented a kd-tree from scratch following the original pro-
posal (see Section 2.2.2) with the following adaptations to exploit
modern hardware features: (1) The data layout is already designed
for main memory, thus no adaptations were necessary in this regard.
(2) For using multiple threads, we use exactly the same method
as for the R*-tree. (3) We exploit SIMD instructions as shown in
Listing 2 for intersecting the query object with the data object in
all nodes of the kd-tree.

5.3 VA-file
We also implemented the VA-file from scratch using the following
adaptations to the original method as described in Section 2.2.3:
(1) All buckets are stored in main memory. The bucket size is de-
rived from the length of the approximations; based on preliminary
experiments, we use 2 bits per dimension for the approximations
with values roughly evenly dividing the space per dimension, lead-
ing to partitions holding approx. n/(4m) data objects. (2) Again, we
horizontally partition all data at random and build one VA-file per
partition. (3) We use the algorithm from Listing 2 to compare the
query object to all data objects from buckets whose approximations
intersect the approximated query.

5.4 Parallel Scan on Horizontally Partitioned
Data

For scanning horizontally partitioned data, we (1) hold partitions in
p independentm-dimensional arrays, where we set p to the number
of available hardware threads. (2) These arrays are concurrently

scanned using amultidimensional range scan (see Listing 1). (3) Dur-
ing this scan, every data object is matched to the query object using
SIMD instructions. Therefore, we replace the inner loop of the mul-
tidimensional range scan (see Lines 7-16 from Listing 1) with the
vectorized algorithm shown in Listing 2.

5.5 Parallel Scan on Vertically Partitioned Data
For scanning vertically partitioned data, we (1) hold all partitions in
m one-dimensional arrays, each storing the value of one dimension
per data object. (2) These arrays are concurrently scanned during
anMDRQ; for partial-match queries, only the dimensions addressed
in a query are accessed. Note that in this approach the degree of
parallelism of a MDRQ is constrained by the number of dimensions
specified in the query. Each partition creates one bitmask of size
n, which are subsequently merged using efficient bitwise AND.
Merging is performed in t chunks of equal size. (3) In vertically par-
titioned data, only single dimensions of data objects are compared
to the query object, hence the SIMD code from Listing 2 cannot
be used. Instead, we vectorize each one-dimensional range scan
similar to the approach proposed by Zhou and Ross [43].

6 GENOMIC MULTIDIMENSIONAL RANGE
QUERY BENCHMARK (GMRQB)

The strength of any evaluation of MDRQ critically depends on the
data and queries used. MDIS may perform very different for data
following different distributions (uniform, unimodal or multimodal
clustered, clustered in subspaces, etc.) and workloads of different
characteristics (hot spot regions, partial- or complete-match queries,
selectivities, etc.). While many evaluations of MDIS are performed
only on synthetic data or synthetic workloads (such as [20], [31],
or [39]), with the obvious advantages of being able to influence
many parameters of the data and the workloads, we strived to also
evaluate all our compared methods on real-world multidimensional
data and workloads. To this end, we created a novel benchmark
derived from genomics data for evaluating approaches to MDRQ.
This section presents the GMRQBenchmark, which consists of eight
parameterized real-world (partial- and complete-match) MDRQ
over a dataset of 10 Million genomic variations derived from the
1000 Genomes Project [8]. Thus, the benchmark consists of both
real-world queries and real-world data. Data points are of moderate
dimensionality (19 dimensions), and attributes feature very different
numbers of distinct values. The dataset our benchmark builds upon
is publicly available11, which allows reproduction of our evaluation
results and facilitates further research on MDRQ.

6.1 Variations and MDRQ
A human genome consists of approx. three Billion base pairs (the
DNA) structured in 23 chromosomes. When sequencing a human,
i.e., experimentally determining its genome, these three Billion
base pairs are typically compared to a so-called human reference
genome modeling a hypothetical "normal" human genome [18].
Deviations from this reference are typically called variations [7]
(or mutations if they affect the human in some negative sense). On

11http://www.internationalgenome.org/data

Multidimensional RangeQueries on Modern Hardware preprint, 2018

GMRQB Query Template Average Selectivity Average # of Queried Dimensions

Query Template 1 10.76% (σ = 7.24%) 2 (σ = 0.0)
Query Template 2 2.19% (σ = 2.27%) 5 (σ = 0.0)
Query Template 3 5.36% (σ = 3.61%) 3 (σ = 0.0)
Query Template 4 0.22% (σ = 0.15%) 4 (σ = 0.0)
Query Template 5 0.20% (σ = 0.15%) 5 (σ = 0.0)
Query Template 6 0.11% (σ = 0.11%) 6 (σ = 0.0)
Query Template 7 0.05% (σ = 0.06%) 7 (σ = 0.0)
Query Template 8 0.00001% (σ = 0.00002%) 19 (σ = 0.0)
Mixed Workload 1.58% (σ = 3.58%) 5.81 (σ = 4.11)

