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Offensive or antagonistic language targeted at individuals and social groups based on their personal character-
istics (also known as cyber hate speech or cyberhate) has been frequently posted and widely circulated via the
World Wide Web. This can be considered as a key risk factor for individual and societal tension surrounding
regional instability. Automated Web-based cyberhate detection is important for observing and understanding
community and regional societal tension - especially in online social networks where posts can be rapidly
and widely viewed and disseminated. While previous work has involved using lexicons, bags-of-words or
probabilistic language parsing approaches, they often suffer from a similar issue which is that cyberhate can be
subtle and indirect - thus depending on the occurrence of individual words or phrases can lead to a significant
number of false negatives, providing inaccurate representation of the trends in cyberhate. This problem
motivated us to challenge thinking around the representation of subtle language use, such as references to
perceived threats from ‘the other’ including immigration or job prosperity in a hateful context. We propose a
novel ‘othering’ feature set that utilises language use around the concept of ‘othering’ and intergroup threat
theory to identify these subtleties, and we implement a wide range of classification methods using embedding
learning to compute semantic distances between parts of speech considered to be part of an ‘othering’ narrative.
To validate our approach we conducted two sets of experiments. The first involved comparing the results
of our novel method with state of the art baseline models from the literature. Our approach outperformed
all existing methods. The second tested the best performing models from the first phase on unseen datasets
for different types of cyberhate, namely religion, disability, race and sexual orientation. The results showed
F-measure scores for classifying hateful instances obtained through applying our model of 0.81, 0.71, 0.89
and 0.72 respectively, demonstrating the ability of the ‘othering’ narrative to be an important part of model
generalisation.
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1 INTRODUCTION
While the benefits of online social media are enabling distributed societies to be connected, one
disadvantage of the technology is the ability for hateful and antagonistic content, or cyberhate,
to be published and propagated [64]. As people increasingly communicate through Web-enabled
applications, the need for high-accuracy automated cyberhate detection methods has become much
higher. Several studies have shown how individuals with biased or negative views towards a range
of minority groups are taking to the Web to spread such hateful messages [38, 50]. Instances of
cyberhate and racist tension on social media have also been shown to be triggered by antecedent
events, such as terrorist acts [9, 64].

Expressing discriminative opinions employs different language uses. For example, words might
be used to convey intense dislike such as ’hate them’; moreover, to encourage violence, an inflam-
matory verb could be used such as ’kill’. While these examples contain directly threatening or
offensive words (kill, hate), some examples contain words that, on their own, would not constitute
discriminative opinions (e.g. send them home). Although they do not contain explicitly hateful
words, they are conveying the desire to distance different groups, within which there is an inherent
promotion of discrimination and division within society, fostering widespread societal tensions1,
[65] [32]. Context in which distancing terms are used are of course important here. For instance, if
two boxers are fighting and an audience member shouts "kill them", then this is a case of distancing,
and discrimination lies in it, but it is in a non-societal context. There have been a number of attempts
to automatically identify and quantify cyberhate by using different approaches, such as lexicons
[25], syntactic [26] and semantic [35] [4] features - yet the limitation lies in classifying text that does
not contain clearly hateful words and would have an impact on classification accuracy, (e.g. send
them home). While previous studies highlight the utility of methods capable of measuring semantic
distances between words, such as embedding learning using individual words [19], and n-grams
[47], this example requires an additional layer of qualitative context that sits above combinations
of individual words.
Recent studies have begun to interpret the effective features for machine classification of abu-

sive language by focusing on how language is used to convey hateful or antagonistic sentiment.
’Othering’ - the use of language to express divisive opinions between the in-group (’us’) and the
out-group (’them’) - has been identified as an effective feature [11]. The concept of ’othering’ offers
a potential candidate framework for the aforementioned qualitative layer capable of capturing
the more subtle expressions of cyberhate such as the ’send them home’ example. Anti-Hispanic
speech might make a reference to border crossing or crime, anti-African American speech often
references unemployment or single parent upbringing, and anti-Semitic language often refers to
money, banking and the media. The use of stereotypes also means that certain types of language
may be regarded as hateful even if no single word in the passage is hateful by itself [20]. In this
study we develop a novel method for cyberhate classification based around (i) the use of two-sided
pronouns that combine the in-group and out-group (e.g. your/our, you/us, they/we), and (ii) the
use of pronoun patterns, such as verb-pronoun combinations, which capture the context in which
two-sided pronouns are used (e.g. send/them, protect/us). Our hypothesis is that considering these
linguistic features will provide an additional set of qualitative features that will improve the classi-
fication performance. We use these to build a feature set that we refer to as an ’othering feature
set’, which we use to enrich the representation of text examples of cyberhate. These features are
subsequently used in combination with a paragraph embedding algorithm that infers semantic
similarity between features to create a model that represents ’othering’ language which is used for
cyberhate classification.

1https://www.article19.org/wp-content/uploads/2018/06/UK-hate-speech_March-2018.pdf
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Paragraph embedding algorithms aim at learning the semantic similarity of our proposed con-
textual features jointly with the rest of the text in the corpus. Samples that contain two-sided
pronouns or pronoun patterns (e.g. verb-pronoun combinations) in a hateful or antagonisitc context
are aligned in similar feature ’spaces’. This increases the probability of the machine classification
method labelling any new samples exhibiting these features as cyberhate. For example, the follow-
ing sentence: (We want to hang them all) contains the verb "hang" and pronoun them, as well as the
two-sided pronouns we, them. If our hypothesis is correct, and such features do indeed improve the
context of the automated learning method, we would expect the sentence:We need to get them out
to be classified as cyberhate. This is not a sentence that would immediately flag as hateful by using
existing classification methods, but is an example of where human annotators identified a threat to
individual groups and communities, and therefore needs to be considered when ’taking the social
mood’ following trigger events. To benchmark our approach, we present results of different models
that use state of the art classification algorithms and features sets from the existing literature, and
compare these to our proposed method. The results show that our novel ’othering feature set’
approach outperforms all existing methods. We tested the best performing models on four unseen
data sets based around cyberhate targeted at religion, disability, race and sexual orientation - with
F-measure results of: 0.81, 0.60, 0.89 and 0.71 respectively.
The paper is structured as follows: in Section 2 we review related works that are relevant

to our technical proposal. In Section 3, we present our methods and explain the experimental
steps. In Section 4, the classification results are presented and discussed. Finally, in Section 5, the
contributions of this paper are summarized and some future directions are suggested for advancing
this research area.

2 LITERATURE REVIEW
In this section, we review research work on cyberhate detection. In particular, we review related
works that aimed to detect hate speech, as well as those works focused on sentiment or opinions
that are deemed abusive [16]. [60] proposed a typology that synthesizes the sub-tasks involved in
hate speech detection. This includes directed hateful abuse or general abuse, and further refines this
into explicit or implicit abuse. In our study we seek to detect both direct and indirect hateful abuse,
which we refer to under the broad term cyberhate. This section is composed of four sub-sections:
othering language narrative surrounding cyberhate, feature set enrichment, linguistic features for
cyberhate detection, and the use of embedding learning.

