
HKUST SPD - INSTITUTIONAL REPOSITORY

Publisher

Copyright

This version is available at HKUST SPD - Institutional Repository (https://repository.ust.hk/ir)

If it is the author's pre-published version, changes introduced as a result of publishing processes
such as copy-editing and formatting may not be reflected in this document. For a definitive version
of this work, please refer to the published version.

Version

DOI

Title

Authors

Source

https://repository.ust.hk/ir/

Watchman: Monitoring Dependency Conflicts for Python
Library Ecosystem

Ying Wang
wangying@swc.neu.edu.cn

Software College, Northeastern
University, China

Ming Wen∗
mwenaa@hust.edu.cn

School of Cyber Science and
Engineering, HUST, China

Yepang Liu∗
liuyp1@sustech.edu.cn

Department of Computer Science
and Engineering, SUSTech, China

Yibo Wang, Zhenming Li,
Chao Wang

{wybneu,lzmneu,wangcneu}@163.com
Software College, Northeastern

University, China

Hai Yu
yuhai@mail.neu.edu.cn

Software College, Northeastern
University, China

Shing-Chi Cheung
scc@cse.ust.hk

Department of Computer Science
and Engineering, HKUST, China

Chang Xu
changxu@nju.edu.cn

State Key Lab for Novel Software
Technology and Department of

Computer Science and Technology,
Nanjing University, China

Zhiliang Zhu
zzl@mail.neu.edu.cn

Software College, Northeastern
University, China

ABSTRACT
The PyPI ecosystem has indexed millions of Python libraries to
allow developers to automatically download and install dependen-
cies of their projects based on the specified version constraints. De-
spite the convenience brought by automation, version constraints
in Python projects can easily conflict, resulting in build failures.
We refer to such conflicts as Dependency Conflict (DC) issues. Al-
though DC issues are common in Python projects, developers lack
tool support to gain a comprehensive knowledge for diagnosing
the root causes of these issues. In this paper, we conducted an em-
pirical study on 235 real-world DC issues. We studied the man-
ifestation patterns and fixing strategies of these issues and found
several key factors that can lead to DC issues and their regressions.
Based on our findings, we designed and implementedWatchman,
a technique to continuously monitor dependency conflicts for the
PyPI ecosystem. In our evaluation,Watchman analyzed PyPI snap-
shots between 11 Jul 2019 and 16 Aug 2019, and found 117 potential
DC issues. We reported these issues to the developers of the cor-
responding projects. So far, 63 issues have been confirmed, 38 of
which have been quickly fixed by applying our suggested patches.

CCS CONCEPTS
• Software and its engineering → Software libraries and reposi-
tories;

KEYWORDS
Python, dependency conflicts, software ecosystem

∗Ming Wen and Yepang Liu are the corresponding authors of this paper. HUST,
SUSTech, and HKUST are short for Huazhong University of Science and Technology,
Southern University of Science and Technology, and The Hong Kong University of
Science and Technology, respectively.

ACM Reference Format:
Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,
Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:
Monitoring Dependency Conflicts for Python Library Ecosystem. In Pro-
ceedings of 42nd International Conference on Software Engineering, Seoul,
Republic of Korea, May 23–29, 2020 (ICSE ’20), 11 pages.
https://doi.org/10.1145/3377811.3380426

1 INTRODUCTION
Python projects are commonly shared as third-party libraries in
a server-side central repository PyPI [42], and reused by other
projects with a client-side library installer pip [36, 46, 55]. By June
2019, the PyPI ecosystem (PyPI for short) has indexed over 1.43
million Python libraries together with their metadata (e.g., version
information, dependencies on other libraries, etc.).

To use a library on PyPI, developers need to specify the desired
version constraint [51] in a configuration script such as setup.py
and requirements.txt [44]. When a library is reused by another
project, this library and other libraries on which it depends will be
automatically installed at the project’s build time. The automation
smartly combines a server-side central repository and a client-side
library installer to manage library dependencies. It considerably
simplifies the build process of Python projects. Besides, the version
constraint mechanism for a required library allows developers to
restrict the dependencies to a set of compatible versions and en-
ables automatic library evolution [3]. However, such automation
comes with the risk of potential Dependency Conflict (DC) issues,
which can cause build failures when the installed version of a li-
brary violates certain version constraints on the library.

