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ABSTRACT
Using cloud Database as a Service (DBaaS) offerings instead
of on-premise deployments is increasingly common. Key
advantages include improved availability and scalability at
a lower cost than on-premise alternatives. In this paper, we
describe the design of Taurus, a new multi-tenant cloud
database system. Taurus separates the compute and stor-
age layers in a similar manner to Amazon Aurora and Mi-
crosoft Socrates and provides similar benefits, such as read
replica support, low network utilization, hardware sharing
and scalability. However, the Taurus architecture has sev-
eral unique advantages. Taurus offers novel replication and
recovery algorithms providing better availability than ex-
isting approaches using the same or fewer replicas. Also,
Taurus is highly optimized for performance, using no more
than one network hop on critical paths and exclusively using
append-only storage, delivering faster writes, reduced de-
vice wear, and constant-time snapshots. This paper describes
Taurus and provides a detailed description and analysis of
the storage node architecture, which has not been previously
available from the published literature.
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1 INTRODUCTION
As companies move their applications to the cloud, demand
for cloud-based relational database service (DBaaS) is grow-
ing rapidly. Amazon, Microsoft, Alibaba, and other cloud
providers all offer such services. Most DBaaS offerings were
initially based on traditional monolithic database software,
essentially just running databases on (virtual) machines in
the cloud, using either local storage or cloud storage. Al-
though simple to implement, this approach cannot provide
what customers want from a cloud database service [12].
From a customer’s point of view, an ideal database service
should be highly available, require no maintenance, and scale
up and down automatically with database size and workload.
It should also deliver high performance, be low cost, and
users should pay only for resources actually used (pay-as
you-go). These goals can’t be achieved by running the same
old database software in the cloud - the system must be
redesigned from the ground up.

A good DBaaS architecture must simultaneously provide
durability, scalability, performance, availability, and cost-
effectiveness. Having three persistent copies of data dis-
tributed across different hosts is usually considered sufficient
to ensure durability [5]. Scalability can be provided by dis-
tributing compute and storage resources across hosts. While
distributing a database across multiple hosts improves dura-
bility and scalability, it can adversely affect availability. Using
many hosts increases the probability of some hosts becom-
ing unavailable, potentially resulting in the whole database
becoming unavailable. Methods, such as quorum-based repli-
cation and eventual consistency, can increase availability, but
both have drawbacks. Quorum-based replication may need
a higher replication factor than what is required for pure
data durability, increasing the cost. Eventual consistency is
unacceptable for many existing applications.
In this paper, we present Taurus, a relational database

designed specifically for cloud environments. Taurus builds
on ideas from previous work and improves on them in several
respects. Taurus separates compute and storage layers in a

ar
X

iv
:2

41
2.

02
79

2v
1 

 [
cs

.D
B

] 
 3

 D
ec

 2
02

4

https://doi.org/10.1145/3318464.3386129
https://doi.org/10.1145/3318464.3386129
https://doi.org/10.1145/3318464.3386129


fashion similar to Aurora [24] and, like Socrates, separates
the concepts of availability and durability [2]. Taurus offers
similar benefits, such as read replica support, fast fail-over
and recovery, hardware sharing, and scalability to 128TB.

The Taurus compute layer consists of a single master (pri-
mary) and multiple read-only replicas (secondaries). Data is
divided into pages that are partitioned across multiple stor-
age nodes. All update transactions are handled by the master.
The master ships log records to the storage layer over the
network. The storage layer writes them to reliable storage,
stores database pages, applies received log records to bring
pages up to date, and responds to page read requests.

Taurus introduces several innovations, helping it achieve
high availability and high performance at a low cost. Our
first contribution is a replication and recovery algorithm that
achieves high availability with a replication factor no higher
than what is required for durability and without sacrificing
performance or strong consistency guarantees. This algo-
rithm enables Taurus to achieve nearly 100% availability for
writes when considering uncorrelated storage failures. With
only 3-way data duplication required for durability, Taurus
achieves availability comparable to the 6-way quorum repli-
cation used by Aurora and better than the 3-way quorum
replication used by POLARDB [4].
A key observation is that data access patterns for the

database log and database pages are significantly different.
Database logs are used solely for data durability and are
written and read sequentially. Log writes are frequent and
performance is critical, but log reads are required only during
generally infrequent failures, thus read performance is of
lesser concern. As logs are necessary for durability, they
need strong consistency guarantees.
Unlike database logs, database pages are accessed ran-

domly. Page read performance is critical, but write latency
is less important because when a modified page needs to be
written, the changes are already durable in the log. Database
pages are versioned, and versioning can be used to provide
strong consistency. Because of such differences, it is inef-
ficient to use the same storage for logs and pages. Taurus
separates log storage (Log Stores) from page storage (Page
Stores). It uses different distribution and replication algo-
rithms for log and page data. Each algorithm is optimized
for its particular requirements.
Log reads are infrequent, and most log records are dis-

carded without ever being read. A log record does not depend
on other log records. Log records don’t need to be written to
specific Log Store servers, but rather can be written to any
available Log Stores in a large pool, provided that the number
of available Log Stores is enough for durability. In practice, a
DBaaS deployment contains hundreds to thousands of nodes.
A database can acknowledge writes as long as there are three

available storage nodes, which for practical purposes should
always be the case considering only uncorrelated failures.
In contrast, database pages are updated by applying log

records and the previous version of a page is required to
produce the next one. This requires a page to be assigned to
specific Pages Store servers. Thus, the availability of a page
depends on the availability of the specific Page Stores respon-
sible for the page. However, in contrast to the traditional
quorum-based replication algorithms, Taurus does not need
a majority or even a plurality of Page Stores to be involved in
each read or write operation. Strongly consistent log servers
and page versioning can be used when deciding which Page
Store replica is the most current one. If the page version is
known, Page Stores can be eventually consistent, which is
known to improve service availability [10]. The lack of a
quorum requirement allows Taurus to reduce the number of
replicas to that required for durability.
Another key factor for a successful DBaaS is high per-

formance. In distributed systems, performance significantly
depends on the number of operations on critical paths that
cross network boundaries. Our second contribution is a set
of novel architectural choices that enable Taurus to achieve
higher performance. Our tests show that Taurus can achieve
up to 200% higher throughput than MySQL 8.0 running with
local storage. Taurus supports multiple read replicas and
keeps the replica lag under 20ms even under high load. Most
performance-critical operations in Taurus, such as writing
logs and reading pages, require only one interaction between
network-connected hosts.
To avoid having the storage layer become a bottleneck,

Taurus improves storage layer performance in two ways.
First, the separation of Log Stores from Page Stores reduces
the load on Page Stores. Second, the organization of Page
Stores is optimized around a "the log is the database" model,
never modifying data in place, and performing append-only
writes. This approach has multiple advantages, improving
write performance by 2-5 times, while simultaneously reduc-
ing device wear and consequently, the cost of the service.
Also, append-only writes simplify consistency algorithms
and snapshot generation. Finally, the separation of the stor-
age layer into Log and Page Stores, allows Taurus read repli-
cas to receive updates directly from Log Stores, bypassing the
master and avoiding the master becoming a bottleneck. Tau-
rus distributes resource consumption necessary to support
read replicas evenly across the scalable storage layer.
The third contribution of this paper is a detailed descrip-

tion of the inner workings, performance optimizations, and
design compromises in the storage layer. Although the avail-
able literature [2, 24] describes many optimizations done in
the compute layer, it lacks details about storage organization
and the rationale for design decisions.



