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ABSTRACT

Software support tickets contain short and noisy text from users.

Software products are represented by various surface forms and

informal abbreviations created by users. Automatically identifying

software mentions from tickets and determining the official names

(and versions) are helpful for many downstream applications, e.g.,
routing the support tickets to the right team of experts supporting

the software. In this work, we study the problem of software product
name extraction and linking from support tickets. We first analyze

a collection of annotated tickets to understand the language pat-

terns. Second, we design features using multiple in-domain and web

knowledge sources, for the extraction and linking with linear mod-

els. Experiments on four datasets show better and more consistent

results of our methods compared to neural network baselines.

1 INTRODUCTION

A European software company offers over a thousand applications

in its product portfolio, covering a wide variety of business pro-

cesses. These products are installed and used by hundreds of thou-

sands of business customers around the world. A few thousand

support engineers are employed and trained to provide technical

assistance to such large customer base around-the-clock. Their jobs

include receiving and analyzing support tickets from customers,

before assisting them. During an investigation, one of the first clues

to look for is to which software and version the problem is affecting.

Some issues only affect specific versions of a product, while some

incidents occur only after a version upgrade. From a ticket, extract-

ing software mentions and correctly linking them to the product

and version would benefit the whole process of software support.

Examples are automatic ticket analysis and understanding [1, 18],

advanced ticket search [9] and classification [12], root cause anal-

ysis [27], resolution recommendation [2, 44, 45] , and in-domain

knowledge-base construction [37, 40].

Software support tickets contain structured customer related

information and free text. The latter is user-generated, domain-

specific, sometimes ambiguous. Many nouns are homonyms, and

may refer to multiple objects or products. Figure 1 shows a sample
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‘

SAP NetWeaver 7.0SAP ERP 6.0

Ticket ID 2758

Meta Product SAP ERP 6.0

Subject Java is not coming up after the DB restore

Free Text
We are in ERP 6.0 NW 7.0 SP6 running on windows OS 2003 & 
database version is MSSQL 2008. We did the DB restore for the LE1 
system from PE1 system. After finishing ERP shows error message …

Figure 1: An example ticket, with product and version men-

tions and the official names of the linked products.

labeled ticket, in which “NW" is an abbreviation of SAP NetWeaver.
Without mentioning an explicit version, it could be used to substi-

tute to any version of the SAP NetWeaver family. Hence, contextual

information is useful in determining the correct product in the ticket.

On the other hand, a product may have multiple aliases created by

customers. For example, our analysis of customer tickets found that

SAP NetWeaver 7.4 has 21 different known aliases. Moreover, as

the tickets are human-generated, grammatical and typographical

errors are unavoidable.

Existing information extraction applications on IT tickets mainly

relies on text syntax and structure patterns, e.g., Part-of-Speech
(POS) tags [1, 28, 37]. Studies on other domain-specific named entity

extraction and linking problems mainly use local and contextual

information, with limited external knowledge [30, 36, 39, 41]. In

this paper, we present a solution for extracting and linking software

product names. Our main contributions are:

• We analyze a collection of manually annotated tickets, for their

language patterns, especially on homonyms and synonyms of

software product mentions (Section 3).

• We explore multiple resources and techniques in designing

a rich set of domain-specific features for software mention

recognition. A linear chain Conditional Random Field (CRF)

model is then applied (Section 4).

• We evaluate the CRF model against the state-of-the-art deep

neural network models.Results show that linear CRF models

with deliberately designed domain features outperform neural

models (Section 5).

2 RELATEDWORK

Software entity extraction has been studied to understand software

usages. Pan et al. [24] propose a bootstrapping method to extract

software entities from scientific publications using contextual pat-

tern matching techniques. Compared to formal articles, software

tickets are significantly less formal and noisier. A different set of

features and knowledge sources are required to cater for of name



variations and other irregularities in our problem setting. Ye et
al. [42, 43] investigate software-related terminologies (e.g., pro-
gramming languages, platforms, and APIs) extraction from Stack

Overflow, a question-answering platform. Our work differs from

theirs because product names to be extracted do not fit into their

categorization. Further, we also perform linking of the extracted

mentions to a catalog of formal products.

In an e-commerce context, Putthividhya and Hu [30] extract

product names and properties from online marketplace listings

using a supervised learning approach. Theirmethod also links brand

mentions to a catalog and discovers new brands. On the CPROD1

contest dataset [20], Wu et al. [39] propose a hybrid framework

for product mention recognition and linking to a product catalog

with a large number of products. Yao and Sun [41] investigate

mobile phone names extraction and normalization using a novel

semi-supervised labeling scheme to generate training data at scale.

The weakly labeled data are used to train a linear CRF model to

recognize mobile phone names from online forums.

Focusing on the linking aspect of the problem, Vieira et al. [36]
use a binary classifier with features generated by exploring similar-

ities between a mention and the official name and its description.

The classifier is used to determine if a pair of mention and official

name is correctly linked. Instead of using version as a supplemen-

tary feature, we label versions alongside the product names. Our

model is trained to recognize both name and version and use them

for product linking.

