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ABSTRACT

In this paper we consider the problem of minimizing composite objective functions consisting
of a convex differentiable loss function plus a non-smooth regularization term, such as L1 norm
or nuclear norm, under Rényi differential privacy (RDP). To solve the problem, we propose two
stochastic alternating direction method of multipliers (ADMM) algorithms: ssADMM based on
gradient perturbation and mpADMM based on output perturbation. Both algorithms decompose the
original problem into sub-problems that have closed-form solutions. The first algorithm, ssADMM,
applies the recent privacy amplification result for RDP to reduce the amount of noise to add. The
second algorithm, mpADMM, numerically computes the sensitivity of ADMM variable updates and
releases the updated parameter vector at the end of each epoch. We compare the performance of our
algorithms with several baseline algorithms on both real and simulated datasets. Experimental results
show that, in high privacy regimes (small ε), ssADMM and mpADMM outperform other baseline
algorithms in terms of classification and feature selection performance, respectively.

1 Introduction

Concerns on privacy of individuals in the data used for training machine learning models have led to extensive research
on private model building techniques [1, 2, 3, 4, 5, 6, 7], especially in the context of Empirical Risk Minimization
(ERM). Let D = (d1, d2, . . . , dn) be a dataset, where di ∈ D. Many machine learning problems can be formulated as
regularized optimization problems of form:

min
x∈Rp

F (x) :=
1

n

n∑
i=1

f(x, di) + λh(x) (1)

where λ > 0 is a regularization coefficient, f : Rp ×D → R is a smooth convex loss function, and h : Rp → R is a
simple convex non-smooth regularizer such as L1-norm or nuclear norm. This formulation has received substantial
attention as it arises in many interesting applications of machine learning such as generalized lasso [8], matrix
recovery [9, 10], and a class of L1 regularized problems. Despite recent advances in methods for differentially private
ERM, many existing solutions are not directly applicable to the problem in (1) due to requirement for differentiability [3,
4, 5, 7] or strong convexity [1] of the regularization term h(x). Alternating direction method of multipliers (ADMM) [11]
has shown to be effective in solving optimization problems with complicated structure regularization.

In this paper, we propose two stochastic ADMM algorithms that satisfy Rényi Differential Privacy (RDP), namely
subsampled stochastic ADMM (ssADMM) and model perturbation based ADMM (mpADMM). The first algorithm has
the following key features. First, ssADMM is scalable and fast. The algorithm splits the composite objective function
into differentiable and non-smooth terms,

∑
i f(x, di) and h(x), using the ADMM framework. The differentiable term

is further approximated by the first order Taylor expansion and linearization as in [12]. This approximated augmented
Lagrangian function has a simple analytical solution. For the non-smooth regularization term h(x), ssADMM applies
proximal mappings. For many non-smooth regularization function popularly used in machine learning, such as L1-norm,
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SCAD [13], and MCP [14], those proximal mappings yield closed form solutions. Therefore, both subproblems can be
solved efficiently.

Second, ssADMM makes use of recently proposed privacy amplification lemma [15] to tightly bound the total privacy
loss across many iterations. In the closed-form solution of the modified augmented Lagrangian function, the only data
dependent term is the gradient ∇f(xk), where xk denotes the value of x at iteration k. The algorithm computes the
gradient∇f(xk) using a randomly subsampled data and add Gaussian noise to ensure (α, εk)-RDP, which allows us to
exploit the randomness in the subsampling and to introduce less noise to each iteration.

The second algorithm, mpADMM, takes the output perturbation approach but substantially differs from the original
method. Unlike the original method which releases model parameters once only at the end, the proposed method
releases the output after each epoch. For each epoch, we numerically compute the sensitivity of both primal and dual
variable updates in ADMM and release the parameter vector using the Gaussian mechanism. The algorithm uses the
released (noisy) output as the starting value for the next epoch.

Our contributions are summarized as follows:

• We propose two efficient Rényi differentially private algorithms, based on stochastic ADMM, for solving
non-smooth convex optimization problems. In our proposed ssADMM, each subproblem is solved exactly in
closed form.

• We apply the recent privacy amplification result for RDP to stochastic ADMM and show that the inherent
randomness in subsampling process can be used to achieve stronger privacy protection.

• We empirically show the effectiveness of the proposed algorithms by performing extensive empirical evalua-
tions on generalized linear models and comparing with other baseline algorithms. The results show that, in
high privacy regimes (small ε), ssADMM and mpADMM outperform other baseline algorithms in terms of
classification and feature selection performance, respectively.

The rest of this paper are organized as follow: Section 2 summarizes related work. In Section 3, we provide background
on Rényi differential privacy and ADMM. Section 4 introduces the proposed Rényi differentially private ADMM
algorithms. Section 5 provides the performance evaluations on both synthetic and real datasets. Section 6 concludes the
paper.

2 Related Work

Many works have been done to solve the empirical risk minimization problem under differential privacy. Generally, there
are three types of algorithms proposed. Output perturbation algorithms perturb the model parameters based on sensitivity,
for example, [1] analyzed the sensitivity of optimal solutions trained between neighboring databases; [5] tackled the
case when full gradient descent is applied; and [16] and [7] analyzed the situation of applying stochastic gradient
descent on permuting mini-batches. Objective perturbation algorithms perturb the training objective functions, and the
privacy guarantee is subject to an exact solution of the ERM problem: [1] presented the first objective perturbation
technique, and it is extended by [2]. Gradient perturbation algorithms perturb the (stochastic) gradients used for model
updating by first-order optimization methods, and use a composition technique to quantify the overall privacy leak for
multiple access of the data through gradient calculation. For example, [3] proposed “strong composition” theorem,
then [4] proposed “moment accountant” method, which is also used in [6] and [17]. The Réyni differential privacy was
introduced by [18], which can also be applied in gradient perturbation, especially after [15] proposed its amplification
by subsampling results.