2.1 Othering language
The hypothesis of this study is that we can leverage linguistic features of text posted to the Web to
improve the classification of cyberhate. In particular we build a theoretical framework based on
leveraging the theories of othering and Intergroup Threat Theory (ITT). ITT posits that prejudice
is a product of perceived realistic and symbolic threats. Realistic threats can be conceptualized in
economic, physical and political terms. Such threats refer to competition over material economic
group interests, including scarce resources such as jobs, houses, benefits and healthcare. Symbolic
threats are based on perceived group differences in values, norms and beliefs. Out-groups that
have a different viewpoint can be seen as threatening the cultural identity of the in-group [55].
Studies show that perceived threats to in-group values by immigrants and minorities are related to
more negative attitudes towards these groups, unless countered by other in-group members [46].
For instance, research using ITT has recently focused on the perception of threat from Muslims
in Europe [15]. This can result in ‘othering’ language, such as ‘get them out’, which represents a
speech act that aims to protect resources for the in-group. The core concept is that these resources
and values are threatened by the out-group, leading to anxiety and uncertainty in the in-group
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[56]. The desire to protect the in-group is considered the underlying motivation responsible for
negative attitudes and discriminatory behavior. Othering is an established construct in rhetorical
narrative surrounding hate speech [42], and the ‘we-they’ dichotomy has previously been identified
in racist discourse [69]. Othering has been used as a framework for analysing racist discourse
from a qualitative perspective in previous work. For instance, [68] argued that while the ‘self’ or
the concept of ‘us’ is constructed as an in-group identity, the ‘other’ or the concept of ‘them’ is
constructed as an out-group identity [59]. Therefore, polarization and opposition are created by
emphasizing the differences between ‘us’ and ‘them’. This may occur, for example, through the use
of language to convey positive self-representation and negative representation of the ‘other’ as an
out-group that is undesirable [67]. In machine learning research the principle of othering has been
identified by [9] as a useful feature for classifying cyberhate based on religious beliefs, specifically
for identifying anti-Muslim sentiment. However, this was post-classification in the form of an effort
to interpret some of the statistically effective linguistic features. It is yet to be used as a theoretical
foundation of feature engineering and tested with machine classification algorithms. Therefore the
literature review focuses on lexicon-based and linguistic features, as well as machine classification
methods, to provide a baseline for comparison to our proposed innovation.

2.2 Lexicon-based Methods
While dictionary-based approaches generally suffer from an inability to find offensive words with
domain and context-specific orientations [16], corpus-based approaches use a domain corpus to
capture opinion words with preferred syntactic or co-occurrence patterns. Focusing on a theme-
related lexicon, [25] generated a lexicon of sentiment expressions using semantic and subjectivity
features with an orientation towards hate speech, and then used these features to create a classifier
for cyberhate detection. However, their work depends on the existence of specific feature co-
occurrence to decide the polarity of a specific tweet which might omit indirect/implicit hate
speech. Going down to a phrase level, some work has combined sentence-level features with
dictionary-based features for automatic cyberhate detection using two steps: first, the author used
word features (tokens), sentence/structure features (dependency relations) and document features
(document topic). A binary feature was applied that captured whether the word was being locally
negated. Its value was true if a negation word or phrase was found within the four preceding words,
or in any of the word’s children in the dependency tree. If there was no negation word in a phrase,
this intensified the hateful rating. Secondly, the author combined sentence-level features with
dictionary-based features and achieved significant improvements in cyberhate polarity prediction
by 4.3% compared to the baselines [66]. Similar to the previous study, their work depends on
detecting the polarity of a sentence depending on the existence of specific features, which raises the
same limitations of other dictionary based approaches - can the model generalise if these features
are not present? [54] detected cyberhate using sentence structure - specifically patterns starting
with the word ’I’. They assume that the word ’I’ means that the user is talking about the emotions
that he or she is feeling. Their work introduces the direction of the sentence structure rather than
depending on specific words to recognize the sentence polarity. They suffered from a high false
positive rate due to the model classifying sentences such as ‘I hate following people’ as hateful.
Indeed, phrase-level sentiment analysis is different from lexicon-based analysis in that the former
focuses on the polarity of the contextual content (e.g. whether there is negation in the sentence or
not), whereas the latter predicts the polarity depending on the occurrence of the words that exist
in the dictionary. Another direction of building lexicons is to follow a sentiment scoring method
which uses emoticons, modifiers, negations and domain specific words [3]. Despite the scoring
method outperforming the baseline methods, it needs a manual scoring of words. Lexicon methods
could involve the use of offensive words and slurs or negative/positive related words (e.g. emotions
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and negation words) as features, which might help to distinguish hate speech from other posts,
yet still has a weakness in detecting the hate stereotypes when the text contains no single hateful
words - an scenario we see in text containing ‘othering’ language.

2.3 Linguistic Features
One of the most basic forms of natural language processing is the Bag of Words (BoW) feature
extraction approach. BoW has been successfully applied as a feature extraction method for auto-
mated detection of hate speech, relying largely on keywords relating to offence and antagonism
[10, 48, 63]. However, the method suffers from a high rate of false positives, since the presence of
hateful words can lead to the misclassification of tweets being hateful when they are used in a
different context (e.g. ‘black’) [26]. For instance, [16] demonstrated how non-hateful content might
be misclassified due to the fact that it contains words used in racist text. In contrast, they also
showed that hateful instances were misclassified because they did not contain any of the terms most
strongly associated with cyberhate. N-grams are features that capture consecutive words of varying
sizes (from 1...n) and have been used to improve the performance of hate speech classification by
capturing context within a sentence that is lost in the BoW model [7, 12, 24, 47, 61]. Character
n-grams have been shown to be appropriate for abusive language tasks due to their ability to capture
variations of words associated with hate [61]. In addition, using a character n-gram based approach
outperforms word n-grams due to character n-gram matrices being far less sparse than the word
n-gram matrices [61], [43]. Character n-grams have been shown to be more effective if joined with
additional linguistic features including gender and location [61]. Furthermore, character n-grams
have been shown to improve cyberhate detection and distinguishing it from general profanity by
building surface n-grams, word skip-grams, and Brown clusters features [41]. In their work, the
features were used for discriminating between hate speech and profanity using an annotated data
set with three labels: (1) hate speech; (2) offensive language but no hate speech ; and (3) no offensive
content. The study found that a character 4-gram model was able to distinguish between hate
speech and offensive language while other features were more frequently confused for offensive
content [41]. Moreover, n-grams were shown to outperform the use of keyword-based methods
when using self-identified hateful communities as training data for hateful speech classifiers using a
sparse representation of unigrams with tf-idf weights as a feature set. The study provides evidence
that using self-identified hateful comments outperformed the use of keyword-based methods by
10%-20% [52]. However, the fact that not all content in a hateful community is hateful (i.e. it is used
as a form of in-group affection) shows some weakness in this approach that would lead to false
positives.
Another feature is the use of a keywords dictionary, a study by [22] showed the strength of

leveraging the insult key word for capturing both explicit and implicit hate speech from an unbiased
corpus. They trained two weakly supervised bootstrapping (slur term learner and LSTM classifier)
models simultaneously to identify hateful tweets. They found that training two models jointly
identified many more hate speech texts with a significantly higher (albeit low compared to other
literature) F-score (slur learner = 0.19, LSTM = 0.26, both = 0.49). This is an interesting approach to
splitting the problem of explicit and implicit hate, but needs improvement to increase accuracy.
Another aspect of linguistic features was studied by [14]. They focused on grammatical features
(e.g. markers, place and time adverbs, questions etc). They demonstrated the effectiveness of a wide
range of grammatical features to identify the main dimensions of functional linguistic variation
that occur in racist and sexist Tweets. They identified 3 dimensions of linguistic variation in racist
and sexist Tweets: interactive, antagonistic, and attitudinal. By applying different linguistic features,
they demonstrated that there is a significant functional difference between racist and sexist Tweets,
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with sexists Tweets tending to be more interactive and attitudinal than racist Tweets. The study
did not however focus on indirect hate using linguistic features (e.g. ‘send them back’).
[6] took a paraphrasing approach - identifying tokens that were clear indicators for hateful

content by retrieving words that are most strongly related with cyberhate. They did this using
nouns, named entities, and hashtags. The study examined a relatively small dataset and saw some
improvements in classification accuracy. Our approach builds on this work by using the core focus
on specific types of language via the othering feature set. A study conducted by [62] showed
that unigram features as well as the pattern features present the highest accuracy with values
respectively equal to 82.1% and 70%, whereas the semantic and sentiment features did not produce
a good classification accuracy. The pattern feature set was prepared using PoS tagging as follows:
when the tweet contained sentiment, a specific PoS tagged word (e.g. coward) was replaced by
Negative_ADJECTIVE, otherwise when the tweet did not contain any sentiment words they were
replaced by a simplified PoS tag. The combination of all previous features achieved an accuracy of
87% for binary classification. However, this method depends on replacing a hateful content with a
specific pattern and unigram features which again leads to the possibility over overlooking implicit
hateful content with no clearly hateful pattern.
In general, while previous studies addressed the difficulty of the definition of hateful language,

their experiments led to better results when combining a large set of features. They showed that
BoW, n-grams, part-of-speech tagging, and data preprocessing (stop word/punctuation removal)
provided a significant improvement in sentiment classification among different data sets (blogs
and movies) when applied as a sophisticated combination of feature sets. They also speculated that
engineering features based on deeper linguistic representations (e.g. dependencies and parse tree)
may improve classification results for contents on social media. Typed dependencies have been
widely used for extracting the functional role of context words for sentiment classification [28, 33]
and document polarity [57]. Applying typed dependencies for classifying cyberhate showed that
typed dependencies consistently improved the performance of machine classification for different
types of cyberhate by reducing the false negative rate by 7%, beyond the use of BoW and known
hateful terms [10, 11]. Our work is different from the previous works in that we introduce a new
feature set that uses the othering language patterns to detect implicit/explicit hateful content.