The remainder of this paper is organized as follows. In
Section 2, we compare Taurus with available state of the art
DBaaS implementations and discuss related work. Section
3 provides a high-level overview of the Taurus architecture.
Section 4 describes the details of the Taurus recovery algo-
rithm and compares it with alternatives. Section 5 discusses
recovery, and Section 6 covers read replica support. In Sec-
tion 7, we do a deep dive into the organization of Page Stores.
A performance evaluation is provided in Section 8, and we
conclude in Section 9.

2 BACKGROUND AND RELATEDWORK
During the last few years, several relational database ar-
chitectures designed for cloud environments have emerged:
Amazon Aurora, Alibaba POLARDB, and Microsoft Socrates.
[2, 4, 24]. Traditional databases deployed on cloud instances
with private storage are also popular [1, 19].

The main advantages of using traditional databases in the
cloud include ease of implementation, no changes to and full
compatibility with existing software. However, there are also
disadvantages with this approach.With traditional databases,
the database size is limited by the amount of locally attached
storage. Network-attached storage can increase the maxi-
mum size of a database, but storage cost, network load, and
update costs remain high and proportional to the number of
replicas. This is because each replica needs to maintain its
own copy of the database [24]. Adding a new read replica
requires the entire database to be replicated, an expensive
and time-consuming process proportional to the size of the
database that significantly limits scalability. Size-of-data op-
erations, such as taking a backup, also limit the database size;
they simply take too long.
To address some of the above limitations, Cao et al. pro-

posed running master and read replicas on top of a shared,
distributed file system - PolarFS [4]. PolarFS provides a POSIX-
like file interface, which makes it possible to keep the data-
base code and architecture intact. Durability is provided by
PolarFS through three-way replication using an optimized
quorum protocol. Sharing storage between database replicas
reduces storage cost and network load. Using a distributed
file system enables storage scale-out and large database sup-
port. However, as the storage layer does not provide any
database-specific processing, this architecture still inherits
some limitations. These include write amplification, high
network load due to page flushing, and limited performance
and scalability as the master performs all processing.
Splitting the database system into compute and storage

layers, and having each layer incorporate some of the data-
base functionality solves many of these problems. Compute
nodes ship only log records to the storage layer instead of
full pages, and the storage layer knows how to update pages

from log records. This approach, pioneered by Aurora, re-
duces network load and the load on the compute layer since
the flushing of full pages is no longer necessary [24]. Au-
rora divides the database pages into 10GB shards distributed
across shared storage nodes and uses quorum-based writes
with six replicas for each shard. Using a quorum introduces
availability problems as multiple replicas of a shard need
to be online to ensure reads and writes are successful. For
a quorum-based system with three nodes, two nodes must
be online in order to serve reads and writes. However, the
authors considered this inadequate for availability, so Aurora
uses 6-node quorum, which improves availability.
Microsoft Socrates also relies on log shipping and page

reconstruction at the storage nodes [2]. However, Socrates
separates durability and availability by splitting the database
into four layers: a compute layer that serves the same pur-
pose as the corresponding layer in Aurora, a log layer that
is specialized in fast log persistence and ensures log dura-
bility, a page server layer that applies log records to pages
and serves page reads, and a storage layer that is used to
ensure durability of the database data. Storing log records
separately from pages improves database performance and
allows it to use slower and cheaper storage for pages and
faster, more expensive storage for log records.

Taurus also embraces the ideas of separating the database
into different functional layers and separating the notions of
availability and durability. Taurus takes these ideas further
by using different replication and consistency techniques
for logs and pages. This approach allows Taurus to simul-
taneously achieve higher availability, lower storage costs,
and better performance. The Taurus replication algorithm
provides higher availability for writes than the quorum repli-
cation used by POLARDB and Aurora, and uses only three
data replicas to minimize storage costs. Taurus separates the
database system into two physical tiers compared to Socrates’
four-tier architecture. This results in lower network load and
latency. In order to reduce read latency, Socrates caches all
pages on local storage at the Page Server tier. In contrast,
Taurus does not have intermediate tiers. It does not require
caching as data can be quickly retrieved from storage devices
with a single network hop.

In addition to the general database architectures described
above, there are several cloud databases optimized for spe-
cific requirements. Spanner, a partially SQL-compliant data-
base, was designed to handle geo-distributed transactions
for read-intensive workloads and relies on two-phase com-
mit and accurate clocks [6]. Snowflake is an example of a
cloud database optimized for large volume analytical data
processing [7]. Vandiver et al. discuss experience of adapting
the Vertica column store engine for cloud deployments [23].

Taurus builds onmultiple previously developed techniques.
Log structured storage was introduced by LFS [21] and has



Figure 1: MySQL with two replicas deployed in a cloud
environment

been applied in several databases and key-value stores [15,
20, 22, 25]. Taurus Page Stores use this concept to store its
persistent data. Eventual consistency and data versioning
[13] have been used by Dynamo DB [8] to achieve high avail-
ability at the cost of weaker consistency. Taurus uses a com-
bination of consistency methods to achieve both availability
and consistency. The gossip protocol for data replication was
proposed by Demers et al. [9], and has been used widely.
Taurus uses a combination of gossip and central replication
in order to overcome gossip limitations such as high network
load.

3 SYSTEM ARCHITECTURE
Cloud environments are significantly different from tradi-
tional dedicated server environments. They violate implicit
assumptions that were the basis for traditional database archi-
tectures. The first part of this section outlines why that this
is the case, using MySQL as an example. This is followed by a
high-level overview of the Taurus architecture emphasizing
how it is optimized for running in a cloud environment.

3.1 The cloud is different
Relational database systems have traditionally been designed
assuming data is stored on dedicated local storage. If a data-
base is required to be highly available, two or three copies
of the database are typically maintained, a master and one
or two replicas. The master handles both read and write
requests. Each replica maintains a complete copy of the data-
base and may also process read-only transactions. If the
master fails or becomes unresponsive, one of the replicas
takes over as the new master.

This architecture is well suited to on-premise deployments,
but in a cloud environment, it wastes resources: network
bandwidth, CPU cycles, memory space, storage space, and
I/O bandwidth. Fig. 1 illustrates how data flows and is stored
in a typical MySQL cloud deployment. Each MySQL instance

Figure 2: Taurus components and layers

runs on a separate VM, storing its data on virtual disks (vol-
umes). The customer configures the VMs and virtual disks
with fixed capacity and pays a fixed price, regardless of how
much of this capacity is actually used. Virtual disks in the
cloud typically store three copies of the data to guarantee
high reliability and availability. As each of the three MySQL
instances maintain its own copy of the database, this means
that nine complete copies of the database are stored. This is
clearly excessive and wasteful.
The arrows in Fig. 1 show how data flows. Replicas up-

date their copy of the database by re-executing all update
transactions received by the master. This means that every
update transaction is executed three times, once per MySQL
instance. Considering the replication done by storage, this
means that every write is repeated nine times.

