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ABSTRACT
In this paper, a methodology to detect inconsistencies in classi�ca-
tion-based image steganalysis is presented. �e proposed approach
uses two classi�ers: the usual one, trained with a set formed by
cover and stego images, and a second classi�er trained with the
set obtained a�er embedding additional random messages into the
original training set. When the decisions of these two classi�ers
are not consistent, we know that the prediction is not reliable. �e
number of inconsistencies in the predictions of a testing set may
indicate that the classi�er is not performing correctly in the testing
scenario. �is occurs, for example, in case of cover source mismatch,
or when we are trying to detect a steganographic method that the
classi�er is no capable of modelling accurately. We also show how
the number of inconsistencies can be used to predict the reliability
of the classi�er (classi�cation errors).
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1 INTRODUCTION
Steganography is a collection of techniques to embed secret data
into apparently innocent objects. Nowadays, these objects are main-
ly digital media, and the most common carriers for steganography
are digital images because of their widespread use. On the other
hand, steganalysis refers to di�erent techniques used to detect
messages previously hidden using steganography.

Most steganalytic methods in the state of the art use machine
learning [3, 6, 7]. In machine learning-based steganalysis, �rstly, a
(training) set of known cover and stego images is used to train a
classi�er. Later on, this classi�er is used to predict the images of a
testing set as cover or stego.

�is approach works very well in laboratory conditions, that is,
if the set of training images is similar to that of the testing images
used by the steganographer to hide secret data. However, in the real
world, the set of media used by the steganographer might be quite
di�erent from that used to train the classi�er [12]. �is occurs, for
example, when the images in the testing set are not well represented
in the training set. Some examples of this mismatch occur if the
testing images are taken using a di�erent camera or resolution;
if they are compressed, zoomed or improved through �lters; or if
they were taken in very di�erent conditions. In steganalysis, this
problem is known as cover source mismatch (CSM) and was initially
reported in [4]. �ere are other situations that lead to inaccurate
predictions. For example, stego source mismatch (SSM) occurs when

some embedding parameter, such as the exact payload [20], di�er
between the training and the testing datasets.

Di�erent approaches to the CSM problem have been proposed.
During the BOSS competition [1], some participants tried an ap-
proach called “training on a contaminated database”, which consists
in denoising images from the testing set and including them in the
training set [8]. A di�erent approach is to make the training set
as complete as possible. In [18], the authors trained a classi�er
with a huge variety of images. Due to the high time and memory
requirements, this was carried out using on-line classi�ers. In [14],
three di�erent strategies are presented: (1) training with a mixture
of cover sources; (2) using di�erent classi�ers trained with di�erent
sources and testing with the closest source; and (3) taking the sec-
ond approach but testing each image separately using the closest
source. �e islet approach [19], introduces a pre-processing step
consisting in organizing the images in clusters and assigning a ste-
ganalyzer to each cluster. In [23], a scheme to e�ciently construct
a large and representative training set is proposed. Finally, in [16],
an unsupervised steganalytic method was proposed that does not
require a training set, bypassing the CSM problem.

In supervised machine learning-based steganalysis, we need a
database of images to construct the training set and a validation set
to determine the classi�cation accuracy results. �e creation of this
database is a fundamental part of the process. Usually, this is carried
out by collecting pictures taken with di�erent cameras and models,
taken in di�erent lighting conditions, compressed with di�erent
algorithms and compressing ratios, processed with di�erent �lters,
modi�ed by optical or digital zoom, etc. If we create a database
with pictures taken by a team of people with their cameras and
with a speci�c set of �lters, zooms, compression algorithms and
so on, this will be a biased procedure, and such a selection can
never represent the entire population of possible images. Even
if we decide to download random images from the Internet, the
combination of cameras, models, �lters, compression ratios, light
conditions, and so on, is too large and it is almost impossible to
obtain a representative enough dataset.

�e current approach to solve this problem consist in building a
very large and heterogeneous dataset, as described in [5]. By taking
such an approach, the steganalyst expects that the trained classi�er
(usually a convolutional neural network) will learn a collection of
features that are universal to all images and, consequently, good
enough to classify images taken under conditions di�erent from
those of the training set. Although this approach is o�en successful,
we think that it is convenient to test other solutions to the problem.
In this paper, we explore an alternative approach.



�e proposed approach is based on the ideas of [16], which
are extended here to detect samples that lead to classi�cation in-
consistencies. �us, the suggested method stems from obtaining
additional training and testing sets by sequential random data em-
bedding. �ose additional sets are used here to detect inconsisten-
cies in the classi�cation. We present a method in the context of
batch steganography [11], that is, when we are analyzing a set of
images from a suspicious source.

�e rest of this paper is organized as follows. Section 2 intro-
duces some relevant concepts that are used in the proposed method.
Section 3 presents the proposed method. Experimental results ob-
tained with the proposed method for di�erent image databases,
embedding algorithms and steganalytic classi�ers (including CSM
cases) are presented in Section 4. Finally, Section 5 summarizes the
conclusions and suggests some directions for further research.

2 PRELIMINARIES
We consider a targeted scenario in which the embedding algorithm
and the approximate embedding rate –but not the secret key– are
assumed to be known (at least approximately) by the steganalyst.
Using the same steganographic algorithm and embedding bit rate,
new (random) data can be hidden into any image with a di�erent
(random) secret key. Given a set of cover images, they can be
used to build a training database by embedding random data to
obtain a training database consisting of a half of cover and a half of
stego images. �is set is called Atrain. If a feature extraction-based
machine learning algorithm is applied (not all the machine learning
algorithms need feature extraction [3]), we need to extract the
features of the images. �e usual methodology in machine learning-
based steganalysis is to use the set Atrain to train a classi�er. �en,
this classi�er can be used to classify a testing set Atest, that is, a set
of images for which we do not have a priori information whether
they are cover or stego.

