
HAL Id: hal-02358867
https://hal.science/hal-02358867v1

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing an Artifact-driven language for Service
Composition

Willy Kengne Kungne, Georges-Edouard Kouamou, Claude Tangha

To cite this version:
Willy Kengne Kungne, Georges-Edouard Kouamou, Claude Tangha. Introducing an Artifact-driven
language for Service Composition. ArabWIC conference Research (ArabWIC’19). ACM, Rabat,
Morocco, Mar 2019, Rabat, Morocco. �10.1145/3333165.3333173�. �hal-02358867�

https://hal.science/hal-02358867v1
https://hal.archives-ouvertes.fr

Introducing an Artifact-driven language for Service Composition

Willy KENGNE KUNGNE
*

 Faculty of Sciences, Computer

Sciences, University of Yaoundé I

Yaoundé, Cameroon
kengnekungnewilly@yahoo.fr

Georges-Edouard

KOUAMOU
 National Advanced School of

Engineering, University Of

Yaoundé I Yaoundé, Cameroon
georges.kouamou@polytechnique.cm

Claude TANGHA
 Protestant University of Central

Africa,

Yaoundé-Cameroun

Yaoundé, Cameroon
ctangha@gmail.com

ABSTRACT

The most recent service composition approaches rely on the

mechanism, which involves scalable and decentralized execution

of services. Although some formal tools have been used to this

effect, they are influenced by the standard of web service

orchestration and choreography based mainly on workflow

languages or notation. In this paper, we describe the formal

semantics of a novel service composition language through which

the services are declaratively composed and executed following a

peer-to-peer paradigm. The proposed language named GSLang is

inspired by the GAG (Guarded Attribute Grammars) model that

has been defined for the modeling collaborative systems. Pi-

calculus is used to define the basic elements of the language and

its operational semantics. Then its properties are highlighted

through a case study.

KEYWORDS

Dynamic Service Composition, Formal Approach, GAG, Pi-

calculus

ACM Reference format:

Willy KENGNE KUNGNE, Georges-Edouard KOUAMOU, and Claude

TANGHA. 2019. Introducing an Artifact-driven language for Service

Composition. In Proceedings of ArabWIC conference Research

(ArabWIC’19). ACM, Rabat, Morocco, 6 pages.

https://doi.org/10.1145/3333165.3333173

1 Introduction

The concept of services in Software Engineering refers to a piece

of software, which provides some little functionality to its

environment. The most important benefit of services is their

interoperability [2]. This feature allows a system to easily

leverage the functionalities of another. Service oriented

computing has emerged from this vision of software as a

promising solution to enhance the functionality of the standard

services by composing them into large structures. Complex

systems can be built by integrating various independent services.

Since most of the approaches are based on business process

modeling languages and notations, this study extends also a

collaborative case management model so called GAG (Guarded

Attribute Grammars) [1] to propose a language for the service

composition.

The GAG model defines the workspaces for each user in a

formal way through Grammars. It makes it possible to follow the

execution of a case in the artifacts and implements strongly

coupled mechanisms for the communication of workspaces. This

model was proposed as a solution to data-centric workflow

modeling [12]. The proposed language (GSLang) allows the

composite services to be defined on the fly within a workspace,

therefore, resulting in a declarative, decentralized, user-centric,

data-driven service composition approach.

We define a composite service as a rule of production of a

grammar with a left-hand side (LHS) which is the service to

define and a right-hand side (RHS) being the services required to

realize the LHS service. When the RHS does not exist, then the

service is elementary and can be assimilated to a standard protocol

of service such as SOAP (Simple Object Access Protocol) or

software architecture style as REST (representational state

transfer). Each service is guarded by conditions that enable them

to be activated. We formalize GSLang by defining the concepts

generally present in the field of the composition of services such

as: variables (parameters), service, service instance, guard, roles,

messages and actions. We describe the semantic rules that include

the following operations: instantiation, sending and receiving

messages, and refinement and choice of services for their

execution. This semantic is described using pi-calculus formalism

[3]. The choice of this formalism is motivated by the distribution

of the peers across a network and their interaction, which is done

through dynamic ports whose are created during execution. A

service or a peer is seen as a Pi-calculus process. A peer receives

and sends the messages. In this logic, a system consists of a set of

processes (Peers or Services) that communicate together. During

their interactions, asynchronous channels can be created and used

to exchange messages. In addition, the channels so-created are

included in the messages. The fact that the channels are

*This is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ArabWIC 2019, March 7–9, 2019, Rabat, Morocco