Table 1: GMRQB query templates.

average, a human genome features approx. 4-5 Million such varia-
tions [8]. Variations are not distributed at random over the genome,
but certain regions are more prone to variations than others. For
instance, coding regions, i. e., the forming genes, carry relatively
few variations due to evolutionary pressure, whereas inter-gene re-
gions are comparably variation-rich [21]. The premise of precision
medicine12 is to correlate an individual’s variation profile to his or
her susceptibility to diseases and treatment [28]. An important part
of research in precision medicine is concerned with collecting large
numbers of genomes together with medical information about the
individual, and to perform statistical analysis of variation profiles
regarding commonalities and differences between individuals w.r.t.
health-related issues. In such studies, researchers routinely search
for sets of variations sharing certain characteristics, e. g., being in
the same genomic region, being present in the same class of diseases
or a similar group of patients, being present in patients reacting in
the same way to medication, etc. These searches eventually result
in MDRQ on large variation databases, like [16].

6.2 The GMRQ Benchmark
The 1000 Genomes Project published the DNA of 2,504 human in-
dividuals from across the world to facilitate research in precision
medicine and related areas [8]. The entire dataset includes 84.4
Million distinct variations grouped by individual and by genomic
location. Each variation is characterized by a broad set of attributes,
of which we use 19 for our benchmark dataset: Chromosome and
location define the genomic position of the variation. Quality, depth,
and reference_genome are meta data derived from the sequencing
procedures. Variation_id, allele_freq, allele_count, ref_base, alt_base,
ancestral_allele, and variant_type are meta data of the individual
variation. Finally, attributes sample_id, gender, family_id, popula-
tion, relationship, and genotype characterize the human being in
which a particular variation was found. More details on this dataset
can be found on our website.

The workload of the Genomic Multidimensional Range Query
Benchmark (GMRQB) consists of eight realistic query templates,
designed by a group of Bioinformaticians, that retrieve specific
subsets of genomic variations interesting for further analysis. These
queries specify range predicates on some, most, or all dimensions.
Predicates may either specify single points or ranges of different
sizes; for instance, we always use a point query for the attribute
gender, yet always use ranges for the attribute location. All queries of
GMRQB include predicates on the genomic location, i. e., attributes
chromosome and location. Queries in the workload are templates

12See, for instance, https://allofus.nih.gov/.

where specific ranges have to be instantiated with meaningful
values. For the genomic location, we use the RefSeq13 database to
align genomic ranges to coding regions and fill other variables using
values found in the 1000 Genomes Project dataset. Our website
provides all query templates of GMRQB. Table 1 shows the average
selectivity and average number of queried dimensions of each query
template. Except Query Template 8, all query templates are partial-
match queries. As a concrete example, we list an instance of Query
Template 3, which selects all variations from a certain location
range on a certain chromosome which match the specified ranges
on quality, depth, and allele_freq:
SELECT * FROM variations

WHERE chromosome = 5

AND location BETWEEN 100000 AND 1000000

AND quality BETWEEN 10 AND 100

AND depth BETWEEN 10 AND 1000

AND allele_freq BETWEEN 0.5 AND 1;

7 EVALUATION
The objective of our evaluation is to investigate the performance
of MDRQ on modern hardware. To this end, we compare three
MDIS and two scan variants, which we adapted as described in
Section 5, using synthetic and real-world workloads on synthetic
and real-world datasets.

7.1 Experimental Setup
7.1.1 Hardware. Weexecuted all experiments on a server equipped

with two Intel Xeon E5-2620 CPUs (2 GHz clock rate, 6 cores, 12
hardware threads) and 32 GB RAM. In total, the machine features 12
cores and 24 hardware threads (hyperthreads). The CPU supports
AVX instructions on 256-bit SIMD registers.

We also ran the experiments on another hardware platform
to prove that our findings do not depend on the used hardware
architecture. It features one Intel i7-5930K CPU (3.5 GHz clock rate,
6 cores, 12 hardware threads, AVX instructions) and 32 GB RAM.
The experimental results are very similar on both platforms (data
provided on our website).