Alternating Direction Method of Multipliers (ADMM) is an old algorithm to solve optimization problems [19]. It has
been extensively studied, and applied in many domains such as outlier recovery [20], image processing [21], and sensor
detection [22]. In addition to its original version, many variations has been presented, such as [23, 24] and [12]. Several
ADMM based differentially private algorithms have been presented, for example, [25] applied objective perturbation
technique on the original ADMM problem, [26] and [27] applied output and objective perturbation technique, and [28]
applied gradient perturbation technique on ADMM-based algorithms in distributed settings.

L1 regularized ERM problem was first proposed for linear regression, that is least absolute shrinkage and selection
operator (LASSO) [29]. Some variants of LASSO exists, such as [30] and [31]. It has been used for classification
problems, and many algorithms for solving L1 regularized generalized linear models were presented, such as [32], [33],
and [34]. [35] and [36] has shown that L1 regularized classification has good performance in feature selection. Limited
to the assumption on the loss function, many differentially private ERM algorithms cannot be directly applied on L1

regularized classification, with a few exceptions such as [4, 25], and [28].
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3 Preliminaries

In this section we introduce relative background of this paper. We will start with definitions and lemmas in differential
privacy and Rényi differential privacy, the L1-regularized classification problem we aim to solve, and then the ADMM
algorithm based on which we proposed our algorithms.

We assume a dataset D = {d1, ..., dn} ∼ Dn is a set collected from n individuals from an unknown population
distribution D, where di = (si, li) for i = 1, ..., n is a record of one individual, with si being a vector of features
of dimension p, and li ∈ {−1,+1} being its label. Two datasets D and D′ are considered neighboring, if D′ can
be obtained by replacing one record with another one from D, notated as D ∼ D′. We use x, y, z to denote model
parameters, and ‖ · ‖1 (resp. ‖ · ‖2) as L1 (resp. L2) norm of a vector.

3.1 Differential Privacy

Differential privacy is so far the standard standard for protecting the privacy of sensitive datasets. Its formal definition
is stated as:
Definition 1 ((ε, δ)-Differential Privacy (DP)). [37] [38] Given privacy parameters ε ≥ 0, 0 ≤ δ ≤ 1, a randomized
mechanism (algorithm)M satisfies (ε, δ)-DP if for every event S ⊆ range(M), and for every pair of neighboring
datasets D ∼ D′,

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (2)

If δ = 0, it is called pure differential privacy, and δ > 0 is called approximate differential privacy.

With pure differential privacy, even the strongest attacker with arbitrary background information has limited ability to
make inferences on the unknown record(s). With approximated differential privacy, this guarantee holds with a high
chance, while failure of privacy preserving happens with probability at most δ (informally called “all-bets-are-off”). In
practice, δ should be taken significantly small, such as Θ(n−2).

While approximate DP is a relaxation of pure DP, some other relaxations of pure DP also exists, such as zero-
concentrated differential privacy (zCDP) [39] and Rényi Differential Privacy (RDP) [18]. These relaxations do not
have such semantic meanings as approximate DP, but they are shown to stand between pure and approximate DP: they
provide weaker protection than pure DP, but stronger protection than approximated DP, for any given δ > 0. In this
paper, we will focus on Rényi Differential Privacy.

3.2 Rényi Differential Privacy

Define Z = Pr[M(D)∈S]
Pr[M(D′)∈S] as the privacy loss random variable, instead of requiring it always inside range [−ε, ε] as pure

DP, Rényi differential privacy (RDP) constraints its expectation by Rényi divergence.
Definition 2 ((α, ε)-Rényi Differential Privacy (RDP)). [18] Given a real number α ∈ (1,+∞) and privacy parameter
ε ≥ 0, a randomized mechanism (algorithm)M satisfies (α, ε)-RDP if for every pair of neighboring datasets D ∼ D′,
the Rényi α-divergence betweenM(D) andM(D′) satisfies

Dα[M(D)‖M(D′)] ≤ ε (3)

That is, the privacy parameter ε bounds the moment α of the Rényi divergence Dα, which is defined as
Definition 3 (Rényi Divergence). For probability distributionsM(D) andM(D′) over a set Ω, and let α ∈ (1,+∞).
Then Rényi α-divergence is

Dα(M(D)‖M(D′)) :=
1

α− 1
logEx∼M(D′)

[(
PM(D)(x)

PM(D′)(x)

)α]
(4)

One method to achieve RDP is through the Gaussian mechanism: when a query q(D) is taken over the dataset, the
Gaussian mechanism adds a Gaussian noise γ ∼ N (0, σ2Ik), and release perturbed q(D) + γ.

Lemma 1 (Gaussian Mechanism). [18] Let q : Dn → Rk be a vector-valued function over datasets. LetM be a
mechanism releasing q(D) + γ where γ ∼ N (0, σ2Ik), then for any D ∼ D′ and any α ∈ (1,+∞),

Dα(M(D)‖M(D′) ≤ α∆2
2(q)/(2σ2) (5)

Gaussian mechanism relies on the L2 sensitivity:

3
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Definition 4 (L2 sensitivity). Let q : Dn → Rk be a vector-valued function over datasets. The L2 sensitivity of q,
denoted as ∆2(q), is defined as

∆2(q) = sup
D∼D′

‖q(D)− q(D′)‖2 (6)

Therefore, when scale the variance σ2 = α∆2
2(q)/(2ε), thenM satisfies (α, ε)-RDP.