2.4 Text Embedding
Embedding learning is aimed at training a model that can automatically transform a sentence/word
into a vector that encodes its semantic meaning. It has been shown that embedding representation
is very capable of semantic learning when word vectors are mapped into a vector space, such
that distributed representations of sentences and documents with semantically similar words
have similar vector representations [44] [45]. Based on the distributional representation of the
text, several methods of deriving word representations that are related to cyberhate and offensive
language detection are explored in the following works. In general, neural network applications
were shown to be capable of capturing specific semantic features from complex natural language (e.g.
location [49], entity [53] and images feature [2]). For hate speech detection purposes, [19] solved
the problem of high dimensionality and sparsity by applying sentence embedding (paragraph2vec).
In their study, paragraph2vec, which is an extended version of Word2Vec for sentences, has
been shown to outperform the BoW representation for cyberhate classification models by around
3% to 4% in F1 score. However, they limited their study to comparing the classification results
with TF-BoW and TF-IDF-BoW for the same comments. Similarly, [4] compared the classification
accuracy of the combination of different baselines and classifiers (Char n-gram, TF-IDF, BoW and
LSTM) and found that learning embedding with gradient-boosted decision trees led to the best
classification performance by 18% over state-of-the-art char/word n-gram methods. For German
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language processing, [35] examined different types of features (BOW, 2-grams, 3-grams, linguistics,
Word2Vec, Paragraph2vec, extended 2-grams and extended 3-grams) for training logistic regression
LR classifiers. The experimental results, obtained on a 75/25 split between training and test data,
showed that the best performing types of features are Word2Vec and Extended 2-grams.

Word vector extraction was also applied to tweets for cyberhate classification by [21], who built
a Convolutional Neural Network (CNN) model which was trained on four feature sets: character
4-grams, word vectors based on semantic information built using Word2Vec, randomly generated
word vectors, and word vectors combined with character n-grams. They used a data set with the
sample size of 6655 that contains a small set of abusive samples (91 for racism, 946 for sexism,
18 for both). They showed that while adding character n-grams slightly increased the precision
but resulted in lower recall and F-measure; the second feature set (Word2Vec alone) performed
best overall, with an F-measure of 0.78. Another use of word vector extraction was introduced by
[31]who investigated the less pronounced form of sexism demonstrated online using three types of
approaches: SVM, seq2seq and FastText which was set with 100 dimension. They created a dataset
of tweets that exhibit benevolent sexism and classified the tweets into ‘Hostile’, ‘Benevolent’ or
‘Others’ class depending on the kind of sexism they exhibit. They worked with three data sets of
sizes: (712 for Hostile set, 2254 for Benevolent data set and 7129 for other). They mentioned that
the small sample size of their study is considered as a study limitation because of the method of
gathering benevolently sexist tweets which was biased towards the initial search terms and likely
missed many forms of benevolent sexism. However, the use of the FastText approach, which allows
update of word vectors through back-propagation during training, even with the small data set,
outperformed the others with an F1-score of 0.87.

Recently, [72] introduced a deep neural network model combining CNN and gated recurrent unit
(GRU) layers, which were used to train on Word2Vec features with 300 dimensions. The results
show that the classification accuracy was improved by between 1 and 13% on 7 data sets (sample
size between 2435 and 24783), when compared to baselines methods. Another use of deep learning
methods was introduced by [51], they explored employed an ensemble of LSTM-based classifiers
to improve classification performance using mechanisms for aggregating the classifications -
namely Voting and Confidence. Their deep learning architecture involves using word frequency
vectorisation for implementing a series of features associated with users’ behavioural characteristics,
such as the tendency to post abusive messages, as input to the classifier. The word vector dimension
was set to 30 to encode every word in the vocabulary used. They experimented using a dataset
of approximately 16k short messages from Twitter which contain 1943 tweets labeled as Racism,
3166 tweets labeled as Sexism and 10889 tweets labeled as Neutral (i.e., tweets that neither contain
sexism nor racism). They reported that the small number of tweets and the class imbalance in the
dataset made the task more challenging. However, they reported that their approach outperformed
the current state-of-the-art approaches.
[71] introduced the problem of unbalanced nature and the lack of discriminative features of

hateful content in the typical datasets and they propose a new DNN model which is designed to
capture implicit features that are potentially useful for classification. They modified the typical
CNN architecture by adding the operation that involves using ’gapped window’ to extract features
from word embedding inputs of 300 dimensions. A skipped CNN component was functioned which
was expected to extract the dependent sequences of input n-grams, and performed much better
over the baselines when only hateful tweets are considered suggesting that the skipped CNNs
may be more effective feature extractors for hate speech detection in very short texts such as
tweets. They evaluated their approach on a group of datasets from previous studies which contain
hateful samples that fall in the range between 413 and 5773. [18] also applied an LSTM classifier for
classifying hate speech in Italian texts. They applied morpho-syntactical features, sentiment polarity
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and word embedding lexicons as feature extraction methods leading to a 262-dimensional vector
being transformed from each word. The LSTM classifier was compared with the SVM classifier
using two datasets: the three-class dataset, composed by 3,356 documents - divided into 2,816
non-hate, 410 weak hate and 130 strong hate documents; and the two-class dataset, composed of
3,575 documents - divided into 2,789 non hate and 786 hate. The second dataset shows much higher
result for hate recognition than the first dataset. We note that emeddings typically requires large
corpora to develop meaningful results but in the context of hate speech detection, smaller datasets
of the order of between 400 and 6000 hateful samples has yielded promising results.
Several works have merged typed dependencies with embedding learning and clarified the

different levels of embedding learning when using the dependency context rather than the bag
of words linear text. [39] showed that dependency context embeddings can provide valuable
syntactic information for sentence classification tasks, which is a motivation for implementing
classification tasks in respect of dependency embedding text, and [36] showed that dependency-
based embeddings are less topical and exhibit more functional similarity than bag of words linear
embeddings . In addition, [74] defined the differences between flat text, which they called neighbour
words, and the dependency context, and clarified through examples the drawbacks of learning
embedding from flat text. While these studies introduced the effectiveness of the word distances of
the dependency context, which capture the semantic relations, their works targeted other areas
of research, not cyberhate. One study that has combined typed dependencies with embedding
learning in the context of cyberhate was reported by [47]. They developed a machine learning
approach to cyberhate based on different syntactic features as well as different types of embedding
features, and reported its effectiveness when combined with some standard NLP features (n-grams,
dependencies) in detecting hate speech in online user comments. They showed how applying
each feature set alone resulted in different classification performance, and found that character
n-grams alone are useful in noisy datasets. While using n-grams boosted the learning performance,
n-grams result in high dimensionality and thus render the models susceptible to overfitting. They
examined different syntactic features as well as different types of embedding features and showed
that this combination outperforms basic embedding learning. While they examined a combination
of different syntactic features and embedding learning, some syntactic features led to confusion in
the embedding learning process (e.g. some PoS and dependency modifiers). Therefore, this presents
an open research question on how to better refine the framing of cyberhate from a computational
feature processing perspective to improve the classification performance. Our study is different from
the previous study in that we are yet to see evidence that the complex and nuanced ‘us and them’
narrative emerging on social media can be captured using a combination of typed dependencies
and embeddings.