7.1.2 Methodology. We present only experiments, where caches
are warmed up (hot cache). All datasets are inserted in random
order14. All experiments measure throughput, which is the number
of operations, in our case MDRQ, each contestant can execute per
second. Typically, we run a query workload consisting of 1,000
queries and measure the time ts each contestant needs to execute
all queries. Then we divide the number of executed queries by ts to
get the throughput.

7.1.3 Competitors. We include the R∗-tree [2], the kd-tree [3],
the VA-file [41] and a parallel scan over horizontally and vertically
partitioned data in our experiments. All contestants are evaluated
with and without multi-threading and SIMD instructions. All MDIS
employ horizontal partitioning, which allows to use the same algo-
rithms as for a single-threaded search. Unless otherwise noted, we

13https://www.ncbi.nlm.nih.gov/refseq/
14Note that hierarchical MDIS show an improved performance on non-uniform dis-
tributions given that data are inserted in sorted order and queries follow the same
distribution (results not shown).

preprint, 2018

Dataset Data Objects Dimensions Domain per Dimension (real numbers) Distinct Values per Dimension Raw Dataset Size (MB)

SYNT-UNI 10k 5 [0,1] 9,950 (avg) 0.19 MB
(uniform distribution) 100k 5 [0,1] 95,175 (avg) 1.91 MB

1M 5-100 [0,1] 632,257 (avg) 19.07 MB - 381.47 MB
10M 5 [0,1] 999,956 (avg) 190.74 MB

SYNT-CLUST
(with clusters)

1M 5 [0,1] 632,047 (avg) 19.07 MB

POWER 10k 3 [2556001,2566000]; [12857,17281]; [14142,19278] 10,000; 627; 698 0.11 MB
100k 3 [2556001,2656002]; [12466,18247]; [13698,20395] 100,000; 2,089; 2,290 1.14 MB
1M 3 [2556001,3556003]; [12466,18770]; [13698,20704] 1,000,000; 4,325; 4670 11.44 MB
10M 3 [2,9875683]; [12282,24623]; [13281,26879] 9,875,681; 6,840; 7,634 114.44 MB

GMRQB 10M 19 Our website provides a detailed description of all dimension data of GMRQB. 724.79 MB

Table 2: A description of the datasets used in our experiments.

set p = t for horizontal partitioning to exploit all available process-
ing units and because we do not expect any stragglers that would
benefit from using p > t .

7.1.4 Software. All software was implemented in C++11 and
was compiled with GCC 4.8 using optimization flag -O3. We use
an open-source thread pool library15 to enable the reuse of POSIX
threads. The R∗-tree is based on the open-source implementation
libspatialindex. On our website, we describe how to apply SIMD
instructions to the used R∗-tree implementation. For the remaining
contestants, we use our own implementations.

7.2 Experimental Data and Workloads
We evaluate MDRQ on four different datasets. Table 2 provides the
number of data objects, number of dimensions, domains of each
dimension, distinct values of each dimension (for synthetic data,
we provide average values over all dimensions), and raw dataset
size. For all datasets, we use 32-bit floating-point values to man-
age dimension data. The used R∗-tree implementation uses 64-bit
floating-point values. When comparing the memory consumption
of the contestants, MDIS need between 2.5 and 5.4 times more
space than a sequential scan (data provided on our website). For the
datasets SYNT-UNI, SYNT-CLUST and POWER, we use synthetic
workloads containing only complete-match MDRQ. For GMRQB,
we execute both complete-match and partial-match MDRQ.

7.2.1 SYNT-UNI. Synthetic data facilitates experiments with
arbitrary dataset sizes (10k to 10M data objects) and dimensionali-
ties (5 to 100 dimensions). For SYNT-UNI, we generate uniformly
distributed data objects within the domain [0,1]. For most experi-
ments with SYNT-UNI, we generate MDRQ by randomly choosing
two objects from the generated data and use those as lower/upper
boundary. This results in queries with varying selectivities.

7.2.2 SYNT-CLUST. In contrast to the uniformly distributed
SYNT-UNI, the 5-dimensional dataset SYNT-CLUST features be-
tween 1 and 20 clusters. It is well known that MDIS struggle with
data, where the uniform assumption does not hold [10]. For SYNT-
CLUST, we used a data generator provided by Müller et al. [29].
Within each cluster, data are uniformly distributed. We generate
query workloads using the same technique as for SYNT-UNI.

15https://github.com/vit-vit/CTPL

7.2.3 POWER. The real-world dataset POWER is obtained from
the DEBS 2012 challenge16. As in previous studies [39] with this
dataset, we index three dimensions. As for the synthetic datasets,
we generate MDRQ by randomly choosing two data objects from
POWER and use those as lower/upper boundary.