Gaussian mechanism makes the mechanismM satisfy (α, ε)-RDP for a series of α, so we can use ε(α) to denote the
privacy ε under moment α. In empirical risk minimization algorithms, it is common that the mechanism is taken over a
randomized subsample of the dataset B, instead of the whole dataset D. Then, application Gaussian Mechanism on the
subsample B would satisfy (α, ε(α))-RDP with respect to B. Due to the subsampling procedure, the mechanism would
satisfy an amplified privacy with respect to the whole dataset D, as given by the following lemma:
Lemma 2 (RDP for subsampled mechanism). [15] For a randomized mechanismM and a dataset D ∼ Dn, define
M◦ SUBSAMPLE as (1) subsample without replacement m datapoints from the dataset (denote q = m/n as sampling
ratio); (2) applyM on the subsampled dataset as input, then ifM satisfies (α, ε(α))-RDP with respect to the subsample
for all integers α > 2, then the new randomized mechanismM◦ SUBSAMPLE satisfies (α, ε′(α))-RDP with respect to
D, where

ε′(α) ≤ 1

α− 1
log
(
1 + q2

(
α

2

)
min

{
4(eε(2) − 1), 2eε(2)

}
+

α∑
j=3

qj
(
α

j

)
2e(j−1)ε(j)

) (7)

Similar as DP, RDP has below composition properties:
Lemma 3 (RDP composition). [18] For randomized mechanismsM1 andM2 applied on dataset D, ifM1 satisfies
(α, ε1)-RDP and M2 satisfies (α, ε2)-RDP, then their compositionM1 ◦M2 satisfies (α, ε1 + ε2)-RDP.

RDP is said to provide stronger protection than approximate DP, due to below conversion to (ε, δ)-DP:

Proposition 1 (RDP to (ε, δ)-DP). [18] IfM satisfies (α, ε)-RDP, then it satisfies (ε(δ), δ)-DP for ε(δ) ≥ ε+ log(1/δ)
α−1 .

Therefore, when evaluating our proposed algorithms, to compare with other algorithms which satisfies (ε, δ)-DP, we
keep track of (α, ε) pairs which our algorithm satisfies for a series of α values, then convert each pair into a (ε(δ), δ)
pair it satisfies by Proposition 1, for a pre-defined small δ, and choose the smallest ε(δ) as the (ε, δ)-DP it satisfies to
compare with other algorithms.

3.3 Regularized Empirical Risk Minimization

Many problems in machine learning can be formulated as empirical risk minimization (ERM), which seek a solution
x∗ ∈ Θ that minimizes an empirical loss on the training data:

x∗ = arg min
x∈Θ

F (x,D) := arg min
x∈Θ

1

n

n∑
i=1

`(x, di) , (8)

where Θ is a parameter space, ` is a loss function. To prevent overfitting, it is common to add a (data-independent)
regularization term into the objective function, i.e. `(x, di) = f(x, di) +R(x). For L1 regularization, R(x) = λ‖x‖1.
For example, L1 regularized logistic regression, one can fit the model by solving

x∗ = arg min
x∈Θ

1

n

n∑
i=1

log(1 + exp(−lixT si)) + λ‖x‖1 (9)

Recall that each datum di = (si, li) as feature vector si and label li. However, due to that many optimization algorithms
assume the loss function to be doubly differentiable, it cannot be directly used on L1 regularization problems. In this
paper, we make the following assumptions on the loss function:

• Convexity Both the data-dependent function f and regularization term R are convex.
• Differentiability The non-regularized data-dependent function f is continuously differentiable with respect to
x.

• Bounded gradient There exists a constant C > 0 such that ‖∇f(x, d)‖2 ≤ C for all x ∈ Θ and d ∈ D.
Usually it is satisfied by preprocessing the data to ensure the feature si of each data di lies inside a ball of
some radius r, or directly clip the L2 norm of individual gradient by a threshold C.

4
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3.4 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) algorithm was proposed decades ago, and has recently been
widely used to solve optimization problems in machine learning [19]. Consider the optimization problem

minimize f(x) + h(z)

subject to Ax+Bz = c
(10)

where f : Rn → R, g : Rm → R, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. ADMM forms the augmented Lagrangian of
the problem:

Lρ(x, z, y) := f(x) + h(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 (11)

where x, z are called the primal variables, y ∈ Rp is called the dual variable, and ρ > 0 is a pre-selected penalty
parameter.

ADMM algorithm solves the optimization problem by alternating the iterations below

x-minimization step: xk+1 ← arg min
x

Lρ(x, z
k, yk) (12)

z-minimization step: zk+1 ← arg min
z

Lρ(x
k+1, z, yk) (13)

dual variable update: yk+1 ← yk + ρ(Axk+1 +Bzk+1 − c) (14)

Therefore, x and z are updated in an alternating fashion, and separating minimization over x and z into two steps can
make the otherwise hard-to-solve optimization problem solvable in a sequential manner.

3.5 Stochastic ADMM

One variant of ADMM, stochastic ADMM (sADMM), was proposed by [12] and tested on L1 regularized linear
regression (LASSO). This variant was proposed based on the observation that, for ADMM problems, usually one of
f(x) and h(z) is data-dependent, and it is both expensive and unnecessary to exactly solve its minimization step for each
iteration. To be specific, let f be data-dependent, and h be data-independent, then the optimization problem becomes
f(x,D) + h(z), and sADMM approximate Lρ by approximated augmented Lagrangian L̂ρ, defined at iteration k as

L̂ρ(x, z, y) := f(xk) + 〈∇f(xk, Bk), x〉+
‖x− xk‖22

2ηk

+h(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22

(15)

whereBk is a portion of the data accessed at iteration k, and ηk is the learning rate at iteration k. After this approximation
of Lρ by L̂ρ, one can derive an exact solution for each x-minimization step in (12), instead of solving a computationally
expensive ERM problem.

