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ABSTRACT
With the popularity of portable wireless devices it is important to

model and predict how information or contagions spread by nat-

ural human mobility – for understanding the spreading of deadly

infectious diseases and for improving delay tolerant communica-

tion schemes. Formally, we model this problem by considering M
moving agents, where each agent initially carries a distinct bit of

information. When two agents are at the same location or in close

proximity to one another, they share all their information with

each other. We would like to know the time it takes until all bits

of information reach all agents, called the �ood time, and how it

depends on the way agents move, the size and shape of the network

and the number of agents moving in the network.

We provide rigorous analysis for the Manha�an Random Way-

point model (which takes paths with minimum number of turns),

a convenient model used previously to analyze mobile agents,

and �nd that with high probability the �ood time is bounded by

O
(
N logM d(N /M) log(NM)e

)
, where M agents move on an N ×N

grid. In addition to extensive simulations, we use a data set of taxi

trajectories to show that our method can successfully predict �ood

times in both experimental se�ings and the real world.

KEYWORDS
Mobile Information Systems, Mobile Agents, Information Dissemi-

nation

1 INTRODUCTION
It has always been an interesting research topic to understand

human mobility and how contagions spread via such motion. One of

the motivations is to understand how infectious diseases spread by

moving agents. �ink of a strain of an infectious virus such as SARS

or Ebola. When two individuals are at the same location at the same

time, there is a possibility for one to spread that strain of virus to the

other. �erefore the spread of contagions in a population is highly

dependent on the density of the population and how individuals

move around. In another example, human motion can be used

for our bene�t. It has become common that people carry wireless

devices around. Short range low cost wireless communication

can be established at the contact events to allow energy e�cient

information exchange. In this case the mobility model in�uences

how long it takes for a piece of information from one node to reach

all nodes in the network.

�ere have been two main approaches to study human mobility

in the literature: data-driven methods versus theoretical analysis.

In recent years wireless technology has made it possible to collect

a large amount of mobility data through wireless devices. �ere

has been a lot of work on �nding exciting pa�erns in human move-

ments and information spreading in real-world data [1, 19, 23]. It

has been shown that human mobility is immensely complex. Accu-

rate models can be built using historic tra�c data to predict agents’

locations and social ties [20, 42]. But these models each work only

for a speci�c scenario. It is unclear how these models can help us

analyze asymptotic behavior of moving agents or whether a model

generalizes to a di�erent geographical location, a di�erent travel

modality, or a di�erent group of people. Furthermore, long-term

mobility data can be identity revealing. Even with great e�orts

to anonymize the data and with removing big fractions of it, in-

dividuals are identi�able by their movement pa�erns. A seminal

work revealed that 4 randomly selected points in an hourly location

sequence of a person recorded over 15 months via cellphone anten-

nas is enough to make that person identi�able among 1.5 million

individuals [17]. As a result, mobility data sets are usually not

published by companies due to concerns over user privacy, except

for a few special cases of shared vehicles (taxis or shared bikes).

On the other hand, an extensive amount of work has been ded-

icated to mathematical models of mobility and their asymptotic

behaviors. Although these models cannot compete with the ac-

curacy of data-driven models in the presence of enough historic

mobility data, they have been used for their rigorous analysis and

their ability to predict future events with provable certainty. Over

the years theoretical models have evolved from simplistic models,

inspired by known physical phenomena in real world, to more

sophisticated ones, taking into account the complexity of human

mobility. We brie�y review these models and their analytical results

below. For a comprehensive survey on these models refer to [8].

• Random Walk: Perhaps the most studied movement model.

Inspired by the movement of �oating particles in a liquid

or gas, called Brownian Motion [22], in its simplest version

an agent starts its movement in an arbitrary node in a

given network. At each time step, the agent chooses one

of the neighbors of its current node uniformly at random
and moves to that neighbor. �ere are variations in which

agents can rest in their current position for a period of time

or use a non-uniform transition probability when choosing

a neighbor.
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• Random Direction Model: In this model, an agent chooses

a random direction and possibly a random velocity, then

moves in that direction until it collides with the boundary

of the network. �e agent then chooses a new direction

and velocity and continues as before.

• Random Way-point: In this model, an agent, starting

from an initial position in the network, chooses the next

destination from all nodes in the network uniformly at ran-
dom. �en, using one of the shortest paths, moves towards

the destination and a�er reaching it �nds a new destina-

tion with the same method. �is has been widely used in

modeling human motion and in many prior simulations

for mobile networks [6, 7, 26, 29, 37].

• Manhattan Random Way-point : �is is a special case

of the Random Way-point model [6]. In a grid (or torus)

networks, agents move to the destination with as few turns

as possible. �us they travel �rst horizontally and then

vertically (or vice versa) to the destination. �is model is

inspired by the fact that in urban streets, turning can be

time-consuming [13, 16].