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6089-0/19/03…$15.00

https://doi.org/10.1145/3333165.3333173

mailto:Permissions@acm.org

ArabWIC’19, March 2019, Rabat, Morocco W. Kengne et al

dynamically created and sent to the peer into the messages, led us

to choose the Pi-calculus for our modeling.

The rest of the paper is organized as follows: section 2

presents the concepts of service composition in GSLang and a

formal semantics for their execution. Section 3 highlights the

properties of the GSLang through a case study. Section 4

concludes and issues perspectives to this work.

2 FORMAL DESCRIPTION OF A LANGUAGE

FOR THE SERVICE COMPOSITION:

GSLANG

The GSLang takes GAG model concepts [1] such as

workspace that is assimilated to peer; an activity is assimilated to

a composite or simple service. In addition, it promotes

distributivity, flexibility and data-driven (Artifact). We want to

transport these properties into the world of services.

Generally, the description of a language consists of two parts:

the definition of the basics elements and their behaviors. In this

section, pi-calculus will be used to this effect. The basic elements

for the composition of services are defined as the concepts and the

behavior is apprehended through the semantic rules.

In the pi-calculus [3], the processes perform actions, which can be

of three forms: the sending of a message over channel x

(written ̅), the receiving of a message over channel x (written x),

and internal actions (written τ), the details of which are

unobservable. Send and receive actions are called synchronization

actions, since communication occurs when the corresponding

processes synchronize. The notion of a transition represents the

execution of a process expression. Intuitively, the transition

relation tells us how to perform one-step of the process execution.

Note that since there can be many ways in which a process

executes, the transition is fundamentally nondeterministic. The

transition of a process P into a process Q by performing an action

α is indicated P

→Q. The action α is the observation of the

transition.

2.1 Basic elements of GSLang

The different elements of the GSLang are as follows:

2.1.1 Terms and variables. A variable is characterized by a

letter; it is an entity that may contain a value. Terms are variables,

values, defined variables (assignments), Boolean expressions or

functions on the terms. We define the following element ̅̅ by the

tuples ().

 () | () | ()| ()

We extend the basic syntax of pi-calculus with Boolean

expressions to verify the activation and the validation of a service.

Boolean expressions when specified and evaluated give a

Boolean value.

 | | | | | |

The assignment consists in solving for the variables; that is,

assigning values to them. A Parameter is an input or an output

variable related to a service.

 | ()()

2.1.2. Service and Service Instance. A service is an entity

defined by a unique identifier, input variables (input parameters),

output variables (output parameters), guards, post-conditions and

a location which represents the associated peer. A service may

depend on other services.

 (̿

)〈 ̿

〉, - |

 (̿

)〈 ̿

〉, - →

Such as presented a service is simple or composite. It is

characterized by an identifier (its name), input parameters ̅̅ ,

output parameters ̅̅, possible preconditions on input parameters

and possible effects on the output parameters

. It may be

composed of other services . α represents the service

location. It should be noted that α may be unnecessary for services

on the RHS if they are implemented in the same user space as the

services from the LHS.

For reasons of readability, we have preferred the previous

notation for services in the paper. In the pi-calculus notation, it

corresponds (simple or composite) to:

 [

] (̅̅) [

] ̅̅ |

 [

] (̅̅) (〈 ̿ 〉 |

 | | 〈 ̿̿ ̿ 〉) [

] ̅̅

The service S expects ̅̅ as the input parameter, when executed,

it returns ̅̅. It receives the data via the public port of the peer

where it is accommodated. When there is a RHS, it calls the

services it contains to build y. The services on the RHS can be

executed in parallel if the data are independent of each other or in

sequence if there is dependency hence the parallel operator (|)

inside the brackets in bold. When a service call is initiated, a

corresponding service instance is created. The same notations can

be used for instances.