For L1 regularized ERM, let h(z) be the regularization term R(z) = λ‖z‖1, the constraint Ax+Bz = c reduces to
x = z, then by taking derivative of L̂ρ(x, zk, yk) and set to zero, one get

xk+1 ← 1

ρ+ 1/ηk
(−∇f(x,Bk)− yk + ρzk + xk/ηk) (16)

as the exact solution to minimize L̂ρ(x, zk, yk), and

yk+1 ← yk + ρ(x− z) (17)

to update the dual variable y.

4 Algorithm

In this section we propose the main algorithms. We propose two sADMM based L1 regularized classification
algorithms, both satisfies Rényi differential privacy. One achieves privacy by gradient perturbation relying on randomized
subsampling; the other is through model perturbation after each epoch relying on sensitivity calculation. Both algorithms
assume a centralized computing: all training data were collected in a center, which performs the computation locally.
This is because we assume the data is small-to-median sized, where L1 regularization are usually applied on.

5
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4.1 Rényi differentially private subsampling algorithm

Our subsampling private sADMM algorithm (ssADMM) is presented in Algorithm 1. This algorithm is inspired by the
gradient perturbation technique proposed in [4], on differentially private stochastic gradient descent (DP-SGD).

Similar as DP-SGD, our ssADMM algorithm perturbs the mini-batch gradient by Gaussian noise right after gradient
evaluation in line 6. However, Algorithm 1 differs from DP-SGD for the following aspects: (i) By utilizing ADMM,
we are able separate gradient descent and L1 regularization into two steps, so that pure gradient can be computed and
perturbed in x-minimization step; for DP-SGD, proximal gradient has to be used to handle L1 regularization; (ii) while
DP-SGD suggest using constant learning rate, we proved that using decreasing step size in Algorithm 1 help accelerate
convergence, as in Theorem 2 and numerical experiments; (iii) authors of DP-SGD proposed the moment accountant
(MA) method to analyze the privacy loss, and convert to (ε, δ)-DP; we use the most recent RDP for subsampling
mechanism, which is a more advanced technique to analyze privacy loss, and also easier to implement.

Algorithm 1 RDP subsampling sADMM L1 regularized ERM algorithm (ssADMM)

1: Input: Dataset D = {d1, ..., dn}. Penalty parameter ρ, mini-batch size m, total iterations T .
2: Initialize: primal variables x0, z0, dual variable y0.
3: for iteration k = 0, 1, ..., T − 1 do
4: Sample mini-batch Bk from D of size m.
5: gk ← 1

m

∑
di∈Bk ∇f(xk, di) . compute gradient

6: g̃k ← gk + γ where γ ∼ N(0, σ2Ip) . perturb gradient by Gaussian noise
7: Compute xk+1 by (16) using g̃k . primal variable x
8: Compute zk+1 by (18) . primal variable z
9: Compute yk+1 by (17) . dual variable y

10: end for
11: Output: xT

Since the regularization is data-independent, it does not cause any privacy leak. Therefore, any (non-) smooth
regularizers are applicable for Algorithm 1, with the same privacy guarantee. Since in this paper we useL1 regularization
as an example, for the z-minimization step, we utilize soft-thresholding technique from [19] to acquire the solution to
minimize Lρ(xk+1, z, yk):

zk+1 ← Sλ
ρ

(xk+1 + yk/ρ) (18)

where soft-thresholding operator is defined as

St(x)i =


xi − t if xi > t

xi + t if xi < −t
0 otherwise

(19)

Similar technique has been used in [12] and [25].

Another ADMM based algorithm proposed in [28] (DP-ADMM) also used gradient perturbation technique. Our method
differed from theirs for the following aspects: (i) DP-ADMM is used for distributed learning, so that the training
objective is assigned into multiple parties each holding a portion of the data, instead in ssADMM it is the data dependent
loss and regularization that are separated; (ii) in DP-ADMM, each party is perturbing full gradient and transmit to
the center, so that there is no privacy amplification effect, therefore although both algorithms solve optimization
approximately, their privacy loss is higher than ours at each step. Our methods differ from the ADMM-objP method
(DPLL in [25]) for the following aspect: (i) ADMM-objP perturb the training objective at each iteration, and use full
gradient descent multiple times to acquire exact solution at each iteration, which is not as efficient as ours, since our
method only access a portion of data once at each step; (ii) ADMM-objP guarantees privacy only if exact solution is
acquired at each step, therefore the privacy guarantee is only theoretically true. The privacy guarantee of ssADMM is
given by Theorem 1.

Theorem 1. Algorithm 1 is (α, ε)-RDP.

6
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Proof. We first show the L2 sensitivity of batch gradient gk. Assume neighboring mini-batches Bi and B′i differ by
one record ds ∈ B and ds ∈ B′, by Definition 4,

∆k
2(g) =∆2[

1

m

∑
di∈Bk

∇f(xk, di)]

= sup
Bk∼B′k

‖ 1

m

∑
di∈Bk

∇f(xk, di)−
1

m

∑
di∈B′k

∇f(xk, di)‖2

=
1

m
sup ‖∇f(xk, ds)−∇f(xk, d′s)‖2 ≤

2C

m

(20)

Let εk(α) = α(∆k
2(g))2/2σ2. So each iteration is (α, εk(α))-RDP by Lemma 1, with respect to the batch Bk. Since

Bk is a randomized subsample of D, by Lemma 2, we can calculate ε′k(α) so that each iteration is (α, ε′k(α))-RDP
with respect to D. Since the algorithm has run T iterations, let ε =

∑T−1
k=0 ε

′
k(α), by Lemma 4, Algorithm 1 is

(α, ε)-RDP.