• Lévy Walk: Studies on intelligent moving agents, espe-

cially humans, have revealed that the distance to the next

destination chosen by such agents seems to follow a fat-
tailed distribution [2, 25, 43]. A popular movement model

in this category is called Lévy Walk [41]. �is model is sim-

ilar to Random Way-point, but instead of choosing a new

destination uniformly at random, an agent chooses a node

as its next destination with probability proportional to the

inverse of its distance from the agent’s current position, to

some power α > 0.

1.1 Our Contributions
In this paper we provide improved upper bounds on the rate of

information dissemination when agents move according to the Man-

ha�an Random Way-point model. �rough a series of simulations

we show that, combined with bounds on Random Walk, our bounds

lead to a new conjecture on the time it takes for information to

disseminate through a network when agents’ movements follow

the Lévy Walk model, a challenging question that remains widely

open. Finally, we report the result of a series of experiments we

have designed, which show that our model is capable of predicting

trends on experimental se�ings, as well as real-world data.

We formally de�ne our problem as follows. Consider a set of

M autonomous agents, each starting at time 0 with a unique bit

of information, bi , at a node selected uniformly at random in an

N × N torus
1

denoted by G . Agents all follow the same movement

model and they share information with each other when they meet

during their move. Meeting is de�ned as being at the same location

at the same time, where the location can be inside a node or on

an edge between two nodes. Agents start their movement at the

beginning of each time step in a synchronized fashion. We consider

uniform speed for all agents
2

and transmission radius is practically

0 as agents have to be collocated in order to pass along information,

1
A grid where nodes in the boundaries are each connected to their corresponding

node in the opposite boundary.

2
In some previous de�nitions of Random Way-point the agents choose their speed

uniformly at random from a range. But this choice will lead to the average moving

for simplicity. However our �ndings can be extended for arbitrary

constant transmission radius.

In the above se�ing, we are interested in �nding bounds on

the time it takes until every agent �nds out about every piece of

information. �is value is called the �ood time (TF ). An equally

important statistic is the time it takes for all agents to learn a

speci�c bit of information, called broadcast time and denoted by

TB . Clearly TB ≤ TF . Using the union bound, any upper bound on

TB extends to TF , too, if the probability of the bound occurring is

su�ciently high3
. BothTF andTB are important statistics in various

applications. In the case of disease spreading,TB corresponds to the

time when an infection of any agent would have been passed to the

entire population. In a delay-tolerant wireless mobile network, TF
corresponds to the time in the past, from which we can assume all

information has been shared across the network; we can predicate

the start of a new protocol based on assuming all agents are up to

date a�er this delay. In mobile social networks, TB corresponds to

the time it takes a new piece of information to permeate society.

Overall, both TF and TB are important statistics which capture

information �ow in a network, and will be the focus of our study.

Our contributions are as follows:

• We �nd a new upper bound for TF and TB that is tight

for a wide range of se�ings. Speci�cally, when M agents

move on an N × N grid with torus topology, we show

TB ≤ TF = O(N logM d NM log(NM)e). �is bound im-

proves upon recent upper bounds for topologies with more

complex boundary conditions.

• We analyze the relation between Random Walk, Manha�an

Random Way-point and Lévy Walk. �rough simulations,

we show empirically that the Lévy Walk model can be

understood by carefully interpolating between the heavily

studied Random Walk model and our new results on the

Manha�an Random Way-point model.

• We validate the theoretical bounds in a number of empirical

studies using simulated scenarios, bike and taxi trajectory

data sets.

2 BACKGROUND AND RELATED WORKS
Since the advent of social networks, researchers studied how in-

formation (e.g., rumors or viral videos) spreads through a network

[21, 24, 30]. �e rate of change in these networks is slow enough

that they can be considered static throughout the course of infor-

mation dissemination. �is assumption simpli�es the mathematical

models tremendously. �ese studies do not �t dynamic mobile

networks, due to the high rate of topology changes. �e spreading

behavior heavily depends on how agents move [32].

For analyzing the mobility models mentioned earlier, arguably

the simplest model for a geographically spread network is a 2D grid.

In some metropolitan se�ings the downtown area is a reasonable

grid. Wrapping the grid around to a torus has been commonly

adopted in prior papers that analyze information spreading in a

mobile network. �e bene�t of the torus model is to get rid of

speed to be decreasing over time [45]. Also in reality vehicles/pedestrians o�en move

with a �xed speed.

