
Deterministic Graph Exploration with Advice
Barun Gorain1 and Andrzej Pelc∗2

1 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec, Canada
baruniitg123@gmail.com

2 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec, Canada
pelc@uqo.ca

Abstract
We consider the task of graph exploration. An n-node graph has unlabeled nodes, and all ports
at any node of degree d are arbitrarily numbered 0, . . . , d − 1. A mobile agent has to visit all
nodes and stop. The exploration time is the number of edge traversals. We consider the problem
of how much knowledge the agent has to have a priori, in order to explore the graph in a given
time, using a deterministic algorithm. This a priori information (advice) is provided to the agent
by an oracle, in the form of a binary string, whose length is called the size of advice. We consider
two types of oracles. The instance oracle knows the entire instance of the exploration problem,
i.e., the port-numbered map of the graph and the starting node of the agent in this map. The
map oracle knows the port-numbered map of the graph but does not know the starting node of
the agent. What is the minimum size of advice that must be given to the agent by each of these
oracles, so that the agent explores the graph in a given time?

We first consider exploration in polynomial time, and determine the exact minimum size of
advice to achieve it. This size is log log logn−Θ(1), for both types of oracles.

When advice is large, there are two natural time thresholds: Θ(n2) for a map oracle, and
Θ(n) for an instance oracle, that can be achieved with sufficiently large advice. We show that,
with a map oracle, time Θ(n2) cannot be improved in general, regardless of the size of advice. We
also show that the smallest size of advice to achieve this time is larger than nδ, for any δ < 1/3.

For an instance oracle, advice of size O(n logn) is enough to achieve time O(n). We show
that, with any advice of size o(n logn), the time of exploration must be at least nε, for any ε < 2,
and with any advice of size O(n), the time must be Ω(n2).

We also investigate minimum advice sufficient for fast exploration of Hamiltonian graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases algorithm, graph, exploration, mobile agent, advice

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.132

1 Introduction

Exploration of networks by visiting all of their nodes is one of the basic tasks performed
by a mobile agent in networks. In applications, a software agent may need to collect data
placed at nodes of a network, or a mobile robot may need to collect samples of air or ground
in a contaminated mine whose corridors form links of a network, with corridor crossings
represented by nodes.

∗ Research supported in part by NSERC Discovery Grant 8136 – 2013 and by the Research Chair in
Distributed Computing of the Université du Québec en Outaouais.

EA
T

C
S

© Barun Gorain and Andrzej Pelc;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 132; pp. 132:1–132:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.132
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

132:2 Deterministic Graph Exploration with Advice

The network is modeled as a simple connected undirected graph G = (V,E) with n nodes,
called graph in the sequel. Nodes are unlabeled, and all ports at any node of degree d are
arbitrarily numbered 0, . . . , d− 1. The agent is initially situated at a starting node v of the
graph. When the agent located at a current node u gets to a neighbor w of u by taking port
i, it learns the port j by which it enters node w and it learns the degree of w. The agent
has to visit all nodes of the graph and stop. The agent is computationally unbounded and
cannot mark the visited nodes.

The time of the exploration is the number of edge traversals. We consider the problem
of how much knowledge the agent has to have a priori, in order to explore the graph in
a given time, using a deterministic algorithm. It is well-known that some information is
necessary, as witnessed even by the class of rings in which ports at all nodes are numbered
0,1 in clockwise order. Navigating in such a ring, the agent cannot learn its size. If there
existed an exploration algorithm not using any a priori knowledge, then it would have to
stop after some t steps in every ring, and hence would fail to explore a (t+ 2)-node ring.

Following the paradigm of algorithms with advice [1, 13, 17, 18, 21, 20, 22, 23, 24, 25, 26,
27, 29], this a priori information (advice), needed for exploration, is provided to the agent
by an oracle, in the form of a binary string, whose length is called the size of advice. We
consider two types of oracles. An instance oracle knows the entire instance of the exploration
problem, i.e., the port-numbered map of the graph and the starting node of the agent in
this map. A map oracle knows the port-numbered map of the graph but does not know the
starting node of the agent. Formally, a map oracle is a function f : G −→ S, where G is
the set of graphs and S is the set of finite binary strings. An instance oracle is a function
f : I −→ S, where I is the set of pairs (G, v), with G ∈ G and v being the starting node of
the agent in graph G. The advice s is an input to an exploration algorithm. We say that
exploration in time t with advice of size x given by an instance oracle is possible, if there
exists advice of length x depending on the instance (G, v), and an exploration algorithm
using this advice, which explores every graph in time t, starting from node v. Likewise, we
say that exploration in time t with advice of size x given by a map oracle is possible, if there
exists advice of length x depending on the graph G, and an exploration algorithm using
this advice, which explores every graph in time t, starting from any node. (Integers x and
t depend on the size of the graph.) Proving that such an exploration is possible consists
in showing an oracle of the appropriate type giving advice of size x, and an exploration
algorithm using this advice and working in time t, for any graph and any starting node.
Proving that such an exploration is impossible consists in showing that, for any oracle of the
appropriate type giving advice of size x, and for any exploration algorithm using it, there
exists a graph and a starting node for which this algorithm will exceed time t.

The central question studied in this paper is:
What is the minimum size of advice that has to be given to the agent by an instance

oracle (resp. by a map oracle) to permit the agent to explore any graph in a given time?
Our main contributions are negative results of two types:

impossibility results showing that the less powerful map oracle cannot help to achieve
the same exploration time as the more powerful instance oracle, regardless of the size of
advice;

lower bounds showing that the size of some natural advice leading to a simple exploration
in a given time cannot be improved significantly.

While in most cases our bounds on the size of advice are asymptotically tight, in one case
the remaining gap is cubic.

B. Gorain and A. Pelc 132:3

1.1 Our results
We first consider exploration in polynomial time, and determine the exact minimum size
of advice to achieve it. Indeed, we prove that some advice of size log log logn− c, for any
constant c, is sufficient to permit polynomial exploration of all n-node graphs, and that no
advice of size log log logn− φ(n), where φ is any function diverging to infinity, can help to
do this. Both these results hold both for the instance and for the map oracles.