Theorem 2. If we choose ηk = O(1/
√
k), and train for t iterations, then Algorithm 1 has the expected convergence

rate of O(1/
√
t).

Proof. See proof in appendix.

4.2 Rényi differentially private model perturbation algorithm

Our model perturbation private sADMM algorithm (mpADMM) is presented in Algorithm 2. Different from perturbing
the gradients, this algorithm use the unperturbed gradients to do model calculation for a whole step, and keep track
of the L2 sensitivity of all data-dependent model vectors. After each epoch, Gaussian noises are injected into model
vectors x, y, z, and total privacy ε is updated, according to sensitivity and σ2. Due to it is difficult to calculate the
sensitivity over multiple epochs, we perform output perturbation after each epoch. Therefore, this algorithm can be
considered as multiple-time output perturbation algorithm.

Algorithm 2 RDP model perturbation sADMM L1 regularized ERM algorithm (mpADMM)

1: Input: Dataset D = {d1, ..., dn}. Penalty parameter ρ, total epochs T .
2: Initialize: primal variables x0, z0, dual variable y0.
3: for epoch k = 0, 1, ..., T − 1 do
4: gk ← 1

n

∑
di∈D∇f(xk, di) . compute gradient

5: Compute xk+1 by (16) . primal variable x
6: Compute zk+1 by (18) . primal variable z
7: Compute yk+1 by (17) . dual variable y
8: Sample γ1, γ2, γ3 ∼ N(0, σ2Ip)
9: xk+1 ← xk+1 + γ1, yk+1 = yk+1 + γ2, zk+1 = zk+1 + γ3 . perturb the model

10: end for
11: Output: xT

To calculate the sensitivity, since unperturbed batch gradient is used here, after one epoch, all primal and dual variables
are data-dependent. Assume neighboring datasets D and D′ differ at position s: ds ∈ D and d′s ∈ D′. We define
δx := x− (x′) where x and (x′) are primal variables evaluated on D and D′, respectively, after one epoch. Also, define
δkz and δky similarly. Then, after epoch k,

δk+1
x =xk+1 − (x′)k+1

=
1

ρ+ 1/ηk
(− 1

n

∑
di∈D

∇f(xk, di)− yk + ρzk + xk/ηk)−

1

ρ+ 1/ηk
(− 1

n

∑
di∈D′

∇f(xk, di)− yk + ρzk + xk/ηk)

=(∇f(xk, d′s)−∇f(xk, ds))/n(1 + ηk+1ρ)

(21)

7



A PREPRINT - JUNE 18, 2021

Consider when the soft-thresholding operator St (19) applied on two vectors w and w′, and compare St(w)− St(w′)
with w − w′ element-wise:

• If wi and w′i are of different signs, applying S on wi and w′i would bring them closer, therefore |St(wi) −
St(w′i)| < |wi − w′i|;

• If wi and w′i are of the same sign, without loss of generality, let |wi| ≤ |w′i|. One can easily observe that
– If t ≤ |wi| ≤ |w′i|, then |St(wi)− St(w′i)| = |(|wi| − t)− (|w′i| − t)| = |wi − w′i|;
– If |wi| < t < |w′i|, then |St(wi)− St(w′i)| = |0− (|w′i| − t)| < |wi − w′i| since t < |w′i|;
– If |wi| ≤ |w′i| ≤ t, then |St(wi)− St(w′i)| = 0 ≤ |wi − w′i|;

For vectors u, v, we can use u 4 v to represent |ui| < |vi| and ui, vi have the same sign, for each index i. Obviously
u 4 v indicates ‖u‖2 ≤ ‖v‖2. In either case above, we have |St(wi)− St(w′i)| ≤ |wi − w′i|, and sign preserves (or
becomes zero), so St(w)− St(w′) 4 w − w′ for any threshold t. Therefore,

δk+1
z =zk+1 − (z′)k+1

=Sλ
ρ

(xk+1 + yk/ρ)− Sλ
ρ

((x′)k+1 + yk/ρ)

4xk+1 + yk/ρ− ((x′)k+1 + yk/ρ) = δk+1
x

(22)

and
δk+1
y = yk+1 − (y′)k+1

= yk + ρ(xk+1 − zk+1)−
(
yk + ρ((x′)k+1 − (z′)k+1)

)
= ρ(δk+1

x − δk+1
z ) 4 ρδk+1

x

(23)

The last 4 holds because δk+1
z 4 δk+1

x , the subtraction by δk+1
z only pushes each element of δk+1

x towards zero. So we
have below conclusions for sensitivities of x, z, y after epoch k:

∆k+1
2 (x) = ‖δk+1

x ‖2 ≤
2C

n(1 + ηk+1ρ)
(24)

∆k+1
2 (z) = ‖δk+1

z ‖2 ≤ ‖δk+1
x ‖2 ≤

2C

n(1 + ηk+1ρ)
(25)

∆k+1
2 (y) = ‖δk+1

y ‖2 ≤ ρ‖δk+1
x ‖2 ≤

2ρC

n(1 + ηk+1ρ)
(26)

Theorem 3. Algorithm 2 is (α, ε)-RDP.