3
If Pr{TB > T } < 1/N d

, for some d > 0, we know that Pr{TF > T } < M/N d <

1/N d′
, when d is su�ciently large.
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the boundary e�ect, thus simplifying the analysis. �e torus also

removes the boundary e�ect in the Random Way-point model,

which o�en caused unwanted artifacts in simulations [3, 11, 39].

For direct comparison, we review prior results in the same format

as ours, where N and M are decoupled and there are no assump-

tions on their ratio, near-zero transmission radius (R ≈ 0), and

where each move consists of walking along a path from source

node to destination node, rather than jumping to the destination

instantaneously.

�e Random Walk movement model has been extensively stud-

ied and tight bounds on many characteristics have been fully re-

solved [18, 31, 33]. One of the tightest bounds for Random Walk

is given by Pa�erin et al. [38]. �ey found that even with a very

small transmission radius, broadcast time does not depend on the

relation between the mobility speed and the transmission radius.

�ey prove that with high probability (w.h.p):

TB = Õ
(
N

⌈ N
√
M

⌉)
. (1)

Keeping track of a bit of information b, they �rst divide the initial

grid into smaller cells and �nd the time by which an arbitrary cell

is in�ltrated by an agent carrying b. �en they show that this

in�ltrating agent will inform the majority of agents near this cell

and spread the information locally. A�er the local spread is done

within the cell, information leaks into adjacent cells and this whole

process is repeated. Ultimately, every cell is in�ltrated and every

agent in the network �nds out about b.

Clementi et al. [14] have proved bounds for TF in Manha�an-

like grids where agents move according to the Manha�an Random

Way-point model. �eir se�ing slightly di�ers from ours as they

do not employ boundary loops, which results in two zones with

very di�erent tra�c of agents. On the one hand, nodes in the

central zone are visited by agents across all nodes in the grid with

high probability. On the other hand, the periphery, called suburb
areas, are starved of agents: the probability that an agent passes

through these areas is signi�cantly lower than that of the central

zone. �ey prove that w.h.p. TF = Õ
(
N /R +N 3/vR2M

)
, where R is

the transmission radius and v is the agents’ speed. We can rewrite

this in our se�ing as:

TF = Õ
(
N +

N 3

M

)
. (2)

�ey found that the bulk of the Flooding Time is devoted to carrying

the information to the “suburbs,” as it requires a �ow of informed

agents traveling from the central zone to the suburbs.

A di�erent line of work focused on solving the problem in a

general platform, oblivious to geometric considerations. Clementi

et al. [15] have derived an upper bound forTF , and the mixing time4

of the Markov chain corresponding to agent movements, as well as

how independent the collisions between di�erent pairs are, play

a major role in the analysis of TF . Applying Manha�an Random

Way-point model to their general bound yields the following:

TF = O
( N

vmax

( N 2

MR2
+ 1

)
log

2 M
)
,

4
Mixing time is the time needed for a Markov chain to reach its stationary distribution,

starting from an arbitrary distribution.

where vmax is the maximum speed of any agent. Rewri�en in our

se�ing, the bound is:

TF = Õ
(
N

⌈N 2

M

⌉)
. (3)

Since their method is very general, their bound is not competi-

tive with the bounds on speci�c movement models and networks.

Table 1 shows that our bound is a signi�cant improvement over

these bounds on di�erent movement models.

Table 1: Recent bounds on Manhattan Random Way-point
(MRWP), Random Way-point (RWP) and Random Walk
(RW).

Authors Model Bound
Ours MRWP Õ(N dN /Me)

Clementi et al. 2010 [14] MRWP Õ(N + N 3/M)
Clementi et al. 2015 [15] RWP Õ(N dN 2/Me)
Pe�arin et al. 2011 [38] RW Õ(N dN /

√
Me)

Rigorous analysis of the Lévy Walk model is much more chal-

lenging due to the strong spatiotemporal correlation [4, 34, 40]. �e

most relevant work is done by Wang et al. [44] where the authors

have analyzed the distribution of the minimum time needed until a

piece of information reaches a certain region. However, to the best

of our knowledge, there are no bounds for TF when the agents are

moving according to a Lévy Walk.

Besides theoretical work, there has been a lot of empirical anal-

ysis of how information can spread through opportunistic peer

communication among mobile agents using simulations or empiri-

cal evaluations. Protocols for reducing communication cost (e.g., to

avoid a message be delivered to a node multiple times) have been

studied extensively [10, 28, 36]. Last, there has also been work on

a model assuming that a supporting static wireless network is in

place, which helps to cache and propagate these events [46]. �is

model is di�erent from ours.

3 BOUNDS ON FLOOD TIME
In this section, we present and prove our main theoretical results

on the �ooding time on torus networks. We start with a trivial

lower bound.