Our research is also related to analytical and predictive IT sup-

port systems [1, 13, 14, 29]. Most of these systems rely on contextual

features and patterns for information extraction, e.g., noun phrases

extraction. To the best of our knowledge, this is the first work on

software product name extraction and linking from support tickets,

leveraging both contextual and external information sources.

3 THE PROBLEM AND DATA ANALYSIS

Given a support ticket, the task is to recognize a set of product

name mentions M = {m1, . . . ,mN } from the ticket, and map the

mentions to their official names in a pre-defined product catalog

P = {p1, . . . ,p |P |}, i.e.,mi 7→ pj . The mentionmi is known as a

surface form of pj . The mapping process is known as entity linking.

A product name mention can be linkable or unlinkable, depend-

ing on whether there exists a matching entry in the catalog. In

Figure 1, “ERP” and “NW” are linkable mentions, while “windows”

and “MYSQL” are unlinkable products as there are no matching

names in the catalog, i.e., not supported by the company.

3.1 Dataset Annotation

To analyze the language usage and patterns, we randomly sample

and annotate a subset of support tickets from a production system.

A total of 3,369 English tickets are sampled randomly from four

business product areas: service (SV), basic (BC), finance (FI), and

business intelligence (BI). These product areas are expected to be

distinctive in terms of distributions of labels and terms. Table 2

summaries the datasets.

Two domain experts are engaged in annotating the tickets. Both

are well briefed on the objectives and given the same product cat-

alog for reference. Instead of having each to label all tickets and

Table 1: Mentions of ‘SAP NetWeaver 7.4’ (top table) and a

list of different products “NW” has been linked to (bottom

table). Mistaken and exceptional mentions are underlined.

Surface form of ‘SAP NetWeaver 7.4’ Count

NW 22

Netweaver 14

SAP Netweaver 4

netweaver; SAP NW 3

NetWeaver; NW740, portal 2

Sap netweaver; nw; NW7.4; SAP NetWeaver; SAP

Net Weaver; SAP NW7.4; Ntweaver; NetWeaver AS;

NW7.40; SAP netweaver SAP PO; BW

1

“NW” links to Count

SAP NetWeaver 7.4 22

SAP NetWeaver 7.3 16

SAP NetWeaver 7.0 11

SAP NetWeaver Enterprise Search 7.3; SAP
enhancement package 1 for SAP NetWeaver 7.3;
SAP Solution Manager 7.1

1

Table 2: Statistics of datasets. Length is in number of tokens.

#Ticket Min. Length Max. Length Average Length

SV 980 13 176 62.6

BC 961 12 188 61.6

FI 887 12 200 62.1

BI 541 11 166 52.2

resolve differences, we adopt a “pair labeling” technique. The anno-

tators work together remotely to label, verify, and revise the results

iteratively to make sure the results are agreed and consistent. Tick-

ets from the four datasets are mixed and shuffled during annotation

to avoid bias from annotators. We deployed a Brat [34] server, a

web-based interactive annotation tool for labeling data corpus. The

tickets are labeled with the following:

(1) mentions of software products that are linkable to product

catalog (e.g., SAP Netweaver), and the linking official products.

(2) mentions of software products that are unlinkable to product

catalog, e.g., Windows, MySQL;

(3) mentions of software versions, and the “version-of” association

between a product mention and version mention.

Annotatorsmay usemeta-product information that comeswith

the ticket to infer the official names for linking. Meta-product is

provided by the customer when creating a ticket, see Figure 1. In

this example, the first occurrence of “ERP” is linked to ‘SAP ERP
6.0’ because version “6.0” presents next to it. Similarly, “NW” is

linked to ‘SAP NetWeaver 7.0’ indicated by “7.0". When “ERP”

appears without version “6.0” (i.e., the last line in the ticket), the

meta-product would be a useful clue for the correct linking.

Unlike previous works [36, 41] considering version mentions as

part of the product names, we label them as a standalone type of

entities. In software tickets, versions may precede the product (e.g.,



Table 3: Entity and version mentions in 4 datasets.

Dataset Linkable product Unlinkable product Version

SV 563 39 215

BC 587 376 394

FI 64 2 32

BI 373 288 772

All 1,587 705 1,413

Table 4: Statistics of linkable products. |Ms |, |Pl inked |, and
|Pmeta | are the number of unique surface forms, unique of-

ficial products linked to, and unique meta-products.

Dataset |Ms | |Pl inked | |Ms |/|Pl inked | |Pmeta |
SV 18 58 4.5 25

BC 53 117 3.2 40

FI 17 24 1.8 21

BI 22 81 5.1 46

“. . . using 7.3 of SAP NetWeaver . . . ”), multiple versions may associate

with the same product (e.g., “. . .NW 7.0 SP6 Patch2 . . . ”), and ver-

sions may not appear in the vicinity of a product (e.g., “. . . upgrading
from 7.0 to 7.1”).