�e proposed methodology uses an additional set, Btrain, de�ned
as suggested in [16]. �e set Btrain is the result of hiding random
data into all the images of the set Atrain using the targeted embed-
ding algorithm, the approximate embedding bit rate and random
keys. As a result, we have a set Atrain, which contains cover and
stego images, and a set Btrain, which contains stego and “double
stego” images.

Now, we introduce the following notation: let αi be a sample
from the set Atrain and βi be the corresponding sample from the
set Btrain, whereby βi = Embed(αi ,Bitrate). “Embed” stands for
embedding a random message, using a random key and the tar-
geted steganographic algorithm, and “Bitrate” is the known (or
approximated) embedding bit rate.

Similarly, from the images inAtest, we build an additional setBtest

following the same procedure: ai and bi stand for samples of the
training sets Atest and Btest, respectively, with
bi = Embed(ai ,Bitrate). �e only di�erence with respect to the
training sets is that we do not know the classes (labels) of the im-
ages of the testing sets. In other words, we know that Atest possibly
contains both cover and stego images, and that Btest possibly con-
tains stego and “double stego” images, but we do not know the class
of each image.

Finally, we assume that there is a classi�er f̂A (and a feature
extractor if needed) that can split images into cover (CA) and stego
(SA) classes with an acceptable probability of error. Similarly, we
assume that we have another classi�er f̂B that can split images into
stego (SB ) and “double stego” (DB ) classes,

Table 1: Number of pixels modi�ed by ±1 and ±2 for
1,000 images a�er the �rst and the second embeddings.
“ALGO”/“BR”: embedding algorithm and bit rate (bpp)

1 embedding 2 embeddings
ALGO BR ±1 ±2 ±1 ±2

HILL 0.4 22,582,706 0 33,993,485 2,819,705
HILL 0.2 9,897,485 0 16,112,459 933,376

UNIWARD 0.4 19,509,940 0 32,748,639 1,563,635
UNIWARD 0.2 8,523,446 0 15,139,023 477,200

LSBM 0.2 27,528,954 0 49,277,814 1,439,498

�e assumption of the existence of f̂B that can split images into
stego (SB ) and “double stego” (DB ) classes needs some discussion.
A�er all, both SB and DB classes are formed by stego images
with more or less information hidden into them. Usually, in the
spatial domain, steganographic algorithms embed information by
carrying out a ±1 operation in some speci�c pixels. In a second
embedding, the steganographic algorithm may choose an already
modi�ed pixel to hide additional information. �us, in addition to
±1 changes, there is some probability of a ±2 operation for a few
pixels. In the particular case of adaptive embedding, a probability
map indicates the areas that will be selected for hiding information.
�ese probability maps are quite similar for the cover and stego
versions of the same image. �erefore, the algorithm tends to
hide information in the same pixels. �is increases the di�erences
between the features of stego and “double stego” images. �ese
di�erences become more detectable with greater embedding ratios.
One can conclude that the pa�erns of pixels (and its neighbours)
generated a�er the second embedding will be di�erent from those of
a single embedding, and a good enough classi�er can take advantage
of those di�erences. In Table 1, the number of ±1 and ±2 variations
a�er embedding messages with di�erent algorithms and bit rates in
1,000 images randomly selected from the BOSS base are shown. We
have included an experiment with LSB matching to show that even
with non-adaptive steganography, the number of ±2 variations is
not negligible. It can be observed that the number of ±2 variations
is relatively large and and that the �nal number of ±1 changes
is higher a�er the second embedding. �ese two factors help the
classi�er to split stego and “double stego” images. Even in the case
of LSB matching, which does not use a probability map that forces
the algorithm to hide data in the same positions, the number of ±2
variations is quite high. To analyze the relevance of ±2 changes for
the classi�cation, we trained a classi�er f̂B using the BOSS database
and the HILL embedding algorithm with a bit rate of 0.4 bits per
pixel (bpp). We obtained a classi�cation error of 0.2770. Next, we
trained the classi�er with the same images a�er replacing the ±2
changes by their respective ±1 values. In this case, we obtained
an error of 0.3160, which is slightly worse. �erefore, it can be
seen that, although the in�uence of ±2 changes in the classi�cation
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Fig. 1. Graphical representation of the proposed method

is very signi�cant, the increase in the number of ±1 changes is
enough to split both classes.

3 PROPOSED METHOD
�is section outlines the method proposed to detect the number of
inconsistencies occurred during classi�cation. We also propose a
mechanism to predict the error incurred by the classi�er based on
the number of such inconsistencies.

Usually, in machine learning-based steganalysis, when we know
the embedding algorithm and the approximate embedding rate, the
testing set is expected to be classi�ed with some (hopefully low)
probability of error [7]. If this idea is extended to the sets introduced
in the previous section, we have a tool that can be used to detect
inconsistencies in classi�cation. Since there is a bijection between
the elements of Atest and Btest, if an image is classi�ed as cover
using f̂A, the corresponding image in Btest should be classi�ed as
stego (not “double stego”) using f̂B . Similarly, if an image in Atest

is classi�ed as stego using f̂A, we expect the same image in Btest to
be classi�ed as “double stego” if we use f̂B . We call “inconsistency”
to a classi�cation result that does not meet these requirements.

�e classi�cation constraints described above are used to de�ne
�lters. �e �lter described in the previous paragraph is denoted as
F1, and consists in classifying ai using f̂A and bi using f̂B to check

whether the two classi�cation results are consistent:

F1(i) ≡


If f̂A(ai ) = SA, If ( f̂B (bi ) , DB )

then output “inconsistency”,

Otherwise, If ( f̂B (bi ) , SB )
then output “inconsistency”.