In a cloud environment, this traditional architecturewastes
resources, increasing the cost of the service. Scaling out com-
pute by adding read replicas is slow and expensive because a
completely new copy of the database needs to be created for
each replica added. Large, multi-terabyte databases cannot
be supported because operations, such as backup and restore,
simply take too long.

3.2 Taurus overview
Taurus consists of four major logical parts: Log Stores, Page
Stores, a Storage Abstraction Layer (SAL), and a database
front end. These parts are distributed between two physical
layers: a compute layer and a storage layer (Fig. 2). Hav-
ing only two physical layers minimizes the amount of data
sent across the network and reduces the latency of requests,
which can be completed with just one call over the network.

The database front end is a slightly modified version of
MySQL, but PostgreSQL and other engines may be supported
in the future. The front end is responsible for accepting in-
coming connections, optimizing and executing queries, man-
aging transactions, and producing log records that describe
modification made to database pages. The front end layer
consists of one master replica that can serve both read and
write queries and multiple read replicas that execute read



queries only. In order to persist modifications to database
pages, the log records must be made durable.

The Log Store is a service executing in the storage layer re-
sponsible for storing log records durably. Once all log records
belonging to a transaction have been made durable, trans-
action completion can be acknowledged to the client. Log
Stores serve two purposes. First and foremost, they ensure
the durability of log records. Second, they serve log records
to read replicas so that the replicas can apply the log records
to pages in their buffer pool. The master periodically com-
municates the location of the latest log records so that read
replicas can read the latest log. The master also distributes
log records to Page Store servers.
Page Store servers are also located in the storage layer.

Taurus database is divided into small fixed-size (10GB) sets of
pages called slices. Each Page Store server handles multiple
slices from different databases and receives logs only for the
pages that belong to the slices it is responsible for. A database
can have multiple slices, and each slice is replicated to three
Page Stores for durability and availability. The next sections
describe the four major parts of Taurus in more detail.

3.3 Log Store
The primary function of the Log Store is to persist log records
generated by the master and provide read access to them
from any replica. The key storage abstraction provided by
the underlying storage is called a PLog. A PLog is a limited-
size, append-only storage object that is synchronously repli-
cated across multiple Log Stores. The replication factor is
determined by the desired level of durability, which in our
implementation, is set to three.
Log Store servers are organized into a cluster. A typical

cloud deployment has hundreds of Log Store servers. When
the creation of a PLog is requested, the cluster manager
chooses three Log Store servers to which the PLog will be
replicated. It assigns a 24-byte identifier that uniquely iden-
tifies the PLog. Writes to a PLog are acknowledged only
when all three Log Store replicas report a successful write. If
one of the Log Stores fails to acknowledge the write within
the expected time, the write is considered to have failed, no
further writes are issued to this PLog, and a new PLog is
created across another three Log Store Servers chosen by the
cluster manager. This means that writes to Log Stores will
always succeed as long as there are at least three healthy
hosts available in the cluster. Writes are fast because if a
Log Store is slow or a network packet is lost, writes are not
retried to the old location, but rather sent to other less loaded
or more reliable Log Stores.
Reads from the Log Store will succeed as long as there is

at least one PLog replica available. Reads from PLogs occur
in two cases. First, database read-only replicas read the log

records recently written by the master replica. To accelerate
such reads, Log Store caches recently written data in mem-
ory using a FIFO policy for eviction so that no disk access
is required in most cases. Second, reads also occur during
database recovery when committed log records must be read
and sent to Page Stores.

The database log is stored in an ordered collection of PLogs,
called data PLogs. The list of these PLogs is recorded in
a separate metadata PLog and cached in memory on the
database nodes. When a database is initialized, a metadata
PLog and PLogs storing the database log are automatically
created. Writes to the metadata PLogs are governed by the
same rules as data PLogs. When a new data PLog is created
or removed, all metadata is written in one atomic write to
the metadata PLog. When a metadata PLog reaches its size
limit, a new metadata PLog is created, the latest metadata is
written there, and the old metadata PLog is deleted.

3.4 Page Store
The main function of Page Stores is to serve page read re-
quests coming from the database master server or read repli-
cas. A Page Store must be able to recreate any version of a
page that a database front end may request so a Page Store
must have access to all log records for the pages that it is
responsible for. This requirement prevents us from switching
Page Stores in same way as we switch Log Stores when they
become unavailable and makes achieving high availability
more challenging.
When the master modifies a page, it assigns the page a

version, a monotonically increasing logical sequence number
(LSN) that uniquely identifies and establishes order among
all changes to a database. Each page version is identified by
its page ID and LSN.

The SAL communicates with a Page Store through an API
that exposes four major methods:
(1) WriteLogs is used to ship a buffer with log records
(2) ReadPage is used to read a specific version of a page
(3) SetRecycleLSN is used to specify the oldest LSN of

pages belonging to the same database that the front
end might request (recycle LSN)

(4) GetPersistentLSN returns the highest LSN that the Page
Store can serve

A Page Store is responsible for multiple slices from dif-
ferent databases, and each slice is identified by a unique
identifier that is passed to each of the above methods. Start-
ing from the first write to a page, each change to a page is
received as a log record passed to WriteLogs. A Page Store
continuously applies incoming log record in the background
to generate and store new versions of pages.
Whenever an SQL front end needs to read a page, SAL

calls ReadPage specifying the slice, id of the page, and the



version of the page that it needs. A Page Store must be able
to serve older versions of a page because a read replica may
lag behind the master in its view of the database. In order
to get a consistent physical view of the database, the replica
specifies the LSN up to which the Page Store must have all
log records in order to serve the read request. This way the
Page Store makes sure that it returns a page version that is
up to date and is not ahead of what the read replica expects.
Because it takes resources (memory and disk space) to

store multiple versions of a page, the SQL layer must period-
ically call SetRecycleLSN to communicate to Page Stores the
oldest LSN it may request. Finally, because data replicated
between Page Store replicas using an eventually consistent
model, the master needs to know the latest version of the
pages each Page Store replica has knowledge of. This infor-
mation is retrieved using the GetPersistentLSN API call. We
describe the Page Store internals and the replication of data
between Page Store replicas in more detail later.

3.5 Storage Abstraction Layer
The Storage Abstraction Layer (SAL) is a library linked to
the database server that isolates the existing database front
end (such as MySQL or PostgreSQL) from the underlying
complexity of remote storage, slicing of the database, recov-
ery, and read replica synchronization. SAL is responsible
for writing log records to Log Stores and Page Stores and
reading pages from Page Stores. SAL is also responsible for
creating, managing, and destroying slices in Page Stores and
mapping pages to the slices. Whenever a database is created
or expanded, SAL selects Page Stores and creates slices on
the selected Page Stores. Whenever the master decides to
flush log records, the log records are sent to SAL. To avoid
small writes, log records are accumulated and flushed to
Log Stores as a group called a database log buffer. SAL first
writes the database log buffer to the currently active Log
Store replicas to guarantee their durability. Once the log
records are successfully written to all Log Store replicas, the
write is acknowledged to the master, and the log records
are distributed to the per-slice buffers. The slice buffers are
flushed either when they become full or after a timeout.