Theorem 3.1. For M agents initially positioned at uniformly ran-
dom nodes and moving with constant speed in an N × N torus, with
constant probability, we have:

TF ≥ TB ≥ Ω(N ). (4)

Proof. Let bi be the bit of information initially carried by agent

Ai , and Aj the farthest agent to Ai at time 0. �e time it takes until

bi reaches Aj , denoted by T (Aj ,bi ), is a lower bound for both TF
and TB . Since we are assuming uniformly random initial positions,

with 1/2 probability the distance between Ai and Aj is at least N /2.

Also note that information can only travel as fast as agents can.

�is means that at each time step the distance between Aj and

the closest copy of bi is reduced by at most 2 units. As a result,

with probability 1/2, T (Aj ,bi ) is at least N /4, which completes the

proof. �
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Now we move forward to our main theorem on the upper bound

for Manha�an Random Way-point model.

Theorem 3.2. For M agents moving according to the Manha�an
Random Way-point model with constant speed in an N × N torus,
with high probability5, we have:

TB ≤ TF = O
(
N logM

⌈N
M

log (NM)
⌉)
. (5)

W present the proof in two parts. �e �rst part is to analyze

when and with what probability two agents have a collocation

event so they can share information. �is involves a few necessary

conditions: time-wise the moves made by two agents with a collo-

cation event need to overlap; geometrically their trajectories need

to have an intersection; and thirdly, they arrive at the intersection

at the same time. Next we need to analyze the global property: how

information sharing enabled by collocation events leads to global

dissemination. �e next two subsections focus on these two parts

of the proof respectively.

3.1 Bounding Collocation Probability
We consider agents moving non-stop following Manha�an Random

Way-point model, and partition the mobility trace of each agent into

moves between randomly chosen destinations. First, observe that

any move by an agent following Manha�an Random Way-point

model takes Ω(N ) time with constant probability. We call the two

straight parts of a movement, one horizontal and the other vertical,

segments. Note that any move in this model can have at most two

segments of di�erent directions appearing in an arbitrary order.

We say two agents have a connection during their moves if they

are at the same location at the same time. For that to happen, the

moves of the two agents must at least overlap over time.

De�nition 3.3. Strongly overlapping moves are moves made

by two agents where the time interval of a segment of an agent’s

move is completely contained within the time interval of the other

agent’s whole move.

Note that this overlap only needs to happen in the time interval

of two moves and no condition is imposed on their geometric

locations.

Lemma 3.4. Every move Mi of an agent Ai strongly overlaps with
at least one of the moves of another agent Aj , say Mj . �e starting
moment of the moves can be at most N time-steps apart and with con-
stant probability, a segment of Mi will have a time duration overlap
of Ω(N ) with a segment of Mj .

Proof. First consider the move M−j of Aj that is still active

when Mi starts. If M−j ends a�er the �rst segment of Mi , then M−j
covers the �rst segment of Mi and the two moves strongly overlap

(Figure 1 case (i)). If not, then consider the next move of Aj , M
+
j . If

M+j ends a�er Mi ends, M+j completely covers Mi ’s second segment

and the two moves strongly overlap (Figure 1 case (ii)). If not, then

M+j must be completely covered by Mi and the two moves strongly

overlap (Figure 1 case (iii)). We have shown that a strong overlap

occurs. Since the time duration of each move can be at most N , the

5
High probability in our work means at least 1 − 1/N d

for some constant d > 0.

starting point of Mi is at most N time-steps apart from the starting

points of both M−j and M+j .

Mi

M−
j

(i)

M+
j

(ii)

(iii)
M−

j M+
j

M−
j

Figure 1: Any move of one agent strongly overlaps with at
least one of the moves of another agent.

Without loss of generality, assume a segment Sj of Mj is covered

completely by Mi . With probability 1/2, the time duration of Sj
(equal to its length due to the constant speed assumption) is at least

N /4. Now take the segment of Mi with the longest time duration

overlap with Sj , and denote it by Si . �is overlap should be at least

|Sj |/2. As a result, with probability 1/2, the time duration of this

overlap between Si and Sj is at least N /8, as required. �

`1

`2

P

`

Figure 2: �e segments are trimmed to duration of their
overlap, `. Le�: �e collocation event of two agents hap-
pens if the distance between the intersection point (P ) and
the starting point of both segments is equal (`1 = `2). Right:
Connection happens if there is a non-zero overlap between
two segments and there are 2` such placements for the blue
segment if the red segment is �xed.

Lemma 3.5. If two agents Ai and Aj have two segments Si and Sj
with a time interval overlap of `, they meet with probability Θ(`/N 2).