In Fig.1a, we can see a graphical representation of the classes. A
consistent classi�cation is represented in Fig.1b. In Fig.1d, we can
see di�erent inconsistencies that can be detected with the �lter F1.

Now, we can consider the case in which f̂A is used to classify
ai ∈ Atest and the classi�cation result is stego. If we classify ai ∈
Atest using f̂B , we expect that it is classi�ed also as stego (not as
“double stego”). If ai is classi�ed as stego using f̂A and as “double
stego” by f̂B , there is an inconsistency. In fact, if ai corresponds
to a cover image, it would not be consistent that ai is classi�ed by
f̂B as “double stego” either. Hence, for any image ai in Atest, the
output of f̂B taking ai as input must be always stego and never
“double stego”. �e same idea can be applied to inconsistencies for
the set Btest. If we use f̂A to classify any sample bi ∈ Btest, we
expect bi to be classi�ed as stego (and never as cover). �is kind of
�lter is denoted as F2 (represented in Fig.1e):

F2(i) ≡


If f̂B (ai ) , SB , then output “inconsistency”,

If f̂A(bi ) , SA, then output “inconsistency”.



Note that there is a case that cannot be detected with these �lters:
an image that is misclassi�ed by all the classi�ers. A graphical
representation of this case is provided in Fig.1c.

4 EXPERIMENTAL RESULTS
�e experimental validation of the method has been performed with
di�erent datasets selecting images from the following databases:

• �e BOSS database is the set of images from the Break Our
Steganographic System! competition [1]. �is database is
formed by 10,000 cover images taken with seven di�erent
cameras, with a size of 512 × 512 pixels. For JPEG experi-
ments, we have compressed the images to qualities 75 and
95. In these cases, we refer to the datasets as BOSS-J75 and
BOSS-J95, respectively.

• �e BOWS2 database is the set of images from the Break
Our Watermarking System 2nd Ed. competition [2]. �is
database is formed by 10,000 cover images with a size of
512 × 512 pixels. For JPEG experiments, we have com-
pressed the images to qualities 75 and 95. In these cases,
we refer to the datasets as BOWS2-J75 and BOWS2-J95,
respectively.

• �e ALASKA database is the set of images from the Alaska
competition [5]. �is database is formed by 50,000 cover
images with di�erent sizes. For our experiments, we have
selected 10,000 images randomly and we have cropped the
center with a size of 512 × 512 pixels, and then converted
them to gray scale. For JPEG experiments, we compressed
the cropped images to qualities 75 and 95. In these cases,
we refer to the datasets as ALASKA-J75 and ALASKA-J95,
respectively.

For the experiments with SRNet [3], all these datasets have been
resized to 256 × 256 pixels.

All the databases were randomly separated into two sets: a set for
training and a set for testing. All the experiments, but Experiment
2 in Table 2, use 9,500 images for training. Experiment 2 uses 5,000
images for training. �e number of images used for testing varies
among di�erent experiments and it is provided in the di�erent
tables. �ese sets have been formed by the original cover images
and the same images with an embedded message, using a random
key. In this way, we have tested the CSM problem by using a
training set from a database and a testing set from another one.

�e experiments detailed below have been carried out for three
di�erent spatial domain steganographic algorithms: UNIversal
WAvelet Relative Distortion (UNIWARD) [10], HIgh-pass, Low-
pass, and Low-pass (HILL) [17] and LSB matching (LSBM) [21]; and
for two di�erent transformed domain steganographic algorithms:
UED [9] and J-UNIWARD [10]. We were mainly interested in the
results of the state-of-the-art algorithms, but we have also per-
formed experiments using LSB matching to have a reference of a
non-adaptive algorithm.

For these experiments, we have used a di�erent random key for
each stego image. �e experiments have been performed using the
same algorithm and embedding bit rate for the training and the
testing sets unless explicitly noted otherwise. �us, the proposed
scenario is for a known algorithm and known embedding rate
a�ack. To analyze the proposed approach, we have used the well

known Rich Models (RM) framework [7] for the spatial domain
and Gabor Filter Residuals (GFR) [22] for the transformed domain,
with Ensemble Classi�ers (EC) [13]. �ese classi�ers meet the
requirements introduced in Section 3, i.e., they make it possible
to classify the sets Atest (as CA and SA) and Btest (as SB and DB )
for UNIWARD, HILL, LSBM, UED and similar algorithms. When
using RM+EC, we do not expect the proposed approach to work
with algorithms designed to overcome this framework, such as [15],
because the proposed method depends on the underlying classi�er.

We have also performed some experiments using the state-of-
the-art convolutional neural network (CNN) described in [3].

4.1 Classi�er Inconsistencies
�e results obtained detecting inconsistencies are presented in this
section. In Tables 2-8, the results for di�erent experiments are
shown. �e �rst column indicates the experiment number (used
for references along the text). �e �rst few columns show the
algorithm and bit rate used for embedding, the databases used for
training and for testing, the number of cover and stego images
contained by the testing set, and the method used for classi�cation.
For example, the �rst row of the �rst experiment shows the results
obtained using images from BOSS for training and images from
the same database for testing (500 cover and 500 stego images),
for HILL steganography with a 0.4 bpp embedding bit rate, using
Rich Models with Ensemble Classi�ers as the classi�cation method.
�e results are computed �rst without applying any �lter and next
with the proposed �lters. �e column error (Err) is the result of
the classi�cation error using the reported method. �is error is
computed as:

Err =
FP + FN

FP + FN + TP + TN
,

where TP are the true positives, TN the true negatives, FP the false
positives and FN the false negatives. �ese values are also provided
in Tables 2-8.