3.2 Dataset Analysis

Entities. The entity level summary of the annotated data is shown

in Table 3. Noticeably, FI has fewer labeled entities compared to

other datasets, despite having the similar number of tickets as

others. Meanwhile, 85% of mentions are unigrams or bigrams.

Product names. Table 4 reports statistics of product mentions and

linking in the datasets. BC has the most diverse official products

linked to, whereas BI has the most average mention per linked

product. The user selected meta-product may not be consistent

with the mention-level product linking. Our analysis shows that

among four labeled datasets, only 30% of the tickets have a mention

link to themeta-product. Its usefulness is also limited whenmultiple

products are mentioned in a ticket.

Versions.We propose to extract version mentions along with prod-

uct names and use both for linking. As shown in Table 5, BI has

the most proportion of tickets having at least one version mention

and the highest percentage of versions related to product entities.

Specifically, 96.5% of the linkable product mentions and 96.2% of the

unlinkable product mentions are associated with at least a version.

Except for dataset FI, all other datasets have a reasonable portion

of tickets containing at least one version mention (39.6% to 45.3%).

The majority of cases saw the version token within three tokens

proceeding or following its entity.

Observation 1. Product name mentions take various surface
forms. Customers extensively use, even create aliases for products
when composing a support ticket.

Table 5: Tickets, linkable and unlinkable product mentions,

that are with version mentions (w/v)

Dataset Tickets w/v Linkable w/v Unlinkable w/v

SV 388 (39.6%) 393 (69.8%) 27 (69.2%)

BC 395 (41.1%) 509 (86.7%) 312 (83.0%)

FI 45 (5.1%) 25 (39.1%) 0 (0.0%)

BI 245 (45.3%) 360 (96.5%) 277 (96.2%)

Table 1 shows examples of surface forms for ‘SAP NetWeaver
7.4’ and their frequencies in the annotated tickets. The exceptional
cases are underlined. They may be used due to legacy reasons, or

by mistake. We observe that some surface forms are a token subset

of the official name (e.g., ‘SAP NetWeaver’, ‘NetWeaver’); some

contain all uppercase letters and numbers from the official names

(e.g., ‘SAP NW’, ‘NW7.4’). After all, the surface forms have different

degrees of similarity with their official names.

Observation 2. Amention may link to multiple products; many
of them are the same product with different versions.

Mapping the recognized product mentions to official names are

not trivial. It is especially challenging to disambiguate the same

family of products with different versions. Customers may use the

same acronym for different versions of a product. Table 1 shows all

official products which ‘NW’ is linked to and their frequencies. The

top-3 most frequent usages are to mention ‘SAP NetWeaver 7.x’.
Other references are sparse and mostly inaccurate. During linking

process, particular attention is required for version mentions.

Observation 3. Annotation is challenging even for domain ex-
perts without using background knowledge in the topics.

Unfortunately, there is no structured and queryable knowledge

base, or a complete formal name to alias dictionary for the target do-

main. A challenge is to obtain useful information from external and

web resources to support the process. Meanwhile, much research

efforts on entity linking focus on linking entity mentions to their

corresponding entities in a knowledge base (e.g.,Wikipedia) [38].

Additional information from descriptions and inter-entity links can

be leveraged during linking. However, in many domain-specific

applications, a knowledge base is not available. For instance, in

our case, only a product catalog is available. We therefore attempt

to explore inter-mention features, especially between product and

version mentions, to improve pairwise linking performance.

4 MENTION EXTRACTION AND LINKING

Our system consists of two main modules for mention extraction

and linking, respectively. Training the mention extraction mod-

ule takes two inputs: the labeled tickets, and the product catalog.

Multiple domain-specific features are generated from the labeled

and unlabeled tickets. Using these features, we train a CRF-based

extraction module and a Linking module.

4.1 Product Names Extraction

Software name extraction is a domain-specific named entity ex-

traction problem, which is a sequence labeling task technically. We



employ a linear chain Conditional Random Fields (CRF) [15] model

with the features to be discussed in Section 4.2. CRF has been the

state-of-art model used in related tasks [36, 41, 42]. Compared to

the increasingly popular neural network-based models, linear chain

CRF model is more flexible in incorporating a large number of cus-

tomized input features, being able to learn from a relatively small

amount of sampled data, and assigning weights to each feature[35].

4.2 Features

We use unlabeled tickets and external resources to generate the

following groups of features.

Basic Features. Following previous studies [36, 41], we use lexical

and grammatical features as a base model. Specifically, we consider

the current word itself, its lowercased forms, prefixes, suffixes, and

word shape. Part-of-Speech (POS) tags and prefixes generated from

Stanford CoreNLP tool
1
are used as features too for each word and

its neighbors in a context window size of 5.

Word Clusters. Word clustering techniques, such as Brown Clus-

tering [5], have proven to be effective in mitigating term sparsity

in open-domain and domain-specific NER systems [31, 41, 42]. It

assumes that similar words should appear in similar contexts. At

each iteration, it merges semantically similar words into a fixed

number of classes based on the log-probability and incurs the least

loss in global mutual information. After training on 3 million unla-

beled tickets, the vocabulary is organized in a binary hierarchical

tree structure, and each word can be represented using a cluster

ID in bitstring. We use the prefixes of 10, 12, 14, 16, 18, 20 bits to

represent a word as features.