Proof. Let εk+1,w(α) = α(∆k+1
2 (w))2/2σ2 for w ∈ {x, z, y}. By Lemma 1, each epoch is

(α,
∑
w∈{x,z,y} εk+1,w(α))-RDP, with respect to D. Since the algorithm has run T epochs, by Lemma 4, let

ε =
∑T
k=1

∑
w∈{x,z,y} εk,w(α)), then Algorithm 2 is (α, ε)-RDP.

5 Experimental Results

In this section we will present our experimental results on both real and simulated datasets. We will first show
performance of classification on two real datasets, then show performance of both classification and feature selection on
a synthetic dataset.

5.1 ERM models

We perform our experiments on L1 regularized logistic regression and huberized SVM. The objective function of
logistic regression is in (9). For huberized SVM, the objection function is

F (x,D) :=
1

n

n∑
i=1

`huber(lix
T si) + λ‖x‖1 (27)

where

`huber(z) :=


0 if z > 1 + h
1

4h (1 + h− z)2 if |1− z| ≤ h
1− z otherwise

(28)

is the huberized hinge loss (we set h = 0.5 in all experiments).
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5.2 Baselines

Many differentially private ERM algorithms cannot be applied to L1 regularized classification, such as ObjPert [1], [2],
OutPert [40], PVP and DVP [5], PSGD [16], and RSGD [7]. Therefore, we compare our proposed algorithms with
these baselines: DP-SGD [4], DP-ADMM [25], ADMM-objP [28], and Non-Private approach.

DP-SGD performs stochastic gradient descent with Gaussian perturbation. (Although their paper proposed moment
accountant approach to analyze the privacy leak, we use Lemma 2 to analyze as we do on ssADMM, since it gives
tighter bound on ε.) For DP-SGD, when the algorithm requires taking gradient on f(xk, Bk) + λ‖xk‖1, we use the
proximal gradient technique

xk+1 ← Sληk [xk − ηk∇f(xk, Bk)] (29)
to update xk+1, as suggested in [41] and [42]. DP-ADMM is a distributed learning version of ADMM, where each party
transfers perturbed primal variables to the center, and the center draw a consensus of the parties then transfer primal and
dual variable back to each party. ADMM-objP is an ADMM version of the objective perturbation algorithm. At each
iteration, the trainer optimize a perturbed unregulated objective function, therefore although the algorithm satisfies pure
ε-DP, in practice it is not really differentially private due to the objective function can only be approximately solved.
According to their paper, we apply gradient descent enough times and assume the optimization problem is exactly
solved at each iteration.

The DP-SVRG algorithm presented in [6] can also be applied on non-smooth regularizers, but we have implemented
and found that, due to the extra privacy budget required to spent on perturbing the full gradient, with the high privacy
range (ε ≤ 1), if we choose a large σ2, the perturbed full gradient cannot help as a control variant to fasten the training,
but actually slows down the minimization of empirical loss; if we choose a small σ2, the privacy budget accumulates
too fast and exceed our range in a few iterations. Therefore we have dropped this algorithm in our comparisons.

5.3 Datasets and Pre-proessing

Two real datasets on human subjects were used in our study: (i) the Adult dataset [43] was generated from 1994 US
Census, with n = 48, 842, p = 124, and the frequency of the majority label is 0.761; (ii) the IPUMS-BR dataset [44]
was extracted from IPUMS data, with n = 38, 000, p = 53, and the frequency of the majority label is 0.507.

To test the performance on feature selection, we created a synthetic dataset with many irrelevant features, using similar
strategy as in [25]. To be specific, we generate a 100-dimension data si ∼ N (0100,Σ) where Σi,j = 0.5|i−j|. Let x
be the true model, defined as x1:10 = (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5), x11:20 = −x1:10, and x21:100 = (0, ..., 0).
For the label of each row li, we sample the Bernoulli distribution with P (li = 1) = 1/(1 + exp(−xT si + ι)), where
ι ∼ N (0, 1) is a random noise. Therefore, to predict li, si contains 20 relevant features and 80 irrelevant features. We
generate 40,000 samples to constitute one dataset, the frequency of the majority label is 0.500. We only perform logistic
regression on simulated data, since it is usually used for attribute selection.

We did 10-fold cross validation on each experiment for each algorithm, and due to randomness from noisy injection,
we repeat each fold 10 times and report average classification accuracy and objective value on testing data. For the
simulated data, we generated 10 datasets using the simulation strategy, and report the average performance.

An intercept is added into each dataset. All numerical attributes are re-scaled into [0, 1] by Min-Max scalar. For the
algorithms requiring feature vector to have bounded L2 norm, we normalize to make ‖xi‖ ≤ 1 for i = 1, ..., n.

5.4 Parameter setting

We keep δ = 10−8 for all experiments. For those algorithms satisfying RDP, we choose the best conversion to (ε, δ)-DP.
In non-private settings, model users usually train a series models with different candidates of regularization coefficient
λ, and select the one with highest testing performance. However, this process is data-dependent, therefore in private
settings we cannot take a “best performing” coefficient for granted. Instead, we performed two group of experiments by
two frequently using coefficients: low regularization with λ = 0.0001 and high regularization with λ = 0.001.

For ssADMM and DP-SGD, we set mini-batch size m =
√
n. We choose ηk = η0/h where h is the current expected

epoch (we consider every n/m iterations as one expected epoch), since we find this schedule has the best performance
for both algorithms, compare to a constant learning rate, or a decreasing one at a rate of O(1/

√
k). After tuning on

the simulated data, we set penalty term ρ = 0.25 for ssADMM and ρ = 0.5 for mpADMM. For mpADMM, we use a
constant learning rate η. For DP-ADMM, we assume there are 2 parties, each holding half of the data. (If there is only
one party, DP-ADMM will reduce to DP-SGD with sampling ratio=1.) For ADMM-objP, at each iteration we optimize
the perturbed objective function by full gradient descent running 20 epochs. Other parameters for DP-ADMM and
ADMM-objP are set according to their paper.