7.2.4 GMRQB. We index genomic variation data provided by
the 1000 Genomes Project. Using our own data importer, we trans-
form raw variation data into 19-dimensional feature vectors (data
objects). Attributes originally stored as strings, like the population
of a sample, are transformed into floating-point values by hash-
ing. Our website provides a detailed description of all attributes
including the domain and number of distinct values17. For GM-
RQB, we use eight realistic MDRQ templates. We also evaluate
a mixed workload that consists of all query templates randomly
mixed together.

7.3 Impact of Multi-Threading and
Vectorization

Figure 4 shows the throughput of MDRQ with an average selectiv-
ity of 0.1% (σ = 0.002%) on 1M uniformly distributed data objects
of moderate dimensionality (dataset SYNT-UNI) depending on the
used hardware features. For all contestants, we evaluate a single-
threaded (baseline) implementation, a single-threaded implementa-
tion exploiting SIMD instructions, amulti-threaded implementation,
and a multi-threaded implementation using SIMD instructions.

7.3.1 Multi-Threading. First, we compare single-threaded to
multi-threaded implementations (both without SIMD), where we
used 24 software threads, which equals to the number of avail-
able hardware threads. Due to a dimensionality of m = 20, the
scan with vertical partitioning uses only 20 threads. No contes-
tant achieves a speedup factor near 24X. Apparently, the speedup
is bounded by the number of physical cores, which equals to 12
in our evaluation machine. Hyper-threading is only beneficial for
multi-threaded applications, where threads are frequently waiting
for data to be loaded from main memory into CPU caches, making
memory accesses the bottleneck; this is also described as "blocking".
In contrast, for the highly-selective query workload considered
here, most of the time the contestants are compute-bound. Even

16http://debs.org/?p=38
17https://www2.informatik.hu-berlin.de/~sprengsz/mdrq/#gmrqb

Multidimensional RangeQueries on Modern Hardware preprint, 2018

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

101

102

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

Single-Threaded without SIMD Single-Threaded with SIMD

Multi-Threaded without SIMD Multi-Threaded with SIMD

Figure 4: Throughput when executing MDRQ with an aver-
age selectivity of 0.1% on 1M 20-dimensional data objects de-
pending on the used hardware features.

both scans and the VA-file are not memory-bound, because too
many early breaks18 occur.

7.3.2 Vectorization. The scan with vertical partitioning is the
only contestant that benefits notably from vectorization, whereas
MDIS and scans employing horizontal partitioning show almost no
impact. When using SIMD instructions to compare MDRQ search
objects with horizontally partitioned data objects, they have to
compare at least eight dimensions before being able to prune further
comparisons. In contrast, the scalar search allows early breaks as
soon as the first mismatch occurs. However, for query workloads
with a low selectivity and therefore fewer early breaks, the benefits
from using SIMD instructions to process horizontally partitioned
data increase (data not shown).

7.3.3 Multi-Threading & Vectorization. Although the scan with
vertical partitioning shows comparatively small performance gains
from multi-threading, when combining multi-threading with SIMD
instructions it shows the largest speedup over a single-threaded
scalar implementation among all contestants. In contrast, the re-
maining approaches, which all employ horizontal partitioning, ben-
efit from multi-threading but show negligible performance gains
when using SIMD instructions on top. For the subsequent exper-
iments, we apply multi-threading and vectorization to all contes-
tants.

7.4 Synthetic Data (Uniform Distribution)
7.4.1 Dimensionality. We measure the throughput of the con-

testants when executing MDRQ on 1M randomly generated data ob-
jects with different dimensionalities (5 to 100 dimensions). Clearly,
the query selectivity increases with a growing dimensionality. The
average query selectivity is 0.4% (σ = 1.1%) for 5 dimensions, 0.002%
(σ = 0.01%) for 10 dimensions, and 0.0002% (σ = 0.00003%) for more
than 10 dimensions. Figure 5 shows the results.

The kd-tree achieves the highest throughput among all contes-
tants regardless of the dimensionality. For up to 30 dimensions, the
R∗-tree shows the second best performance. For data with more di-
mensions, it is outperformed by the VA-file, which is less affected by
the dimensionality of data. While the parallel scan employing hori-
zontal partitioning shows a rather stable throughput independent
18When comparing a search object with a data object dimension by dimension, as
soon as the first mismatch occurs, further comparisons can be pruned.

5 15 25 35 45 55 65 75 85 95

102

Dimensions

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 5: Throughput when executing range queries with an
average selectivity of 0.4% (5 dimensions) to 0.0002% (> 10
dimensions) on 1M uniformly distributed data objects using
24 software threads depending on dimensionality.