On the other side of the spectrum, when advice is large, there are two natural time
thresholds: Θ(n2) for a map oracle, and Θ(n) for an instance oracle. This is because, in both
cases, these time benchmarks can be achieved with sufficiently large advice (advice of size
O(n logn) suffices). We show that, with a map oracle, time Θ(n2) cannot be improved in
general, regardless of the size of advice. What is then the smallest advice to achieve time
Θ(n2) with a map oracle? We show that this smallest size of advice is larger than nδ, for
any δ < 1/3.

For large advice, the situation changes significantly when we allow an instance oracle
instead of a map oracle. In this case, advice of size O(n logn) is enough to achieve time O(n).
Is such a large advice needed to achieve linear time? We answer this question affirmatively.
Indeed, we show more: with any advice of size o(n logn), the time of exploration must be at
least nε, for any ε < 2, and with any advice of size O(n), the time must be Ω(n2).

We finally look at Hamiltonian graphs, as for them it is possible to achieve the absolutely
optimal exploration time n− 1, when sufficiently large advice (of size O(n logn)) is given by
an instance oracle. We show that a map oracle cannot achieve this: regardless of the size of
advice, the time of exploration must be Ω(n2), for some Hamiltonian graphs. On the other
hand, even for an instance oracle, with advice of size o(n logn), optimal time n− 1 cannot
be achieved: indeed, we show that the time of exploration with such advice must sometimes
exceed the optimal time n− 1 by a summand nε, for any ε < 1.

Our results permit us to compare advice of different size and of different quality. The
size is defined formally, and for quality we may say that advice given by an instance oracle is
superior to advice given by a map oracle, because an instance oracle, seeing not only the
graph but also the starting node of the agent, can use the allowed bits of advice in a better
way. Looking from this perspective it turns out that both size and quality of advice provably
matter. The fact that quality of advice matters is proved by the following pair of results:
for a map oracle, time Θ(n2) cannot be beaten, regardless of the size of advice, while for
an instance oracle time O(n) can be achieved with O(n logn) bits of advice. The fact that
the size of advice matters (with the same quality) is proved by the following pair of results:
for an instance oracle, time O(n) can be achieved with O(n logn) bits of advice, but with
o(n logn) bits of advice time must be at least nε, for any ε < 2.

1.2 Related work
The problem of exploration and navigation of mobile agents in an unknown environment
has been extensively studied in the literature for many decades (cf. the survey [33]). The
explored environment has been modeled in two distinct ways: either as a geometric terrain
in the plane, e.g., an unknown terrain with convex obstacles [9], or a room with polygonal
[12] or rectangular [5] obstacles, or as we do in this paper, i.e., as a graph, assuming that
the agent may only move along its edges. The graph model can be further specified in two
different ways: either the graph is directed, in which case the agent can move only from
tail to head of a directed edge [2, 6, 7, 13], or the graph is undirected (as we assume) and
the agent can traverse edges in both directions [4, 8, 16, 30, 31]. The efficiency measure

ICALP 2017

132:4 Deterministic Graph Exploration with Advice

adopted in most papers dealing with exploration of graphs is the time (or cost) of completing
this task, measured by the number of edge traversals by the agent. Some authors [4, 8, 16]
impose further restrictions on the moves of the agent.

Another direction of research concerns exploration of anonymous graphs. In this case it
is impossible to explore arbitrary graphs and stop after exploration, if no marking of nodes
is allowed, and if nothing is known about the graph. Hence some authors [6, 7] allow pebbles
which the agent can drop on nodes to recognize already visited ones, and then remove them
and drop them in other places. A more restrictive scenario assumes a stationary token that
is fixed at the starting node of the agent [11, 32]. Exploring anonymous graphs without
the possibility of marking nodes (and thus possibly without stopping) is investigated, e.g.,
in [14, 19]. The authors concentrate attention not on the cost of exploration but on the
minimum amount of memory sufficient to carry out this task. In the absence of marking
nodes, in order to guarantee stopping after exploration, some knowledge about the graph is
required, e.g., an upper bound on its size [11, 34].

Providing nodes or agents with arbitrary kinds of information that can be used to perform
network tasks more efficiently has been previously proposed in [1, 13, 17, 18, 21, 20, 22,
23, 24, 25, 26, 27, 29] in contexts ranging from graph coloring to broadcasting and leader
election. This approach was referred to as algorithms with advice. The advice is given either
to nodes of the network or to mobile agents performing some network task. In the first case,
instead of advice, the term informative labeling schemes is sometimes used, if different nodes
can get different information.

Several authors studied the minimum size of advice required to solve network problems
in an efficient way. In [27], given a distributed representation of a solution for a problem, the
authors investigated the number of bits of communication needed to verify the legality of the
represented solution. In [21], the authors compared the minimum size of advice required to
solve two information dissemination problems using a linear number of messages. In [22], it
was shown that advice of constant size given to the nodes enables the distributed construction
of a minimum spanning tree in logarithmic time. In [15, 17], the advice paradigm was used
for online problems. In particular, in [15] the authors studied online graph exploration
with advice in labeled weighted graphs. In the case of [29], the issue was not efficiency but
feasibility: it was shown that Θ(n logn) is the minimum size of advice required to perform
monotone connected graph clearing. In [26], the authors studied radio networks for which
it is possible to perform centralized broadcasting in constant time. In [24], the authors
studied the problem of topology recognition with advice given to nodes. The topic of [28]
and [35] was the size of advice needed for fast leader election, resp. in anonymous trees and
in arbitrary anonymous graphs. Exploration with advice was previously studied only for
trees [20], and algorithm performance was measured using the competitive approach. In
the present paper, the performance measure of an algorithm is the order of magnitude of
exploration time, and hence the case of trees is trivial, as they can be explored in linear time
without any advice.

2 Exploration in polynomial time

As a warm-up, we first consider the following question: What is the minimum size of advice
permitting the agent to explore any graph in time polynomial in the size of the graph? In
this section we give the exact answer to this question, both for the instance oracle and for
the map oracle.