3 THEORY AND DATA
In this section we introduce our research hypothesis, the datasets that are used in our study, and a
statistical analysis on the use of othering language in our datasets.

3.1 Research Hypothesis
Based on the analysis of existing literature on automated approaches to cyberhate and the theories
of Integrated Threat Theory and ‘othering’ as a form of discriminatory language use, we propose
that existing machine classification performance could be improved by including a layer of linguistic
features representing ‘othering’ within short informal text, such as posts that are published to
online social networks. We assume that othering language could be identified through specific uses
of English language parts of speech - particularly verbs (action-driven language) and pronouns
(referring to ‘others’). We hypothesize that the use of pronouns that refer to an ingroup (e.g. we,
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us) co-occurring with pronouns that refer to an outgroup (e.g. them, they) in the same post, will be
indicative of divisive or antagonistic attitudes and therefore will improve machine classification of
cyberhate. In this study, we refer to the co-occurrence of ingroup/outgroup pronouns as a two-sided
pronoun.

Figure 1 presents an overview of linguistic features that can be used between different groups to
distinguish themselves (the in group) from others (the out group).

Fig. 1. The graph shows the boundary defined between two groups using the othering terms, and the space
between the boundary shows how the negative text could be defined

The figure shows how pronoun terms from one side (us, we, our, etc.) draw the boundary between
the in group by referring to the out group (we, they etc).

3.2 Datasets
We used two datasets for our experimentation. Our main contribution to the literature is to enhance
existing cyberhate machine classification performance by developing a novel othering feature set
to provide additional features that capture more nuanced forms of cyberhate based around a fear
of ‘the other’ - for instance, around immigration and terrorism. To develop the othering feature
set we used the dataset provided by [16]. They collected tweets containing different types of hate
and used crowd-sourcing to further divide the sample into three categories: those containing hate
speech, those with only offensive language, and those with neither. Annotators were asked to
think not just about the words appearing in a given tweet but also about the context in which they
were used. They were instructed that the presence of a particular word, however offensive, did not
necessarily indicate a tweet is hate speech. Each tweet was coded by three or more annotators.
The inter coder-agreement score was 92%. They used the majority decision for assigning a label
to each tweet. This resulted in a sample of 24,802 labeled tweets and only 5% of the tweets were
coded as hate speech by the majority of annotators. We refer to this as Training Dataset which
contains 3161 non-malicious samples and 5323 hateful samples - which is at the higher end of
samples size in previously published literature that used embeddings to classifying cyberhate (e.g
[18] 540 hateful samples, [21] 1037 hateful samples, [31] 712 hateful samples, [72] 413-5773 hateful
samples, [51] 5109 hateful samples). To compare our work to the state-of-the-art in cyberhate
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classification we used a second dataset for testing purposes, which was used in previous work [11].
The dataset was collected from Twitter and the method of data collection was random to ensure
that the produced dataset is free from bias. The dataset was annotated using the CrowdFlower
human intelligence task service with a single question: ‘Is this text antagonistic or hateful based on
a protected characteristic?’. The dataset comprises cyberhate directed at four different protected
characteristics, as follows: sexual orientation - 1803 tweets, with 183 instances of offensive or
antagonistic content (10.15% of the annotated sample); race 1876 tweets, with 73 instances of
offensive or antagonistic content (3.73% of the annotated sample); disability 1914 tweets, with 51
instances of offensive or antagonistic content (2.66% of the annotated sample); and religion 1901
tweets, with 222 instances of offensive or antagonistic content (11.68% of the annotated sample).
The authors conducted all of the necessary tests so as to ensure agreement between annotators for
the gold-standard samples [11]. The amount of abusive or hateful instances is small relative to the
size of the sample. However, these are random instances of the full datasets for each event and they
are considered representative of the overall levels of cyberhate within the corpus of tweets [10].
We evaluate the relative improvement in classification performance using this dataset, which we
refer to as Testing Dataset.

3.3 Summary Statistics for Othering Language in the Datasets
To provide an initial justification for our research hypothesis on the use of two sided pronouns to
improve cyberhate classification, we conducted a corpus analysis of our datasets - calculating the
percentage of tweets from Testing Dataset that included at least two pronouns. We found these
features present in only 0.9% of non-malicious instances within the data and 17.6% of cyberhate
instances.
In Figure 2 we show the comparative occurrence of two-sided othering terms in both hateful

samples and non-hateful samples among different types of cyberhate datasets. We can see the
anti-Muslim dataset contains the most frequent usage of the two-sided othering language, followed
by anti-semitism. This follows from the findings of [9] who identified ’othering’ language as a useful
feature for classifying cyberhate based on religious beliefs. We can also note that the percentage of
two sided othering was higher in the hateful annotated samples than non-hateful samples for all
other type of hate speech, and to around the same level. In addition to that, in Figure 3 we show
the same comparison based on the results obtained using Training Dataset which confirms again
the much higher use of two-sided pronouns in the hateful samples.
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Fig. 2. The graph shows the use of two-sided othering for each hate speech type in both hateful and non-
hateful samples in the testing dataset

Fig. 3. The graph shows the use of two-sided othering for each hate speech type in both hateful and non-
hateful samples in the training dataset

4 METHODS
To achieve our novel othering layer within the machine classification framework we developed an
othering feature set containing three components: (i) a constrained subset of dependency relation-
ship labels extracted using probabilistic parse trees that we hypothesized would be representative
of othering, (ii) more general parts of speech associated with othering including verbs (VB), nouns
(NN) and adjectives (JJ) (e.g. send them home), and (iii) a list of English pronouns. Together these
capture as much as possible linguistically to provide a focused set of othering features. This section
details the process used to extract these features and how they were used in our automated machine
classification approach.
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4.1 Extracting Othering Terms
The first phase involved using the Training Dataset and analysing only the hateful samples. We
identified all samples where two-sided othering was present - i.e. where at least two pronouns were
used. We discarded any samples without at least two pronouns and then we discard the repeated
samples. Using this subsample, we used the Stanford Typed Dependency Parser to transform the
text to provide co-occurring words with a probabilistically derived linguistic label. The Stanford
typed dependencies representation was designed to provide a simple description of the grammatical
relationships in a sentence[17].

Figure 4 shows the linguistic labels associated with each word in a sample sentence. Word order
within a sentence is preserved in the type dependency and provides a feature for classification as
well as the syntactic relationship between words.

Fig. 4. Dependency Relationships

send them all home we do’nt want them in our country .

ROOT

DOBJ

ADVMOD

DOBJ

NSUBJ XCOMP

DEP

DOBJ

CASE

NMOD:POSS

NMOD:IN

The Stanford Parser returns 51 different linguistic labels 2, and in the previous example, the
parser produced seven dependency relationships, which are distributed over ten instances. To
provide a specific focus on othering language, we retained only 6 types of dependency relationships:
nsubj , dobj ,nmod ,det , advmod and compound . The remaining dependency modifiers were discarded.
The rationale for preserving these modifiers is as follows. The nsubj label captures the syntactic
subject or proto-agent in a sentence (i.e. the active agent). Examples include ’muslims caused’
and ’they inflicted’. dobj concerns the direct object of a verb phrase and has a high probabilistic
likelihood for capturing relationships between verbs and nouns, pronouns and determiners in
the same phrase (e.g. send and them). nmod is likely to identify nominal modifiers for nouns, for
instance ‘all gays’ or ‘womens place’. The det captures the relationship between nominals and their
determiner (e.g. ‘these terrorists’). advmod captures adverb modifiers (e.g. where we see ‘home’
we may also see ‘send’). The compound will identify compound verb phrases including verb and
adjective compounds such as ‘send back’ or ‘kill black’.

As a worked example of how this method is expected to capture othering, the translation of the
text in Figure 4 becomes nsubj(want-7, we-5), dobj(send-1, them-2) det(home-3, all-4), nmod:poss(country-
11, our-10) and the remaining relationships would be discarded. We are now capturing distinctive
othering features that co-occur in the same sentence. Despite none of these words being clearly
antagonistic or offensive of their own - together they provide a greater contextual feature for
machine classification to detect these unseen samples using similar phrasing.