Word embedding [3, 21, 25] is a significant recent advancement

in distributed text representation. Unlike Brown Clustering, word

embedding produces dense vectors after the training step. Seman-

tically similar words are close to each other in the embedding

space. We apply three different word embedding models, namely

Word2Vec [22], Glove [25] and FastText [3] on the same unlabeled

corpus to generate word vectors with 100 dimensions each. In post-

processing, we apply a k-means clustering algorithm to produce

500, 1000, 1500, 2000, 3000 clusters for each embedding model and

use the cluster ID as word features.

Prototype Words. Guo et al. [10] compare different approaches

in incorporating trained word vectors into a linear CRF model and

propose a novel method based on prototype-driven learning [11]. It

assumes that the semantically similar words should be tagged with

the same label. We generate prototype features for each entity label

by analyzing the collocation of labels and words. Specifically, the

normalized pointwise mutual information (NPMI) [4] is computed

for a label l and word w using NPMI (l ,w) = λ(l,w )
− lnp(l,w ) , where

λ(l ,w) = ln
p(l,w )
p(l )p(w ) is the standard PMI. In labeled text corpus,

for each entity label, we compute NPMI with every word in the

vocabulary then rank the words in descending order by NPMI. The

top 5 words for each label are shown in Table 6. The feature for the

token label is set to 1 if the word is among the prototypes of the

label.

1
https://stanfordnlp.github.io/CoreNLP/

Table 6: Example prototype words. Labels are ‘B’egin and

‘I’nside, for ‘L’inkable, ‘U’nlinkable products and ‘V’ersions.

Label Top 5 ranked prototype words

B_L Solution, SolMan, PI, NW, SOLMAN

I_L Manager, manager, Objects, Platform, BusinessObjects

B_U Windows, Oracle, IE, JAVA, Java

I_U Explorer, J9, SERVER, Hat, linux

B_V 4.1, 7.1, 2008, 7.4, 4.0

I_V .1, sp04, G, bit, SP03

Results from Web Search. Public accessible search engines can

be useful in determining the validity of an entity or a phrase to a

domain. For example, if a span of words is a valid software name

or related to the field, the search engine will return more results

from computer-related links. Similar to Rüd et al. [32], we explore
results returned from a search engine

2
for domain relatedness of

tokens. Specifically, we use a token and its surrounding words to

form a query as input to a search engine and collect the top-k
results (k = 50 in our experiment). Each result entry contains a title,

a summary, and an URL. Subsequently, we compute the ratio of

results having queries in the title, summary, and URL, respectively.

Also, we compute the ratio of results having predefined domain

indicator words (e.g., the company name) in their results.

Despite of its usefulness, querying search engines at a large

volume is not free of cost. For our experiments, we preselect the

search queries using a combination of POS tag patterns, query

likelihood score [33], and heuristics. Query likelihood score is the

joint probability of neighboring tokens, obtained using a language

model trained on unlabeled tickets. Eventually, the query likelihood

scores and the ratios computed from search engine results, are

rounded to the nearest 0.1 and used as categorical features.

Dictionary Construction. Previous works [41, 42] pre-define a

dictionary to improve the NER performance. We propose an ap-

proach to create dictionary automatically using a combination of

semantic similarity and heuristics. Chen et al. [6] propose an un-

supervised method to build software-specific dictionary of syn-

onyms and acronyms, using distributed word similarities. Inspired

by their approach, we design a dictionary generation algorithm

(Algorithm 1) using mentions labeled in training data as seed names.

Specifically, a mention dictionary is first built from training data.

We observe that a mention m could contain overlapping tokens

with the official product name p. We therefore consider each token

of p as candidates. Similar to the rules in [41] in Line 5, we design

the following rules to generate candidates from p.

(1) p less the token that is a company name or the version, e.g.,
‘SAP NetWeaver 7.4’→ ‘NetWeaver 7.4’, ‘NetWeaver’.

(2) All capital letters in p less the token that is a company name or

the version, e.g., ‘SAP NetWeaver 7.4’→ ‘NW 7.4’, ‘NW’.
(3) Capitalized first letters of all tokens in p less the token that is

a company name or the version e.g., ‘SAP BusinessObjects
Business Intelligence platform 4.2’ → ‘BOBJ 4.2’,
‘BOBI’

2
https://azure.microsoft.com/en-gb/services/cognitive-services/bing-web-search/



Algorithm 1: Dictionary generation

Input :p ∈ P a formal software product name in the product

catalog P; training ticket sets with entity annotation

and linking TT rain ; a set of distributed word

embedding E
Output :C , list of names of p

1 C ← ∅;
2 foreach ticket t ∈ TT rain do

3 foreachm 7→ p in t do
4 C ← Tokenize(p) ∪ RuleGenerator (p);
5 N ← NearestNeiдhbor (m ∪C,E);
6 C ← C ∪ {m} ∪ {N } ∪ {R} ∪ LowerCase(C)$;
7 end

8 end

In Line 5, the nearest neighbors are obtained from a trained

word embedding model. Specifically, the FastText model enables

construction of word vectors for unseenwords in training corpus on

the fly. To enable the iterative extension of the dictionary, we choose

FastText model for its generation. A binary feature is generated for

a candidate token exists in the dictionary.