An important value that SALmaintains is called the cluster
visible (CV) LSN. The CV-LSN represents an LSN, global to
the database, at which all pages of the database are internally
consistent with each other (such as internal pages of a B-tree).
For example, if a B-tree contains a page B, which is a child of a
page A, and if page B is split into page B and C, the operation
has to be atomic. In this case, the CV-LSN of the database will
jump from the previous value to the value that is the largest
of the new LSNs of pages A, B, and C. Further, the CV-LSN
is always set to the latest point up to which redo log records
have been persisted in all slices (but not necessarily all slice

replicas) without any gaps. Thus, at least one Page Store can
serve a page with LSN equal to or larger than CV-LSN. With
the CV-LSN, SAL can establish a consistent and forward-
moving state of the database across all logical components in
Taurus (master, read replicas, and Page Stores). The CV-LSN
is advanced in increments of the last LSN of each database log
buffer. A database log buffer may contain records targeting
one or more slices. SAL advances CV-LSN only when both
of the following conditions are met:
(1) The database log buffer has been successfully written

to the Log Stores
(2) All per-slice buffers that contain records from this log

have been successfully written to at least one of the
Page Store for each slice containing pages matching
the log records of the group flush

Per-slice buffers are submitted for flushing only after the
database log buffer has been written to the Log Stores. Con-
sequently, Page Stores can never contain log records that
have not been written to Log Stores. Each per-slice buffer
contains only a subset of records from the database log buffer,
as the database buffer has records for all slices. Thus, per-
slice buffers are flushed less frequently and may contain log
records that correspond to multiple database log buffers. To
advance the CV-LSN according to the rules above, SAL has to
track the many-to-many relationship between the database
log buffers and the per-slice buffers.

3.6 Database front end
Currently, Taurus uses a slightly modified version of MySQL
8.0 as a database front end. Modifications include forwarding
log writes and page reads to the SAL layer and disabling
buffer pool flushing and redo recovery for the master node.
Modifications to read replicas include updating pages in the
buffer pool using records read by SAL from Log Stores and a
mechanism for assigning read views to transactions.

4 REPLICATION
Data durability and service availability are critical character-
istics of a database service. In practice, having three copies of
data is generally considered sufficient for durability [5]. How-
ever, three copies may not be enough to reach the required
availability level. Maintaining three consistent copies means
that all of them must be online for the system to be available.
When a database is sharded across many nodes, the proba-
bility of some node being unavailable grows exponentially
with number of nodes. In Taurus, we solve this availability
problem using a novel approach of having different replica-
tion policies for log and data, coupled with a novel recovery
algorithm. We first describe the write path, then the read
path, and finally present theoretical availability estimates
and compare them with other replication strategies.



Figure 3: Taurus write path

4.1 Write path
Thewrite flow is summarized in Fig. 3. First, user transactions
result in changes to database pages, which generates log
records describing the changes. To make log records durable,
SAL writes them to PLogs located on the three available Log
Stores (Step 2). To avoid fragmentation but balance the load
across multiple Log Stores, SAL limits PLog sizes to 64MB
after which it is sealed and a new PLog is created on some
Log Store in the cluster, taking into account the free space
and load on the different Log Stores.

Once all Log Stores acknowledge the write, there are three
durable copies of the data. The database then considers the
data to be persistent and the write complete. Transactions
whose commit depends on the write can be marked as com-
mitted (Step 3). The important point is that the database is
available for writes as long as three or more Log Stores are
available in the cluster. For clusters of thousands of nodes,
this means practically 100% write availability (considering
only uncorrelated failures).
Once a log record for a page has been written to the Log

Stores, SAL copies it into the write buffer of the slice that is
responsible for the page. When a slice write buffer is full, or
after a timeout, the buffer is sent to the Page Stores hosting
the slice (Step 4). Each buffer contains a slice ID and sequence
number to allow Page Stores to detect missing buffers. SAL
waits for a reply from one of the Page Stores after which the
buffer is released and can be reused (Step 5). The largest LSN
that has been sent to a slice is called the slice flush LSN. Page
Stores that host replicas of the same slice also periodically
exchange messages with each other using a gossip protocol
to detect and recover missing buffers (Step 6). Steps 7 and 8
are described in the Log Truncation section.
While writes to Log Stores are complete only when all

three replicas have replied, SAL only waits for a single Page

Store to confirm a successful write. This has several advan-
tages. First, the probability of a successful write is much
higher, as it requires only one node out of three to be avail-
able. This ensures high availability, even in the case of fail-
ures or temporary glitches common when a large number
of nodes are involved. Note that data durability is not com-
promised because log records have already been persisted
on Log Store nodes. Second, write latency is minimized be-
cause it depends only on the fastest node to reply rather
than the slowest. Third, SAL is no longer responsible for en-
suring that every log record reaches all corresponding Page
Stores. Consequently, SAL keeps log records in memory for
a shorter time consuming less CPU and network bandwidth
re-sending log records. Re-sending log records as needed is
offloaded to the Page Stores themselves. This is important
for scalability because there is only a single master node but
many Page Stores nodes that can share the load.

4.2 Read path
Database front ends read data at page-level granularity.When
reading or modifying data, the corresponding page must be
present in the buffer pool. When the buffer pool is full, and
we need to bring in a page, some page has to be evicted. We
modified the eviction algorithm so that a dirty page cannot
be evicted until all of its log records have been written to at
least one Page Store replica. Thus, until the latest log record
reaches a Page Store, the corresponding page is guaranteed
to be available from the buffer pool. After that, the page can
be read from a Page Store.

For each slice, SALmaintains the LSN of the last log record
sent to the slice. Whenever the master node reads a page, the
read goes to the SAL, which issues a read request accompa-
nied by the above LSN. Reads are routed to Page Stores that
are known to respond with the lowest latency. If the chosen
Page Store is unavailable or did not receive all log records up
to the provided LSN, an error is returned, and SAL tries the
next Page Store hosting the desired page, iterating through
the replicas until it finds one that can execute the request.