4.2 Building the Othering Feature Set
To complement the dependency relationship features we also applied part-of-speech (POS) tagging
to the hateful samples that included at least two pronouns. We once again refined the set of labels
to include those most likely to represent othering and retained only words tagged as nouns (NN),
adjectives (JJ), verbs (VB) and adverbs (RB). The POS labels themselves were removed to leave only

2https://nlp.stanford.edu/software/dependencies_manual.pdf
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words. These POS words, the dependency relationship features and a list of all English pronouns
were then concatenated into a triple that formed the basis of an othering feature set - a novel
concatenation of a range of grammatical and linguistic features extracted from a human annotated
data set of hateful and antagonistic texts. To reduce noise, we removed all tweets that contained a
single word. This process resulted in a dataset of 975 rows. As the othering feature set was built
using annotated hateful samples, we expect that all the entries could contribute to the learning
process. Figure 5 shows the process of extracting the ‘othering feature’ from each tweets that
contain two sided pronouns. Algorithm 1 illustrates the steps of building the othering vectors
feature set. Figure 6 shows the process of training our model and figure 7 illustrates the testing
phase.

Fig. 5. Othering Feature Extraction

We examined three types of inputs: (1) Training Dataset, which contains all the non-hateful and
hateful instances that contain two sided pronouns in an unprocessed form - i.e. raw text; (2) Training
Dataset with the non-hateful instances transformed into Typed Dependency representation, plus the
othering feature set alone to represent hateful instances.We call thisproposed feature set 1; and (3)
we merge (1) and (2), which we call proposed feature set 2. Examples of each input are as follows:
(1) ‘Send them all home we don’t want them in our country’; (2) ‘Row0: [(them,we,our) + nsubj(want-7,
we-5), dobj(send-1, them-2) det(home-3, all-4), nmod:poss(country-11, our-10) + send,want,home]’.
These features then become the input to the Paragraph2Vec algorithm.

Algorithm 1 Othering feature set
INPUT:Annotated Training Dataset
OUTPUT: Othering Feature set
1: for each samples in Training Dataset do
2: Identify tweets containing two sided pronoun
3: end for
4: for each sample containing two sided pronoun do
5: Extract all the pronoun (P )
6: Extract Typed Dependency (TD)
7: Extract POS (POS)
8: Append (P ,TD,POS)
9: end for
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Fig. 6. Model Training Workflow

Fig. 7. Model Testing Workflow

4.3 Feature Extraction
At this stage, we needed to identify a suitable method for utilising the features extracted through
our othering feature set. We could have used these as raw features for classification but to provide
further refinement we employed embedding learning to capture the relative ‘distance’ between
these features in a cyberhate context. Learning vector representations allows us to plot each feature
in such a way that we can calculate numeric distances between features based on their use in a
context. A common example of this is that the distances between ‘man’ and ‘king’ would be similar
to that of ‘woman’ and ‘queen’. Therefore we can identify relationships between words (i.e. ‘man’
and ‘king’), and context (i.e. ‘king’ is to ‘queen’ as ‘man’ is to ‘woman’). With two-sided pronouns
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we assume that our method would benefit from this approach to extract the semantic ‘meaning’
of othering features and learn these jointly across the hateful and non-hateful texts to provide
context for term use - ultimately with the aim of these features being able to better support machine
classification of both.
Various methods have been proposed to learn vector embedding representations. Word2Vec

and Paragraph2vec have been proposed for building word/paragraph representations in low-
dimensional vector space [44]. In the Word2Vec model, words are represented in continuous
space where semantically similar words have a high similarity measure in that space. In the
Paragraph2vec model, paragraphs are represented as low-dimensional vectors and are jointly
learned with distributed vector representations of tokens using a distributed memory model (for
further detail see [45]). Every sentence is mapped to a unique vector, and every word included in
the sentence is also mapped to a unique vector. In our context this means each tweet is fed into the
embedding learning methods as if it were a sentence, and each feature of the tweet derived in the
othering feature extraction phase becomes a part of the sentence embedding.
Both data sets 1 and 2 were transformed into paragraph embeddings using Paragraph2Vec for

training and testing purposes. Note we also implemented Word2Vec for sentence classification,
which resulted in poor classification results so the decision was made to discard the use ofWord2Vec
and use only Paragraph2Vec.
We learned the Distributed Memory (PV-DM) vectors using the Gensim 3 implementation of

distributed representations of the sentence (tweet) [37]. In the Distributed Memory component
(PV-DM), the sentence acts as a memory that remembers the missed word in the current context
of the sentence. According to [45], the distributed memory model is consistently better than PV-
DBOW. To find the best implementation for our data, we experimented with both and found that
distributed memory performed better in learning feature vectors from our data set. We used small
window sizes because, according to [39], a window of size 5 is commonly used to capture broad
topical contents, whereas smaller windows (e.g. k=2 windows) contain more focused information
regarding the target word.

For example, for k = 2, the context around the target word w comprisesw- 2,w- 1,w + 1,w + 2.
These become the features used for learning distances between the target word and its surrounding
context. The larger the window, the broader the context. The final output is a vectorised data set
that is used as a feature set for feeding in to a machine classification approach. We were expecting
the othering layer to assist in improving the performance of machine classification of cyberhate,
so a more focused approach seemed logical given it will be these nuanced othering terms in a
smaller window that will likely lead to improvements in classification. We experimented with
various window sizes including 100, 300, 600, 800 and 1000 dimensions and k = 2, 3, 5, 6 and 10. We
recorded the performance of each and report the best performing configuration - which was for
600 dimensions and windows = 2. We used fixed embedding because our datasets are not associated
with time, which would require grouping the data into time bins and training the embeddings
separately on these bins [34]. Once we learned vector representations, we joined the vector with
its original human-assigned label, assigning the label 0 to the non-hateful samples and 1 to the
hateful samples, and then used these to train and test the machine classifier.

4.4 Machine Classification: Comparing the ’Othering’ Classifier to Baselines
We examined several classification approaches, drawing on state of the art related cyberhate
research to determine the overall improvement when using our novel othering feature set. The
candidate methods included: (Baseline 1) - Support Vector Machines (SVM) and Random Forests

3https://radimrehurek.com/gensim/models/Doc2Vec.html
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(RF) combined with Bag of Words (BoW), n-gram, and Typed Dependency features, as used in
[10][11]. The SVM parameters were set to normalize data, use a gamma of 0.1 and C of 1.0 and we
employed radial basis function (RBF) kernel and the Random Forest (RF) iteratively selects a random
sub-sample of features in the training stage and trains multiple decision trees before predicting the
outputs and averaging the results which maximize the reduction in classification error [8]. The
Random Forest algorithm was trained with 100 trees; (Baseline 2) used a Logistic Regression (LR)
classifier with Paragraph2Vec feature extraction for joint modeling of comments and words, as
used in [19]; (Baseline 3) used Vowpal Wabbit’s regression model and different NLP features with
Paragraph2Vec and Word2Vec used for feature extraction, as applied by [47]; (Baseline 4) used
Gradient Boosted Decision Trees (GBDTs) in combination with Long Short-Term Memory (LSTMs)
for feature extraction (not as a classifier), and random embeddings, as published by [4]. They used
the LSTM model to capture sequence-based features. The LSTM model has a single layer of LSTM
units and all of the words in the corpora were initialised with random values. The output dimension
size of the LSTM layer was 100. A sigmoid layer was built on the top of the LSTM layer to generate
predictions. The input dropout rate and recurrent state dropout rate were both set to 0.2. In each
iteration of the bootstrapping process, the training of the features and classifier runs for 15 epochs;
(Baseline 5) included a CNN model in combination with Word2Vec embedding. We performed
training in batches of size 128 for CNN as introduced in [21]. We use the ’adam’ optimizer for CNN.
We configured the model with three max-pooling layers, as introduced in [21]. A max-pooling layer
captures the most important latent semantic factors from the Tweets. The output layer used softmax
to calculate the class probability distributions for each Tweet and assigns each Tweet the class that
obtains the maximum probability value; (Baseline 6) was a modified CNN classifier with Gated
Recurrent Units (GRU) layer which applied on learned Word2Vec embeddings as introduced by [71].
They integrated a GRU layer with a CNN classifier to capture long range dependencies in Tweets,
which may play a role in hate speech detection. GRU layer takes input from the max pooling layer.
This treats the features as time steps and outputs 100 hidden units per time step. Compared to
LSTM, the key difference in a GRU is that it has two gates (reset and update gates) whereas an
LSTM has three gates (namely input, output and forget gates). Thus GRU is a simpler structure
with fewer parameters to train. In theory, this makes it faster to train and generalise better on
small data; while empirically it is shown to achieve comparable results to LSTM [13]; (Baseline 7)
used an LSTM classifier with random embedding which was introduced in [4] but did not produce
an improvement on the use of GBDTs in their results. However, in our study we aimed to reveal
the effectiveness of using an LSTM model as a standalone classifier on our proposed feature set,
and the parameters were set the same as [4]. For CNN, LSTM and CNN+GRU models, the feature
extraction phase all resulted in paragraph level vectors being extracted for each sentence (Tweet).
This means that all of the baselines (except baseline 1) have paragraph vectors for classifier inputs,
which makes them comparable to the Paragraph2Vec as used in our othering feature set.