We also crawl software names from crowd-sourced knowledge

base Wikipedia
3
. Though the names are neither official nor com-

plete, it is freely accessible with reasonable quality. We post-process

the list by converting all names to lowercase and remove the num-

bers and use it as another external resource for the extraction.

4.3 Product Name Linking

The output of the extraction module will be the input to the linking

module. Given a mention m and its version v in a ticket with a

ticket-level meta-product t , the task is to create a mapping from

a mention to the correct official productm 7→ p ∈ P. We assume

each mapping is independent of other mappings in the same ticket.

Note that the version mention v and meta-product t may not be

always available for every mentionm.

We employ a pairwise linking model. Specifically, given a pair of

mention and product ⟨m,p⟩, the model is trained to determine the

likelihood of havingm correctly linked to p with a score between

0 and 1. For each m, the likelihood scores are computed for all

possible p’s and the p with the highest pair score is taken as the

linking target. Formally, Γ(m) = argmaxp∈P ϕ(m,p) where ϕ(m,p)
is the linear combination of features, i.e., ϕ(m,p) = ∑

i λi fi (e,m). In
specific to our problem setting, an additional entity v and a ticket

level product t , are also included to the model.

We employ a Support Vector Regression (SVR) model to estimate

the probability ϕ, using the features detailed in Table 7. In training

data, the labeled ⟨m,p⟩ pairs are positive samples. A negative pair

⟨m,p′⟩ is generated with a random p′ ∈ P∧p′ , p for each positive

sample. During testing, all possible pairs are generated for each

m ∈ Mtest , i.e., ⟨m,p ∈ P⟩ as input to the trained model. p in the

pair that has the highest score is the linking result.

3
https://en.wikipedia.org/wiki/List_of_SAP_products

Table 7: Features for linking a mentionm with version v, to
an official product p, with ticket-level meta-product t . [·] is
the linear combination of embedding vectors.

Feature Description

Alphabetical m has only alphabetic characters.

Numerical m has only digits, dashes, and dots.

Exact match m is an exact match of p.
Substring match m is a substring of p.
Character subset Characters inm and p in the same order.

Character count Number of characters inm.

Common char Count of common characters.

Surface match m is an exact match of p.
Surface subset m is a substring of p.
Surface position Position of the first character ofm in p
Version match Version ofm is a substring of p.
sim(m,p) Embedding similarity ofm and p.
sim([m,v],p) Embedding similarity of [m,v] and p.
sim([m,v, t],p) Embedding similarity of [m,v, t] and p.
sim(t ,p) Embedding similarity of t and p.

5 EXPERIMENTS

We now evaluate the product name extraction and linking modules

in isolation. We then examine outputs from the end-to-end system

with respect to error analysis.

Experimental Setup. For each labeled dataset detailed in Section 3,

we randomly split the data into 70/10/20 percents as training, de-

velopment, and testing tickets.

Evaluation Metrics. We use Precision (Pr ), Recall (Re), and F1
measure for both modules. The NER module is first evaluated at

entity level with strict matching for the entity type. That is, a

predicted entity is a “true positive”, if and only if both the word

spans and entity type are correct. In addition, we also include the

metrics used in Message Understanding Conference (MUC) share

task [7] to provide a lenient version of Pr , Re , and F1, considering
partial matching [23].

Comparing system outputs with the golden labels, MUC accounts

for four numbers: 1) the number of entity boundary correct α , 2)
the number of type correct β , 3) total number of possible answers

(boundaries and classes in golden labels) γ , and 4) total number of

output answers (boundaries and classes in output) δ . MUC metrics

are computed using PrecisionMUC =
α+β
γ and RecallMUC =

α+β
δ .

Lastly, F1MUC =
2×PrecisionMUC×RecallMUC
PrecisionMUC+RecallMUC

.

5.1 Baseline methods

In recent years, deep neural network models have been increas-

ingly popular in information extraction applications. It is interesting

to compare the performance of the non-neural CRF model using

our proposed features with neural models. To this end, we select

four popular deep neural network models for named entity ex-

traction as baselines [8, 16, 19, 26]. These models are different in

their encoding and output components. Except Chiu et al. [8], the



Table 8: Linear Chain CRF model with the proposed features, compared with neural network-based baseline models. MUC is

a lenient measure considering partial matching with golden label. For each row and each metric, the best score is in boldface.