It is well-known that, if the agent knows an upper bound n′ on the number n of nodes of
the graph, then exploration in time polynomial in n′ is possible, starting from any node of the

B. Gorain and A. Pelc 132:5

graph. The first result implying this fact was proved in [3]. The exploration proposed there
works in time O(n′5 logn′), and is based on Universal Traversal Sequences (UTS). Later on,
an exploration algorithm working in time polynomial in n′ based on Universal Exploration
Sequences (UXS) was established in [34]. While the polynomial in the latter paper has much
higher degree, the solution from [34] can be carried out in logarithmic memory. Both UTS
and UXS permit to find a sequence of port numbers to be followed by the agent, regardless
of the topology of the graph and of its starting node. In the case of UTS, the sequence of
port numbers to be followed is the UTS itself, and in the case of UXS it is constructed term
by term, on the basis of the UXS and of the port number by which the agent entered the
current node. Regardless of which solution is used, we have the following proposition:

I Proposition 1 ([3, 34]). If the agent knows an upper bound n′ on the number n of nodes of
the graph, there exists an algorithm with input n′ that permits the agent starting at any node
of the graph to explore the graph and stop after P (n′) steps, where P is some polynomial.

The positive part of our result on minimum advice is formulated in the following lemma.
Its proof is based on Proposition 1. The advice given to the agent is some prefix of the binary
representation of the number blog lognc, on the basis of which the agent computes a rough
but sufficiently precise upper bound on the size of the graph which permits it to explore the
graph, in time polynomial in its size.

I Lemma 2. For any positive constant c, there exists an exploration algorithm using advice
of size blog log logn− cc, that works in time polynomial in n, for any n-node graph.

The next result shows that the upper bound from the previous lemma is tight. Indeed,
the following lower bound holds even for oriented rings, i.e., rings in which ports 0 and 1 are
in clockwise order at every node.

I Lemma 3. For any function φ : N → N such that φ(n) → ∞ as n → ∞, it is not
possible to explore an n-node oriented ring in polynomial time, using advice of size at most
log log logn− φ(n).

Notice that Lemmas 2 and 3 hold both for the instance oracle and for the map oracle.
The positive result from Lemma 2 holds even for the map oracle, as the advice concerns the
size of the graph and does not require knowing the starting node of the agent. The negative
result from Lemma 3 holds even for the instance oracle, as it is true even in oriented rings,
where knowledge of the starting node does not provide any insight, since all nodes look the
same. Hence Lemmas 2 and 3 imply the following theorem that gives a precise answer to the
question stated at the beginning of this section.

I Theorem 4. The minimum size of advice permitting the agent to explore any graph in
time polynomial in the size n of the graph is log log logn−Θ(1), both for the instance oracle
and for the map oracle.

3 Fast exploration

When advice given to the agent can be large, there are two natural time thresholds: Θ(n2)
for a map oracle, and Θ(n) for an instance oracle. This is because, in both cases, these time
benchmarks can be achieved with sufficiently large advice. Indeed, we have the following
proposition.

ICALP 2017

132:6 Deterministic Graph Exploration with Advice

I Proposition 5.
1. There exists an exploration algorithm, working in time O(n2) and using advice of size

O(n logn), provided by a map oracle, for n-node graphs.
2. There exists an exploration algorithm, working in time O(n) and using advice of size

O(n logn), provided by an instance oracle, for n-node graphs.

In the rest of this section we prove negative results indicating the quality of the natural
solution given in Proposition 5. For the map oracle, we show that quadratic exploration time
cannot be beaten, and we give a lower bound on the size of advice sufficient to guarantee
this time. For the instance oracle, we show that Proposition 5 gives optimal advice for linear
exploration time.

3.1 Map oracle
Our first result for the map oracle shows that, regardless of the size of advice, exploration
time Θ(n2) cannot be beaten, for some n-node graphs.

We will use the following construction from [10] of a family HX of graphs.
Let H be an m

2 -regular graph with m nodes, where m is even, e.g., the complete bipartite
graph. Let T be the set of edges of any spanning tree of H. Let S be the set of edges of H
outside T . Let s = |S| = m2

4 −m+ 1 and S = {e1, e2, · · · , es}.
For x ∈ {0, 1}s \ {0s}, the (2m)-node graph Hx is constructed from H by taking two

disjoint copies H ′ and H ′′ of H, and crossing some pairs of edges from one copy to the other.
For i = 1, · · · , s, if the i−th bit of x is 1, then the edge ei = (ui, vi) is deleted from both
copies of H and two copies of ei are crossed between the two copies of H. More precisely, let
{v1, · · · , vm} be the set of nodes of H and let v′i and v′′i be the nodes corresponding to vi, in
H ′ and H ′′, respectively. Let V ′ and V ′′ be the sets of nodes of H ′ and H ′′, respectively.
Define Hx = (V ′ ∪ V ′′, Ex), where Ex = {(v′i, v′j), (v′′i , v′′j) : (vi, vj) ∈ T} ∪ {(v′i, v′′j), (v′′i , v′j) :
ek = (vi, vj) ∈ S and xk = 1}. Let HX = {Hx : x ∈ {0, 1}s \ {0s}}.

According to the result from [10], for every node v ∈ H, there exists some sequence
x(v) ∈ {0, 1}s \ {0s} such that if an exploration of H performed according to some sequence
W of port numbers, starting from node v1, visits node v at most s times, then in one of
the copies H ′ or H ′′ in Hx(v) the node v′ or v′′ is not visited at all, if the same sequence W
is used to explore the graph Hx(v) starting from v′1. Intuitively, the result from [10] shows
a class of graphs with the property that if some node in one of these graphs is not visited
many times, then the exploration algorithm fails in some other graph of this class. There
is no control in which graph of the class this will happen. We use the graphs from [10] as
building blocks to prove a different kind of lower bound. Indeed, we construct a single graph
having the property that if some of its nodes are not visited many times, then exploration
must fail in this graph. This will prove a lower bound on exploration time for some graph,
even if the agent knows the entire graph.

Using the graphs Hx ∈ HX from [10] we construct the graph Ĝ as follows. For any
1 ≤ i ≤ m, let v′1(i) be the node corresponding to node v′1 from H ′ in the graph Hx(vi).
Connect the graphs Hx(vi), for 1 ≤ i ≤ m, and an oriented cycle C with nodes {y1, · · · , ym}
(port numbers 0,1 are in clockwise order at each node of the cycle), by adding edges (yi, v′1(i)),
for 1 ≤ i ≤ m. The port numbers corresponding to these edges are: 2 at yi and m

2 at v′1(i).
The cycle C is called the main cycle of Ĝ. See Fig. 1.