In addition to the state of the art classification methods, we propose the use of our othering
feature set (pre-processed with Paragraph2Vec) along with a Multilayer Perceptron (MLP) classifier
[70]. Multilayer feed-forward networks can provide competitive results on sentiment classification
and factoid question answering [30]. MLP is a feed-forward artificial neural network model which
maps input data sets on an appropriate set of outputs. MLP consists of multiple layers of nodes in
a directed graph, with each layer being fully connected to the next layer [23]. To the best of our
knowledge no work has previously used MLP classifiers in combination with Paragraph2Vec for
cyber hate detection. MLP parameters were set experimentally by setting the initial number of the
hidden layers to 1, and increasing the number of the hidden layers to improve performance through
trial and error [27]. In our case, two hidden layers with five hidden connected units achieved the
best performance for our vectors with 200 iterations.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2018.



Cyber Hate Classification 39:17

We implemented all these approaches on the raw data set, on our proposed othering feature set,
and on the combination of both data sets for comparisons. Then, to determine the effectiveness
of each individual model in classifying cyber hate, we cross-validated across all input feature sets
on an individual basis. For each cross-validation fold, the paragraph embeddings were re-trained.
Throughout the results section we refer to the correct classification of non-hateful samples as true
negatives, and correct classification of hateful samples as true positives.

5 RESULTS AND DISCUSSION
5.1 Quantitative Results
The first set of experiments (Section 5.1.1) included applying a wide range of models from previous
studies, which we summarised as baselines in the previous section. This allows us to compare the
best performing models for cyber hate classification with our proposed ‘othering’ feature set. The
second set of experiments (Section 5.1.2) involved testing the best performing models from the first
phase on completely unseen data to test model generality over four types of hate speech.

5.1.1 Testing against the state of the art . The results are shown in Table 1, in which the
first column represents a summary of the baseline models ([11], [19], [47], [4], [21] and [71]). The
last row in the table contains the result of our novel approach. We trained our othering feature
set as well as the baseline methods using ten-fold cross validation. This method has previously
been used for experimentally testing machine classifiers for short text [58] [11]. It functions by
iteratively training the classifier on feature vectors from 90 percent of the annotated data set, and
classifying the remaining 10 percent as ‘unseen’ data, based on the features evident in the cases it
has encountered in the training data. It then determines the accuracy of the classification process
and moves on to the next iteration, finally calculating the overall accuracy. The results presented in
Tables 1 and 2 are for the cyberhate class only. The classification performance for non-hateful text
was consistently above 0.90-0.99 and are omitted to reduce complexity in presenting the results.
Our main interest is with the improvement of cyberhate classification. In training the classifiers
matrix, we use F-measure as our main comparison metric, given it controls for false positives and
false negatives and a lack of balance in the dataset. At classifier testing phase, we used F-measure
and AUC for error analysis.
Our experiments were conducted on three input datasets: (i) an unprocessed dataset (Training

Dataset) which reflected the (actual) implementation of the applied models; (ii) the othering feature
dataset; and (iii) the unprocessed Training Dataset enriched with the othering feature set. This
follows the method proposed in Sections 4.1 to 4.3. From Table 1 we firstly notice that from baseline
1 to baseline 2 there was a large reduction of FPs and FNs among the three feature sets. We suggest
this is likely due to the use of semantic learning for features extraction. This also confirms that there
is no bias in our data sets as noticed by [5]. From baseline 2 to baseline 3, the reduction of FPs (but
not necessarily FNs) is clear. We suggest this is likely a result of using linguistic features (n-gram,
dependency relations, etc.). The combination of baseline 3 with our third feature set produced the
lowest number of FPs, detecting 99% of the cyberhate samples. This suggests that the extra features
(n-gram and linguistics), which were applied by the baseline 3 model, improved the process of
hate speech classification, compared with the baseline models, which already use the semantic
features. However, applying neural network models proposed in baseline 4 [21], baseline 5 [4],
baseline 6 [73] and baseline 7 [4] did not show a significant increase in the detection of cyberhate
within the three datasets. The CNN [21] and LSTM models [4] were unable to improve on this
using the original feature set nor our feature set. This is likely due to the length and sparsity of
short texts. Furthermore, RNNs models including LSTM features extraction, which showed the
best performance in [4] and the GRU layer, which was added to the CNN model to achieve best
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performance by [73]) showed weak performance compared to other classifiers. Another possible
explanation for this is their use of Word2Vec feature extraction which, empirically, has not produced
better semantic learning than Paragraph2Vec for our datasets (see Section 4.3).
The last row in the table shows the results of training our proposed feature sets using Para-

graph2Vec for feature extraction and the MLP classifier. Despite two feature sets producing higher
FP than baseline 3 on our feature set by 1 and 3 extra FP samples, they show a reduction of FN by 5
and 4 non-hateful samples. The result shows that the othering features set is working on a par with
baseline 3 that uses a range of text pre-processing methods. To evaluate the generality of these
two approaches (ours and baseline 3) - and stress the range of linguistic features used in baseline 3,
as well as the othering method, we tested them using unseen datasets. The three best performing
classifiers (shown in bold font in table 1) were the candidate models for training our ‘othering’
classifiers, because they resulted in the lowest number of both FPs and FNs (ranging between
0 and 10). We named the three best models as ’Comprehensive-classifier’, ’Othering-classifier’,
and ‘Othering+raw-classifier’, respectively. Comprehensive-classifier refers to applying baseline
3 model on our proposed feature set 2; we name it as a ’comprehensive’ because there is a wide
range of features were applied. Othering-classifier which refers to our proposed application of
Paragraph2Vec feature extraction and MLP classifier on the proposed feature 1 (othering feature
set) and Othering+raw-classifier which refers to our proposed application of Paragraph2Vec feature
extraction and MLP classifier on the proposed feature 2 (othering feature set and raw data set).

Table 1. Machine classification performance for the cyberhate classifiers based on training dataset

Unprocessed Training Dataset Proposed Feature set 1
(Othering Feature set)

Proposed Feature set 2
(Dataset1 + othering feature set)

Classifiers cl sample P R F AUC P R F AUC P R F AUC

Baseline model 1: n-Gram words (1-5) with 2,000 features
+n-Gram typed dependencies +hateful term [11]

SVM+
RF

Hateful 0.58
FP=407

0.48
FN=610 0.52 0.67

0.68
FP=311

0.30
FN=1560 0.41 0.56

0.78
FP=209

0.28
FN=1891 0.42 0.57

Neutral 0.80 0.86 0.83 0.50 0.83 0.63 0.40 0.85 0.54

Baseline model 2: Comment
Embedding [19] LR Hateful 0.88

FP=118
0.93
FN=61 0.91 0.94

0.74
FP=253

0.87
FN=110 0.78 0.89

0.98
FP=10

0.96
FN=40 0.97 0.97

Neutral 0.98 0.96 0.97 0.95 0.92 0.94 0.98 0.99 0.99

Baseline model 3: N-grams+ linguistic+ dependencies+
word and comment Embedding [47] VR Hateful 0.94