When the �lters are applied, we also show the number of in-
consistencies (INC) obtained during the classi�cation, and which
of those correspond to images classi�ed by f̂A as cover (INCC ) or
as stego (INCS ). When there is no CSM (for example, in the �rst
row of Experiment 1-A of Table 2) the number of inconsistencies is
quite lower compared to the cases with CSM (e.g. the �rst rows of
Experiments 1-B and 1-C of Table 2).

It can also be observed that the number of inconsistencies in-
creases with lower embedding bit rates (Experiment 5 of Table 4).
�is occurs because the proposed method does not only reveal if
there is CSM, but whether the classi�er is working well with the
testing database or not. �is information can be used to make a
good prediction about he classi�cation errors, as detailed belown.

4.2 Prediction of the Classi�cation Error
In this section, we show how to carry out a prediction of the clas-
si�cation error. For this purpose, we assume that the standard
steganalyzer is classifying randomly the samples that are not well
represented by the classi�cation model or by the training set. For
example, in a balanced case with the same number of cover and
stego images, a classi�er that makes a classi�cation error of R%,
is possibly having trouble with 2R% of the samples of testing set,



Table 2: Classi�cation results for standard RM+EC (without �lters) and for the proposed method (with �lters). “N”: number of
experiment, “ALGO”: name of the embedding algorithm and embedding bit rate (bpp), “DBs”: training/testing databases, “C/S”:
number of cover and stego images in the testing set , “CLF”: classi�cation method used, “Err”: true classi�cation error, {“TP”,
“TN”, “FP”, “FN”}: true and false positives and negatives, “INC”: number of inconsistencies, “INCC”: number of inconsistencies
for images predicted as cover, and “INCS”: number of inconsistencies for images predicted as stego

STANDARD PROPOSED
N ALGO DBs C/S CLF Err TP TN FP FN Errpred Err TP TN FP FN INC INCC INCS

1-A

HILL-0.40 BOSS/BOSS 500/500 RM+EC 0.2440 398 358 142 102 0.2410 0.1564 214 223 41 40 482 197 285
HILL-0.40 BOSS/BOSS 500/250 RM+EC 0.2573 199 358 142 51 0.2407 0.1491 108 223 41 17 361 169 192
HILL-0.40 BOSS/BOSS 500/0 RM+EC 0.2840 0 358 142 0 0.2360 0.1553 0 223 41 0 236 135 101
HILL-0.40 BOSS/BOSS 250/500 RM+EC 0.2320 398 178 72 102 0.2420 0.1628 214 110 23 40 363 130 233
HILL-0.40 BOSS/BOSS 0/500 RM+EC 0.2040 398 0 0 102 0.2460 0.1575 214 0 0 40 246 62 184

1-B

HILL-0.40 BOSS/BOWS2 500/500 RM+EC 0.4530 493 54 446 7 0.4365 0.7087 21 16 89 1 873 44 829
HILL-0.40 BOSS/BOWS2 500/250 RM+EC 0.6027 244 54 446 6 0.4233 0.7826 9 16 89 1 635 43 592
HILL-0.40 BOSS/BOWS2 500/0 RM+EC 0.8920 0 54 446 0 0.3950 0.8476 0 16 89 0 395 38 357
HILL-0.40 BOSS/BOWS2 250/500 RM+EC 0.3067 493 27 223 7 0.4473 0.6203 21 9 48 1 671 24 647
HILL-0.40 BOSS/BOWS2 0/500 RM+EC 0.0140 493 0 0 7 0.4780 0.0455 21 0 0 1 478 6 472

1-C

HILL-0.40 BOSS/ALASKA 500/500 RM+EC 0.4810 369 150 350 131 0.4750 0.2600 19 18 11 2 950 261 689
HILL-0.40 BOSS/ALASKA 500/250 RM+EC 0.5453 191 150 350 59 0.4727 0.2927 11 18 11 1 709 190 519
HILL-0.40 BOSS/ALASKA 500/0 RM+EC 0.7000 0 150 350 0 0.4710 0.3793 0 18 11 0 471 132 339
HILL-0.40 BOSS/ALASKA 250/500 RM+EC 0.4027 369 79 171 131 0.4787 0.1875 19 7 4 2 718 201 517
HILL-0.40 BOSS/ALASKA 0/500 RM+EC 0.2620 369 0 0 131 0.4790 0.0952 19 0 0 2 479 129 350

2-A

HILL-0.40 BOSS/BOSS 5000/5000 RM+EC 0.2515 3763 3722 1278 1237 0.2519 0.1477 2047 2183 341 392 5037 2384 2653
HILL-0.40 BOSS/BOSS 5000/2500 RM+EC 0.2511 1895 3722 1278 605 0.2499 0.1426 1034 2183 341 194 3748 1950 1798
HILL-0.40 BOSS/BOSS 5000/0 RM+EC 0.2556 0 3722 1278 0 0.2476 0.1351 0 2183 341 0 2476 1539 937
HILL-0.40 BOSS/BOSS 2500/5000 RM+EC 0.2483 3763 1875 625 1237 0.2541 0.1510 2047 1085 165 392 3811 1635 2176
HILL-0.40 BOSS/BOSS 0/5000 RM+EC 0.2474 3763 0 0 1237 0.2561 0.1607 2047 0 0 392 2561 845 1716