Figure 1 gives a real example: issue #1277 [6] in channels. As
shown in channels 2.1.7’s configuration script, it directly requires
libraries asgiref (version constraint: ⟨≥ 2.3∧ < 3.0 ⟩) and daphne
(version constraint: ⟨≥ 2.2 ∧ < 3.0 ⟩). Note that when download-
ing a library, the pip installer always chooses the latest version

https://doi.org/10.1145/3377811.3380426

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

/*channels 2.1.7 */
asgiref ≥ 2.3, < 3.0
daphne ≥ 2.2, < 3.0

(installed 2.3.0)
(installed 2.2.5)
(installed 2.3.0)

Before 9 Apr, 2019
After 9 Apr, 2019

/*channels 2.2.0 */
asgiref ≥ 3.0, < 4.0
daphne ≥ 2.2, < 3.0

(installed 3.1.1)
(installed 2.3.0)

14 Apr, 2019, Fixed Version

/*daphne 2.2.5 */
It does not require asgiref

/*daphne 2.3.0 */
asgiref ≥ 3.0, < 4.0

Build Error : asgiref 2.3.0 is installed but asgiref ≥ 3.0, < 4.0 is required.

/*channels-redis 2.3.3 */
asgiref ≥ 2.1, < 3.0
channels ≥ 2.0, < 3.0

(installed 2.3.0)
(installed 2.1.7)
(installed 2.2.0)

Before 9 Apr, 2019
After 14 Apr, 2019

(a.2)
No conflict

(c.2)
Conflicting

(a)

(b)

(c)

(a.1)
Conflicting

(c.1)
No conflict

Figure 1: Illustrative examples of dependency conflict issues

on PyPI that satisfies the library’s version constraint [37]. No DC
issues occurred when channels 2.1.7 was built before 9 Apr 2019.
Both asgiref 2.3.0 and daphne 2.2.5 selected for the build sat-
isfy the concerned constraints. However, issue #1277 [6] arose af-
ter 9 Apr 2019 when channels 2.1.7 was built via selecting the
newly released library daphne 2.3.0, which additionally requires
library asgiref (version constraint: ⟨≥ 3.0∧ < 4.0⟩). The DC issue
(the red curve a.1) happened because pip selected asgiref 2.3.0
to satisfy the direct dependency constraint ⟨≥ 2.3 ∧ < 3.0⟩, but this
version violated the constraint ⟨≥ 3.0 ∧ < 4.0⟩ specified in daphne
2.3.0. This issue caused a build error as shown in Figure 1(b).

To fix the issue, channels’s developers released version 2.2.0 on
14 Apr 2019, which updated the requirement on asgrief’s version
to ⟨≥ 3.0 ∧ < 4.0⟩. This update led to the installation of asgrief
3.1.1 (the latest version under 4.0) when building channels 2.2.0,
thus resolving the failure (the green curve a.2). However, this fix
induced another DC issue in channels-redis (issue #152 [7]), as
Figure 1(c) shows. After the upgrade of channels, to build channels
-redis 2.3.3, pip still selected asgiref 2.3.0 to satisfy the direct
dependency constraint ⟨≥ 2.1 ∧ < 3.0⟩. Unfortunately, this version
violates the constraint ⟨≥ 3.0∧ < 4.0⟩ that is transitively introduced
by channel 2.2.0, causing a build failure (red curve c.2).

To understand the scale of DC issues in Python projects and
their characteristics, we empirically studied 235 DC issues in 124
popular Python projects, which were reported on GitHub in the
last five years. We explored the following two research questions:
• RQ1 (ManifestationPatterns):HowdoDC issuesmanifest them-
selves in Python projects? Are there common patterns that can be
leveraged for automated diagnosis of these issues?
• RQ2 (Fixing Strategies): How do developers fix DC issues in
Python projects? Are there common practices that can be leveraged
for automated repair of these issues?
Through investigating the research questions, we observe that

DC issues mainly arise from conflicts caused by remote depen-
dency updates or local environments (see Section 3.2). We also
found common strategies for fixing DC issues and key factors that
can lead to DC issues and their regressions (see Section 3.3).

As a real-world Python developer commented on the report of
pyenv issue #3118 [21], the dependency resolution in the Python
world is far from being easy. The difficulties are mainly attributed
to the complex dependencies across projects. Developers often spec-
ify version constraints on the dependent libraries of their projects
without considering the constraints specified in other projects. To
be specific, we summarize three major challenges as follows.

First, the version of a library installed for a Python project can
vary over time. Recall that for each required library of a project,
pipwill install its latest version satisfying the concerned constraint.