Entity CNN-LSTM-SOFTMAX LSTM-LSTM-CRF CNN-LSTM-CRF GRU-GRU-CRF CRF

Measure Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Dataset: SV

Linkable 0.800 0.899 0.847 0.876 0.930 0.902 0.859 0.946 0.900 0.845 0.930 0.886 0.858 0.938 0.896

Unlinkable 1.000 0.500 0.667 0.000 0.000 0.000 1.000 0.500 0.667 1.000 0.500 0.667 1.000 0.500 0.667

Version 0.766 0.900 0.828 0.850 0.850 0.850 0.872 0.850 0.861 0.872 0.850 0.861 0.846 0.825 0.835

Average 0.855 0.766 0.780 0.863 0.890 0.876 0.910 0.765 0.809 0.906 0.760 0.804 0.901 0.754 0.799

MUC 0.803 0.906 0.852 0.873 0.904 0.888 0.865 0.921 0.892 0.863 0.918 0.889 0.869 0.934 0.899

Dataset: BC

Linkable 0.721 0.771 0.745 0.767 0.756 0.761 0.784 0.664 0.719 0.808 0.740 0.773 0.874 0.740 0.802

Unlinkable 0.500 0.635 0.560 0.600 0.529 0.562 0.623 0.447 0.520 0.620 0.576 0.598 0.569 0.482 0.522

Version 0.781 0.824 0.802 0.872 0.824 0.847 0.842 0.703 0.766 0.835 0.780 0.807 0.986 0.769 0.864

Average 0.668 0.743 0.702 0.747 0.703 0.724 0.750 0.605 0.669 0.755 0.699 0.726 0.810 0.664 0.729

MUC 0.682 0.764 0.720 0.767 0.725 0.745 0.780 0.630 0.697 0.776 0.718 0.746 0.825 0.682 0.747

Dataset: FI

Linkable 0.600 0.692 0.643 0.600 0.692 0.643 0.615 0.615 0.615 0.615 0.615 0.615 0.769 0.769 0.769

Unlinkable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Version 0.714 0.455 0.556 0.750 0.545 0.632 0.800 0.364 0.500 0.667 0.182 0.286 1.000 0.545 0.706

Average 0.657 0.455 0.556 0.675 0.619 0.637 0.708 0.490 0.558 0.641 0.399 0.451 0.885 0.657 0.738

MUC 0.659 0.604 0.630 0.674 0.646 0.660 0.694 0.521 0.595 0.656 0.437 0.525 0.842 0.667 0.744

Dataset: BI

Linkable 0.769 0.843 0.805 0.861 0.747 0.800 0.859 0.735 0.792 0.851 0.759 0.802 0.861 0.819 0.839

Unlinkable 0.684 0.783 0.730 0.750 0.783 0.766 0.750 0.739 0.744 0.732 0.754 0.743 0.862 0.812 0.836

Version 0.916 0.884 0.899 0.885 0.895 0.89 0.858 0.913 0.884 0.922 0.890 0.905 0.901 0.901 0.901

Average 0.789 0.837 0.811 0.832 0.808 0.819 0.822 0.796 0.807 0.835 0.801 0.817 0.874 0.844 0.859

MUC 0.839 0.870 0.854 0.862 0.846 0.854 0.846 0.841 0.844 0.876 0.841 0.858 0.886 0.864 0.875

Mean MUC 0.745 0.786 0.764 0.794 0.780 0.786 0.796 0.728 0.757 0.792 0.728 0.754 0.855 0.787 0.816

other models all use a CRF output layer. We represent these mod-

els by their [character encoder]-[word encoder]-[output] triplets

for simplicity. These models are CNN
4
-LSTM

5
-SOFTMAX [8],

LSTM-LSTM-CRF [16], CNN-LSTM-CRF [19] andGRU
6
-GRU-

CRF [26]. Noted that both LSTM and GRU models are bidirectional,

to encode contextual information from both left and right side of

the current token. All four baselines models are claimed to be out-

performing linear models on open domain NER tasks. However, the

details on each are beyond the scope of this paper.

The performance of neural models is subjective to parameters

tuning. We adopt the same common parameters across the models,

using 100 and 25 dimension vectors for word embeddings and

character embeddings, respectively. Each model is trained using

tickets from the training set, optimized on the development set and

evaluated on their respective testing set.

For linking module, we compared with Fuzzy string matching

baselines using different queries, as well as the linking methods

from related works, GLEN [41], and ProdLink [36]. Fuzzy string

4
Convolutional Neural Network: A kind neural network for feature extraction.

5
Long Short TermMemory. A variation of the Reccurent Neural Network (RNN) model.

6
Gated Recurrent Unit. Similar to LSTM but with fewer trainable parameters.

matching is to compute Levenshtein Distance [17] between query

string q and each pi . Three variations of q are evaluated: q = m,

q =m +v , and q =m +v + t , where + means string concatenation.

The p with the minimal distance is linked tom. Ties are broken by

comparing the probability of p occur in all tickets.

GLEN [41] is a rule-based linking method designed specifically

for mobile phone names normalization. We modify the approach

using a candidate voting with confidence score computed in a

similar way. For each of m and the top-k most similar words in

embedding space, inversely lookup for p using the candidate names

generated in Section 4.2. p with the most congregated vote is linked

tom. We heuristically set k to 200.