Proof. We trim both segments to the duration of their overlap,

making them of equal length `. All cases of a connection between

the two agents can be reduced to three main cases below by rotating

the torus or swapping the agents:

(1) Si is horizontal and Sj vertical. Here, the two agents con-
nect, if the two segments intersect geometrically at a point

P and P is at equal distance from the starting points of

Si and Sj (see Figure 2, le�). Since we assume that G is a

torus, we can �x Si ’s position in our analysis. Out of all N 2

possible placements of Sj onG , there are ` placements that

result in an intersection that meets the above condition.

Hence the probability of a connection between Ai and Aj
is `/N 2

in this scenario.
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(2) Both Si and Sj are horizontal and in opposite directions.

In this case, any geometric intersection is enough for a

connection to happen (see Figure 2, right). If both agents

move in the same row, there would be 2` placements of Sj
once Si ’s position is �xed that results in an intersection.

�e probability of both agents moving in the same row is

1/N , which makes the overall probability 2`/N 2
.

(3) Both Si and Sj are horizontal and in the same direction. In

this case, the starting points of Si and Sj have to be in the

same exact node, which happens with probability 1/N 2
.

Based on the 4 possible directions of each segment, there are

16 possible cases for Si and Sj , all of which happens with equal

probability and can be reduced to one of the 3 cases above. �e

overall probability of a connection between two agents can be

bounded as:

`

N 2
≤ Pr{Connect(Ai ,Aj , `)} ≤ 32

`

N 2
. (6)

�

An immediate consequence of Lemmas 3.5 and 3.4 is:

Lemma 3.6. Two agents with strongly overlapping moves have a
connection with probability Θ(1/N ).

Proof. For the probability of two strongly overlapping agents

connecting we have:

Pr{Connect(Ai ,Aj )} =
N /2∑
x=1

P(` = x) Pr{Connect(Ai ,Aj ,x)}, (7)

where P(` = x) is the probability that the time duration of the

overlap between segments of Ai and Aj is x . From Lemma 3.4 we

know that P(` ≥ N /8) ≥ 1/2. As a result we can rewrite (7) as:

Pr{Connect(Ai ,Aj )} ≥
1

2

N /8
N 2
≥ 1

16N
.

�e upper bound in (6) yields:

Pr{Connect(Ai ,Aj )} ≤ max

x
Pr{Connect(Ai ,Aj ,x)} ≤

16

N
.

�

3.2 Bounding the Flood Time
Given the probability of two agents sharing information during

their moves, we are now ready to argue for how information propa-

gates to the entire network. For simplicity, we �nd an upper bound

for the broadcast timeTB (one speci�c message reaching everyone)

and extend it to the �ood timeTF (all messages reaching everyone).

�ere are two issues that we need to address. First, the positions of

an agent are temporally correlated—but fortunately, if su�ciently

far apart in time, the positions of agents are independent which

will help to simplify our analysis. Second, we need to track agents

who have been informed and who have not, and analyze how in-

formation spreads from the informed ones to the uninformed ones.

Lemma 3.7. �e locations of two agents at 2N steps apart are
independent of each other.

Proof. Let the sequence of destinations chosen by an agent A
be 〈X0,X1, . . . ,Xk 〉. Observe that regardless of what Xi is, every

node in the torus (including Xi ) has the same probability of being

Xi+2. Also, nodes visited between two consecutive destinations are

only dependent on those two destinations. Let Pt and Pt+2N be the

position of A at time t and t + 2N . Since the agents move along the

shortest path towards their destination, a move is at most N steps

long. As a result, at least two destinations will be visited between

time t and t + 2N by A. Take the destination immediately a�er Pt ,

Xi , and immediately before Pt+2N , X j . As noted above, Pt is only

dependent on Xi−1 and Xi , while Pt+2N is only dependent on X j
and X j+1, where Xi and X j are distinct positions. �is makes Pt
and Pt+2N completely independent. �

As mentioned earlier, we track the spread of a single bit of in-

formation b among the agents. We �rst divide the time span of the

whole process into windows of size 6N time steps, called cycles.
�e kth

cycle starts at time 6kN and ends at time 6(k + 1)N . Each

agent would visit at least 4 destinations between time (6k + 1)N
and (6k+5)N , which yield at least 3 moves independent of other cy-

cles in an agent’s trajectory (note the 2N margin between selected

moves in each cycle, which guarantees independence). According

to Lemma 3.4, we know that a move by an agent will strongly over-

lap with a move by another agent and the starting point of the two

moves are at most N time steps apart. As a result, for each pair of

agents and each cycle, we can �nd two strongly overlapping moves

independent of other cycles, which according to Lemma 3.6 have a

c/N chance of connection, where c is a constant. �is essentially

makes collocation events between a �xed pair of agents in di�erent

cycles i.i.d.