The Artifact or Service instance is the concrete representation

of a service after the instantiation of the corresponding rule. It

allows to track the execution of the service.

 (̅̅

)〈 ̅̅

〉, -

 (̅̅̅̅̅̅

)〈 ̅̅

〉, - |

 (̅̅̅̅̅̅

)〈 ̅̅

〉, - |

 (̅̅̅̅̅̅

)〈 ̅̅

〉, - → |

 (̅̅̅̅̅̅

)〈 ̅̅

〉, - →

A service instance has several configurations: (i) the input and the

output parameters are not yet resolved; (ii) resolved input

parameters and output parameters not yet resolved; (iii) resolved

input and output parameters. Each element, which appears at the

Introducing an Artifact-driven language for Service Composition ArabWIC’19, March 2019, Rabat, Morocco

right-hand side when it exists, should have one of the three

previous configurations. The parameters of the service instances

are resolved progressively during execution.

2.1.3 Message. Messages are variables that transit on the

network. They contain global variables (context variables). They

are composed of defined variables and/or undefined variables.

There are two types of messages: request message (variables in

defined inputs and variables in undefined output) and response

message (defined input variables and defined output variables).

 ̅̅̅̅̅̅ ̅̅ ()| ̅̅̅̅̅̅ ̅̅()

A sending message (request) comprises 3 parts: resolved

input ̅̅ ̅̅̅̅, outputs to be resolved ̅̅ and the identifier of the service

to which the request is intended. A response message consists of 2

parts: resolved inputs ̅̅ ̅̅̅̅ and resolved outputs ̅̅. As we will see

in the next section, the response is transmitted along a private port

created during the request, hence the absence of the service

identifier.

2.1.4 Action. An action could be any of the following:

sending message, receiving message, or silent interpretation of

service instances.

 ̅ 〈 〉| () | ()| ̅〈 〉 |

2.1.5 Role. The peer or execution space (Σ) contains

services, instances of services and is characterized by a single

public port (its location). Let denotes by the set of services,

 the set of service instances and α its address (main port or

location). Thus, the execution space is characterized by

Σ = (, , α).

2.2 Behavioral description

The following operational semantics describe the mechanisms

for resolving services, which is broken down into several

fundamental operations: instantiation, sending and receiving

message, refinement and choice of services.

Instantiation

 ()

 (̿)〈 ̿〉, -
 ()
→ (̿̿̿)〈 ̿〉, -

 ()

 (̿)〈 ̿〉, - →
 ()
→ (̿̿̿)〈 ̿〉, - →

When Σ receives on its main port the message M and the

variable p, it finds the corresponding service S and creates the

instance I with the defined input ̿̿̿ and the awaited outputs ̿. I is

added to Σ which becomes Σ′. If no service is found, then the

operation will not be applied. C2 is the extended version of C1, the

found service is composed.

Request

 (̿̿̿)〈 ̿〉, -

 (̿̿̿)〈 ̿〉, - →

 → (̿̿̿)〈 ̿〉, -

𝑣 ̅〈 〉
→

𝑅

The instance I of the space Σ sends the message M on (main

port of another space). This doesn’t change the state of the

execution space; M is constructed from parameters of the instance

to be concretized.

Response

𝛴 𝐼
𝑝〈𝑀〉
→ 𝛴 𝐼

𝑅

Response on a private port (p) of a previously sent request.