Let n = 2m2 +m be the number of nodes in Ĝ.
By the construction of Ĝ, any exploration algorithm with the agent starting from any

node of the main cycle, has the following obliviousness property. For any step i of the

B. Gorain and A. Pelc 132:7

0

1 0

0

0

0

1

1

1

1

2

Hx(v1)

Hx(v2)

Hx(v3)

Hx(vm)

H ′

H ′

H ′

H ′

H ′′

H ′′

H ′′

H ′′

y1

y2

y3

ym

H ′

H ′′

Hx(v4)

y4

v′1(1)

crossing edges

Main cycle

Figure 1 Construction of Ĝ.

algorithm, if the agent is at some node v in this step, and the algorithm prescribes taking
some port p at this node, then the port q through which the agent enters the adjacent node
w in the (i + 1)-th step, and the degree of the node w are predetermined (i.e., they are
independent of the starting node in the main cycle). Intuitively, the agent does not learn
anything during the algorithm execution. Therefore, every exploration algorithm with the
agent starting from any node of the main cycle can be uniquely coded by a sequence of port
numbers which the agent takes in consecutive steps of its exploration.

Let A be any exploration algorithm for Ĝ, and suppose that the agent starts from some
node of the main cycle. We use · for concatenation of sequences.

I Lemma 6. Let U be the sequence of port numbers corresponding to the movement of the
agent according to algorithm A, starting at some node of the main cycle C of Ĝ . Then
U = B′1 · (2) · B1 · (m2) · B′2 · (2) · B2 · (m2) · · ·B′p · (2) · Bp · (m2) · B′p+1, where each B′j is a
sequence of port numbers corresponding to the movement of the agent along C and each Bj is
a sequence of port numbers corresponding to the movement of the agent inside some Hx(vi).

Call an exploration algorithm of Ĝ non-repetitive, if the agent, starting from the main
cycle, enters each Hx(vi), for 1 ≤ i ≤ m, exactly once. By definition, the sequence of port
numbers corresponding to a non-repetitive algorithm can be written as D′1 · (2) ·D1 · (m2) ·
D′2 · (2) ·D2 · (m2) · · ·D′m · (2) ·Dm · (m2) ·D′m+1, where each D′j is a sequence of port numbers
corresponding to the movement of the agent along C and each Dj is a sequence of port
numbers corresponding to the movement of the agent inside some Hx(vi). Notice that since
the algorithm is non-repetitive, the number of blocks Dj is exactly m.

The following lemma proves that in order to show a lower bound on the exploration time
in Ĝ, it is enough to consider only the class of non-repetitive algorithms.

I Lemma 7. If the agent starts from some node of the main cycle of Ĝ and executes any
exploration algorithm A of Ĝ, then there exists a non-repetitive algorithm A′ for this agent,
such that the exploration time of A′ is at most the exploration time of A.

The next lemma implies that the sequence U corresponding to a correct non-repetitive
exploration algorithm must be long.

ICALP 2017

132:8 Deterministic Graph Exploration with Advice

I Lemma 8. Let U = D′1 · (2) ·D1 · (m2) ·D′2 · (2) ·D2 · (m2) · · ·D′m · (2) ·Dm · (m2) ·D′m+1
be the sequence of port numbers corresponding to a non-repetitive algorithm. If there exists
some Di such that the agent following Di in H starting from node v1 visits some node vj of
H at most s times, then there exists a starting node in the main cycle of Ĝ, such that the
agent starting at this node and following U does not visit all the nodes of Ĝ.

I Theorem 9. Any exploration algorithm using any advice given by a map oracle must take
time Ω(n2) on graph Ĝ, for some starting node in the main cycle, for arbitrarily large n.

Proof. By Lemma 7, it is enough to consider only non-repetitive algorithms. Let U =
D′1 · (2) ·D1 · (m2) ·D′2 · (2) ·D2 · (m2) · · ·D′m · (2) ·Dm · (m2) ·D′m+1 be the sequence of port
numbers corresponding to such an algorithm. Then by Lemma 8, for each i, 1 ≤ i ≤ m, the
agent following Di in H starting from node v1 visits each node vj of H, for 1 ≤ j ≤ m, at
least s+ 1 times. Therefore the length of Di is at least (s+ 1)m. Hence, the length of U is
at least

∑m
i=1(s+ 1)m = (s+ 1)m2 = m2(m

2

4 −m+ 1). Since n = 2m2 +m, the length of U
is in Ω(n2). J

Theorem 9 shows that, for some n-node graph, no advice given by a map oracle can
help to explore this graph in time better than Θ(n2). It is then natural to ask what is the
minimum size of advice to achieve time Θ(n2) with a map oracle, for every n-node graph.
Our next result shows that any exploration algorithm using advice of size nδ for δ < 1

3 , must
take time ω(n2), on some n-node graph.

Fix a constant ε < 1
2 . Let H be an m

2 -regular graph with m nodes, where m is even. Let
{v1, · · · , vm} be the set of nodes of H. Consider a subset Z ⊂ {1, 2, · · · ,m} of size mε. Let
p = mε and n = 2mp+p. We construct an n-node graph ĜZ from H. The construction of ĜZ
is similar to the construction of Ĝ at the beginning of this section. Let Z = {z1, z2, · · · , zp}.
To construct ĜZ , connect the (previously described) graphs Hx(vzi), for 1 ≤ i ≤ p, and an
oriented cycle C ′ (called the main cycle) with nodes {y1, · · · , yp}, by adding edges (yi, v′1(zi)),
for 1 ≤ i ≤ p. The port numbers corresponding to these edges are: 2 at yi and m

2 at v′1(zi).
Note that the same obliviousness property applies to exploration algorithms in graphs ĜZ ,
when the agent starts from a node of the main cycle.

Let ĜZ be the set of all possible graphs ĜZ constructed from H. We have |ĜZ | =
(
m
p

)
.

I Theorem 10. For any ε < 1
2 , any exploration algorithm using advice of size o(n

ε
1+ε logn)

must take time ω(n2) on some graph of the class ĜZ and for some starting node in the main
cycle of this graph, for arbitrarily large n.