2-B

HILL-0.40 BOSS/BOWS2 5000/5000 RM+EC 0.4328 4814 858 4142 186 0.4426 0.6429 227 183 720 18 8852 843 8009
HILL-0.40 BOSS/BOWS2 5000/2500 RM+EC 0.5640 2412 858 4142 88 0.4317 0.7090 115 183 720 6 6476 757 5719
HILL-0.40 BOSS/BOWS2 5000/0 RM+EC 0.8284 0 858 4142 0 0.4097 0.7973 0 183 720 0 4097 675 3422
HILL-0.40 BOSS/BOWS2 2500/5000 RM+EC 0.2980 4814 451 2049 186 0.4536 0.5460 227 89 362 18 6804 530 6274
HILL-0.40 BOSS/BOWS2 0/5000 RM+EC 0.0372 4814 0 0 186 0.4755 0.0735 227 0 0 18 4755 168 4587

2-C

HILL-0.40 BOSS/ALASKA 5000/5000 RM+EC 0.4826 3641 1533 3467 1359 0.4764 0.4386 146 119 147 60 9528 2713 6815
HILL-0.40 BOSS/ALASKA 5000/2500 RM+EC 0.5521 1826 1533 3467 674 0.4750 0.4693 80 119 147 29 7125 2059 5066
HILL-0.40 BOSS/ALASKA 5000/0 RM+EC 0.6934 0 1533 3467 0 0.4734 0.5526 0 119 147 0 4734 1414 3320
HILL-0.40 BOSS/ALASKA 2500/5000 RM+EC 0.4123 3641 767 1733 1359 0.4777 0.3970 146 56 73 60 7165 2010 5155
HILL-0.40 BOSS/ALASKA 0/5000 RM+EC 0.2718 3641 0 0 1359 0.4794 0.2913 146 0 0 60 4794 1299 3495

but it is providing the correct class for half of the “di�cult” sam-
ples by chance. �e images belonging to these 2R% samples of the
testing set are more likely to produce inconsistencies than those
for which the classi�er succeeds. For this reason, the number of in-
consistencies tends to be similar to two times the number of errors
produced by the standard classi�er (without using �lters). �is fact
can be observed in Table 2. Note that, in the balanced case, INCC is
roughly two times the number of FN (obtained without �lters) and
INCS is roughly two times the number of FP (also without �lters).

�is prediction makes it possible to approximate the classi�ca-
tion error of the testing set with the standard classi�er using the
following expression:

Errpred =
INC

2 |Atest | ,

where |·| denotes the cardinality of a set. A more general expression
that can be applied in non-balanced cases is le� for the future
research.

Tables 2-8 show the accuracy of the predicted classi�cation error
as compared to the true classi�cation error. Please note that the
predicted error can be computed without any knowledge of the
true type (stego or cover) of the testing images, whereas the true
classi�cation error is computed using the true type of each image.

We have carried out experiments with di�erent ratios of cover
and stego images (Experiments 1-2 in Table 2, and 3-4 in Table 3).
In the balanced case (500/500), the predicted error (Errpred) is very
close to the true classi�cation error (Err). However, in the case
of unbalanced number of cover and stego images, the predicted
classi�cation error is not that close to the real value, but it is close
to the true classi�cation error obtained with a balanced testing set.

Note that, due to the proposed formula, the prediction of the
classi�cation error will always be between 0 and 0.5. �erefore,
a classi�er that does not work for a given testing set would yield
a prediction of the classi�cation error about 0.5. In unbalanced
experiments, we can obtain true classi�cation errors above 0.5,
such as in the third row of the Experiment 1-C (Table 2), with an
error of 0.7000. Our prediction is 0.4787 indicating that the classi�er
is random guessing with this testing set. A similar situation occurs
with apparently good classi�cation results, as in the last row of
Experiment 1-B (Table 2). �e classi�cation error is 0.0140, whereas
the prediction of the classi�cation error is 0.4790. Note that the
predicted classi�cation error is correct, as far as the classi�er is not
working in these conditions, as evident from the balanced case (�rst
row of Experiment 1-B). �e reason why the classi�cation error
is so small in the all-stego case is that the output of the classi�er



Table 3: Classi�cation results for standard RM+EC (without �lters) and for the proposed method (with �lters). Symbols and
abbreviations have the same meaning as in Table 2.

STANDARD PROPOSED
N ALGO DBs C/S CLF Err TP TN FP FN Errpred Err TP TN FP FN INC INCC INCS

3-A

UNIW-0.40 BOSS/BOSS 500/500 RM+EC 0.2030 419 378 122 81 0.1965 0.1203 257 277 40 33 393 149 244
UNIW-0.40 BOSS/BOSS 500/250 RM+EC 0.2240 204 378 122 46 0.1947 0.1201 126 277 40 15 292 132 160
UNIW-0.40 BOSS/BOSS 500/0 RM+EC 0.2440 0 378 122 0 0.1830 0.1262 0 277 40 0 183 101 82
UNIW-0.40 BOSS/BOSS 250/500 RM+EC 0.1920 419 187 63 81 0.1993 0.1175 257 141 20 33 299 94 205
UNIW-0.40 BOSS/BOSS 0/500 RM+EC 0.1620 419 0 0 81 0.2100 0.1138 257 0 0 33 210 48 162

3-B

UNIW-0.40 BOSS/BOW2 500/500 RM+EC 0.4330 485 82 418 15 0.3830 0.6795 43 32 157 2 766 63 703
UNIW-0.40 BOSS/BOW2 500/250 RM+EC 0.5667 243 82 418 7 0.3573 0.7430 23 32 157 2 536 55 481
UNIW-0.40 BOSS/BOW2 500/0 RM+EC 0.8360 0 82 418 0 0.3110 0.8307 0 32 157 0 311 50 261
UNIW-0.40 BOSS/BOW2 250/500 RM+EC 0.2973 485 42 208 15 0.4080 0.5870 43 14 79 2 612 41 571
UNIW-0.40 BOSS/BOW2 0/500 RM+EC 0.0300 485 0 0 15 0.4550 0.0444 43 0 0 2 455 13 442