FP=54
0.93
FN=66 0.92 0.95

0.97
FP=24

0.98
FN=9 0.98 0.99

0.98
FN=4

0.99
FN=9 0.99 0.99

Neutral 0.97 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00

Baseline Model 4: Word2vec
[? ]) CNN Hateful 0.97

FP=27
0.88
FN=131 0.92 0.93

0.98
FP=15

0.83
FN=196 0.90 0.91

0.98
FP=11

0.90
FN=101 0.94 0.95

Neutral 0.95 0.99 0.97 0.93 0.99 0.90 0.96 0.99 0.98

Baseline Model 5: Word2vec
+LSTM [4] GBDT Hateful 0.73

FP=258
0.77
FN=215 0.75 0.84

0.98
FN=17

0.89
FN=102 0.94 0.95

0.96
FP=34

0.95
FN=47 0.97 0.97

Neutral 0.93 0.91 0.92 0.96 0.99 0.98 0.98 0.99 0.98

Baseline Model 6: Word2vec
[73]

CNN+
GRU

Hateful 0.92
FP=75

0.87
FN=133 0.90 0.92

0.97
FP=25

0.92
FN=30 0.95 0.98

0.99
FP=10

0.89
FP=115 0.94 0.94

Neutral 0.95 0.97 0.96 0.99 0.99 0.99 0.96 0.99 0.97

Baseline 7:Word2vec [13] LSTM Hateful 0.00
FP=975

0.00
FN=0 0.00 0.00

0.59
FP=365

0.36
FN=1003 0.45 0.60

0.83
FP=158

0.45
FN=974 0.59 0.69

Neutral 1.00 0.76 0.86 0.68 0.84 0.75 0.69 0.93 0.79

Paragraph2vec MLP Hateful 0.98
FP=21

0.95
FN=51 0.96 0.97

0.99
FP=5

0.99
FN=3 1.00 0.99

0.99
FP=7

0.99
FN=5 0.99 0.99

Neutral 0.98 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00

5.1.2 Testing the Othering Classifier. Our second set of experiments involved testing our
model on unseen datasets. The training phase (the previous experiment) produced evidence to
suggest that including othering language features in predictive models of cyberhate speech (in short
informal text, such as Twitter posts) will improve the classification performance. The second phase,
which is testing the trained classifier, aimed to determine the possibility of developing a more
generalised model of cyberhate detection. A key finding from previous research is that, compared
with using hateful terms alone, the inclusion of features capable of detecting othering language
in the classification of religious cyberhate reduced false negatives by 7%. Additionally, [47] found
that computing feature embeddings when combined with the standard NLP features showed the
effectiveness for improving the performance of cyberhate classification.
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Table 2. Machine classification performance for cyberhate classifiers based on unseen testing datasets

Tested Data Sets
Religion Disability Race Sexual-orientation

Trained Models P R F AUC P R F AUC P R F AUC P R F AUC
Baseline Model 3 +
Proposed Feature set 2
(Comprehensive-classifier)

0.95
FP=12

0.71
FN=84 0.81 0.94 0.68

FP=16
0.74
FN=12 0.71 0.86 0.89

FP=8
0.30
FN=163 0.43 0.64 0.98

FP=3
0.31
FN=398 0.47 0.65

Paragraph2vec+
Proposed Feature set 1
(Othering-classifier)

0.95
FP=12

0.44
FN=260 0.60 0.71 0.31

FP=35
0.94
FN=1 0.47 0.96 0.95

FP=4
0.79
FN=18 0.86 0.89 0.78

FP=40
0.46
FN=168 0.58 0.71

Paragraph2vec+
Proposed Feature set 2
(Othering+raw-classifier)

0.99
FP=2

0.54
FN=187 0.69 0.76 0.55

FP=23
1.00
FN=0 0.71 0.99 0.95

FP=3
0.84
FN=13 0.89 0.92 0.86

FP=24
0.61
FN=99 0.72 0.80

Our results show how the use of othering features alongside embeddings for training the classifier
enables a new level of hate speech detection, in the form of othering-level feature embeddings. We
tested the best three classifiers from previous experiments on four unseen cyberhate datasets. As
shown in Table 2, for religion, the third classifier was able to detect 99% of the religious hate but
only 88% of non-hateful samples. However, the lowest number of incorrect non-hateful samples
was achieved by the Comprehensive-classifier which detected 94%. The Comprehensive-classifier
detected 95% of the hateful samples, and is considered to be a more balanced classifier. The very
low number of missed true positives in the Othering+raw-classifier indicates the effectiveness of
the ‘othering feature set’ in detecting hate speech, whilst using n-grams and linguistic features
for training the Comprehensive-classifier had a positive effect on non-hateful detection. For the
disability dataset, the Comprehensive-classifier detected 68% of the hateful samples, which was the
lowest among the three classifiers, whereas the Othering+raw-classifier detected all non-hateful
samples but approximately half of the hateful samples were missed. This could be interpreted
as othering language not being commonly used in disability hate speech. Additionally, because
the Comprehensive-classifier used linguistic features (n-grams) in addition to our feature set, the
disability context was enriched. For the race dataset, the Othering+raw-classifier improved the
detection of hateful and non-hateful instances compared to the Comprehensive-classifier and the
Othering-classifier by 6% and 1%, respectively. For the sexual orientation dataset, the Othering+raw-
classifier detected the lowest number of hateful instances (3 were missed) but had the highest false
detection for non-hateful instances (missing 33%).

In summary, the Othering+raw-classifier detected the highest number of hateful and non-hateful
instances for racism hate speech, whereas the Comprehensive-classifier performed best at detecting
hateful samples in the religion, disability, and sexual orientation datasets. These results show
that there is strong competition between the Comprehensive-classifier and the Othering+raw
classifier (with the Comprehensive-classifier using additional n-gram and linguistic features) in
detecting hateful and non-hateful speech for religion and sexual orientation. The use of n-grams
and linguistic features did not, therefore, positively contribute to the detection of religious hate
speech, whereas the opposite was true for sexual orientation. The best performance was achieved
by the Othering+raw-classifier for racial hate speech and non-hateful speech, which suggests that
the use of ‘othering’ features is more important than additional n-grams or linguistics features.
However,the Othering-classifier did not record prominent results despite interesting results at the
training stage.

We have validated the utility of the learned vectors in the classification of cyber hate by reporting
the area under the curve (AUC). AUC provides an aggregate measure of performance across all
possible classification thresholds, ranging from 0 to 1; a model with predictions that are 100%
incorrect has an AUC of 0.0, and one with predictions that are 100% correct has an AUC of 1.0. We
found that other approaches for classifying religious and disability datasets were outperformed
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by training the classifier using baseline model 3 and our proposed ‘othering’ feature set 1, having
an AUC of 0.94 and 0.71, respectively. For race and sexual orientation datasets, combining our
proposed ‘othering’ feature set 2 with the MLP classifier achieved a higher AUC than combining it
with baseline 3, having an AUC of 0.92 and 0.80 respectively. High AUC and high F-scores indicate
that the classifier performs well at all thresholds [40], and this was seen in the case of religion,
race and sexual orientation classifiers (see bold font in table 2). In comparison, low AUC indicates
a weak classifier possibly due to an imbalanced dataset [29]. Obtaining F-measures over 0.80 by
testing a model on unseen data sets which were collected in different circumstances shows the
effectiveness. Additionally, table 2 contains results that were not compared with previous studies
baselines for the following reasons: the data set used for training and testing the classifiers are
entirely different so we have not followed the splitting method which split the same data set for
training and testing the model. In addition, we have not followed the 10-cross validation to validate
the generality (testing) of our trained classifier. We avoid using the two previous methods for
testing our classifiers, which were commonly used for validating the trained model in the previous
studies, because of the probability of text repetition which might happen during the data collection
(e.g. retweets).