Proof. Since ε < 1
2 , there exists an integer c such that ε < c−1

2c−1 . We show that if the size
of the advice is at most 1

2cm
ε log(m1−ε) ≤ 1−ε

2c(1+ε) (n2)
ε

1+ε log n
2 , then there exists a graph in

ĜZ for which the time required for exploration is ω(n2). We have |ĜZ | =
(
m
mε

)
≥ (m1−ε)mε .

There are fewer than (m1−ε)m
ε

c different binary strings of length at most 1
2cm

ε log(m1−ε). By
the pigeonhole principle, there exists a family of graphs Ĝ ⊂ ĜZ of size at least (m1−ε)(c−1)mεc

such that all the graphs in Ĝ get the same advice.
Define F (Ĝ) =

⋃{
{vz1 , vz2 , · · · , vzp} : Z = {z1, z2, · · · , zp} and ĜZ ∈ Ĝ

}
. Intuitively,

F (Ĝ) is the subset of nodes of H, such that for each v ∈ F (Ĝ), there exists some graph in Ĝ
that contains Hx(v) as a subgraph.

B. Gorain and A. Pelc 132:9

Claim: |F (Ĝ)| ≥ |Ĝ|
1
p .

Proof. We prove the claim by contradiction. Suppose that |F (Ĝ)| < |Ĝ|
1
p . Each graph in Ĝ

has p different subgraphs Hx(v), where v ∈ |F (Ĝ)|. There are
(|F (Ĝ)|

p

)
different graphs in Ĝ

which is at most |F (Ĝ)|p < |Ĝ|. This contradiction proves the claim. J

Consider the exploration of some graph ĜZ ∈ Ĝ starting from the main cycle. Let
U = D′1 · (2) ·D1 · (m2) ·D′2 · (2) ·D2 · (m2) · · ·D′p · (2) ·Dm · (m2) ·D′p+1 be the sequence of port
numbers corresponding to a non-repetitive algorithm exploring ĜZ . Then for each i, 1 ≤ i ≤ p,
the agent following Di in H starting from node v1 must visit each node v ∈ F (Ĝ) at least
s+ 1 times. (Otherwise, there would exist a graph in Ĝ and a starting node in the main cycle,
for which one node would not be explored by U). Hence, for sufficiently large m, the length of
Di is at least (s+1)|F (Ĝ)| ≥ m2

5 m
(c−1)(1−ε)

c , because s ≥ m2

5 . Therefore, the length of U is at
least pm

2

5 m
(c−1)(1−ε)

c = 1
5m

εm2m
(c−1)(1−ε)

c = 1
5m

2+ε+ (c−1)(1−ε)
c = 1

5m
2+2ε+(c−1

c + 1−2c
c ε). Since

ε < c−1
2c−1 , we have (c−1

c + 1−2c
c ε) > 0. Therefore, the length of U is in ω((2m1+ε +mε)2) =

ω(n2), and hence exploration time is in ω(n2). J

Since ε < 1
2 implies ε

1+ε <
1
3 , Theorem 10 yields the following corollary.

I Corollary 11. For any δ < 1
3 , any exploration algorithm using advice of size o(nδ) must

take time ω(n2) on some n-node graph, for arbitrarily large n.

3.2 Instance oracle
For the instance oracle we show a general lower bound on the size of advice needed to achieve
a given exploration time. The main corollaries of this lower bound are:
• the size of advice Θ(n logn) from Proposition 5, sufficient to achieve linear exploration

time, cannot be beaten;
• for advice of linear size, exploration time must be quadratic.
To prove our lower bound we will use the following construction.
Let G be an n

4 -regular
n
2 -node graph, where n is divisible by 4. We can use, for example

the complete bipartite graph with n
2 nodes. Let m = n

2 . Let v1, v2, · · · , vm be the nodes
of G. Let x = (x1, x2, · · · , xm) be a sequence of m integers where 0 ≤ xi ≤ m

2 − 1, for
i = 1, · · · ,m. Let X be the set of all such sequences.

We construct an n-node graph Gx as follows. For each i = 1, · · · ,m, add a new node v′i
of degree 1 to G. Replace the port number xi at vi by port number m

2 . Add the edge (vi, v′i)
with the port number xi at vi. An example of the construction of Gx from G is shown in
Fig. 2. Let GX be the set of all possible graphs Gx constructed from G.

I Theorem 12. For any function φ : N −→ N, and for any exploration algorithm using
advice of size o(nφ(n)), this algorithm must take time Ω(n2

2φ(n)) on some n-node graph from
the family GX , for arbitrarily large integers n.

Proof. Let n be divisible by 4. We show that if the size of the advice is at most nφ(n)
4 −1, then

there exists an n-node graph in the family GX , for which the time required for exploration
is Ω(n2

2φ(n)). We have |GX | = |X| = (m2)m. There are fewer than 2
mφ(2m)

2 = (2φ(2m))m2
different binary strings of length at most 2mφ(2m)

4 − 1 = nφ(n)
4 − 1. By the pigeonhole

principle, there exists a family of graphs G ⊂ GX , of size at least (m2)m

(2φ(2m))
m
2
, such that all

the graphs in G get the same advice. Let Y = {x ∈ X : Gx ∈ G}. Let z = m
2φ(2m)+2 and let

ICALP 2017

132:10 Deterministic Graph Exploration with Advice

v1 v2

v3

v4v5

v6

0 1

0

1

0

1

01

0

1

0

1

2 2

2

22

2

(a) An example of G with six nodes

v1 v2

v3

v4v5

v6

0

0

1

0

1

1

0

1
2

2
2

2

v′1 v′2

v′3

v′4v′5

v′6

2
1

0

2

0

1

3

3

3

3

3

3

1
1

1

1

1

1

(b) Gx for the sequence x = (2, 1, 2, 0, 0, 1)

Figure 2 The construction of Gx from G.

J = {j : |{xj : x ∈ Y }| ≥ z}. Intuitively, J is the set of indices, for which the set of terms of
sequences x that produce graphs from G is large. Let p = |J |.

Claim: p > m
2 .