M= ̿̿̿ ̿

Refinement

 (̿̿̿)〈 ̿〉, -

→ (̅̅̅̅̅̅)〈 ̅̅〉, -

𝑅

 (̿̿̿)〈 ̿〉, -
 ()
→ (̅̅̅̅̅̅)〈 ̅̅〉, -

𝑅

 ̅̅ ⊆ ̅̅

 (̿̿̿)〈 ̿〉, - →

 (
 ̅̅)〈 ̅̅〉, -

→

 (̿̿̿)〈 ̿〉, - →

 (
 ̅̅ ̅̅̅̅ ̅̅)〈 ̅̅〉, -

𝑅3

 ̅̅̅̅̅̅̅̅ ⊆ ̅̅

 →

 (
 ̅̅ ̅̅̅̅ ̅̅)〈

 ̅̅ ̅̅̅̅ ̅̅ 〉, -

 . ′
 ̅̅ ̅̅̅ ̅/ 〈 ̅̅̅̅̅̅̅̅ 〉, -

→

 →

 (
 ̅̅ ̅̅̅̅ ̅̅)〈

 ̅̅ ̅̅̅̅ ̅̅ 〉, -

 . ′
 ̅̅ ̅̅ ̅̅̅ ̅̅ ̅/ 〈 ̅̅̅̅̅̅̅̅ 〉, -

𝑅4

 →

 (̅̅̅̅̅̅)〈 ̅̅〉,-

 ()
→

 →

 (̅̅̅̅̅̅)〈 ̅̅〉,-

𝑅5

 ̅̅ ⊆ �̅̅�
 (̿̿̿)〈 ̿〉, - →
 (̿̿ ̿̿)〈 ̿̿ ̿̿ 〉, -

 (̿̿ ̿̿)〈 ̿̿ ̿̿ 〉, -

→

 (̿̿̿)〈 ̿〉, - →
 (̿̿ ̿̿)〈 ̿̿ ̿̿ 〉, -

 (̿̿ ̿̿)〈 ̿̿ ̿̿ 〉, -

𝑅6

The refinement of an instance consists in materializing the parts

not yet defined. The action is silent (materialization of the

parameters from those already defined in an instance) or the

receipt of a response on a private port.

R1: Calling a simple service (automatic or manual)

ArabWIC’19, March 2019, Rabat, Morocco W. Kengne et al

R2: Receiving information on a private port for the instance of a

simple service. This action results in the materialization of the

output parameters.

R3, R4 and R6: Allows the definition of the parameters of certain

service instances to the right from the parameters already defined.

Semantic rules are used at this level to match attributes.

R5: Upon receipt of a response, materialize the part of the

service’s instance that made the request.

Figure 1: Execution Example

Local choice of Service (LoCh)

 (̿̿̿)〈 ̿〉 ℎ
 →

 (̿̿̿)〈 ̿〉 →
 (̿̿̿)〈 ̿〉, -

→

 (̿̿̿)〈 ̿〉 →
 ,

 →

 -

𝐿 ℎ

The selection of a service is made locally when the inputs are

defined. Once selected, the previously described operations can be

applied.

The emphasis here is on the data that influence the choice of

services, their instantiation and their refinements. The execution

flow depends on the availability of input and output variable

values. In a service execution schema, two tasks are executed in

sequence if the entries of one depend on the outputs of the other.

They are executed in parallel if the inputs of one do not depend on

the outputs of the other. It is for this reason that we have not

explicitly defined the parallel operator of the pi-calculus. The

conditional choice represents the behaviour of a peer. In a peer,

under certain conditions/actions, a service or instance of services

can be executed.

3 PROPERTIES OF THE LANGUAGE

This section opens with an example that will serve as a guide

in order to highlight the properties of the language.

Following the logic of pi-calculus, a user space is modeled as

a process, which holds services materialized by the tasks. In this

regard, figure 1 is made up of two processes Σ1 and Σ2

representing the user space.

 The space 1 (Σ1) contains the task 11 which starts the

process and then decomposes into 12 and 21 which

synchronizes to complete the process. 21 is implemented at

the level of Σ2.

 The space 2 (Σ2) contains the task 21.