4.3 Log truncation
Log Stores receive a continuous stream of log records. Unless
these log records are eventually deleted, Taurus will run out
of space as the database continues to be updated. A log record
cannot be discarded from Log Stores until the record has been
successfully written to all slice replicas and has been seen by
all database read replicas. It would be prohibitively expensive
to track the persistence of each log record independently,
therefore we track persistence based on LSN. For each of
its slices, a Page Store tracks a slice persistent LSN, which
is the LSN up to which the Page Store has received all log
records for the slice. This LSN can be communicated back



Replication method Probability of non-availability x = 0.15 x = 0.05 x = 0.01
Write Read Write Read Write Read Write Read

𝑁 = 6, 𝑁𝑊 = 4, 𝑁𝑅 = 3 20 ∗ 𝑥3 15 ∗ 𝑥4 7 ∗ 10−2 8 ∗ 10−3 3 ∗ 10−3 10−4 2 ∗ 10−5 2 ∗ 10−7

𝑁 = 3, 𝑁𝑊 = 2, 𝑁𝑅 = 2 3 ∗ 𝑥2 3 ∗ 𝑥2 7 ∗ 10−2 7 ∗ 10−2 8 ∗ 10−8 8 ∗ 10−3 3 ∗ 10−4 3 ∗ 10−4

𝑁 = 3, 𝑁𝑊 = 3, 𝑁𝑅 = 1 3 ∗ 𝑥 𝑥3 5 ∗ 10−1 3 ∗ 10−3 2 ∗ 10−1 10−4 3 ∗ 10−2 10−6

Taurus 0 𝑥3 0 3 ∗ 10−3 0 10−4 0 10−6

Table 1: Comparing the probability of the storage being unavailable for Taurus and common quorum replication
variants

to SAL either explicitly by a call of the GetPersistentLSN
method or implicitly by piggybacking the current value of
the persistent LSN on the response ofWriteLogs or ReadPage
calls. This reduces traffic for databases with a large number
of frequently updated slices - see Fig. 3 Step 7.
For each replica of each slice, SAL tracks the persistent

LSN of the corresponding Page Store. The minimum of per-
sistent LSNs across the slices that have log records that have
not reached all slice replicas is called the database persistent
LSN. SAL periodically saves this value for recovery purposes.
SAL also keeps track of the LSN range for each PLog contain-
ing log records. If all records in a PLog have an LSN smaller
than the database persistent LSN, this PLog can be deleted
(Step 8), thereby truncating the log. This way, we guarantee
that each log record is always replicated on at least three
nodes.

4.4 Comparison with quorum replication
The most widely used strongly consistent replication tech-
niques are based on quorum replication [11]. When an item
is replicated across N nodes, each read or write must receive
replies from NR nodes for reads and NW nodes for writes. To
ensure strong consistency the condition NR + NW > N must
be satisfied. Many existing systems use different variants of
quorum replication. For example, synchronous replication
used in RAID 1 disk arrays often uses N = 3, NR = 1, NW = 3,
Polar DB uses N = 3, NR = 2, NW = 2, while Aurora uses N =
6, NR = 3, NW = 4.
For the discussion below, we consider failures of each

replica to be independent ignoring the correlated failures
that affect multiple replicas at the same time, such as global
power outages. Let’s assume that the probability of a single
node being unavailable is x. A write fails when between N
- NW + 1 and N nodes are unavailable at the same time. If
we sum up all combinations of nodes being unavailable, the
probability of not being able to complete a write is calculated
as follows:

𝑃𝑤 =

𝑁∑︁
𝑖=𝑁−𝑁𝑊 +1

𝐶𝑖
𝑁 ∗ 𝑥𝑖 (1 − 𝑥)𝑁−𝑖 (1)

Similarly, for reads, the formula is:

𝑃𝑟 =

𝑁∑︁
𝑖=𝑁−𝑁𝑅+1

𝐶𝑖
𝑁 ∗ 𝑥𝑖 (1 − 𝑥)𝑁−𝑖 (2)

Unlike pure quorum writes, Taurus log writes don’t need
to land on specific Log Store nodes, so formula 1 is not appli-
cable. The probability of the storage layer being unavailable
for writes due to independent node failures is close to zero
for a cluster of hundreds of nodes because if a chosen node
is unavailable, any other node can be chosen instead. Indi-
vidual node failures affect latency, as failed writes have to
be retried with a different set of Log Store nodes, but they
don’t affect availability.
For reads, every Page Store node can decide based on its

persistent LSN whether it can service a read, and if not, it
returns an error instructing the SAL to try another node. In
the very rare case where no node can serve a read due to
cascading failures, SAL recognizes this situation and repairs
data using Log Stores (see the Page Store Recovery section).
In this case, there is a performance penalty, but the storage
layer continues to be available. The only situation that SAL
cannot recover from is when all Page Stores that contain a
slice replica are unavailable. The probability of this is 𝑥3.
In Table 1, we assume that x ≪ 1, take into account only

terms with the lowest exponent index, and obtain approxi-
mate formulas for the probability of storage being unavail-
able using equations 1 and 2. We also add three example
values for x to compare actual probabilities of storage being
unavailable. Taurus is always available for writes in case of
uncorrelated failures. For reads, Taurus provides the same or
better availability than quorum replication for all configura-
tions and values of x except when x = 0.01, and the number
of nodes in the quorum is 6. However, in this case, quorum
replication has to use twice as many nodes compared to Tau-
rus replication, and the probability of not being able to read
data is low in both cases (2 ∗ 10−7 and 10−6 respectively).

5 RECOVERY
Four types of nodes comprise a database instance: nodes that
run master and read replica front ends, nodes that run Log



Figure 4: Page Store recovery

Stores, and nodes that run Page Stores. Any combination of
nodes may fail at any time. For a large database distributed
across many Page and Log stores, individual node failures
are expected to be a routine event. There are multiple types
of failures: hardware, software, and network, to name a few,
but for our purposes we define a node failure as an event
during which the node does not serve incoming requests
within a specified time limit.

An important design objective for recovery is to make fail-
ures and subsequent recovery invisible to user applications
to the greatest extent possible. In our design, failures of Log
Stores and Page Stores are invisible to applications; they will
only be aware of front end failures.
Storage nodes containing Page and Log Stores are con-

stantly monitored by a recovery service. If a failure is de-
tected, it is initially classified as a short term failure, and
the corresponding node continues to be monitored. If the
node remains unavailable for a longer period of time (tens of
minutes), the failure is classified as a long term failure. The
maximum length (currently, 15 minutes) of the short term
failure is set sufficiently small that having only two available
replicas of data does not violate durability guarantees.

5.1 Log Store recovery
Log Store failures are easy to handle and recover from. As
described earlier, as soon as a Log Store becomes unavailable,
all PLogs located on the Log Store stop accepting new writes
and become read-only. Thus, no recovery is needed after a
short term failure. When a long term failure is diagnosed,
the failed node is removed from the cluster and PLog replicas
from the failed node are recreated on the remaining cluster
nodes from the available replicas.

5.2 Page Store recovery
Recovering from Page Store failures is more complicated.
When a Page Store comes back online after a short term
failure, it initiates the gossip protocol with other Page Stores
that maintain replicas of the slices that this Page Store hosts.
The gossip protocol recovers log records that a Page Store
has missed. An example of the recovery process is illustrated
at Fig. 4(a). For simplicity, we uses LSN 1, 2, 3 as LSN of log
records. There, log record 2 is copied from replica 2 by the
gossip protocol after slice replica 3 is back online at step 4.



When a long term failure is detected, the cluster manager
removes the failed node from the cluster and redistributes
slice replicas that have been stored on the failed Page Store
node among the remaining Page Store nodes. A recovering
slice replica is initially empty. It can immediately begin ac-
cepting WriteLogs requests, but because it does not have the
necessary older log records, it cannot serve read requests.
Next, the recovering slice requests the latest versions of all
pages from one of the Page Stores that has a replica of the
slice. Once all pages have been received, the slice replica can
serve both reads and writes.