9
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5.5 Classification Performance on Real Data
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(d) IPUMS-BR λ = 0.001

Figure 1: Logistic regression result by ε (Top: Classification accuracy; Bottom: Objective value)
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(d) IPUMS-BR λ = 0.001

Figure 2: Huberized SVM result by ε (Top: Classification accuracy; Bottom: Objective value)

Figure 1 and Figure 2 plots the testing data accuracy (top) and objective values (bottom) of the algorithms trading
off with privacy parameter ε, for L1 regularized logistic regression and huberized SVM, respectively. We can see
for classification accuracy, ssADMM outperforms other algorithms in most cases. This is in accordance with the
experiment in [12] that sADMM outperforms proximal gradient in non-private setting. [45] also show that ADMM
based algorithms are more robust to noisy data with outliers. Although DP-SGD has better classification accuracy
than mpADMM in some cases, its objective value is usually higher. DP-ADMM and ADMM-objP can achieve high
utility when ε gets high, but in our testing range of ε, they cannot perform as good as other algorithms. mpADMM
performs better in adult dataset than in IPUMS-BR dataset, probably because Adult dataset is more sparse compare to
IPUMS-BR, due to it is binary transferred through one-hot encoding. And that model perturbation are more robust to
data with irrelevant attributes is in accordance with our observations on the simulated data.

5.6 Performance on Simulated Data

To measure the attribute selection performance, we test how many relevant attributes are selected by each algorithm for
L1 regularized logistic regression. Since the dataset is standardized, we can use the magnitude of the coefficient to rank
the attributes, due to that noisy perturbation might cause the coefficients of irrelevant attributes slightly differ from zero.

We define a criterion ξk to measure the coverage of relevant attributes if top k attributes suggested by the algorithm were
selected. For example, since we know there are 20 relevant attributes in the simulated data, if we select k = 30 attributes
by magnitude of coefficient, 16 of them are the true relevant ones (i.e. among x1, ..., x20), then ξ30 = 16/20 = 0.8.
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(d) Objective value λ = 0.001

Figure 3: Classification performance on simulated data
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Figure 4: Attribute selection performance on simulated data (Top: λ = 0.0001; Bottom: λ = 0.001)

This make sense because in real case, the number of attributes we choose to select from an attribute ranker depends on
the budget we can spend to collect data. We test all algorithms for k = 20, 25, 30, and 40.

Figure 3 shows the classification performance of each algorithm on the simulated data. For non-private performance,
we assume the true model is known. We can see that ssADMM, mpADMM, and DP-SGD have similar performance in
classification. Figure 4 shows the performance of attribute selection. Although classification accuracy are close, we
can see that mpADMM can detect more relevant attributes, especially in the lower ε range. ADMM-objP, which was
originally proposed for feature selection, can outperform ssADMM and DP-SGD for feature selection in low ε while its
classification accuracy is behind ssADMM and DP-SGD. However, ADMM-objP usually require much more epochs in
training compare to the other algorithms. Therefore, if we know the data is sparse and the major goal is focused on
attribute selection, mpADMM is more preferable.

6 Conclusions

We present two privatizations of stochastic ADMM under Rényi differential privacy. One algorithm combines gradient
perturbation technique with privacy amplification result to reduce the total privacy loss throughout the execution. The
other algorithm uses the output perturbation (with numerical computation of sensitivity) to privately release the solution
at the end of each training epoch. These algorithms can be used to solve optimization problems with complex structural
regularization that induces sparsity.

References

[1] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk minimization.
Journal of Machine Learning Research, 12(Mar):1069–1109, 2011.

[2] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization and high-
dimensional regression. In Conference on Learning Theory, pages 25–1, 2012.

11



A PREPRINT - JUNE 18, 2021

[3] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on,
pages 464–473. IEEE, 2014.

[4] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318. ACM, 2016.

[5] Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Efficient private erm for smooth objectives. arXiv
preprint arXiv:1703.09947, 2017.

[6] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited: Faster and more
general. In Advances in Neural Information Processing Systems, pages 2722–2731, 2017.

[7] Chen Chen, Jaewoo Lee, and Dan Kifer. Renyi differentially private erm for smooth objectives. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 2037–2046, 2019.

[8] Ryan J Tibshirani, Jonathan Taylor, et al. The solution path of the generalized lasso. The Annals of Statistics,
39(3):1335–1371, 2011.

[9] Xiao Zhang, Lingxiao Wang, Yaodong Yu, and Quanquan Gu. A primal-dual analysis of global optimality in
nonconvex low-rank matrix recovery. In International conference on machine learning, pages 5857–5866, 2018.

[10] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of dimensionality: Recovering mixture data via dictionary
pursuit. IEEE transactions on pattern analysis and machine intelligence, 39(1):47–60, 2016.

[11] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational problems via finite
element approximation. Computers & Mathematics with Applications, 2(1):17–40, 1976.

[12] Hua Ouyang, Niao He, Long Tran, and Alexander Gray. Stochastic alternating direction method of multipliers. In
International Conference on Machine Learning, pages 80–88, 2013.

[13] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American statistical Association, 96(456):1348–1360, 2001.

[14] Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The Annals of statistics,
38(2):894–942, 2010.

[15] Yu-Xiang Wang, Borja Balle, and Shiva Kasiviswanathan. Subsampled r\’enyi differential privacy and analytical
moments accountant. arXiv preprint arXiv:1808.00087, 2018.