Therefore any update of libraries on PyPI can affect the version of
the libraries installed for the downstream projects (i.e., the projects
that depend on these libraries), causing potential build failures.

Second, when a library updates its version constraints on other
libraries, its downstream projects might be affected. The impact
can be further propagated to a wide range of projects.

Third, it is difficult for Python developers to obtain a full pic-
ture of their projects’ dependencies with version constraint infor-
mation. State-of-the-art tools like pipenv and Poetry only show
which libraries have been installed, rather than their dependencies.

To address the challenges and help Python developers combat
DC issues, we designed a technique, Watchman, which performs
a holistic analysis from the perspective of the entire PyPI ecosys-
tem, to continuously monitor dependency conflicts caused by li-
brary updates. For each library on PyPI, Watchman builds a Full
Dependency Graph (FDG), a formal model that simulates the pro-
cess of installing dependencies for Python projects. The FDGs can
be incrementally updated as the libraries evolve on PyPI. Watch-
man then analyzes them to detect and proactively prevent DC is-
sues. Since FDGs record full dependencies of Python projects with
version constraints, they can also provide useful diagnostic infor-
mation to help developers understand the root causes of the de-
tected DC issues, thus facilitating issue fixing.

To evaluateWatchman, we played back the evolution history of
all libraries on PyPI, from 1 Jan 2017 to 30 Jun 2019 and deployed
Watchman to detect DC issues. After analyzing PyPI snapshots
during this time period, Watchman detected 515 DC issues and
502 (97.5%) of themwere indeed fixed by developers during the evo-
lution of the libraries. To evaluate the usefulness of Watchman,
we ran it to monitor dependency conflicts for the PyPI ecosys-
tem between 11 Jul 2019 and 16 Aug 2019. During the time pe-
riod, it detected and reported 117 previously-unknown DC issues,
63 of which (53.8%) have been confirmed by developers. Further,
38 (60.3%) confirmed issues have been fixed by applying our sug-
gested patches. Developers also expressed great interests inWatch-
man. In summary, our work makes three major contributions:

• Originality: To the best of our knowledge, we conducted the
first empirical study of DC issues in open-source Python projects.
Our findings help understand the characteristics of DC issues
and provide guidance to future studies related to this topic.
• Dataset:We release the dataset for empirical study, comprising
235 DC issues collected from 124 real-world Python projects, to
facilitate future research.
• Technique: We proposed a formal model to simulate the build
process of Python projects and developed a DC issue diagnos-
tic techniqueWatchman (http://www.watchman-pypi.com/)
based on the model. Experimental results show thatWatchman
can monitor the entire PyPI ecosystem and detect DC issues
with a high precision.

2 PRELIMINARIES
2.1 Dependencies of Python Projects
Figure 2 illustrates the concept of Python project dependencies.
Code reuse is pervasive in the Python world, where projects of-
ten reuse other projects as libraries. The configuration script of a

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Python Project

Upstream Projects

Transitive
Dependency

Direct
Dependency

Downstream
Projects

Depend on Relationship

<C>

<C>

<C>

<C>

<C>

Remote DependencyLocal Dependency

GCC, Python, …

Developer

Local Environment

Build Failure Caused by
DC Issues

The PyPI Ecosystem 2019-0
3-21

2019-05-10

Released Library
Remote Dependency
Direct Dependency
Local Environment

Figure 2: Dependencies of a Python project

project 𝑃 explicitly constrains the versions of direct dependencies
that 𝑃 may use. If these direct dependencies further rely on other
libraries, such libraries are called transitive dependencies of 𝑃 . In
this paper, all direct and transitive dependencies are collectively
referred to as the upstream projects of 𝑃 . Correspondingly, we call
𝑃 a downstream project of its dependencies.

Python projects are often developed in a self-contained envi-
ronment, which can be created by tools such as virtualenv [43],
conda [2], and pipenv [38].When building a Python project, the li-
brary installer pip downloads most of the required libraries from
PyPI. We refer to such libraries that need to be downloaded as
remote dependencies. For each required remote dependency, pip
downloads it according to its name and version constraint. If mul-
tiple releases of a library on PyPI satisfy the version constraint,
pip downloads and installs the latest version of the library [36].

Besides remote dependencies, the development of a Python project
can be affected by its local environment, including the local devel-
opment tool chains (e.g., the Python interpreter and GCC) and local
dependencies (i.e., libraries that are already installed). Local depen-
dencies exist when the development environment is not clean (e.g.,
the project is not developed in an isolated virtual environment). If
any version of a required dependency has been installed locally,
pip will not download the dependency from PyPI.