Using this language, the process described in Figure 1 presents

two user spaces Σ1 and Σ2. Initially, Σ1 contains the services

 * +, its public port and 1. Σ1 services are defined by:

 (* > 0 > 0+)〈 〉 → ()〈 〉 ()〈 〉

 ()〈 〉 →

The service 11 has a guard 1 > 0 and 2 > 0 and requires 21

and 12 in order to obtain 1 and 2. 21 is a remote service

implemented in space Σ2 and 12 is a simple local service to Σ1.

Σ2 contains the service 21 * + and a public port 2.

The service 21 is defined by:

 ()〈 〉 →

Also in the figure 1, a client process executes the composite

service 11 of Σ1. defines 1 and 2, creates a private port p

whose value is 1 and sends the message containing 11, 1, 2 and

p on the public port 1 (Of value 5) of Σ1 (the rule 2 is

highlighted). An instance of the 11 service will be created in Σ1

because 11 is found and the guard checked. The RHS of 11 starts,

 12 and 21 run in parallel since there is no dependency between

their parameters. A remote call on Σ2 will be made to execute 21

(the semantic rule 𝑅 is used) i.e. creating a private port 1 of

value 4 and sending a message containing 21, 2 and 1 on the

public 2 port (Of value 6) of Σ2.

On arrival at Σ2, with respect to the input parameters, the 21

service is chosen (by applying the 1 rule), an instance of the

service is created and executed. The response (principally 2) will

be sent to Σ1 via the private port 1 (applying the Resp rule). Σ1

will refine the previously created instance. The 𝑅6 rule can be

used and the 1 port will be destroyed. Finally, the response will

be sent to the client process via the previous private port (Of

value 1).

The asynchronous private ports make it possible to track the

execution of the service instances individually. An instance of

service may be unavailable for a period of time; when it returns it

can continue there where it was suspended. In addition, the

services can be redefined at any time even during the execution

since they are defined on the fly. For example in Σ1 we can add

 13 while 11 is running. This is called flexibility by change as

defined in [6], contrary to flexibility by definition of existing

composition approaches [2][11]. In addition, the services are fully

Introducing an Artifact-driven language for Service Composition ArabWIC’19, March 2019, Rabat, Morocco

defined in the form of rules. The rules paradigm has been studied

as a declarative approach, presenting the advantages [7] [5] [8] as:

 Adaptability: Given the declarative nature of rule-based

service compositions, they can be modified and/or expanded

to adapt to context-specific situations. The adaptation of the

proposed language in this paper is possible at runtime

because each rule (composite service) is identified and

loaded when the rule is enacted. RHS not yet enabled can be

updated even while running the composite service (LHS).

For example in Σ1 we can add 13 while 11 is running. 11

will become as follows :

 (* > 0 > 0+)〈 〉 → ()〈 〉 ()〈 〉 3 ()〈 〉

 Flexibility: rule-based compositions are more flexible than

BPEL-type compositions, given their ability to pursue other

execution paths without having to redefine the composite

service and Redeploy it on a service engine. Some

languages such as BPEL4WS offer a set of tags (invoke,

reply, receive, sequence, choice, flow, etc.) allowing to

build the composite service. In our proposition, the

definition and the composition of services are described by

the declarative rules, while the interaction is implicit

through attributes materialized by the transmission of

parameters. The private asynchronous ports (dynamic port)

created at runtime make the composition more flexible. The

execution path of a composite cannot be determined in

advance because ports are created and destroyed

dynamically as described in the example.

 Formal intuitive semantics: rule-based languages exploit a

logical and/or mathematics set of underlying primitives.

Formal approaches to reasoning have been proposed [9][10]

but all of them use the WS-BPEL process type for their

implementation. We propose an intentional definition of

services that allows a late concretization of the services,

thus favoring a weak coupling with the underlying

technology and an adaptation (updating of the rules) of the

service even during its execution. Moreover, the proposed

language does not refer to any technology. The reasoning

can be undertaken on services as we have done in defining

operational semantics in section 2 using the pi-calculus.