3-C

UNIW-0.40 BOSS/ALASKA 500/500 RM+EC 0.4830 397 120 380 103 0.4805 0.4103 12 11 16 0 961 212 749
UNIW-0.40 BOSS/ALASKA 500/250 RM+EC 0.5680 204 120 380 46 0.4780 0.4848 6 11 16 0 717 155 562
UNIW-0.40 BOSS/ALASKA 500/0 RM+EC 0.7600 0 120 380 0 0.4730 0.5926 0 11 16 0 473 109 364
UNIW-0.40 BOSS/ALASKA 250/500 RM+EC 0.3853 397 64 186 103 0.4867 0.2000 12 4 4 0 730 163 567
UNIW-0.40 BOSS/ALASKA 0/500 RM+EC 0.2060 397 0 0 103 0.4880 0.0000 12 0 0 0 488 103 385

4-A

LSBm-0.10 BOSS/BOSS 500/500 RM+EC 0.0860 458 456 44 42 0.0780 0.0592 396 398 24 26 156 74 82
LSBm-0.10 BOSS/BOSS 500/250 RM+EC 0.0920 225 456 44 25 0.0767 0.0661 195 398 24 18 115 65 50
LSBm-0.10 BOSS/BOSS 500/0 RM+EC 0.0880 0 456 44 0 0.0780 0.0569 0 398 24 0 78 58 20
LSBm-0.10 BOSS/BOSS 250/500 RM+EC 0.0867 458 227 23 42 0.0760 0.0597 396 202 12 26 114 41 73
LSBm-0.10 BOSS/BOSS 0/500 RM+EC 0.0840 458 0 0 42 0.0780 0.0616 396 0 0 26 78 16 62

4-B

LSBm-0.10 BOSS/BOW2 500/500 RM+EC 0.1270 478 395 105 22 0.0975 0.0882 374 360 56 15 195 42 153
LSBm-0.10 BOSS/BOW2 500/250 RM+EC 0.1520 241 395 105 9 0.0780 0.0979 211 360 56 6 117 38 79
LSBm-0.10 BOSS/BOW2 500/0 RM+EC 0.2100 0 395 105 0 0.0840 0.1346 0 360 56 0 84 35 49
LSBm-0.10 BOSS/BOW2 250/500 RM+EC 0.1227 478 180 70 22 0.1093 0.0939 374 157 40 15 164 30 134
LSBm-0.10 BOSS/BOW2 0/500 RM+EC 0.0440 478 0 0 22 0.1110 0.0386 374 0 0 15 111 7 104

4-C

LSBm-0.10 BOSS/ALASKA 500/500 RM+EC 0.4730 399 128 372 101 0.4500 0.5000 26 24 45 5 900 200 700
LSBm-0.10 BOSS/ALASKA 500/250 RM+EC 0.5667 197 128 372 53 0.4440 0.5595 13 24 45 2 666 155 511
LSBm-0.10 BOSS/ALASKA 500/0 RM+EC 0.7440 0 128 372 0 0.4310 0.6522 0 24 45 0 431 104 327
LSBm-0.10 BOSS/ALASKA 250/500 RM+EC 0.3867 399 61 189 101 0.4580 0.4127 26 11 21 5 687 146 541
LSBm-0.10 BOSS/ALASKA 0/500 RM+EC 0.2020 399 0 0 101 0.4690 0.1613 26 0 0 5 469 96 373

Table 4: Experiments with low bit rates. Symbols and abbreviations have the same meaning as in Table 2.

STANDARD PROPOSED
N ALGO DBs C/S CLF Err TP TN FP FN Errpred Err TP TN FP FN INC INCC INCS

5

HILL-0.20 BOSS/BOSS 500/500 RM+EC 0.3530 350 297 203 150 0.3545 0.2509 106 112 36 37 709 298 411
HILL-0.20 BOSS/BOW2 500/500 RM+EC 0.4850 474 41 459 26 0.4875 0.7200 4 3 15 3 975 61 914
UNIW-0.20 BOSS/BOSS 500/500 RM+EC 0.3360 352 312 188 148 0.3205 0.1922 145 145 34 35 641 280 361
UNIW-0.20 BOSS/BOW2 500/500 RM+EC 0.4650 485 50 450 15 0.4620 0.5658 19 14 40 3 924 48 876

Table 5: Experiments training with images from other databases. Symbols and abbreviations have the same meaning as in
Table 2.

STANDARD PROPOSED
N ALGO DBs C/S CLF Err TP TN FP FN Errpred Err TP TN FP FN INC INCC INCS

6-A
HILL-0.40 BOWS2/BOWS2 500/500 RM+EC 0.2060 414 380 120 86 0.1900 0.1161 268 280 34 38 380 148 232
HILL-0.40 BOWS2/BOSS 500/500 RM+EC 0.3140 364 322 178 136 0.3055 0.2031 148 162 42 37 611 259 352
HILL-0.40 BOWS2/ALASKA 500/500 RM+EC 0.4710 363 166 334 137 0.4685 0.3968 20 18 17 8 937 277 660

6-B
HILL-0.40 ALASKA/ALASKA 500/500 RM+EC 0.2950 378 327 173 122 0.2895 0.1354 177 187 31 26 579 236 343
HILL-0.40 ALASKA/BOSS 500/500 RM+EC 0.4110 387 202 298 113 0.3905 0.2466 78 87 27 27 781 201 580
HILL-0.40 ALASKA/BOWS2 500/500 RM+EC 0.3710 273 356 144 227 0.3730 0.2756 81 103 29 41 746 439 307

is stego for almost all images, which works by chance when all
testing images are stego.