2.2 Library Version Constraints
To use a library, a Python project needs to specify a constraint on
its desired library versions as shown in Figure 2 (i.e., the C anno-
tated on some edges). To facilitate subsequent discussions, we for-
mally define version constraint using the grammar below (𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑑
refers to a specific version of a library, e.g., 1.24.1):

CF 𝜖 | range ∧ extra | = 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑑
rangeF range ∧ 𝑜𝑝 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑑 | 𝑜𝑝 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑑
extraF 𝜖 | ≠ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑑 | extra ∧ ≠ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑑
𝑜𝑝 F > | ≥ | < | ≤

(1)

A constraintC could be empty, in which case pip will choose to
download the latest version of the library from PyPI if the library
is not installed in the local environment. Developers may also spec-
ify a specific version that is desired (e.g., = 1.24.1) or undesired (e.g.,
≠ 1.24.1). In practice, developers mostly specify a range of versions
in a constraint (e.g., ≤ 1.24.1 ∧ > 1.11.0). To understand how fre-
quent ranges are used in version constraints, we investigated the
top 1,000 popular Python projects on PyPI based on the number of
downstream projects. We found that 92.2% of these projects’ direct

Number of projects in each category

Utilities
Administration
Installation/Setup
Testing
Libraries
Build Tools
Development
Security
Engineering
Office/Business
OthersStars Forks Issues Revisions Downstream

Projects

Category

KLOC

KLOC
0K-1K
1K-5K
5K-10K
10K-50K
50K-100K
100K-500K

111810204671371810

17 33 19 28 17 10

0

2000

4000

6000

8000

0

1000

2000

3000

4000

5000

0

2000

4000

6000

8000

0

1

2

3

4

x 10
4

0

2000

4000

6000

8000×10

Figure 3: Statistics of the projects used in our empirical study

dependencies are constrained to a range of versions. In compari-
son, this ratio is only 0.03% for Java projects managed by Maven fol-
lowing the same investigation method. Such heavy uses of ranges
in version constraints for dependencies make the diagnosis of DC
issues in the Python world complicated and challenging (see Sec-
tion 3).

3 EMPIRICAL STUDY
3.1 Data Collection
Following the data collection process of existing studies [47, 49, 58],
we prepared our dataset in two steps.

Step 1: Selecting subjects. To understand the manifestation
patterns and fixing strategies of DC issues, we need to study the
issue reports (with discussions if any), dependency configuration
scripts, issue-fixing patches, and related code revisions. For this
purpose, we searched GitHub for Python projects that satisfy three
conditions: (1) popular : having more than 50 stars or forks, (2) be-
ing used as libraries: containingmore than three direct downstream
projects, and (3) well-maintained: having over 500 code revisions
or over 50 issue reports. With this process, we obtained 1,596 open-
source Python projects.

Step 2: Identifying DC issues. To locate DC issues in the 1,596
projects, we searched for the issue reports that contain keywords
“dependency conflict” or “dependency hell” (case insensitive), filed
between Jul 2014 and Jul 2019 (i.e., in the past five years). We ob-
tained 2,593 and 334 issue reports by searching with the two key-
words, respectively. Next, we removed duplicates and noises from
the search results and kept only those issue reports that satisfy the
following three conditions. First, the report is related to valid DC is-
sues. Second, the report contains descriptions of issue root causes.
Third, we can find code revisions that fix the reported issue(s) in
the concerned project’s code repository or there is an explicit con-
sensus on the fixing solutions among developers as documented in
the issue report.

Eventually, we obtained 235 DC issues from 124 projects, and
201 of the 235 issues have been fixed. Figure 3 shows the statistics
of the 124 projects. As we can see, they are: (1) large in size (around
38 KLOC on average), (2) well-maintained (containing 78 revisions
and 92 issues on average), (3) popular (83% of them have over 100
stars), (4) impactful (86% of them have more than 5 direct down-
stream projects), and (5) diverse (covering over 10 categories). In
the following, we study the 235 issues to answer RQ1–2.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

3.2 RQ1: Manifestation Patterns
DC issues in Python projects manifest themselves due to different
causes. Our studied issues can be divided into two categories ac-
cording to whether the issues are caused by remote dependencies
or local environment. In the following, we discuss the manifesta-
tion patterns of the issues in detail with illustrative examples.