We now divide the whole process into consecutive epochs. Each

epoch consists of si cycles, and starts when we have a set Ii of

agents who know about b (referred to as informed agents) and a

set Ui of agents who do not (referred to as uninformed agents). An

epoch ends when the number of informed agents doubles, or the

number of uninformed agents drops to zero. For the broadcast time

of b, TB , we can write:

TB ≤ 6N

logM∑
i=1

si . (8)

We now �nd the number of cycles needed for that w.h.p. each

agent in Ii is paired with a distinct agent inUi during the ith epoch.

By arti�cially forcing informed agents to �nd distinct partners, we

only slow down the process of information spread, and an upper

bound found in this manner is valid as an upper bound for the

main problem. �e reason we are require distinct partners for each

informed agent is to ensure that connections between di�erent

pairs are independent.

�e probability of an informed agent A ∈ Ii connecting to any
A′ ∈ Ui is as follows (arrow shows the direction of information

exchange):

Pr{�A′ ∈ Ui : A→ A′} =
(
1 − c

N

)si |Ui |
,

Pr{∃A′ ∈ Ui : A→ A′} = 1 −
(
1 − c

N

)si |Ui |
. (9)

Let there be an arbitrary order for agents in Ii and one for agents

in Ui . �e �rst informed agent can match to any of the |Ui | unin-

formed agents. A�er the �rst matching is done, there will be |Ui | −1

5



potential matches for the second informed agent and so on. Assum-

ing that there areq pairs at the end of this epoch (q ≤ min (|Ii |, |Ui |))
and using Equation (9), the probability of this happening (i.e., hav-

ing q pairs of matched informed/uninformed agents) is:

Pr{q-matching} =
q∏
i=0

(
1 −

(
1 − c

N

)si (M−q−i))
≥

(
1 −

(
1 − c

N

)si (M/2))q/2
≥

(
1 − exp

(−sic(M/2)
N

))q/2
≥ 1 − q exp

(−sic(M/2)
N

)
.

For the above to happen w.h.p., for d > 1, we need:

1 − q exp

(−sic(M/2)
N

)
≥ 1 − 1

Nd

exp

( sic(M/2)
N

)
≥ qNd

si ≥
2N

cM
(logq + d logN )

si >
2dN

cM
log (NM).

�e last step is due to the fact that q < M . To make sure that si is a

non-zero integer and we have at least one cycle, we set:

si =
⌈

2dN

cM
log (NM)

⌉
. (10)

Substituting (10) into (8), we have:

TB ≤ 6N

logM∑
i=1

⌈
2dN

cM
log (NM)

⌉
(11)

= O
(
N logM

⌈N
M

log (NM)
⌉)
. (12)

Since our bound for TB works for arbitrarily high probability (1 −
1/Nd

, for a constant d > 0), it extends toTF using the Union Bound.

�is completes the proof of �eorem 3.2.

�is is a pre�y tight bound. Consider a semi-dense scenario

where M ≈ N , our bound becomes Õ(N ), which nearly meets the

trivial lower bound of Equation (4).

Compared to previously mentioned bounds for the Random Way-

point model in (2) and (3), our bound is stronger. For the same

movement model, although under slightly di�erent network as-

sumptions, Clementi et al. found the bound of Õ(N + N 3/M) [14],

which is mainly due to the choice of not having a torus as they

intended to study the impact of rarely visited areas on the total

information spread time. Our bound also improves that of [15] by

a huge margin. �is can be due to the fact that their method is

a general framework to �nd an upper bound for TF . Our version

of the Manha�an Random Way-point model assumes that agents

complete their move in one coordinate then start moving in another.

As suggested in [15], this assumption increases the probability of

connection between two agents, which in turn leads to a be�er

upper bound for TF and TB . Further, the Manha�an Random Way-

point model is a be�er �t for mobility in urban areas it implicitly

incorporates the cost of turning during movement.

Depending on the application, one can think of various exten-

sions to our model, such as an arbitrary transmission radius or

random waiting time between two consecutive moves of an agent.

In this case, an approach similar to ours can be adopted to �nd a

bound for TF if these three components are available: (1) suitably

sized independent time windows (called cycle here), (2) guarantee

of a long enough time interval overlap between segments of moves

by two agents and (3) probability of connection between those two

segments.

4 EXPERIMENTS
In this section, through a series of experiments we test the accuracy

of our discovered bound. First, we test our model where agents are

moving in a torus-like grid, following Manha�an Random Way-

point model. Next, using bike sharing records in 3 major cities,

we create synthetic trajectories in real-world road networks, and

compare simulated behavior of �ood time against our model. Finally,

using GPS traces of taxis in a major city, we verify our model against

a real-world case of information dissemination via mobile agents.