Note that Experiment 2 (Table 2) is the same as Experiment 1
(Table 2) but using 10,000 images for training and 10,000 images
for testing. �is experiment was carried out to check if the results



Table 6: Experiments using the SRNet convolutional neural network. Symbols and abbreviations have the same meaning as
in Table 2.

STANDARD PROPOSED
N ALGO DBs C/S CLF Err TP TN FP FN Errpred Err TP TN FP FN INC INCC INCS

7-A
HILL-0.40 BOSS/BOSS 500/500 SRNET 0.2520 434 314 186 66 0.2635 0.1057 216 207 35 15 527 158 369
HILL-0.40 BOSS/BOWS2 500/500 SRNET 0.2600 447 293 207 53 0.2855 0.1235 178 198 33 20 571 128 443
HILL-0.40 BOSS/ALASKA 500/500 SRNET 0.3840 441 175 325 59 0.3825 0.2128 75 110 22 28 765 96 669

7-B
HILL-0.40 BOWS2/BOWS2 500/500 SRNET 0.2670 437 296 204 63 0.2720 0.1272 184 214 35 23 544 122 422
HILL-0.40 BOWS2/BOSS 500/500 SRNET 0.3570 452 191 309 48 0.3250 0.2000 156 124 62 8 650 107 543
HILL-0.40 BOWS2/ALASKA 500/500 SRNET 0.3880 319 293 207 181 0.3805 0.2218 80 106 28 25 761 343 418

7-C
HILL-0.40 ALASKA/ALASKA 500/500 SRNET 0.3940 324 282 218 176 0.3910 0.2156 76 95 34 13 782 350 432
HILL-0.40 ALASKA/BOWS2 500/500 SRNET 0.3930 438 169 331 62 0.3930 0.2150 77 91 35 11 786 129 657
HILL-0.40 ALASKA/BOSS 500/500 SRNET 0.3900 386 224 276 114 0.4120 0.2955 68 56 43 9 824 273 551

Table 7: Experiments with unknown bitrate (SSM). Symbols and abbreviations have the same meaning as in Table 2.

STANDARD PROPOSED
N ALGO DBs C/S CLF Err TP TN FP FN Errpred Err TP TN FP FN INC INCC INCS

8

HILL-0.40/0.20 BOSS/BOSS 500/500 RM+EC 0.2850 418 297 203 82 0.4200 0.2625 6 112 36 6 840 261 579
HILL-0.40/0.30 BOSS/BOSS 500/500 RM+EC 0.2450 413 342 158 87 0.3470 0.1667 84 171 35 16 694 242 452
HILL-0.40/0.40 BOSS/BOSS 500/500 RM+EC 0.2440 398 358 142 102 0.2410 0.1564 214 223 41 40 482 197 285
HILL-0.40/0.50 BOSS/BOSS 500/500 RM+EC 0.2640 344 392 108 156 0.1880 0.1538 250 278 35 61 376 209 167
HILL-0.40/0.60 BOSS/BOSS 500/500 RM+EC 0.2820 312 406 94 188 0.1800 0.1422 242 307 33 58 360 229 131

with 1,000 images are stable enough. We can see that, in both cases,
the results are very similar.

In Experiments 3 and 4 (Table 3), the results obtained for the
embedding algorithms UNIWARD and LSB matching are shown,
and the accuracy of the predicted classi�cation error is similar to
that of Table 2. Comparable results are also obtained with low
embedding bit rates, as it can be observed in Experiment 5 (Table
4) for the algorithms HILL and UNIWARD with 0.2 bpp.

In the previous experiments, the database used for training is
BOSS. In Experiment 6 (Table 5), we show the results obtained using
images from other databases for training. More precisely, we use
BOWS2 and ALASKA in the training set. As it can be observed, the
results are comparable in terms of the accuracy of the prediction of
the classi�cation error.

In Experiment 7 (Table 6), the results using the SRNet [3] classi-
�cation method are presented, and di�erent training databases are
used. Again, the prediction of the classi�cation errors is accurate.

Experiment 8 (Table 7) presents the classi�cation results in case
of SSM. In this case, the testing set is embedded with HILL and 0.40
bpb, and the embedding bit rate of the training set varies between
0.20 and 0.60 bpp. When a wrong embedding bit rate is chosen, the
prediction of the classi�cation error is less accurate. �e reason
for this mismatch is that a wrong embedding rate is used to create
the set Btrain and, hence, the classi�er f̂B is not appropriate for the
testing set. �is problem will be addressed in our future work.

Finally, in Experiments 9 and 10 (Table 8), we show the results
obtained for JPEG images compressed to qualities 75 and 95, respec-
tively. In this case, we have used the embedding algorithms UED
and J-UNIWARD, and the accuracy of the predicted classi�cation
error is consistent with that of the rest of the experiments.

As shown in the experiments, the proposed method works both
if there is CSM and when it is too di�cult to classify images with
the underlying classi�er in case of a too small embedding bit rate.

5 CONCLUSION
In this paper, a method for detecting inconsistencies in image steg-
analysis is presented. We show how the number of inconsistencies
can be used to predict the classi�cation error of the steganalytic
method. �e proposed approach has been tested for di�erent ste-
ganalyzers, image databases, embedding algorithms and embedding
bit rates, with and without CSM.

�e results show how the classi�cation error of a steganalytic
method can be predicted without having access to the labels of
the images in the testing set. �e predicted classi�cation error can
be a very valuable information for a steganalyst, who can decide
how to proceed when the predicted classi�cation error is too large.
In such a case, increasing the training set in order to improve
the classi�cation accuracy could be one of the alternatives to be
considered.