Finding 1: 211 out of the 235 (89.8%) DC issues that involve the
violation of library version constraints were introduced by the up-
dates of remote dependencies on PyPI.

3.2.1 Pattern A: Conflicts caused by remote dependency updates.
The root cause of the 211 issues is that the updates of some remote
dependency change the version of the concerned library to be in-
stalled by pip, which is hardly perceptible to project developers.
Suppose that a Python project 𝑃 requires a library 𝛽 with a con-
straint𝐶 . If𝐶 does not specify an upper bound on 𝛽’s version (e.g.,
𝐶 = ⟨≥ 3.0⟩), or the specified upper bound is greater than the lat-
est version of 𝛽 on PyPI (e.g., 𝐶 = ⟨2.0 ≤ ∧ ≤ 4.0⟩, while the
latest version of 𝛽 is 3.0), then the version of 𝛽 used to build 𝑃 may
not be controllable in developers’ perspective, meaning that 𝛽 can
be upgraded when there are new versions on PyPI. Such upgrad-
ing can easily induce DC issues: 𝛽’s new version may not satisfy
the constraints specified by other dependencies of 𝑃 ; the version
constraints specified by 𝛽 for its own libraries may also change in
new versions, causing potential conflicts with the constraints for
the same libraries introduced by 𝑃 ’s other dependencies.

The 211 issues can be further categorized based onwhere the de-
pendency conflicts come from. Theoretically, conflicts could hap-
pen in three different cases: (1) among direct dependencies, (2)
between direct dependencies and transitive dependencies, and (3)
among transitive dependencies. However, developers usually will
not introduce conflicts among direct dependencies by including
two conflicting libraries in the configuration script (such mistakes
can be easily caught). Indeed, we did not observe any conflicts of
the first case. In the following, we discuss the latter two cases.

a. Conflicts between direct and transitive dependencies (139/211).
Suppose that a Python project 𝑃 directly depends on two libraries
𝛼 and 𝛽 with the version constraints𝐶𝑃→𝛼 and𝐶𝑃→𝛽 , respectively,
and 𝛽 further depends on 𝛼 with the version constraint 𝐶𝛽→𝛼 . In
other words, 𝛼 is not only a direct dependency of 𝑃 , but also re-
quired by other direct dependencies of 𝑃 (i.e., 𝛼 can also be seen as
a transitive dependency of 𝑃). When building 𝑃 , pip will always
install the latest version 𝑣 of the library 𝛼 that satisfies 𝐶𝑃→𝛼 , as
𝛼 is at the top level of 𝑃 ’s dependency tree [36]. If 𝑣 falls into the
version range(s) specified by 𝐶𝛽→𝛼 , 𝑃 will be built successfully.
However, once 𝛼 gets updated on PyPI, the update may cause pip
to install another version 𝑣 ′ of 𝛼 . If 𝑣 ′ falls out of the range(s) spec-
ified by 𝐶𝛽→𝛼 , 𝑃 will not be built successfully. For instance, in
issue #229 [15], the project gallery-dl directly requires the li-
braries requests ⟨≥ 2.11.0⟩ and urllib3 ⟨≥ 1.16 ∧ ≠ 1.24.1⟩.
pip installed the version 2.13.0 of requests, which also depends
on urllib3 ⟨< 1.25.0 ∧ ≥ 1.21.1⟩. Things worked smoothly when
gallery-dl was first released on PyPI, as the latest version of
urllib3 at that time was 1.24.2, which satisfies the constraints
⟨≥ 1.16 ∧ ≠ 1.24.1⟩ and ⟨< 1.25.0 ∧ ≥ 1.21.1⟩. However, when the
project urllib3was updated to 1.25.0 on 18Apr 2019, gallery-dl

began to suffer from build failures. This is because when build-
ing gallery-dl, pip will install the latest version (i.e., 1.25.0) of
urllib3. However, the version 1.25.0 violates the constraint ⟨< 1.25.0 ∧
≥ 1.21.1⟩ specified in requests.