5.2 Qualitative Results
Given our improvements over the state of the art using the othering feature, we conducted our own
qualitative analysis to identify any insights into the features captured using feature embedding on
the othering features - i.e. the two-sided pronouns. Given the improvement, we can assume that
the embedding method has effectively assigned othering features to similar vectors spaces in such a
way as to better distinguish hateful from non-hateful content using the Paragraph2Vec embedding
algorithm. We have visualized two data sets - unprocessed Training Dataset using embeddings only
(see Fig 9), and second using the othering feature set with the embedding model (see Fig 8) - which
reflects the representation of the ‘us and them’ narrative that produced the third experiment in
last row of Table 1). We visualise our model using TensorBoard which has a built-in visualizer (we
perform 2D principal component analysis (PCA)), called the Embedding Projector, for interactive
visualization and analysis of high-dimensional data like embeddings 4. The distances between
words are relative based on their computed similarity to other words in the hateful sample. The
two graphs are focused and enlarged to show the 300 most similar words. The colors indicate the
distances from the key word ‘us’, the purple dots indicate the smallest distances (0.008-0.09), next
smallest are the pink dots (0.093-0.2), then orange dots (0.21-0.39), then dark yellow dots (0.4-0.55),
and finally the light yellow dots are furthest from ‘us’ (0.56-1). In distance functions, smaller values
imply greater similarity between words [1]. Ideally we want the classifier to be able to use these
small distances to make effective use of them as features for distinguishing hate from non-hate.
We can see from Figure 8 that the words with the smallest relative distance from ‘us’ (the

purple, pink dots) include pronouns from the ingroup (us, we), pronouns from the outgroup (these,
them, they etc.), and different reaction verbs ( send, kill, shoot, hang etc.), which captures their
co-occurrence in more nuanced othering aspects of cyberhate language. From an Integrated Threat
Theory perspective we can also see symbolic and realistic anxiety present (e.g. the words ‘attack’,
‘state’, ‘jihadist’, ‘animals’) and intergroup anxiety (e.g. ’Arab’, ’Israel’). Furthermore we can see
symbolic threats which are focused on cultural differences (e.g. Muslims, Jews, Arab, Pakistanian,
Africano, American).We can also see the obvious derogatory terms in the same Figure (e.g. suck, fuck,
discuggg, niger, niggero, savages). Thus, this model is picking up both the obvious and non-obvious
cyberhate using our othering features. Whereas in Figure 9 none of the words are particularly

4https://www.tensorflow.org/versions/r0.12/howtos/embeddinдv iz/
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close to ‘us’ in terms of distance, meaning the classifier is unable to make effective use of the
othering narrative. Thus, the classifier based on these features will become more dependent on
the hateful words and miss the less obvious narrative. We posture that this ability to capture the
more nuanced text is the core reason behind our successful improvement over the state of the
art from previous research. In Table 3, we have summarized the visualization by showing the top
10 similar words through the two models: embedding based on the raw training data set only
and the othering feature embedding. The similarity was measured by using the cosine similarity
function. The similarity table shows the most similar words to the word ‘us’ using our model which
reflects the definition of different groups(e.g. ‘Muslims, Jews, jihadist’) while the word ‘us’ in the
raw embedding refer to concepts (e.g.‘fans, safe, devil, wife’). The othering feature set succeeds in
defining different groups and different attitudes which are important aspects in the field of hate
speech recognition.

Table 3. Target words and their 10 most similar words as induced by raw training data set embedding and
our proposed ’othering feature embedding’

Target
word Raw training Data Set Embedding Othering Feature Set Embedding

us fans, safe, devil, wife, gisuz, whips
main, they, tinge, armi

ni**as, we, Arab, those, iran
group, Jews, Muslim, send, headiest,animals

them sort, stop, close, ask, differ, speak
busi, tweeting, ni**ers, we

these, Jew, those, pakistanian
someon hang, Muslims, rednecks, country,
p**s, niggu

arab shit, hot, like, bleiv, thing
hat, went, thing, die, lol

iraq, we, ni**a, fu**er, israel, getout
nig******as, outta, chop, animals

Muslim smh, office, appear, backlash, nonmuslim
dye, agenda, rasicm, christian, asian

us, nonmuslim, iraq, lable, Jews, racism
high, arab, yellow, doe, country

send only, what, neireian, fu**ing, I
bet, saying, realy, reason, pick

Israel, suck, Africano, ni**er, getout, home, these
paki, ni**o, kill, burn

out have, try, see, never, some, home
bastards, fail, wrong, give

gotta, outta, Islam, America,
chop, attack, mosque, send
home, manchest, blacks, these

scum

hear, speak, dumb,
edltrobinson, exact,
sort, breedingwoolwich,
seem, kind, threaten

savages,islamic, yell, muslims,
beat, pi**, tuesday
wogs, against, burn, qouet, leage

shoot divis, behind, pub, bloodi, scence
hospital, condemen, plane

fu**ing, shot, nobody, ni**o, disable
nutter, muslims, burn, nonmuslim,
condemen

kill stabb, death, pari, involve, year
between, brutal, cheldren, charge, three

stabb, live, them, innocent, pakistanian
soldir, who, place, krazi, suspect

burn local, critic, swedish, bbcnews, islamabad
faggots, saudi, antiterror, bangladish, letter

church, non-whites,
chop, mosques, themfu**ing,shoot
chop, ni**as, commit, nigeria
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Fig. 8. Embedding and our Othering feature set vectors

Fig. 9. Embedding Visualisation on original training data set
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6 CONCLUSION
In this paper we aimed to improve the machine classification performance for different types
of hateful and antagonistic language posted to Twitter - known as cyberhate. Our study was
inspired by the concepts presented by Integrated Threat Theory (ITT) and ‘othering’ theory. We
investigated the effectiveness of developing an abstract layer of linguistic features based around
the use of ‘othering’ language, such as terms and phrases that separate the ingroup (e.g ‘we’, ‘us’)
from the outgroup (e.g. ‘them’, ‘these’), and suggested action (e.g. send, kill, shoot, hang, etc.) or
separation based on perceived symbolic and realistic threats (e.g. ‘attack’, ‘state’, ‘jihadist’). We
also expected to detect symbolic threats which focused on the types of cultural differences (e.g.
Muslims, Jews, Arab, Pakistanian, Africano). Our hypothesis was that the use of an ‘othering
feature set’ would provide better context for the classifier beyond using words alone. We used
vector embedding and the Paragraph2Vec algorithm to cluster these features, thereby re-framing
the linguistic features from individual terms and phrases to numeric distances representing a form
of semantic similarity of these terms - learned in the context of hateful or non-hateful texts. We
then experimented with machine classification methods to determine the improvement of our novel
‘othering feature’ over the state-of-the-art research, and the most effective machine classifier to use
with our embedding-transformed feature set.

Generally, the results show the effectiveness of including our proposed feature set for classifier
training over the baselines model, and produced 0.99 F-measure for three models when trained
using 10 fold cross validation. When tested on unseen data using four different types of cyberhate,
namely religion, disability, race and sexual orientation, we obtained F-measures of 0.81, 0.60, 0.89
and 0.89 respectively. These results outperform the state of the art in the cyberhate literature
and show the ability of the ‘othering’ narrative to be an important part of hate speech detection.
However, our models perform well on some but not all categories of the unseen data (types of hate
speech), which indicates that different types of hate speech have different language characteristics
and the use of othering terms can be effective for some but not all contexts of hate speech.

We performed a qualitative inspection of the embedding representation of our ‘othering feature
set’ and were clearly able to see the vector space similarity between ingroup/outgroup terms (us,
we, they, them), action terms (get, send, shoot), terms related to anxiety of the threat from ‘the
other’ (jihadist, fight, hate), and terms related to intergroup anxity (e.g. Arab, Jews, Africano) when
pre-processed using our othering feature. Such features were not present using feature extraction
methods in the existing literature, which applies embeddings without the context of othering. These
additional contextual features provide the key novelty in our approach - and the Paragraph2Vec
embedding method has made good use of these additional features to improve on the state of
the art. Our approach allows the machine classifier to use a more broad range of features beyond
individual words and ngrams, providing greater context for the classifier. In future we aim to
develop larger datasets on which to test these classifiers, and use them to study rising and falling
cyberhate levels on a range of online social media platforms, with the intention of collecting these
narratives to better understand the topics and touch-points that are being discussed in this context
at an aggregate level during times of civil unrest or following trigger events.
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