The above two scenarios are the most common but, until
a log record is successfully processed by three Page Stores,
there is a chance of it being lost due to Page Store failures.
This can happen when multiple slice replicas fail intermit-
tently within a short time, and Page Stores that have received
a log record experience a long-term failure. An example of
this situation is illustrated by Fig. 4(b). At Step 2, replicas 2
and 3 are offline for a short time. Log record 2 is acknowl-
edged by replica 1 and dismissed by SAL. At step 3, replica 1
goes permanently offline due to a long term failure before
the gossip protocol copies the missing record to replicas 2 or
3. At step 4, replica 1 will be restored to be a copy of either
replica 2 or 3, missing the log record 2. In this case, no Page
Store will contain record 2, and the record cannot be recov-
ered by the gossip protocol. However, because not all slice
replicas have acknowledged reception of log record 2, its
copy still remains in the Log Stores. As described previously,
the SAL regularly requests a persistent LSN from all replicas
of slices that have been updated recently. In this scenario,
the persistent LSN reported by replica 1 will be reduced from
2 to 1. When SAL detects that the persistent LSN reported by
a slice replica decreases, it reads all log records from the Log
Stores beginning from the smallest persistent LSN reported
by the slice replicas and resends them to the corresponding
Page Stores.
Detecting missing records by checking for decreases of

persistent LSNs is fast but not sufficient. It workswhen a Page
Store has received a complete sequence of log records (no
holes), so it can advance the slice persistent LSN. However,
if there are holes, a Page Store cannot advance the slice
persistent LSN when a new record arrives even though the
log record has been acknowledged and dismissed by the
SAL. To address this scenario, SAL periodically retrieves
the persistent LSN from all slice replicas and compares it
with the slice flush LSN. If SAL detects that the persistent
LSN does not advance forward and is smaller than the flush
LSN, SAL requests the list of LSN ranges that have not been
received by each slice replica. If SAL detects that some log
records are missing from all Page Stores, it reads the missing
records from the Log Stores and resends them to Page Stores.
Fig. 4(c) illustrates an example of this scenario. At step 2,

replica 2 and 3 go down; at step 3, replica 1 goes down, and
replica 3 goes up; at steps 4 and 5 replica 2 experiences a long
term failure and is replaced. At step 6, all replicas are up, but
record 3 is missed from all of them and cannot be recovered
by the gossip protocol. Unlike the Fig. 4(b) scenario, the slice
persistent LSN doesn’t decrease. SAL detects it using the
method described above and resends record 3 at step 7.
Taurus is designed to support thousands of Page Stores,

and the gossip protocol is known to be costly when invoked
frequently with a large number of hosts [3]. For this reason,
gossip is invoked automatically only every 30 minutes for
each slice. To minimize the effect on availability during such
an extended period, we rely on SAL. SAL monitors all slices
that it has sent log records to. If a replica of such a slice has
not advanced its persistent LSN accordingly, it means that
some fragments are missing. If SAL detects that missing log
fragments have not been recovered after a short time, it trig-
gers the gossip protocol for this specific slice, to accelerate
recovery of the missing fragment. If SAL detects that a log
fragment is missing from all slice replicas, it rereads the log
records from Log Stores and resends them to the Page Stores.

5.3 SAL and database recovery
Because SAL is a library, SAL and the database front end fail
and recover together whenever the database process restarts.
This can happen when there is an unrecoverable software
failure, a restart, or when a cluster manager detects that the
master is unavailable and spawns a new master or promotes
a read replica to take over the master role (see the "Read
Replicas" section).
The database recovery process involves two main steps:

1) SAL recovery and 2) database front end recovery. SAL
recovery happens first, and its primary goal is to ensure
that all Page Stores that contain slices from the database
have all the log records that were persisted in the Log Stores
before a crash. SAL reads the last saved value of the database
persistent LSN and uses it as a starting point from which
to begin reading the log. Only log records that are missing
from all slice replicas are sent again to the corresponding
slices. Some log records may be resent even though some
Page Stores contain them, but this is safe as Page Stores
disregard log records that they have already received. This
step is equivalent to the redo phase in traditional database
recovery. After SAL recovery is complete, the database can
accept new requests. In parallel with accepting new requests,
the database front end performs the undo stage by rolling
back changes made by transactions that were uncommitted
at the time of the crash. Redo recovery must be completed
before accepting new transactions because redo makes sure
that the Page Store can serve reads of the latest versions
of pages. Undo recovery relies on undo records stored in



Figure 5: Read replica workflow

dedicated rollback pages. Thus, SAL must guarantee that all
rollback pages are up-to-date in the Page Stores before undo
processing in the SQL layer can begin.

6 READ REPLICAS
Read replicas allow fast fail-over and scale-out capability
for read workloads. Separate storage and compute layers
allow each read replica to have direct access to the same
storage as the master, and updates made on the master are
automatically visible to read replicas.

Fig. 5 shows how a read replica is kept up-to-date. When
the master updates the database (step 1), a read replica gets
messages from the master with the location of log records in
Log Stores, changes to the list of slices, and finally the LSN
of the last database change (step 2). Next, the replica reads
all log records from the Log Stores in order to update pages
in its buffer pool (step 3). Log Stores maintain a FIFO write-
through cache, expecting that log records recently written
will be read very shortly by read replicas. This cache nearly
eliminates read I/O to the Log Stores. Finally, read replicas
also read pages from the Page Stores (step 4) as needed.
An alternative design would be to stream all log records

directly from the master to every read replica. However, this
approach would result in the master becoming a bottleneck.
Not only would the master need to spend CPU and mem-
ory transmitting log records, but its network interface may
become a bottleneck. With write-intensive workloads gener-
ating 100MB/s of log records and 15 read replicas, the master
would need to send over 12 Gbps of data just to read replicas.

Our solution is to make the master transfer only the loca-
tion of the data in the Log Stores and leave it to each read
replica to read the data. The read replica will need to receive
messages from the master to know when and where new
log records have been written, how the pages are distributed
across Page Stores, and the Page Store’s persistent LSNs. The
master delivers messages that describe incremental changes
of the above information to read replicas. Each message in-
cludes a sequence number so that missing messages can be

detected. In this case, a read replica requests full data as
when a new replica is registered.