b. Conflicts between transitive dependencies (72/211). Suppose that
a Python project 𝑃 directly depends on two libraries 𝛼 and 𝛽 , both
of which depend on another library 𝜃 but with two different ver-
sion constraints 𝐶𝛼→𝜃 and 𝐶𝛽→𝜃 , respectively. If the version 𝑣
of 𝜃 downloaded by pip according to 𝐶𝛼→𝜃 (suppose that it has
a higher priority) also satisfies 𝐶𝛽→𝜃 , the project 𝑃 can be built
successfully. However, since 𝛼 and 𝛽 are two separate projects,
their dependency relationship on 𝜃 may evolve over time. There
can be cases where the updates of 𝛼 or 𝛽 would result in con-
flicting version constraints of 𝜃 , consequently causing DC issues
when building 𝑃 . We observed 72 such issues in our study. For
example, the issue report #3826 [24] of rasa documented an in-
cident that a project was forced to introduce multiple version con-
straints of the library requests by its direct dependencies rasa
and sagemaker. The reason is that rasa released a new version
1.0.4 and added a constraint ⟨= 2.22.0⟩ on requests. However,
this constraint is in conflict with another constraint on requests
⟨≥ 2.20.0 ∧ < 2.21.0⟩ introduced by sagemaker.

Finding 2: 24 out of the 235 (10.2%) DC issues arose due to the
conflicts between remote dependencies and the tools/libraries in-
stalled in the local environment.

3.2.2 Pattern B: Conflicts affected by local environment. Such
issues can happen when the required tool of a remote dependency
is incompatible with the local installed one (e.g., requiring Python
3.7.* but installed Python 3.6.*). They can also happen when the
version of a dependency, which is already installed in the local en-
vironment, does not satisfy the constraint specified by a remote
dependency. Take issue #25316 [17] of gradient as an example.
The project failed to be built because there was already one ver-
sion (1.13.3) of the library numpy installed in the local environ-
ment before the build, and this version is in conflict with the con-
straint ⟨≥ 1.15⟩ specified by pandas v0.24.1, a direct dependency
of gradient.

3.2.3 Dependency Smells. By further analyzing developers’ dis-
cussions in the issue reports and the dependency configuration
scripts of the project versions that were not affected by the re-
ported issues of Pattern A,1 we observed several types of “depen-
dency smells”. These smells are interesting as they do not immedi-
ately cause DC issues but are likely to induce issues as the projects
evolve.

Finding 3: Restricting dependencies to specific versions for com-
mon libraries could easily induce DC issues to downstream
projects.

Build failures can easily happen if library version constraints
are too restrictive (e.g., only accepting specific versions), especially
for those common libraries. 59 of our studied 235 issues belong
to this case. For instance, the project molecule [41] depends on

1We ignored Pattern B issues as they are affected by developers’ local environments,
which are often unknown to us.

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

a specific version of ansible-lint (i.e., version 3.4.23), a library
that is used by many other projects. This makes molecule’s down-
stream projects that also depend on ansible-lint particularly
sensitive to the updates of ansible-lint. We observe that when-
ever there was a new version of ansible-lint released on PyPI,
molecule’s developers would receive requests from downstream
projects to upgrade its version constraint on ansible-lint (e.g.,
[8, 11]). As there were too many such requests, molecule devel-
opers finally chose to update and loosen the version constraint on
ansible-lint to a range ⟨≥ 4.0.1 ∧ < 5⟩ [39], thus allowing more
downstream projects to work well with it.

Finding 4: DC issues can easily occur when the installed version
of a library satisfying one version constraint is close to the upper
bound specified in another version constraint.

67 out of the 235 issues belong to this case. As a library ver-
sion installed by pip in the concerned project is close to the upper
bound that another version constraint imposed on the library, up-
dates of the library will likely induce build failures. For instance,
the projects that directly require both request and urllib3 have
often encountered DC issues (e.g., [23, 27–29]). The reason is that
these projects always install the latest version of urllib3 since
the direct dependency constraints on urllib3 do not set an up-
per bound. Besides, request also depends on urllib3 with a ver-
sion constraint ⟨≥ 1.21.1 ∧ < 1.23⟩. These projects were built suc-
cessfully when urllib3’s latest version was 1.22.4, which satisfies
⟨≥ 1.21.1 ∧ < 1.23⟩. However, the installed latest version 1.22.4was
close to the upper bound 1.23. In such cases, DC issues can easily
arise when there comes a newer version of urllib3.

These findings are useful. We will show that identifying the two
types of smells can help perform predictive analysis to proactively
prevent DC issues before they cause real build failures.

3.3 RQ2: Fixing Strategies
To answer RQ2, we studied: (1) the patches of the 201 fixed issues,
(2) the planned fixing solutions of the remaining 34 issues, and
(3) the comments in the issue reports. We observed seven fixing
strategies, which altogether resolved 93.6% of our collected issues.