[16] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey Naughton. Bolt-on differential
privacy for scalable stochastic gradient descent-based analytics. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 1307–1322. ACM, 2017.

[17] Antti Koskela and Antti Honkela. Learning rate adaptation for differentially private stochastic gradient descent.
arXiv preprint arXiv:1809.03832, 2018.

[18] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF),
pages 263–275. IEEE, 2017.

[19] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends R© in Machine
learning, 3(1):1–122, 2011.

[20] Huachun Tan, Jianshuai Feng, Guangdong Feng, Wuhong Wang, and Yu-Jin Zhang. Traffic volume data outlier
recovery via tensor model. Mathematical Problems in Engineering, 2013, 2013.

[21] Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play admm for image restoration: Fixed-point
convergence and applications. IEEE Transactions on Computational Imaging, 3(1):84–98, 2016.
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A Proof of Theorem 2

The proof is done by applying similar technique for Theorem 1 in [12], plus considering the Gaussian noise term added.
Define

u :=

(
x
z

)
, uk :=

(
1
k

∑k−1
i=1 x

i

1
k

∑k−1
i=1 z

i

)
, θ(u) := f(x) + h(z),
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and define

w :=

(
x
z
y

)
, wk :=

 1
k

∑k−1
i=1 x

i

1
k

∑k−1
i=1 z

i

1
k

∑k−1
i=1 y

i

 , F (w) :=

( −y
y

x− z

)

Denote u∗ :=

(
x∗

z∗

)
as the optimal solution, and δk+1 := ∇f(xk, Bk)−∇f(xk, D), dX := supxa,xb∈X ‖xa − xb‖,

dy∗ := ‖y0 − y∗‖.

Therefore, consider the expectation of θ(ut)− θ(u∗) after t iterations,

E
[
θ(ut)− θ(u∗) + (wt − w∗)TF (wt)

]
=E
[
θ(ut)− θ(u∗) + (xt − x∗)T (−yt) + (zt − z∗)T (yt)

+ (y − y)T (xt − zt)
]

≤E
[

1

t

t−1∑
k=0

[ηk
2
‖∇f(xk, Bk) + γk‖2 +

1

2ηk
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2)

+ 〈δk+1, x
∗ − xk〉

]
+

1

t

(ρ
2
‖x∗ − z0‖2 +

1

2ρ
‖y − y0‖2

)]
≤E
[

1

t

t−1∑
k=0

[ηk(C2 + pσ2)

2
+ 〈δk+1, x

∗ − xk〉
]

+
1

t

( d2
X

2ηt−1
+
ρ

2
d2
y∗ +

1

2ρ
‖y − y0‖2

)]
=E
[

1

t

t−1∑
k=0

[ηk(C2 + pσ2)

2

]
+

1

t

( d2
X

2ηt−1
+
ρ

2
d2
y∗ +

1

2ρ
‖y − y0‖2

)]

(30)

while the first inequality holds by applying an expected version of Lemma 2 in [12], note that since noisy perturbation
γ ∼ N (0, σ2Ip), E[∇f(xk, Bk) +γ] = ∇f(xk, Bk), and E[‖∇f(xk, Bk) +γk‖2] ≤ E[‖∇f(xk, Bk)‖2] +E[‖γ‖2] +
2E[‖∇f(xk, Bk)‖]E[γ] ≤ C2 + pσ2. The last equality holds because we assume xk is independent of Bk (which was
used to calculate xk+1) is independent of xk, hence EBk|B[0:k−1]

〈δk+1, x
∗ − xk〉 = 0.

The above holds for all dual variable y, hence it holds for y in a ball B0 = {y : ‖y‖2 ≤ β}. According to (33) in [12],
max
y∈B0

{θ(ut)− θ(u∗) + (wt − w∗)TF (wt)} = θ(ut)− θ(u∗) + β‖xt − zt‖ (31)

Therefore, continue on (30), we can have
E
[
θ(ut)− θ(u∗) + β‖xt − zt‖

]
≤E
[

1

t

t−1∑
k=0

[ηk(C2 + pσ2)

2

]
+

1

t

( d2
X

2ηt−1
+
ρ

2
d2
y∗ +

1

2ρ
‖y − y0‖2

)]

≤E
[

1

t

t−1∑
k=0

[ηk(C2 + pσ2)

2

]
+

1

t

( d2
X

2ηt−1
+
ρ

2
d2
y∗
)]

+ E
[

max
y∈B0

{ 1

2ρt
‖y − y0‖2

]
≤1

t

(
C2 + pσ2

2

t∑
k=1

ηk +
d2
X

2ηt−1

)
+
ρd2
y∗

2t
+
β2

2ρt

(32)

So if we choose ηk = dX√
2(C2+pσ2)k

= O(1/
√
k), E

[
θ(ut)− θ(u∗) + β‖xt − zt‖

]
≤ dX

√
2(C2+pσ2)√

t
+

ρd2y∗

2t + β2

2ρt =

O(1/
√
t).

14


	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Differential Privacy
	3.2 Rényi Differential Privacy
	3.3 Regularized Empirical Risk Minimization
	3.4 Alternating Direction Method of Multipliers
	3.5 Stochastic ADMM

	4 Algorithm
	4.1 Rényi differentially private subsampling algorithm
	4.2 Rényi differentially private model perturbation algorithm

	5 Experimental Results
	5.1 ERM models
	5.2 Baselines
	5.3 Datasets and Pre-proessing
	5.4 Parameter setting
	5.5 Classification Performance on Real Data
	5.6 Performance on Simulated Data

	6 Conclusions
	A Proof of Theorem 2