Data is shared, and it can be modified by the master node
without synchronizing with read replicas. Thus an important
challenge is how read replicas can maintain a consistent view
of the data. There are two types of consistency that we need
to be concerned with. First, physical consistency refers to the
consistency of internal structures in the database, such as
b-tree pages. For example, when a thread is splitting a page
in an index tree, changes involve multiple pages, and another
thread that traverses the same tree must observe changes to
pages involved as if they are done atomically. On the master,
page consistency is achieved by locking the pages when
they are being modified. However, it would be prohibitively
expensive to coordinate locks with read replicas. To avoid
explicit synchronization, the master writes log records in
groups, always setting the group boundary at a consistent
point. Read replicas read and apply log records atomically per
these group boundaries. The LSN of the last record processed
by a read replica represents the replica’s physical view of
the database and is called the replica visible LSN. The replica
visible LSN is always set at a group boundary keeping its
database view physically consistent.
A read replica reads and parses the log from Log Stores,

recognizes log record group boundaries, and continuously
advances its visible LSN. The read replica takes care not to
advance its visible LSN ahead of the slice persistent LSN ob-
tained from the master. This way it avoids a situation where
a Page Store might not be able to serve the read replica’s
read page requests. When a read transaction needs to access
pages, it creates its own physical view of the database by
recording the current replica visible LSN, called a transac-
tion visible LSN (TV-LSN). Different transactions can have
different TV-LSNs. While the read replica keeps advancing
its visible LSN, a transaction’s visible LSN can lag behind.
The read replica keeps track of the smallest TV-LSN and
sends it to the master. The master collects the LSNs, chooses
the minimum, and sends it to Page Stores as a new recycle
LSN. Page Stores must ensure that they can serve any page
version created after a recycle LSN. When a read transaction
finishes an operation that requires physical consistency (e.g.,
an index lookup), it releases its TV-LSN. Since such opera-
tions are usually short, read replicas advance their recycle
LSNs fairly quickly permitting the Page Store to purge old
versions reducing the storage footprint.

Many databases, including MySQL, maintain multiple ver-
sions of rows to reduce conflicts between readers and writers.
Logical consistency refers to the consistency of user data as
required by the transaction’s isolation level. When a write
transaction commits on the master, a commit record is writ-
ten to the log. After parsing the log, the read replica can
update its active transaction list. When a read transaction



Figure 6: Page Store major components and workflow

starts on the read replica, it records the active and committed
transaction list. This list determines a transaction’s logical
data view, i.e., which data is visible to a transaction.
The buffer pool on a read replica can store multiple ver-

sions of the same page. As the read replica reads and parses
the log, it applies the log records to the buffer pool pages and
produces newer versions of the pages. This way, the read
replica already has most of the frequently used pages in its
buffer pool, thus relieving pressure on Page Stores.

7 PAGE STORE DESIGN
The main function of Page Stores is to serve page read re-
quests from the master and read replicas. Page modifications
arrive as a stream of log records. For write-intensive work-
loads, Log records can arrive at a rate of a few million entries
per second. A Page Store must be able to apply log records
and produce and persist new versions of pages at this rate, a
process that we call log consolidation. For reliability, each
database slice must be replicated across several Page Stores.
These requirements guided several design decisions in

Taurus. First, each Page Store performs log consolidation
independently of other Page Stores as synchronizing con-
solidation among replicas of the same slice is prohibitively
expensive. Second, disk writes are append-only as append-
only writes are 2-5 times faster than random writes and
cause less device wear for flash-based storage [14]. Third,
data needed for consolidation, i.e. base pages and log records,
must be cached in memory as there may be thousands of log
records fragmented on disk and storage cannot sustain read-
ing log records at the required rate. Page Stores are based
on a "the log is the database" paradigm [25]. This raises the
issue of how to quickly locate all necessary log records to
produce a requested version of a page. For each slice, there
is a data structure called the Log Directory. It keeps track of
the location of all log records and the versions of the pages

hosted by the slice, i.e., information needed to produce pages.
The Log Directory is implemented as a lock-free hash table
[17] where the keys are page IDs. Because hot pages are
cached by database front ends, and writes are acknowledged
as soon as they are persisted by Log Stores, the Page Store
is not usually on the critical transaction path. However, if
the consolidation is unable to keep up with the incoming log
stream for some time, the Log Directory may grow large. To
prevent unlimited growth, the SAL throttles log writes on
the master.
Figure 6 illustrates the major components of the Page

Store, and their interaction is described below. Logs records
are received from the SAL in ordered groups, called log frag-
ments (step 1), as described in the Section 3.5. Log fragments
are immediately appended to the slice’s log on disk (step 2),
cached in memory in the log cache, and the location each
log record is added to the log directory (step 3). Log caching
is extremely important because reading log records one by
one during consolidation would be too slow. Consolidation
accesses the Log Directory to locate an existing page and
subsequent log records and applies them in LSN sequence to
generate a new page version (step 4), which is then added
to the Page Store buffer pool for future access (step 5). The
buffer pool functions as a write-back cache, asynchronously
flushing dirty pages to the slice log (step 6) allowing it to
apply multiple log records before writing a page to disk, fur-
ther reducing the amount of I/O. Once a new page version
is flushed, the Log Directory is updated to point to the new
location. Log records and page versions that are older than
the recycle LSN reported by the SAL can be safely removed.

The Page Store buffer pool serves as a second-level cache
for the buffer pools of the database front end. However, its
primary function is to reduce disk reads during consolidation
rather than help with foreground reads. We have evaluated
both LFU and LRU policies for the Page Store buffer pool and
found that LFU provides a 25% better hit rate. This is consis-
tent with previous research showing that an LFU policy is
better suited for second-level caches [16].
There is a separate Log Directory for each slice. This re-

duces contention and the size of the key. On the other hand,
the log cache and Buffer pool are global to the Page Store to
exploit differences in slice activity automatically. Most slices
have little update activity, but some slices are write-intensive
and need a larger share of memory for incoming log records.

The algorithm for selecting pages to consolidate is critical
to the performance of the Page Store as it ultimately deter-
mines both the I/O required and the memory consumed by
the Log Directory and the log cache. Our initial choice was a
"the longest chain first" approach. To minimize page writes,
we cycled through all slices and chose the pages with the
longest chains of log records for consolidation. However, this
policy gives priority to hot pages and leaves out relatively



cold pages with few log records. With many unconsolidated
cold pages, the number of the log records becomes excessive,
and they get evicted from the cache in FIFO order. With time,
the number of evicted unconsolidated records becomes large,
resulting in a large memory footprint for the Log Directory
and generating many small read requests to bring log records
back into memory. This makes consolidation even slower.
To avoid a flood of small I/O operations, we adopted a

consolidation policy that is "log cache-centric". Pages to be
consolidated are chosen in the order that their log records
arrive in the Page Store and appear in the log cache. If the log
cache is full, new log fragments are saved to disk and added
to a queue of log fragments to be loaded into the log cache as
soon as space becomes available. Only log records that are
in the log cache are used to produce new versions of pages.
As soon as a log record has been consolidated, it is removed
from the log cache. This ensures that consolidation tasks
operate only on in-memory log records and the data is never
read from disk. This "log cache-centric" approach results in a
lower buffer pool hit rate but completely eliminates log cache
misses. The benefits of steady and predictable performance
outweigh the lower buffer pool hit rate.

8 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of Taurus and
compare it with competing solutions. As a baseline for com-
parison, we have chosen Amazon Aurora as one of the most
popular DBaaS implementations, the recently introduced
Microsoft Socrates, and the community version of MySQL
8.0 running with locally-attached storage.