Proof. We prove the claim by contradiction. Suppose that p ≤ m
2 . Since p ≤ m

2 and
z < m

2 , we have (m2)p · zm−p ≤ (m2)m2 · zm2 . Note that for all i ∈ {1, 2, · · · ,m} \ J , we have
|{xi : x ∈ Y }| < z, and for j ∈ J , we have |{xj : x ∈ Y }| ≤ m

2 . Therefore, |G| < (m2)p · zm−p.
Hence, |G| < (m2)m2 (m

2φ(2m)+2)m2 = mm

2
m
2 (2φ(2m)+2)

m
2
< |G|, which is a contradiction. This proves

the claim. J

Consider any exploration algorithm for the class G. There exists a graph Gx ∈ G, such
that, at each node vj of Gx, for j ∈ J , the agent must take all the ports in {xj : x ∈ Y }.
Indeed, suppose that the agent does not take some port xj , where j ∈ J and x ∈ Y . Consider
the exploration of any graph Gx′ ∈ G, where x′j = xj . Since the agent can visit v′j only
coming from vj , using port x′j in Gx′ , the node v′j remains unexplored, as the port x′j at vj
is never used, which is a contradiction. Hence, the agent must visit at least m

2φ(2m)+2 ports at
each node vj for j ∈ J . Since |J | > m

2 , the time required for exploration is at least m2

2φ(2m)+3 ,
i.e., it is at least n2

2φ(n)+5 . J

If φ(n) = c where c is a constant, then Theorem 12 implies that any exploration algorithm
using advice of size at most cn

2 , must take time at least n2

2c+3 . This implies that, if the size of
advice is at most c′n, for any constant c′, then exploration time is Ω(n2). Hence we have the
following corollary.

I Corollary 13. Any exploration algorithm using advice of size O(n) must take time Ω(n2)
on some n-node graph, for arbitrarily large n.

For φ(n) ∈ o(logn), Theorem 12 implies an exploration time ω(n) which shows that the
upper bound on the size of advice from Proposition 5 is asymptotically tight for exploration
in linear time. The following corollary improves this statement significantly, showing that
exploration time is very sensitive to the size of advice at the threshold Θ(n logn) of the
latter.

B. Gorain and A. Pelc 132:11

I Corollary 14. Consider any constant ε < 2. Any exploration algorithm using advice of
size o(n logn) must take time Ω(nε), on some n-node graph, for arbitrarily large n.

Proof. If the size of advice is o(n logn), then it is nφ(n), where φ(n) = logn
f(n) , with f(n)→∞

as n → ∞. Theorem 12 implies that exploration time must be Ω
(

n2

2
logn
f(n)

)
= Ω

(
n2

n
1

f(n)

)
.

Since, for any constant δ > 0, we have n
1

f(n) ∈ O(nδ), the corollary holds. J

4 Exploration of Hamiltonian graphs

In this section we turn attention to Hamiltonian graphs. These graphs have a special feature
from the point of view of exploration: with sufficiently large advice of appropriate type, the
agent can explore a Hamiltonian graph without any loss of time, visiting each node exactly
once, i.e., in time n− 1, for n-node graphs. Indeed, an instance oracle can give as advice the
sequence of port numbers along a Hamiltonian cycle, from the starting node of the agent,
and then the agent takes the prescribed ports in n− 1 consecutive steps. Since it is enough
to give n− 1 port numbers, and the binary representation of each port number uses O(logn)
bits, advice of size O(n logn), given by an instance oracle, suffices.

We show that neither the quality nor the size of advice can be decreased to achieve the
goal of optimal exploration of Hamiltonian graphs. To prove the first statement, we show
a graph which is impossible to explore in time n− 1 when advice of any size is given by a
map oracle. Indeed, we construct an n-node Hamiltonian graph for which even knowing the
entire map of the graph (but not knowing its starting node) an agent must use time Ω(n2) to
explore it. To prove the second statement, we construct a class of n-node Hamiltonian graphs
for which advice of size o(n logn), even given by an instance oracle, is not enough to permit
exploration of graphs in this class in time n − 1. Indeed, we show more: any exploration
algorithm using such advice must exceed the optimal time n− 1 by a summand nε, for any
ε < 1, on some graph of this class.

In order to prove the first result, we construct a (3n)-node Hamiltonian graph G̃ from
the n-node graph Ĝ described in Section 3.1. First, we consider an m

2 -regular m-node
Hamiltonian graph H (for example, the complete bipartite graph). Let v1, v2, · · · , vm be the
nodes of H along a Hamiltonian cycle. The graph Ĝ is constructed from H as described
in Section 3.1, where the Hamiltonian path (v1, v2, · · · , vm) is taken as the spanning tree
T . We construct the Hamiltonian graph G̃ from the graph Ĝ as follows. Denote by d(v)
the degree of node v in Ĝ. For each node v in Ĝ, consider a cycle of three nodes v(1), v(2),
and v(3), in G̃, with port numbers 3d(v), 3d(v) + 1 in clockwise order at each of these three
nodes. For each edge (u, v) in Ĝ, such that the port numbers corresponding to this edge are
p at u and q at v, add, in G̃, the edges (u(i), v(j)), for 1 ≤ i, j ≤ 3, with the following port
numbers. The port numbers corresponding to edge (u(i), v(j)) are: p+ (j − 1)d(u) at u(i)
and q + (i− 1)d(v) at v(j), see Fig. 3.

I Lemma 15. The graph G̃ is Hamiltonian.

Let A be an exploration algorithm for G̃ starting from node yi(1), for some i ≤ m. We
describe the following algorithm A∗ on Ĝ, starting from node yi. Ignore all moves of A
taking port 3d(v) or 3d(v) + 1 at a node v(j), for 1 ≤ j ≤ 3, of G̃. Replace every move of A
taking port r = p+ (i− 1)d(v), at node v(j), for 1 ≤ j ≤ 3, in G̃, where 0 ≤ p ≤ d(v)− 1, by
a move taking port p in Ĝ.