Strategy 1: Adjusting the version constraints of direct dependen-
cies (98/235). The conflicts between direct and transitive depen-
dencies were commonly fixed by adjusting the version constraints
of direct dependencies to be compatible with those of transitive
dependencies. For example, in issue #32 [22] of project valinor,
therewere two conflicting version constraints on the library pyyaml.
One constraint ⟨≥ 3 ∧ < 5⟩ was directly specified by valinor.
The other constraint ⟨< 6.0 ∧ ≥ 5.1⟩ was transitively introduced
by pyOCD, a dependency of valinor. In such a case, any version
of pyyaml installed by pip, which satisfies the former constraint,
will violate the latter one. To fix the problem, the developers of
valinor revised the version constraint of pyyaml to ⟨< 6.0 ∧ ≥
5.1⟩.

Strategy 2: Upgrading or downgrading the direct dependencies
that require conflicting libraries (27/235). Dependency conflicts be-
tween transitive dependencies can be solved by upgrading or down-
grading the direct dependencies that introduce the transitive de-
pendencies. Take issue #66 [31] of zhmcclient as an example.

The two conflicting version constraints ⟨= 4.0.3⟩ and ⟨≥ 4.4⟩ on
coverage were transitively introduced by zhmcclient’s direct
dependencies python-coveralls ⟨= 2.9.1⟩ and pytest-cov ⟨≥ 2.4.0⟩,
respectively. Since the installed version pytest-cov 2.6.0 added
coverage ⟨≥ 4.4⟩ as its direct dependency, which caused the con-
flict, zhmcclient’s developers downgraded pytest-cov by chang-
ing its version constraint to ⟨≥ 2.4.0 ∧ < 2.6.0⟩. After revising the
constraint, pytest-cov 2.5.1, which requires coverage ⟨≥ 3.71⟩,
was installed. This constraint ⟨≥ 3.71⟩ is not in conflictwith ⟨= 4.0.3⟩
and thus the DC issue was resolved.

Strategy 3: Coordinating with upstream projects to adjust con-
flicting version constraints (51/235). DC issues can also be fixed via
coordinating with upstream projects. Take issue #740 [33] of the
project yotta as an example. Although the conflict can be resolved
by adjusting the direct dependency’s version constraint (i.e., fol-
lowing Strategy 1), the developers chose to coordinate with the
upstream projects to solve the problem. This avoids changing the
version of the directly required library.

Strategy 4: Removing conflicting direct dependencies and keeping
the transitive ones (8/235). When it is difficult to make a project’s
direct dependencies in line with its transitive ones, developers may
choose to remove the conflicting direct dependencies. For example,
as described in issue #407 [25] of the project wandb, conflicts oc-
curred when an upstream project updated its version constraint on
a direct dependency PyYAML, and this happened several times. As
wandb developers had no direct control on the upstream projects,
they removed the conflicting direct dependency from the configu-
ration script, and used the transitively introduced one instead.

Strategy 5: Adding direct dependencies (16/235). There are cases
when the version constraints 𝐶𝛼→𝜃 and 𝐶𝛽→𝜃 of two conflicting
transitive dependencies overlap, meaning that one can find some
versions of the concerned library 𝜃 to satisfy both constraints. The
DC issue in such a case can be resolved by adding 𝜃 as a direct de-
pendencywith a constraint that entails both𝐶𝛼→𝜃 and𝐶𝛽→𝜃 . This
will instruct pip to install the version specified by the direct depen-
dency that satisfies both the transitive dependencies. For instance,
in issue #1586 [9] of crossbar, there exist two conflicting tran-
sitive dependencies: urllib3 ⟨ < 1.25 ∧ ≥ 1.21.1⟩ and urllib3
⟨≥ 1.24.2⟩. To resolve the conflict, developers added urllib3 ⟨≥ 1.24.2
∧ < 1.25⟩ as a direct dependency to avoid build failures.

Strategy 6: Upgrading/downgrading development tools (12/235).
The dependency conflicts between the local environment and the
remote dependencies are often solved by upgrading or downgrad-
ing the development tools (e.g., issue #409 [26] of bandit).

Strategy 7: Creating an isolated environment (8/235). This is a
viable solution for resolving the dependency conflicts between re-
mote and locally installed dependencies. As recommended by de-
velopers of spyder [35] and pandas [18], there are several tools
such as virtualenv [43], conda [2], and pipenv [38], which can
create virtual environments to isolate the impacts of locally in-
stalled dependencies to avoid such DC issues.