4.1 Simulated Movements in a Grid
We simulate the movement of agents in a torus-like grid following

a Manha�an Random Way-point model, and compare the aver-

age �ood times, TF , against our bound. First, we �x N to 100

and �nd TF for M = {25, 50, · · · , 1000} by averaging TF over 100

realizations. To �t the resulting values to our bound, we use func-

tion f (M) = c1

M log (c2M) log (c3M), where each ci is a positive

constant, accounting for �xed N and constants in our asymptotic

analysis. �e results of the simulation along with ��ed values are

shown in Figure 3, middle. Our bound has accurately captured the

changes in TF as the coe�cient of determination, R2
, is equal to

0.9894. Next, using a similar procedure, we �x M to 100 and �nd

TF for N = {25, 50, · · · , 500}. We �t the values to the function

f (N ) = c1N
2(logN + c2), where again each ci is a positive con-

stant. �e simulation results and the ��ed values are depicted in

Figure 3. As expected, we showed good performance here too by

yielding an R2
of 0.9894 (equality between the two R2

values is

coincidental).

4.2 Simulated Movements in Real Networks
To test our model against non-grid networks, we use the bike rental

records of 3 major US cities [9, 12, 27]. Each city has a unique road

network and a set of �xed stations, {S1, S2, · · · , Sk }, which are used

as the set of possible destinations each agent can choose from. �e

goal here is to test our model against a se�ing beyond the grid

network and uniformly random selection of destinations. �e data

sets include an origin and a destination station for each trip made.

Using these records, we can estimate the probability of choosing a

destination Sj given that an agent is currently positioned in station

Si , called the transition probability between Si and Sj and denoted

by P(Si , Sj ). We can also calculate the probability of initiating a

trajectory from any given station, from here on called initiation

probability and denoted by P(Si ). To gradually move our tests

away from the theoretical se�ings, we use the following movement

models throughout our simulations:
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Figure 3: (le�) �e sigmoid-like behavior of Lévy Walk, sandwiched by Random Walk and Manhattan Random Way-point.
(middle, right) Our bound accurately captures the changes in TF as M and N are tweaked while other parameters are �xed.
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Figure 4: Actual (empty circles) and �tted (dotted lines) TF for two movement policies in 3 cities.

(1) Similar to Section 4.1, we select each station in the sequence

of stations visited by an agent uniformly at random. �is is

equivalent to the Random Way-point model and denoted

by RWP in this experiment.

(2) Next, we use the calculated P(Si ) and P(Si , Sj ) values to

build synthetic trajectories. We call this model DATA
throughout this experiment.

In each experiment, a�er selecting a sequence of stations visited

by each agent, we �nd the shortest paths between consecutive

stations using Routino [5] and OpenStreetMap [35] extracts. Two

agents will connect, if at any time t they are closer than 100 meters

from each other. Finally, for each of these experiments, we iterate

over 10 values of M between 5 and 2000, and report the average

�ood time (TF ) by aggregating over 25 realizations.
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Table 2: Fitting score, R2, for all movement policies in all
cities.

City RWP DATA
Boston 0.998 1.000

New York City 0.999 0.998

Washington, D.C. 0.995 0.934

Using a function similar to Section 4.1, we can �t the simulation

results to our bound. Figure 4 shows the actual and ��ed values

for the 3 cities, along with the R2
value of the ��ing. In these

simulations, our bound closely approximates the �ood time in the

simulations, even when the movement policy used is data-speci�c

rather than the Random Way-point model. �e R2
values care

compared in Table 2. Across all se�ings, we achieve > 0.93 (5 of

them > 0.99), which shows the �exibility of our model to variations

of network and movement policy. Note that here the network was

a real-world road network, and far from a torus.

�ere can be many di�erent factors contributing to the �ood

time in networks as complicated as urban maps, which are beyond

the scope of this study. Here, we tried to explore the limits of our

model’s prediction capabilities by tweaking the se�ings of experi-

ment in a controlled manner. Further investigation in the e�ects of

structural properties of road networks, and di�erent distributions

of frequent origins and destinations on the �ood time is needed

to fully understand the process of information dissemination by

human mobility in real road networks.

4.3 Real-World Data
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Figure 5: Actual (empty circles) and �tted (dotted lines) TF
for Shenzhen.