�e proposed method is intended to be used in batch steganog-
raphy. Nevertheless, even for a single testing image, this approach
makes it possible to detect if the classi�cation is inconsistent. In
such a case, the classi�er should not be used to classify that image.
As future work, it would be worth analyzing how to take pro�t
of the proposed methodology when classifying single images. Fi-
nally, in case of stego source mismatch (e.g. when the embedding
bit rate is not known accurately) the prediction of the classi�cation
is not reliable. Possible approaches to deal with this problem will
be addressed in our future research.



Table 8: Experiments with JPEG steganography. Symbols and abbreviations have the same meaning as in Table 2.

STANDARD PROPOSED
N ALGO DBs C/S CLF Err TP TN FP FN Errpred Err TP TN FP FN INC INCC INCS

9-A

UED-0.40 BOSS-J75/BOSS-J75 500/500 GFR+EC 0.0290 480 491 9 20 0.0315 0.0267 452 460 8 17 63 34 29
UED-0.40 BOSS-J75/BOWS2-J75 500/500 GFR+EC 0.0300 481 489 11 19 0.0355 0.0215 450 459 6 14 71 35 36
UED-0.40 BOSS-J75/ALASKA-J75 500/500 GFR+EC 0.2090 348 443 57 152 0.2315 0.1899 204 231 29 73 463 291 172
J-UNIW-0.40 BOSS-J75/BOSS-J75 500/500 GFR+EC 0.0820 446 472 28 54 0.0910 0.0819 362 389 22 45 182 92 90
J-UNIW-0.40 BOSS-J75/BOWS2-J75 500/500 GFR+EC 0.1000 445 455 45 55 0.0990 0.0998 348 374 37 43 198 93 105

9-B

UED-0.40 BOWS2-J75/BOWS2-J75 500/500 GFR+EC 0.0240 490 486 14 10 0.0340 0.0193 452 462 9 9 68 25 43
UED-0.40 BOWS2-J75/BOSS-J75 500/500 GFR+EC 0.0350 487 478 22 13 0.0305 0.0309 452 458 19 10 61 23 38
UED-0.40 BOWS2-J75/ALASKA-J75 500/500 GFR+EC 0.2070 346 447 53 154 0.2435 0.1910 194 221 27 71 487 309 178
J-UNIW-0.40 BOWS2-J75/BOWS2-J75 500/500 GFR+EC 0.0970 450 453 47 50 0.0990 0.0960 352 373 35 42 198 88 110
J-UNIW-0.40 BOWS2-J75/BOSS-J75 500/500 GFR+EC 0.0960 466 438 62 34 0.1165 0.0769 346 362 38 21 233 89 144

9-C
UED-0.40 ALASKA-J75/ALASKA-J75 500/500 GFR+EC 0.0800 456 464 36 44 0.0955 0.0581 375 387 20 27 191 94 97
UED-0.40 ALASKA-J75/BOSS-J75 500/500 GFR+EC 0.0680 453 479 21 47 0.0805 0.0536 385 409 16 29 161 88 73
UED-0.40 ALASKA-J75/BOWS2-J75 500/500 GFR+EC 0.0890 442 469 31 58 0.0925 0.0847 363 383 24 45 185 99 86

10-A

UED-0.40 BOSS-J95/BOSS-J95 500/500 GFR+EC 0.1530 430 417 83 70 0.1310 0.1220 319 329 47 43 262 115 147
UED-0.40 BOSS-J95/BOWS2-J95 500/500 GFR+EC 0.1900 368 442 58 132 0.1635 0.1842 267 282 30 94 327 198 129
UED-0.40 BOSS-J95/ALASKA-J95 500/500 GFR+EC 0.4310 140 429 71 360 0.4145 0.4152 44 56 13 58 829 675 154
J-UNIW-0.40 BOSS-J95/BOSS-J95 500/500 GFR+EC 0.2280 369 403 97 131 0.2295 0.2089 201 227 50 63 459 244 215
J-UNIW-0.40 BOSS-J95/BOWS2-J95 500/500 GFR+EC 0.2640 324 412 88 176 0.2560 0.2295 183 193 37 75 512 320 192

10-B

UED-0.40 BOWS2-J95/BOWS2-J95 500/500 GFR+EC 0.1660 414 420 80 86 0.1525 0.1640 285 296 47 67 305 143 162
UED-0.40 BOWS2-J95/BOSS-J95 500/500 GFR+EC 0.1690 427 404 96 73 0.1460 0.1427 306 301 52 49 292 127 165
UED-0.40 BOWS2-J95/ALASKA-J95 500/500 GFR+EC 0.4180 154 428 72 346 0.3995 0.3980 53 68 22 58 799 648 151
J-UNIW-0.40 BOWS2-J95/BOWS2-J95 500/500 GFR+EC 0.2600 366 374 126 134 0.2380 0.2481 194 200 71 59 476 249 227
J-UNIW-0.40 BOWS2-J95/BOSS-J95 500/500 GFR+EC 0.2460 380 374 126 120 0.2380 0.2252 194 212 59 59 476 223 253

10-C
UED-0.40 ALASKA-J95/ALASKA-J95 500/500 GFR+EC 0.3040 349 347 153 151 0.2665 0.2227 183 180 35 69 533 249 284
UED-0.40 ALASKA-J95/BOSS-J95 500/500 GFR+EC 0.2350 390 375 125 110 0.2065 0.2095 229 235 59 64 413 186 227
UED-0.40 ALASKA-J95/BOWS2-J95 500/500 GFR+EC 0.2400 356 404 96 144 0.2100 0.2224 215 236 41 88 420 224 196
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