Then the agent executing A∗ in Ĝ, starting from the main cycle, explores all the nodes.
The time used by A∗ in Ĝ does not exceed the time used by A in G̃. Since, by Theorem 9, any

ICALP 2017

132:12 Deterministic Graph Exploration with Advice

p q

u v

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

p q

p+ d(u)

p+ 2d(u)
3d(u)

3d(u) + 1

3d(u)

3d(u) + 1

3d(u)

3d(u) + 1

q

q

p

p

p+ d(u)

p+ d(u)

p+ 2d(u)

p+ 2d(u)

q + d(v)

q + 2d(v)

q + 2d(v)

q + 2d(v)

q + d(v)

q + d(v)

3d(v) + 1

3d(v) + 1

3d(v) + 1

3d(v)

3d(v)

3d(v)

Figure 3 The construction of G̃ from Ĝ.

exploration algorithm for Ĝ, starting from the main cycle, must take time Ω(n2), algorithm
A must take time Ω(n2) to explore G̃. Replacing 3n by n we have the following theorem.

I Theorem 16. Any exploration algorithm using any advice given by a map oracle must
take time Ω(n2) on some n-node Hamiltonian graph, for arbitrarily large n.

Our last result shows that advice of size o(n logn) causes significant increase of exploration
time for some Hamiltonian graphs, as compared to optimal time n− 1 achievable with advice
of size O(n logn), given by an instance oracle.

I Theorem 17. For any constant ε < 1, and for any exploration algorithm using advice of
size o(n logn), this algorithm must take time n+ nε, on some n-node Hamiltonian graph, for
arbitrarily large n.

5 Conclusion

Most of our lower bounds on the size of advice are either exactly or asymptotically tight. The
lower bound log log logn−Θ(1) on the size of advice sufficient to explore all n-node graphs
in polynomial time is exactly tight: with advice of any such size, polynomial exploration
is possible, and with advice of any smaller size it is not. For an instance oracle, the lower
bound Ω(n logn) on the size of advice sufficient to explore n-node graphs in O(n) time is
asymptotically tight, as we gave a linear time exploration algorithm using advice of size
O(n logn). An exception to this tightness is the lower bound on the size of advice given
by a map oracle, permitting exploration in time O(n2). While the natural upper bound is
O(n logn), our lower bound is only nδ for any δ < 1

3 . Hence the main remaining question is:
What is the smallest advice, given by a map oracle, permitting exploration of n-node

graphs in time O(n2)?

Acknowledgements. We are grateful to Adrian Kosowski for early discussions on the subject
of this paper and for drawing our attention to [10].

References
1 Serge Abiteboul, Stephen Alstrup, Haim Kaplan, Tova Milo, and Theis Rauhe. Compact

labeling scheme for ancestor queries. SIAM J. Comput., 35(6):1295–1309, 2006. doi:
10.1137/S0097539703437211.

2 Susanne Albers and Monika Rauch Henzinger. Exploring unknown environments. SIAM
J. Comput., 29(4):1164–1188, 2000. doi:10.1137/S009753979732428X.

http://dx.doi.org/10.1137/S0097539703437211
http://dx.doi.org/10.1137/S0097539703437211
http://dx.doi.org/10.1137/S009753979732428X

B. Gorain and A. Pelc 132:13

3 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.
Random walks, universal traversal sequences, and the complexity of maze problems. In 20th
Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31
October 1979, pages 218–223. IEEE Computer Society, 1979. doi:10.1109/SFCS.1979.34.

4 Baruch Awerbuch, Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal graph
exploration by a mobile robot. Inf. Comput., 152(2):155–172, 1999. doi:10.1006/inco.
1999.2795.

5 Eldad Bar-Eli, Piotr Berman, Amos Fiat, and Peiyuan Yan. Online navigation in a room.
J. Algorithms, 17(3):319–341, 1994. doi:10.1006/jagm.1994.1039.

6 Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil P. Vadhan. The
power of a pebble: Exploring and mapping directed graphs. Inf. Comput., 176(1):1–21,
2002. doi:10.1006/inco.2001.3081.

7 Michael A. Bender and Donna K. Slonim. The power of team exploration: Two robots can
learn unlabeled directed graphs. In 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 75–85. IEEE Computer
Society, 1994. doi:10.1109/SFCS.1994.365703.

8 Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal learning of an unknown
environment. Machine Learning, 18(2-3):231–254, 1995. doi:10.1007/BF00993411.

9 Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geomet-
ric terrain. SIAM J. Comput., 26(1):110–137, 1997. doi:10.1137/S0097539791194931.

10 Allan Borodin, Walter L. Ruzzo, and Martin Tompa. Lower bounds on the length of
universal traversal sequences. J. Comput. Syst. Sci., 45(2):180–203, 1992. doi:10.1016/
0022-0000(92)90046-L.

11 Jérémie Chalopin, Shantanu Das, and Adrian Kosowski. Constructing a map of an an-
onymous graph: Applications of universal sequences. In Chenyang Lu, Toshimitsu Mas-
uzawa, and Mohamed Mosbah, editors, Principles of Distributed Systems - 14th Inter-
national Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceed-
ings, volume 6490 of Lecture Notes in Computer Science, pages 119–134. Springer, 2010.
doi:10.1007/978-3-642-17653-1_10.

12 Xiaotie Deng, Tiko Kameda, and Christos H. Papadimitriou. How to learn an unknown
environment I: the rectilinear case. J. ACM, 45(2):215–245, 1998. doi:10.1145/274787.
274788.

13 Dariusz Dereniowski and Andrzej Pelc. Drawing maps with advice. J. Parallel Distrib.
Comput., 72(2):132–143, 2012. doi:10.1016/j.jpdc.2011.10.004.

14 Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree exploration
with little memory. J. Algorithms, 51(1):38–63, 2004. doi:10.1016/j.jalgor.2003.10.
002.

15 Stefan Dobrev, Rastislav Královic, and Euripides Markou. Online graph exploration with
advice. In Guy Even and Magnús M. Halldórsson, editors, Structural Information and
Communication Complexity - 19th International Colloquium, SIROCCO 2012, Reykjavik,
Iceland, June 30-July 2, 2012, Revised Selected Papers, volume 7355 of Lecture Notes in
Computer Science, pages 267–278. Springer, 2012. doi:10.1007/978-3-642-31104-8_23.

16 Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal constrained
graph exploration. ACM Trans. Algorithms, 2(3):380–402, 2006. doi:10.1145/1159892.
1159897.