0 1 2 3 4 5 6 7 8 9 10 20 60 100
100

102

Query Selectivity (%)

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 6: Throughput when executing range queries on 1M
5-dimensional uniformly distributed data objects using 24
software threads depending on query selectivity.

from dimensionality, the performance of the scan using vertical
partitioning decreases when dimensionality increases. In vertical
partitioning, the number of partitions depends on the dimensional-
ity of the feature space (p =m). The performance decreases because
a growing number of partial result sets need to be managed and
intersected when synchronizing CPU threads.

7.4.2 Query Selectivity. We measure the throughput of all con-
testants when executing MDRQ on 1M randomly generated 5-
dimensional data objects following an uniform distribution w.r.t.
query selectivity. Figure 6 shows the results.

For queries with a very high selectivity (≤ 1%), the kd-tree shows
the highest throughput and is closely followed by the R∗-tree. For
queries with a lower selectivity (> 1%), both parallel scans as well as
the VA-file show the best performance and clearly outperform the
hierarchical MDIS kd-tree and R∗-tree. Overall, the performance of
both scan variants and the (non-hierarchical) VA-file is very similar.

The throughput of all contestants decreases for queries with
a lower selectivity for multiple reasons: (1) larger (partial) result
sets need to be managed and synchronized impacting especially
the scan on vertically partitioned data, (2) approaches employing
horizontal partitioning can prune less dimensions when comparing
MDRQ with data objects resulting in fewer early breaks, and (3)
hierarchical MDIS (R∗-tree and kd-tree) cannot prune subtrees but
must visit the vast majority of tree nodes, which leads to lots of

preprint, 2018

104 105 106 107
101

102

103

104

Data Objects

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 7: Throughput when executing range queries with an
average selectivity of 0.4% on 5-dimensional uniformly dis-
tributed data objects using 24 software threads depending
on the dataset size.

cache misses due to random access. The latter has the largest impact
on the performance of MDRQ. Therefore, also on modern hardware,
hierarchical MDIS remain very sensitive to query selectivity.

7.4.3 Dataset Size. We measure the throughput when execut-
ing MDRQ with an average selectivity of 0.4% (σ = 1.1%) on 5-
dimensional data objects following an uniform distribution w.r.t.
the number of objects. Figure 7 shows the results.

As expected, when the number of data objects increases, the
search throughput of all contestants decreases because a growing
number of data objects match the query. Interestingly, both par-
allel scans, especially the variant employing vertical partitioning,
outperform MDIS for small datasets consisting of up to 105 objects,
although the query selectivity is very high. MDIS do not seem
to be worthwhile for such small amounts of data. As the dataset
size increases, the pruning techniques of MDIS pay off. MDIS can
efficiently reduce the data space while the parallel scans have to
consider all data objects for query evaluation.

7.5 Synthetic Data (Clusters)
We measure the throughput when executing MDRQ on 1M 5-
dimensional data objects from the dataset SYNT-CLUST depending
on the number of clusters. Recall that we are generating MDRQ by
randomly picking two data objects as range boundaries. Thus, one
MDRQ may cross several clusters, which results in a decreasing
query selectivity as the number of clusters increases: 1 cluster (avg
0.38%, σ = 0.94%), 5 clusters (avg 16.24%, σ = 19.13%), 10 clusters
(avg 23.12%, σ = 21.88%), and 20 clusters (avg 27.40%, σ = 22.71%).
Figure 8 shows the results of this experiment.

Although the R∗-tree and the kd-tree achieve the best throughput
for the dataset with one cluster, their performance decreases as the
number of clusters increases (which implies decreasing selectivities).
In contrast, the VA-file and both parallel scans are less affected.
Their throughput is almost independent of the number of clusters.

7.6 POWER
We measure the throughput of the contestants when executing
MDRQ with an average selectivity of 11.12% (σ = 13.43%) on the

1 5 10 20

101

102

Clusters

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 8: Throughput when executing range queries with an
average selectivity of 0.38% (1 cluster) to 27.40% (20 clusters)
on 1M 5-dimensional data objects using 24 software threads
depending on the number of clusters.

104 105 106 107

100

102

104

Data Objects

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 9: Throughput when executing range queries with an
average selectivity of 11.12% on the 3-dimensional POWER
dataset using 24 software threads depending on dataset size.