 Reusability and Distribution: The composite services being

defined primarily as rules can be used in different contexts.

The services are distributed in different user spaces. The

architecture is peer-to-peer. In the example, we have the

spaces and located by their public ports and .

4 RELATED WORK

A service composition language is more flexible when it is

based on a declarative paradigm rather than an imperative

paradigm as described in [6].

Most of the traditional languages which have been proposed

to specify the composition of web services are based on processes,

with BPEL as the backbone since all the proposed formalisms are

translated into BPEL for their execution [14][2][21]. The

disadvantage of this paradigm is that the description of the

composite services represented as processes is centralized and

difficult to change at runtime.

To overcome this difficulties, some languages have been

proposed in order to have more flexibility [15][16][22]. They deal

with the semantics of the composition by providing the ability for

describing and reasoning over services at runtime [17]. These

semantic-based languages are excellent in the discovery, the

selection and the automatic composition of services. Their

flexibility is limited to searching for missing services or building a

composition plan based on a user’s query and predefined planning

system. It is difficult to add new requirements to the specifications

of a composite service when the system is running.

Several declarative approaches to the composition of services

have been proposed. The work in [18] defines the rules in the

form of if..then clauses, the structure, the data and the constraint

rules under the basis of elements such as Activity, Condition,

Event, Flow, Provider, Role, and Message. The if..then rules

govern how things are to be done in the composition. The if..then

rules imply the definition of all the possibilities between the

elements of the composition. This is a first step for the flexible

composite service definition, but it is defined as an extension of

the BPEL notations. To separate the business rules from the BPEL

code, Charfi et al. suggested an aspect oriented style (AO4BPEL)

[19]. Authors in [20] propose an approach named FARAO.

Theyargue that business rules can be used in a service

composition without the need for a BPEL framework. This greatly

increases the adaptability of the orchestration. At the deployment

level, a CA (Condition-Action) rule engine is introduced to

support rule-based service composition. To obtain the composite

service, an analysis of the services’ registry (containing the

WSDLs) is performed in order to have dependencies between

services and to build CA rules. In CA rules, business rules and

constraints will be added. Although using the rules to build the

composite services, this approach has an abstraction level of the

rules, which are quite low (linked to WSDL). As previous

approaches, FARAO focuses on the orchestration on the detriment

of distribution and interaction.

The proposed language adopts an independent approach of

structured blocks such as BPML promotes by describing a

composition service completely with rules, using the GAG

formalism.

The adaptation of the proposed model is possible at runtime

because each rule in the execution scheme are identified and

loaded when the rule is enacted. Since each workspace is

considered as an autonomous peer, its proprietary can update the

scheme by adding new rules (service declaration) or modify the

right hand side of a rule (redefinition of a composite service).

ArabWIC’19, March 2019, Rabat, Morocco W. Kengne et al

5 CONCLUSIONS AND PERSPECTIVES

This study introduces an artifact-driven language, which can

be served as a framework for service composition. In this paper,

we have presented a formal description of the basic concepts of

this language and their behavior through the semantic rules. An

example is shown on two processes to simulate the execution of a

composite service. The proposed language benefits from the

properties of the data-centric workflow model, it is built upon:

 The composite services are defined declaratively in the form

of rules, which provides more flexibility and adaptability.

 The services participating in a composition collaborate in a

peer-to-peer style.

 A service elementary or composite can be reused in

different application context.

The further works will develop the support software tools for

our service composition language such as the services editor,

verification and translation tools. In this regard, the selection of a

model-checking environment close to pi-calculus is indicated. To

meet the challenges raised by the second iteration of service

computing, the language shall evolve to cope with the problems of

micro-services paradigm [13].

5 ACKNOWLEDGMENTS

This work was realized in the FUSCHIA project with the

support of LIRIMA.

REFERENCES
[1] Eric Badouel and al, Active Workspaces: Distributed Collaborative Systems

based on Guarded Attribute Grammars, Apply Computing Review, ACM, Vol

15(3), pp 6-34, 2015.