8.1 Comparison with Amazon Aurora
For the comparison with Aurora, we used the same bench-
marks and hardware similar to those used by Verbitski et
al. [24]. We ran the MySQL front end on a machine with 32
vCPUs and 256GB of memory, 80% of which was dedicated
to the database buffer pool. We used newer Xeon 6161 CPUs
instead of the E5-2670 CPU used by Aurora, but we ran at
lower clock frequency (2.2GHz vs. 2.5GHz) to compensate
for possible architectural improvements. Aurora and Taurus
both use modified versions of MySQL as the front end.

We ran the SysBench read-only and write-only workloads
as well as the Percona TPC-C variant [18] with databases
of different sizes. Fig. 7 shows the results. The vertical axis
represents the number of reads per second for the SysBench
read-only, writes per second for the SysBenchwrite-only, and
transactions per minute (tpmC) for the TPC-C benchmarks.
Taurus outperforms the results published by the Aurora team
in all five benchmarks. In the read-only test the difference
is small (16%), but in the write-only benchmark, the Taurus
advantage is more than 50% - and reaches 160% in TPC-C.

Without knowing the Aurora internals, we can only specu-
late what causes the performance improvement. We believe
that the replacement of quorum-based replication with the
novel Taurus replication strategy is a major contributing
factor.

8.2 Comparison with Microsoft Socrates
While Taurus and Aurora both use MySQL as the database
front end, Socrates uses SQL Server. This and the lack of de-
tails of the hardware environment makes comparisons more
difficult. The Socrates team compared their performance
with the performance of SQL Server running against locally-
attached storage on a similar hardware configuration. We
compare performance results for Socrates relative to SQL
Server reported in [2] with the performance of Taurus rel-
ative to MySQL 8.0, also running with local storage of the
same type as the storage used in Taurus storage layer.

Fig. 8 displays the results. The first two experiments corre-
spond to the published Socrates results [2]. Socrates achieves
performance slightly (5%) worse than SQL Server. In compar-
ison, Taurus demonstrates improved performance relative
to vanilla MySQL with local storage ranging from 50% for
the SysBench read-only workload (third solid column) to a
200% improvement for the SysBench write-only workload
and TPC-C (fourth and fifth solid columns). We believe that
Taurus performs better than MySQL with local storage due
to Taurus’s fast network hardware and append-only writes,
while MySQL relies on write-in-place, which is slower. While
Socrates also used state of the art network hardware, Taurus
compares better against a local-storage configuration. We
believe that this is because Taurus has just two network-
separated tiers, while Socrates requires four.
Both Aurora and Socrates introduced incremental opti-

mizations to the database front end. In Taurus, we have also
done similar optimizations. To separate the performance im-
pact of the Taurus architecture innovations from the impact
of the front end optimizations, we ported the front end opti-
mizations to the local-storage version of MySQL. The results
are presented as cross-hatched columns in the last three ex-
periments in Fig. 8. On the read-only workload, Taurus is
9% slower than the optimized version of MySQL with locally
attached storage due to the higher network latency of the
remote storage. On the write-only and TPC-C workloads,
our architectural changes allow Taurus to outperform the
optimized MySQL by 87% and 101%, respectively.

8.3 Read replicas
One of the most important characteristics of multi-replica
solutions is the lag between the master and read replicas.
In order to measure this lag, we run a SysBench write-only
workload on the master, varying the number of connections



Figure 7: Taurus performance in benchmarks

Figure 8: Performance relative to amonolithic database
with local storage

in order to achieve the desired level of writes per second. The
replica is not running any read-only workload. We measure
a time difference between the time a value is changed by the
master and the timewhen the new value is read by the replica.
To avoid additional latency of client-server communications,
we use stored procedures to update and check values on the
master and the replica. We collected multiple measurements
and averaged the result. The results are presented in Fig. 9.
A comparison with corresponding available Aurora results
published by the Aurora team [24] is provided for reference.
For a light load on the master, Taurus replicas show low
lag values, similar to or lower than those demonstrated by
Aurora. In addition, Taurus demonstrates good workload
scalability even when the master executes heavy workloads
up to 200,000 writes per second. At this utilization level, the
replica lag is below 11ms, which is small enough for many
applications. The Aurora authors do not provide data above
10,000 writes per second. This low replica lag, even when the
master is very busy, is due to the Taurus design decision not
to send logs directly to read replicas from master, but let read
replicas to read them from Log Stores. The network interface
of the master, is no longer a bottleneck, and network traffic
is distributed across multiple Log Stores. This also allows
us to support a large number of read replicas without the
master becoming a bottleneck.

Figure 9: Replica Lag for SysBench Write-Only work-
load

9 CONCLUSION
This paper presents Taurus, a new cloud-native relational
database. Taurus is based on a "the log is the database" para-
digm and separates compute and storage layers. This paper
describes the implementation choices and optimizations that
enabled the improved performance observed in our experi-
ments.
The Taurus architecture and new replication algorithm

result in availability higher than that of traditional quorum-
based replication without sacrificing performance or hard-
ware costs. The replication algorithm is based on separate
persistence mechanisms for database logs and for pages. It
combines strong and eventual consistency models to opti-
mize performance and availability.
Future work includes moving more tasks from the com-

pute layer to the more scalable storage layer, supporting
multi-master capability, and using the latest advancements
in hardware including storage-class memory and RDMA.
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Figure 10: Scaling with instance size

Figure 11: Scaling with number of connections

A ADDITIONAL EXPERIMENTAL
EVALUATION

In this section, we provide experimental results that further
describe Taurus performance and scalability.

A.1 Scaling with database front end node
sizes

In this experiment, we measure the ability of Taurus to scale
up with the capacity of the database front end node. The
results are presented in Fig. 10 for three different node in-
stances. The three instances considered have 16, 32, and 60
vCPUs. They have the database front end buffer pool size of
88GB, 192GB, and 280GB respectively. SysBench read and
write workloads for 1GB database scales linearly with node
capacity. With a 1TB database, SysBench performance also
grows with node capacity, although the growth is sub-linear.
TPC-C benchmark performance does not change much be-
tween 32 and 60 vCPUs nodes due to database data con-
tention.

Figure 12: Query latency

A.2 Scaling with number of connections
In this experiment, we use the same database front end node
with 32 vCPUs and 192GB buffer pool as in the previous
experiment and vary the number of simultaneous client con-
nections. The results are displayed on Fig. 11. Taurus scales
up to 500 connections and further increasing the number
of connections to 1000 does not result in increased perfor-
mance.

A.3 Query latency
In this experiment, we measure query latency for SysBench
and TPC-C benchmarks.We use the same experimental setup
as described in the "8.1 Comparison with Amazon Aurora
subsection". The results are presented in Fig. 12. The Sys-
Bench Read benchmark for 1GB and 1TB databases is partic-
ularly interesting as it shows the upper bound of overhead of
separating compute and storage layers. With a 1GB database,
all page reads are done from the database front end buffer
pool and resulting in latency slightly more than 1ms for 50
simultaneous connections. With the 1TB database, most of
requests need to go to the storage layer and latency increases
to 5 ms. This additional latency includes network commu-
nication, accessing log directories, and reading pages from
storage devices.
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