POWER dataset. In contrast to Figure 7, which shows the through-
put for uniformly distributed data, Figure 9 visualizes the through-
put on (skewed) real-world data of varying dataset size. This ex-
periment confirms that the throughput of all contestants decreases
when the number of data objects increases. As opposed to the experi-
ments on synthetic data, scan-based approaches always outperform
hierarchical MDIS regardless of dataset size.

7.7 GMRQ Benchmark
We first study the throughput of all contestants when executing
the query templates from the GMRQ Benchmark. Each template is
instantiated 100 times using values derived from the 1000 Genomes
Project dataset, as described in Section 6.2. Figure 10 shows the
results of this experiment for each template and a mixed work-
load. Both parallel scans outperform all evaluated MDIS for the
Mixed Workload, Query Template 1, Query Template 2 and Query
Template 3. For Query Templates 4-8, which select only few data ob-
jects and have a selectivity (much) below 1%, especially the kd-tree
shows its strengths and outperforms scanning.

In the next experiment, using the Mixed Workload, we evalu-
ate the scalability of all contestants depending on the number of
used threads. Note that the Mixed Workload of GMRQB consists of
partial- and complete-match MDRQ that query 5.81 dimensions on

Multidimensional RangeQueries on Modern Hardware preprint, 2018

Query
Template 1

(sel = 10.76%)

Query
Template 3
(sel = 5.36%)

Query
Template 2
(sel = 2.19%)

Mixed
Workload

(sel = 1.58%)

Query
Template 4
(sel = 0.22%)

Query
Template 5
(sel = 0.20%)

Query
Template 6
(sel = 0.11%)

Query
Template 7
(sel = 0.05%)

Query
Template 8

(sel = 0.00001%)

100

101

102

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R∗-tree kd-tree VA-file Scan (Horizontal Partitioning) Scan (Vertical Partitioning)

Figure 10: Throughput of contestants when executing the GMRQB with varying selectivities on 10M 19-dimensional data
objects from the 1000 Genomes Project dataset using 24 software threads (query templates are ordered by selectivity).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

2

4

6

8

Software Threads

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 11: Throughput of contestants when executing the
MixedWorkload fromGMRQB on 10M 19-dimensional data
objects depending on the number of used software threads.

average (σ = 4.11), which limits the potential benefits from multi-
threading for vertical partitioning. Figure 11 shows the results.

Formost contestants, the speedup frommulti-threading is bounded
by the number of physical cores. Confirming a memory access bot-
tleneck, only the R∗-tree and the kd-tree benefit from using more
software threads than available physical cores, because hierarchi-
cal MDIS require many random accesses when evaluating queries
having amoderate/low selectivity, which is in contrast to the highly-
selective query workload from Section 7.3.1. When comparing the
number of last level cache (LLC) misses19 of single-threaded imple-
mentations it becomes clear that they are more frequently blocking
than the scan-based approaches and therefore benefit from hyper-
threading. For this workload, hierarchical MDIS show a 8X higher
number of LLC misses than the VA-file and a 19X higher num-
ber of LLC misses than the sequential scan. Using more software
threads than available virtual CPU cores (> 24) does neither yield
performance benefits nor disadvantages.

8 SUMMARY AND DISCUSSION
Our comparison of two hierarchical tree-based MDIS (R∗-tree, kd-
tree), the VA-file, and two scan variants with different partitioning
techniques after adapting them to the usage of main-memory stor-
age, multi-threading and SIMD instructions allows for a number

19A last level cache miss occurs whenever data need to be transferred from main
memory to the CPU caches.

of interesting observations. As expected, MDIS in general excel for
queries with very high selectivities as in such settings they can
prune substantial parts of the search space and have to compare
only a few data objects to the query. The main goal of our study
was to re-evaluate the break-even point at which these advantages
supersede the major disadvantage of MDIS, namely random access
to the memory. Our experiments show that this point is surprisingly
low, at around 1% selectivity, and thus much lower than the con-
ventional rule-of-thumb, which targeted IO-based index structures.
Although similar findings have been reported for one-dimensional
range scans [9], to the best of our knowledge, we are the first to
confirm these performance characteristics for the multidimensional
case. Following the results of our study, scanning should be favored
over indexing except for very selective queries. One should also
note that highly selective queries are anyway very fast, regard-
less of the method used, which means that the absolute savings in
time MDIS offer in such settings are very small. On top, scan-based
MDRQ are much easier to handle, require no additional storage,
are almost unaffected from the dimensionality of the data, lead to
simple and effective load balancing, and offer predictable runtimes,
which is a major plus when it comes to orchestrating the multiple
operations of a complex analytical query.