17 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation with
advice. Theor. Comput. Sci., 412(24):2642–2656, 2011. doi:10.1016/j.tcs.2010.08.007.

18 Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc. Distributed computing
with advice: information sensitivity of graph coloring. Distributed Computing, 21(6):395–
403, 2009. doi:10.1007/s00446-008-0076-y.

ICALP 2017

http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1006/inco.1999.2795
http://dx.doi.org/10.1006/inco.1999.2795
http://dx.doi.org/10.1006/jagm.1994.1039
http://dx.doi.org/10.1006/inco.2001.3081
http://dx.doi.org/10.1109/SFCS.1994.365703
http://dx.doi.org/10.1007/BF00993411
http://dx.doi.org/10.1137/S0097539791194931
http://dx.doi.org/10.1016/0022-0000(92)90046-L
http://dx.doi.org/10.1016/0022-0000(92)90046-L
http://dx.doi.org/10.1007/978-3-642-17653-1_10
http://dx.doi.org/10.1145/274787.274788
http://dx.doi.org/10.1145/274787.274788
http://dx.doi.org/10.1016/j.jpdc.2011.10.004
http://dx.doi.org/10.1016/j.jalgor.2003.10.002
http://dx.doi.org/10.1016/j.jalgor.2003.10.002
http://dx.doi.org/10.1007/978-3-642-31104-8_23
http://dx.doi.org/10.1145/1159892.1159897
http://dx.doi.org/10.1145/1159892.1159897
http://dx.doi.org/10.1016/j.tcs.2010.08.007
http://dx.doi.org/10.1007/s00446-008-0076-y

132:14 Deterministic Graph Exploration with Advice

19 Pierre Fraigniaud and David Ilcinkas. Digraphs exploration with little memory. In Volker
Diekert and Michel Habib, editors, STACS 2004, 21st Annual Symposium on Theoretical
Aspects of Computer Science, Montpellier, France, March 25-27, 2004, Proceedings, volume
2996 of Lecture Notes in Computer Science, pages 246–257. Springer, 2004. doi:10.1007/
978-3-540-24749-4_22.

20 Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Tree exploration with advice. Inf.
Comput., 206(11):1276–1287, 2008. doi:10.1016/j.ic.2008.07.005.

21 Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Communication algorithms with
advice. J. Comput. Syst. Sci., 76(3-4):222–232, 2010. doi:10.1016/j.jcss.2009.07.002.

22 Pierre Fraigniaud, Amos Korman, and Emmanuelle Lebhar. Local MST computa-
tion with short advice. Theory Comput. Syst., 47(4):920–933, 2010. doi:10.1007/
s00224-010-9280-9.

23 Emanuele G. Fusco and Andrzej Pelc. Trade-offs between the size of advice and broadcast-
ing time in trees. Algorithmica, 60(4):719–734, 2011. doi:10.1007/s00453-009-9361-9.

24 Emanuele G. Fusco, Andrzej Pelc, and Rossella Petreschi. Topology recognition with advice.
Inf. Comput., 247:254–265, 2016. doi:10.1016/j.ic.2016.01.005.

25 Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs.
J. Algorithms, 53(1):85–112, 2004. doi:10.1016/j.jalgor.2004.05.002.

26 David Ilcinkas, Dariusz R. Kowalski, and Andrzej Pelc. Fast radio broadcasting with advice.
Theor. Comput. Sci., 411(14-15):1544–1557, 2010. doi:10.1016/j.tcs.2010.01.004.

27 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Com-
puting, 22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

28 Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016.
SIAM, 2016. doi:10.1137/1.9781611974331.

29 Nicolas Nisse and David Soguet. Graph searching with advice. Theor. Comput. Sci.,
410(14):1307–1318, 2009. doi:10.1016/j.tcs.2008.08.020.

30 Petrisor Panaite and Andrzej Pelc. Exploring unknown undirected graphs. J. Algorithms,
33(2):281–295, 1999. doi:10.1006/jagm.1999.1043.

31 Petrisor Panaite and Andrzej Pelc. Optimal broadcasting in faulty trees. J. Parallel Distrib.
Comput., 60(5):566–584, 2000. doi:10.1006/jpdc.2000.1625.

32 Andrzej Pelc and Anas Tiane. Efficient grid exploration with a stationary token. Int. J.
Found. Comput. Sci., 25(3):247–262, 2014. doi:10.1142/S0129054114500129.

33 Nageswara S. V. Rao, Srikumar Kareti, Weimin Shi, and S. Sitharama Iyengar. Robot
navigation in unknown terrains: Introductory survey of non-heuristic algorithms, Jul 1993.
doi:10.2172/10180101.

34 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
doi:10.1145/1391289.1391291.

35 A. Pelc Y. Dieudonné. Impact of knowledge on election time in anonymous networks. In
Proc. 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017),
2017. doi:10.1007/978-3-642-17653-1_10.

http://dx.doi.org/10.1007/978-3-540-24749-4_22
http://dx.doi.org/10.1007/978-3-540-24749-4_22
http://dx.doi.org/10.1016/j.ic.2008.07.005
http://dx.doi.org/10.1016/j.jcss.2009.07.002
http://dx.doi.org/10.1007/s00224-010-9280-9
http://dx.doi.org/10.1007/s00224-010-9280-9
http://dx.doi.org/10.1007/s00453-009-9361-9
http://dx.doi.org/10.1016/j.ic.2016.01.005
http://dx.doi.org/10.1016/j.jalgor.2004.05.002
http://dx.doi.org/10.1016/j.tcs.2010.01.004
http://dx.doi.org/10.1007/s00446-010-0095-3
http://dx.doi.org/10.1137/1.9781611974331
http://dx.doi.org/10.1016/j.tcs.2008.08.020
http://dx.doi.org/10.1006/jagm.1999.1043
http://dx.doi.org/10.1006/jpdc.2000.1625
http://dx.doi.org/10.1142/S0129054114500129
http://dx.doi.org/10.2172/10180101
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1007/978-3-642-17653-1_10

	Introduction
	Our results
	Related work

	Exploration in polynomial time
	Fast exploration
	Map oracle
	Instance oracle

	Exploration of Hamiltonian graphs
	Conclusion