Next, we try to �t our model to real-world GPS traces. Ideally, one

may want to experiment on personal trajectories, as the behavior of

a single moving agent is best understood by looking at individuals’

mobility traces. However, due to the sensitivity of such data, large

and high-quality data sets containing personal mobility traces are

extremely rare. As a substitute, we can study the mobility of shared

vehicles, as we did in the previous section. Here, we study GPS

traces of taxi cabs in the city of Shenzhen in China [19]. Over the

course of 24 hours, the location of 9386 taxis are sampled every

1.01 minutes. We set the transmission radius to 100 meters and, for

simplicity, assume that connections can happen only on sampled

points in time. To generate di�erent numbers of moving agents

(M), we have to subsample from the set of all taxis. Since these

trajectories are �xed, we cannot extend them in the event of having

no information �ood. Hence, we �lter out those taxis that meet less

than 100 distinct taxis during the whole 24 hours, and 3905 taxis

will remain. We iterate over 10 di�erent values of M between 500

and 3000, each time �nding the �ood time in hours. We average the

results of 25 realizations for each M and report it. �e results are

shown in Figure 5. We have followed the same procedure to �t the

simulation values to our bound. �e resulting ��ed line is drawn

in Figure 5, achieving an R2
value of 0.996. �is shows that our

model is capable of predicting �ood times for real-world scenarios

to some degree. It is worth noting that the real-world experiments

did not have signi�cant �uctuations in the �ood time value and,

similar to controlled experiments in the two sections before, shows

a smooth behavior, even with only hundreds of moving agents in

some cases.

5 TOWARDS BOUNDING THE LÉVY WALK
Compared to other mobility models, the Lévy Walk if far less stud-

ied. Formally, in a Lévy Walk, given a constant α > 0, an agent

positioned at its ith destination, X = Xi , chooses node Y as its next

destination, Xi+1, with the following probability:

Pr{Xi+1 = Y | Xi = X } = 1

Z | |Y − X | |α , (13)

where Z is the normalizing factor and | |X − Y | | is the distance

between nodes X and Y , such as Manha�an Distance in a grid,

Euclidean Distance in the 2D plane or Graph Shortest Path Distance
in any given network. Figure 6 compares a Random, a Lévy and a

Random Way-point walker, simulated for 250 steps. Notice that a

Random Way-point walker tends to take big steps and cover a vast

area in the grid, while a Random walker is concentrated to a small

area around its initial position. A Lévy walker shows a mixture

of the two behaviors. It roams around in a small area most of the

time, but occasionally makes a long move to a di�erent region in

the grid.
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Figure 6: A Random Way-point walker (le�), a random
walker (middle), and a Lévy walker (α = 2) a�er 250 steps.
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To compare how information propagates in the three movement

models, we have to �rst observe that Random Walk (or Brownian
motion) and Random Way-point can be thought of as two extreme

ends of the spectrum of all possible Lévy Walks. In (13), se�ing

α to 0 (and applying the corresponding Z value) yields a constant

probability regardless of the distance between X and Y , similar

to Random Way-point. On the other hand, given any time limit

T , we can make α high enough so that w.h.p. no agent selects a

destination more than one unit distance away at any time t ≤ T ,

e�ectively forcing them to follow Random Walk.

Figure 3, le�, shows the simulated results for the average �ood

time, denoted by TF , of a system where agents are moving by

Random Walk, Manha�an Random Way-point or Lévy Walk model

with di�erent values ofα . BothN andM are set to 100, α goes from 0

to 10 in 0.1 increments, and each point is created by aggregating the

results of 100 realizations. Additionally, with our newly discovered

bound for the Manha�an Random Way-point model, the bounds

for TF in Random Walk and Manha�an Random Way-point have

go�en very close. We now have a reason to believe that any future

bound for Lévy Walk should be close to either of the bounds for

these two movement models. And since their bounds are close, it

is worth investigating whether or not a careful interpolation of the

bounds for Random Walk and Manha�an Random Way-point is a

good predictor of how a Lévy Walker moves in a network.

6 CONCLUSION
�anks to ever-present portable devices, there has been a grow-

ing interest in a be�er understanding of mobile networks (also

called vehicular networks), where autonomous agents move inde-

pendently and are capable of carrying and transmi�ing information.

We studied the case of M agents moving in an N × N torus.

We made a new improvement to the �ood time bound for Man-

ha�an Random Way-point model, TF = Õ(N
⌈
N /M

⌉
), that is tight

for a wide range of problem se�ings. To the best of our knowl-

edge, this bound is stronger than all previous bounds found for this

movement model. �rough extensive experiments, we showed that

our bound can accurately predict �ood time for a wide variety of

simulated and real-world se�ings.

Lastly, given the shrinking di�erence between the bounds for

Random Walk and Random Way-point, and the fact that Lévy Walk

behaves in between the former two movement models, it is now

worth investigating whether a careful interpolation of Random

Walk and Random Way-point can describe Lévy Walk accurately

enough. Finding theoretical bounds for Lévy Walk can be a valuable

future work that further expands our knowledge of the relation

between these three movement models and ultimately of human

mobility.
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