There are also a number of further observations. Among the
two hierarchical MDIS, in our evaluation the kd-tree clearly outper-
forms the R*-tree, which is not too much of a surprise as the R*-tree
was originally designed to manage spatial objects and not points
as was the case here. The VA-file offers almost never an advantage
when compared to scans, but requires additional memory and syn-
chronization. It only appears to be a sensible choice for data with
very high dimensionality, in which case, however, also the memory
requirements are large. When comparing the two scan methods, it
seems that for complete-match queries the horizontal partitioning
is preferable, whereas partial-match queries, especially if only a few
dimensions are addressed, are handled more efficiently by scans
over vertically partitioned data.

However, when considering our results one should always keep
in mind that our adaptations to the indexes and scans we used were
rather conservative. We already listed several ideas how the differ-
ent methods could be further improved to take full advantage of
modern hardware, like selectivity-based re-ordering of dimensions
for matching data objects with the query, two-level partitioning for

preprint, 2018

vertical scans for queries targeting less dimensions than available
threads, adaptive hashing schemes for the VA-file, etc. Another
obvious idea would be the usage of compression, especially for
vertical partitioning [1]. Furthermore, we only looked at analytical
workloads, although our implemented methods are all fully up-
dateable; actually, we performed many experiments with different
randomized insertion orders but could not observe any significant
differences in runtimes (data not shown).

ACKNOWLEDGMENTS
We would like to thank the bioinformaticians from our working
group, especially Yvonne Lichtblau, for their valuable feedback on
the design of the GMRQ Benchmark.

Stefan Sprenger is funded by the Deutsche Forschungsgemein-
schaft through graduate school SOAMED (GRK 1651).

REFERENCES
[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-

sion and execution in column-oriented database systems. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data. 671–682.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-Tree: An Efficient and Robust Access Method for Points and Rect-
angles. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data. 322–331.

[3] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-
tive Searching. Commun. ACM (1975).

[4] Stefan Berchtold, Christian Böhm, Bernhard Braunmüller, Daniel A. Keim, and
Hans-Peter Kriegel. 1997. Fast Parallel Similarity Search in Multimedia Databases.
In Proc. of the ACM SIGMOD Int. Conf. on Management of Data. 1–12.

[5] Stefan Berchtold, Christian Böhm, Daniel A. Keim, Hans-Peter Kriegel, and
Xiaowei Xu. 2000. Optimal Multidimensional Query Processing Using Tree
Striping. In Data Warehousing and Knowledge Discovery. 244–257.

[6] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. 2001. Searching in
High-dimensional spaces: Index Structures for Improving the Performance of
Multimedia Databases. ACM Comput. Surv. 33, 3 (2001), 322–373.

[7] 1000 Genomes Project Consortium et al. 2012. An integrated map of genetic
variation from 1,092 human genomes. Nature 491, 7422 (2012), 56–65.

[8] 1000 Genomes Project Consortium et al. 2015. A global reference for human
genetic variation. Nature 526, 7571 (2015), 68–74.

[9] Dinesh Das, Jiaqi Yan, Mohamed Zaït, Satyanarayana R. Valluri, Nirav Vyas, Ra-
marajan Krishnamachari, Prashant Gaharwar, Jesse Kamp, and Niloy Mukherjee.
2015. Query Optimization in Oracle 12c Database In-Memory. PVLDB 8, 12
(2015), 1770–1781.

[10] Christos Faloutsos and Ibrahim Kamel. 1994. Beyond Uniformity and Indepen-
dence: Analysis of R-trees Using the Concept of Fractal Dimension. In Proc. of
the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. 4–13.

[11] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database – An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[12] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure for
Retrieval on Composite Keys. Acta Inf. 4 (1974), 1–9.

[13] Volker Gaede and Oliver Günther. 1998. Multidimensional Access Methods. ACM
Comput. Surv. 30, 2 (1998), 170–231.

[14] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeni-
coni. 2005. Selectivity estimators for multidimensional range queries over real
attributes. The VLDB Journal 14, 2 (2005), 137–154.

[15] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD, Proc. of Annual Meeting. 47–57.

[16] Jörg Hakenberg, Wei-Yi Cheng, Philippe E. Thomas, Ying-Chih Wang, Andrew V.
Uzilov, and Rong Chen. 2016. Integrating 400 million variants from 80, 000 human
samples with extensive annotations: towards a knowledge base to analyze disease
cohorts. BMC Bioinformatics 17 (2016), 24.

[17] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant.
1997. Range Queries in OLAP Data Cubes. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data. 73–88.

[18] International Human Genome Sequencing Consortium and others. 2004. Finish-
ing the euchromatic sequence of the human genome. Nature 431, 7011 (2004),
931–945.