[2] Quan Z. Sheng and al, Web services composition: A decade’s overview, Inf. Sci.

, 280: 218-238 (2014).

[3] Sangiorgi, D., Walker, D., The pi-calculus: a Theory of Mobile Processes,

Cambridge university press, 2003.

[4] Bultan, T. and al, Conversation Specification: A New Approach to Design and

Analysis of E-service Composition, ACM 1-58113680-3/03/0005, WWW,

2003.

[5] Weigand, H., van den Heuvel, W.J., Hiel, Rule-based service composition and

service-oriented business rule management, International Workshop on

ReMoD, (2008).

[6] Mulyar, N., Schonenberg, M., et al., Towards a taxonomy of process flexibility

(extended version), , (2007).

[7] Yao, Y., Chen, H., A rule-based web service composition approach, Autonomic

and Autonomous Systems (ICAS), 2010 Sixth International Conference, pp.

150-155. IEEE (2010).

[8] Rosenberg, F., Dustdar, S, Business rules integration in bpela service-oriented

approach, E-Commerce Technology, 2005. CEC 2005. Seventh IEEE

International Conference, pp. 476-479. IEEE (2005).

[9] Zhu, Y., Huang, Z., Zhou, H., Modeling and verification of web services

composition based on model transformation, Software: Practice and Experience

, 47(5), 709-730 (2017).

[10] Abouzaid, F., Mullins, J., Model-checking web services orchestrations using bp-

calculus, Electronic Notes in Theoretical Computer Science , 255, 3-21 (2009).

[11] Sun, Chang-Ai, et al, Automated testing of WS-BPEL service compositions: A

scenario-oriented approach, IEEE Transactions on Services Computing, (2015).

[12] COHN, David et HULL, Richard, Business artifacts: A datacentric approach to

modeling business operations and processes, IEEE Data Eng. Bull, 32, 3, p. 3-9.

(2009).

[13] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F.,

Mustafin et R., Safina, Microservices: yesterday, today, and tomorrow, In

Present and Ulterior Software Engineering. Springer, Cham, pp. 195-216 (2017)

[14] Sabraoui, A., Ettalbi, A., El Koutbi, M., EnNouaary, A., Towards an uml profile

for web-service composition based on behavioral descriptions, Journal of

Software Engineering and Applications, 5(09), 711 (2012)

[15] Papazoglou, M.P., Heuvel, W.J., Service oriented architectures: approaches,

technologies and research issues, The VLDB Journal The International Journal

on Very Large Data Bases, 16(3), 389415 (2007)

[16] Yang, H., Zhao, X., Qiu, Z., Pu, G., Wang, S., A formal model forweb service

choreography description language (ws-cdl), ICWS06. International Conference

on Web Service, pp.893894. IEEE (2006)

[17] Martin, D. et al, Bringing semantics to web services: The owl-s approach,

International Workshop on Semantic Web Services and Web Process

Composition. Springer, Berlin, Heidelberg., pp. 26-42 (2004)

[18] Orriens, B., Yang, J., Papazoglou, M., A framework for business rule driven

service composition, Technologies for E-Services. pp. 1427 (2003)

[19] Charfi, A., Mezini, M., Ao4bpel: An aspect-oriented extension to bpel, World

wide web. 10(3), 309344 (2007)

[20] Weigand, H., van den Heuvel, W.J., Hiel, M., Rule-based service composition

and service-oriented business rule management, Proceedings of the

International Workshop on Regulations Modelling and Deployment

(ReMoD08), pp. 112. June (2008)

[21] Lemos, A. L., Daniel, F., Benatallah, B., Web service composition: a survey of

techniques and tools, ACM Computing Surveys (CSUR), 48(3), 33. (2016)

[22] Syu, Y., Ma, S. P., Kuo, J. Y., FanJiang, Y. Y. , A survey on automated service

composition methods and related techniques, In Services Computing (SCC),

2012 IEEE Ninth International Conference on (pp. 290-297), (2012) (2012,

June).