ProdLink [36] uses features extracted fromm and the product

description of p to train a binary classifier for linking. Subsequently,

a string similarity score is computed to select the most likely linking

object. Since we do not have the detailed description of p in our

catalog, we use p to generate the closest token-based feature set

outlined in [36] as a baseline.



Table 9: Ablation study of features in CRF, on MUC F1

Feature/Dataset SV BC FI BI

All features 0.886 0.747 0.744 0.875

- Dictionaries 0.899 0.705 0.634 0.848

- Word clusters 0.884 0.732 0.714 0.870

- Search results 0.881 0.737 0.683 0.880

- Prototypes 0.880 0.739 0.698 0.870

Base model 0.859 0.695 0.667 0.850

5.2 Experimental Results

Figure 8 reports the detailed results, having datasets in horizontal

blocks and methods in vertical blocks. Within a block, each row

corresponds to an entity type, including the average and MUC

metrics. The scores of neural network models fluctuate in different

datasets, due to label sparsity and data distribution. In comparison,

the performance of CRF model with rich features is much more

consistent, outperforming the baselines in MUC metrics. Notably,

in dataset FI, where the labels are sparse, CRF model exceeds by

as much as 25% and 13% compared to the best neural model in

precision and F1, respectively. The average MUC metrics across all

four datasets show the clear advantage of the feature-rich linear

chain CRF model in our experiments.

Among the neural models, the simple CNN-LSTM-SOFTMAX

model using a linear output layer shows better recall but slightly

poorer precision in some datasets. A question raised is how the

CRF layer would affect a neural model for NER from a noisy text.

In [35], the author states that it is recommended to use binned

features instead of real-valued features as input to a CRF model

for more performance gain. In neural models, the output from

the word encoding/hidden layer is used directly as input to the

CRF layer for tagging output [16]. Performance improvements are

reported when applied on news articles. It could be the noise in

user-generated text like software tickets that limit the effectiveness

of the CRF layer. On the other hand, using CNN for character

feature extraction exhibits slight advantage compared to using a

LSTM encoder. Overall, the neural network models show some

potential in this task. We will leave the detailed investigation in

neural network models for domain-specific NER to future work,

with more labeled data.

To understand the impact of individual feature groups in our

CRF model, we conduct ablation study on MUC F1 scores. The

results after removing dictionaries, word clusters, search results,

and prototypes are shown in Table 9. The results in the last row are

from a CRF model only using the basic features. Models without

using dictionary features observe the most significant decline in

MUC F1. The other feature groups have less influence on the overall
performance. The exact impact varies on different datasets.

In Table 10, we show the most useful features from the trained

CRF models on each dataset, per entity type. The weights corre-

sponds to the relative influence of a feature on the result of a model.

The dictionary features are dominant for linkable product names

across datasets. Prototype features are more effective for identifying

unlinkable product names. While the surface form mentions are

the most important features for version extraction. Word substring,

word shape, and word cluster features are useful for all entity types.

In comparison, the significance of the search result features are less

permanent, even compared with the query likelihood feature which

is used alongside to quantify the quality of a phrase. In overall, the

features generated from external resources improve the MUC F1

scores on the majority of datasets.

Table 11 compares the linking performance of our method using

different types of queries, with baseline methods. The results show

the advantage of including ‘version’ (i.e., M2), compared to only

usingm (M1) in the query. Most notably on dataset BI, incorporating

version information gives 74% and 120% increase in precision and

recall, respectively compared to the lowest fuzzy matching baseline.

Improvements are observed on other datasets too. It confirms the

usefulness of using version entities for product linking in our task.

In contrast, the impact of having ticket-level meta-product t in the

model (M3) is less conclusive. These results are not surprising as

only about 30% of the tickets have a mention associate to meta-

product. After all, M2 and M3 almost dominate the top two scores

in all metrics across four datasets. Fuzzy string matching methods

show some reasonable precision but low in recall. GLEN has good

potential, using only statistical acronym linkages.

5.3 Error analysis

To study the end-to-end system, we use the output from extraction

module as the input to the linkingmodule. Since the specific version-

product relation is missing, we assume any version token in a

window of flexible size is associated to a product mention, which

is at position 0. Specifically, the left boundary of the window is

max(−2,posm ) and the right boundary is min(6,posm ), where posm
is the relative position of another product mention. When multiple

tokens are present in the valid window, all are considered relevant

to it. In Figure 2, we use three test tickets with results produced

by our system to illustrate typical positive outcomes and errors.

Specifically, we focus on the three types of errors.

Error Type 1: Wrong entity. In Ticket 106, a product mention

“Solution Manager” is correctly recognized by NER module. Despite

the absence of any version token, the meta-product is useful for link-

ing the mention to the correct entity, i.e., ‘SAP Solution Manager
7.1’. In the same ticket, a token “DATA” is falsely recognized as a

product, largely due to its uppercase shape. The subsequent linking

result is incorrect and ignored.

Error Type 2: Correct entity, wrong linking. In Ticket 288, a

positive mention “SAP Netweaver” is correctly linked to its entity,

using the version mention next to it. However, “EP” is correctly

recognized as a product mention but linked to an incorrect entity.