[19] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In Proc. of
the 27th Int. Conf. on Data Engineering. 195–206.

[20] Kihong Kim, Sang Kyun Cha, and Keunjoo Kwon. 2001. Optimizing Multidimen-
sional Index Trees for Main Memory Access. In Proc. of the ACM SIGMOD Int.
Conference on Management of Data. 139–150.

[21] Mary-Claire King and Allan C Wilson. 1975. Evolution at two levels in humans
and chimpanzees. (1975).

[22] Nick Koudas, Christos Faloutsos, and Ibrahim Kamel. 1996. Declustering Spatial
Databases on a Multi-Computer Architecture. In Proc. of the 5th Int. Conf. on
Extending Database Technology. 592–614.

[23] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In 29th IEEE Int. Conf. on Data Engineering.
302–313.

[24] Heng Li. 2011. Tabix: fast retrieval of sequence features from generic TAB-
delimited files. Bioinformatics 27, 5 (2011), 718–719.

[25] Xin Li, Young-Jin Kim, RameshGovindan, andWei Hong. 2003. Multi-dimensional
range queries in sensor networks. In Proc. of the 1st Int. Conf. on Embedded
Networked Sensor Systems. 63–75.

[26] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main memory
data processing. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data.
289–300.

[27] Weifa Liang, Hui Wang, and Maria E. Orlowska. 2000. Range queries in dynamic
OLAP data cubes. Data Knowl. Eng. 34, 1 (2000), 21–38.

[28] Astrid Lievre, Jean-Baptiste Bachet, Delphine Le Corre, Valerie Boige, Bruno
Landi, Jean-François Emile, Jean-François Côté, Gorana Tomasic, Christophe
Penna,Michel Ducreux, et al. 2006. KRASmutation status is predictive of response
to cetuximab therapy in colorectal cancer. Cancer research 66, 8 (2006), 3992–3995.

[29] Emmanuel Müller, Stephan Günnemann, Ira Assent, and Thomas Seidl. 2009.
Evaluating Clustering in Subspace Projections of High Dimensional Data. PVLDB
2, 1 (2009), 1270–1281.

[30] Jürg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. 1984. The Grid File:
An Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst. 9,
1 (1984), 38–71.

[31] Bernd-Uwe Pagel, Hans-Werner Six, Heinrich Toben, and Peter Widmayer. 1993.
Towards an Analysis of Range Query Performance in Spatial Data Structures.
In Proc. of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. 214–221.

[32] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data. 1493–1508.

[33] John T. Robinson. 1981. The K-D-B-Tree: A Search Structure For Large Multidi-
mensional Dynamic Indexes. In Proc. of the ACM SIGMOD Int. Conf. on Manage-
ment of Data. 10–18.

[34] Nick Roussopoulos, Yannis Kotidis, and Mema Roussopoulos. 1997. Cubetree:
Organization of and Bulk Updates on the Data Cube. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data. 89–99.

[35] Bernd Schnitzer and Scott T. Leutenegger. 1999. Master-Client R-Trees: A New
Parallel R-Tree Architecture. In SSDBM. 68–77.

[36] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data. 23–34.

[37] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J.
O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik. 2005.
C-Store: A Column-oriented DBMS. In Proc. of the 31st Int. Conf. on Very Large
Data Bases. 553–564.

[38] Helga Thorvaldsdóttir, James T. Robinson, and Jill P. Mesirov. 2013. Integrative
Genomics Viewer (IGV): high-performance genomics data visualization and
exploration. Briefings in Bioinformatics 14, 2 (2013), 178–192.

[39] Sheng Wang, David Maier, and Beng Chin Ooi. 2016. Fast and Adaptive Indexing
of Multi-Dimensional Observational Data. PVLDB 9, 14 (2016), 1683–1694.

[40] Roger Weber, Klemens Böhm, and Hans-Jörg Schek. 2000. Interactive-Time
Similarity Search for Large Image Collections Using Parallel VA-Files. In Research
and Advanced Technology for Digital Libraries. 83–92.

[41] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In Proc. of 24th Int. Conf. on Very Large Data Bases. 194–205.

[42] Tilmann Zäschke, Christoph Zimmerli, and Moira C. Norrie. 2014. The PH-tree:
a space-efficient storage structure and multi-dimensional index. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data. 397–408.

[43] Jingren Zhou and Kenneth A. Ross. 2002. Implementing database operations
using SIMD instructions. In Proc. of the ACM SIGMOD Int. Conf. on Management
of Data. 145–156.