Error Type 3: Missing entity Our NER system failed to recognize

mentions from ticket 196. The term “Sfin” is a rare acronym of ‘SAP
Simple Finance’ in training. For such case, pattern matching

techniques that capture the immediate preceding words can be

applied to complement the NER system.

6 CONCLUSION

In this work, we investigate software product name extraction and

linking problem from support tickets. We analyze the language

patterns by annotating tickets from production support systems,



Table 10: The most effective CRF features with weights.

SV BC FI BI

Feature Weight Feature Weight Feature Weight Feature Weight

L
i
n
k
a
b
l
e

dictionary 3.361 dictionary 6.101 dictionary 2.506 dictionary 3.822

left word 2.871 left dictionary 1.991 left dictionary 1.205 query likelihood 1.295

wikipedia 1.383 word[:2] 1.926 glove cluster 1.005 word[:1] 0.900

brown cluster 0.930 left word 1.626 query likelihood 0.899 word shape 0.782

word[:1] 0.510 query likelihood 1.617 word[:1] 0.845 prototype 0.754

U
n
l
i
n
k
a
b
l
e

prototype 1.736 mention 3.395 prototype 0.989 mention 3.317

mention 1.361 mention lower 3.331 mention 0.980 mention lower 3.278

mention lower 1.359 query likelihood 1.259 mention lower 0.980 prototype 0.828

glove cluster 0.749 glove cluster 1.109 query likelihood 0.772 query likelihood 0.643

query likelihood 1.020 postag[:2] 0.275 query likelihood 0.492

V
e
r
s
i
o
n

mentions 3.256 mentions 3.547 mentions 1.211 mentions 3.024

word.endssdigit 1.694 mentions lower 2.883 mentions lower 1.074 mentions lower 3.021

mentions lower 0.700 ends with digit 1.413 glove cluster 0.670 ends with digit 1.444

glove cluster 0.638 starts with digit 1.231 brown cluster 0.640 glove cluster 0.949

w2v cluster 0.599 word[-1:] 1.153 word shape 0.629 right word 0.621

Table 11: Linking module results. For each column, the best score is in boldface and the second best is underlined.

Dataset SV BC FI BI

Method Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Fuzzy Matching q =m 0.874 0.193 0.316 0.341 0.144 0.202 0.047 0.081 0.059 0.174 0.163 0.168

Fuzzy Matching q = (m,v) 0.921 0.273 0.421 0.535 0.151 0.236 0.155 0.153 0.154 0.188 0.113 0.141

Fuzzy Matching q = (m,v, t) 0.606 0.174 0.270 0.242 0.050 0.083 0.011 0.083 0.019 0.011 0.011 0.011

GLEN [41] 0.872 0.303 0.450 0.581 0.505 0.540 0.515 0.622 0.563 0.670 0.456 0.543

ProdLink [36] 0.119 0.126 0.118 0.503 0.385 0.341 0.588 0.692 0.631 0.284 0.232 0.252

Our method M1: q =m 0.856 0.669 0.748 0.723 0.392 0.441 0.588 0.692 0.631 0.433 0.232 0.270

Our method M2: q = (m,v) 0.932 0.685 0.783 0.708 0.508 0.557 0.703 0.769 0.734 0.753 0.512 0.588

Our method M3: q = (m,v, t) 0.916 0.661 0.757 0.768 0.538 0.607 0.588 0.692 0.631 0.749 0.537 0.624

SAP Solution Manager 7.1 SAP Simple FinanceSAP ERP 6.0SAP NetWeaver 7.4

Ticket ID 106 288 196

Meta Product SAP SOLUTION MANAGER 7.1 SAP EHP1 FOR SAP NETWEAVER 
7.3 SAP ERP 6.0

Subject Problem with Downloaded License 
Data from SAP Support Portal Error in ‘db.xxxxxxxxx.xxxxxxx' sFIN 15xx xxxx xxxx FISCAL YEAR 

ISN`T CHECKED [S]

Free Text

We have a problem to download 
Licence data systems from SAP 
Support Portal to XXXX in Solution
Manager. Systems DATA from our 
customer XXXX with …

We are using EP system XXXX based 
on SAP Netweaver 7.4 SP11 Java 
stack only.

We have migrated to Sfin 15xx
SP15xx and we have noticed that … 

Figure 2: Results from the end-to-end system on three tickets. True positive results from product and version extraction are

highlighted in green and yellow respectively. False negative entities are underlined. Positive linkings are in solid curves and

orange boxes, while the false negative linkings are dashed curves. False positive linking is grey.

then use the insights drawn to design features for extraction and

linking models. We demonstrate the effectiveness of our features in

both extractions and linking modules. Our models outperform deep

learning based baselines and are more consistent across datasets,

even with sparse labels. For future work, we plan to investigate

further into the increasingly maturing neural network models for

domain-specific information extraction, combining the advantages

of linear models and neural models and performing extraction

and linking simultaneously. We are also interested in exploring



semi-supervised methods leveraging unlabeled data for information

extraction from support tickets.
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