There are nine issues that were fixed by restricting the conflict-
ing library to a specific version. However, this is not a good practice
and can induce new issues (e.g., [13, 14, 16]) as discussed in Find-
ing 3. The remaining six issues were fixed by specific workarounds.

Table 1 summarizes how each pattern of issues were fixed. From
the statistics, we can observe that there can be multiple ways to fix

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

Table 1: Statistics of manifestation patterns and fixing strategies

Pattern
Strategy 1 2 3 4 5 6 7

A.a 94 9 19 8
A.b 18 32 16
B 4 12 8

DC issues of a certain pattern. In particular, issues of Pattern A.a
can be fixed by adopting four different strategies, among which
Strategy 1 is the most wildly adopted one. This is because Python
developers have full control of the version constraints of their projects’
direct dependencies. If adopting Strategy 1 will cause side effects
such as security loopholes, developers may solve the conflicts by
upgrading or downgrading the direct dependencies of their projects
(Strategy 2) or coordinating with upstream projects to adjust con-
flicting version constraints (Strategy 3). For PatternA.b, developers
often adopt Strategies 2, 3, and 5 to resolve the issues. Issues of Pat-
tern B are mainly resolved via dealing with the local environments.
Due to the page limit, we do not make further discussions and we
summarize our observations in the following.

Finding 5: There can be multiple fixes for a DC issue. The solu-
tions can be affected by the issue’s manifestation pattern, the topo-
logical structure of the project’s dependency graph, pip’s installa-
tion rules, and the interference between the version constraints of
upstream projects and those of downstream projects.

4 DEPENDENCY CONFLICT DIAGNOSIS
In view ofmanyDC issues induced by complex dependencies among
upstream and downstream projects on PyPI, we further propose a
technique, Watchman, to continuously monitor dependency con-
flicts from the perspective of the entire ecosystem.

Figure 4 gives an overview of our technique. A major challenge
is to perform a holistic analysis of the huge number of projects on
PyPI and model their interdependent relationships, which are sub-
ject to change over time. To address the challenge,Watchman first
collects the metadata for each library version, including its direct
dependencies with version constraints and their declaration orders.
Second, it consolidates the metadata of all libraries hosted on PyPI
into a single repository to enable the analysis of the interference
between the version constraints across upstream and downstream
projects. Then, by continuously monitoring library release infor-
mation on PyPI,Watchman synchronously updates the metadata
repository to precisely model the dependency relationships. For
the captured library updates,Watchman uses a depth-first search-
ing strategy to identify the affected downstream projects. It also
performs a breadth-first search of the metadata repository to con-
struct a full dependency graph for each potentially affected down-
stream project, according to the library installation mechanism of
pip. Finally,Watchman performs the automatic DC issue diagno-
sis.

4.1 Constructing Metadata Repository
To model the dependency relationships among libraries, Watch-
man uses themetadata structure to capture the version constraints
of the direct dependencies of each library version and the declara-
tion orders of these direct dependencies. For ease of understanding,

Algorithm 1: Identifying Affected Downstream Projects
Input: 𝐿𝑢𝑝 and G
Output: 𝐿𝑎𝑓

1 𝐿𝑎𝑓 ← {};
2 foreach 𝜁 𝑣 ∈ 𝐿𝑢𝑝 do
3 identifyAffectedLibrary(𝜁 𝑣 , 𝐿𝑎𝑓 , G) ;
4 Function identifyAffectedLibrary(𝜁 𝑣 , 𝐿𝑎𝑓 , G)
5 foreach𝐺 (𝛿𝑢) = (𝐷,𝑅, 𝑃) ∈ G do
6 if 𝜁 ∈ 𝐷 && 𝑣 satisfies the constraint𝐶𝛿𝑢→𝜁 then
7 𝐿𝑎𝑓 ← 𝐿𝑎𝑓 ∪ {𝛿𝑢 };
8 identifyAffectedLibrary(𝛿𝑢 , 𝐿𝑎𝑓 , G) ;

in the subsequent discussions, we shall use lowercase Greek letters
to denote libraries and superscripts to denote versions.

Definition 1 (Metadata Structure): For a library version 𝜁 𝑣 ,
i.e., the version 𝑣 of library 𝜁 , Watchman captures a collection of
information 𝐺 (𝜁 𝑣) = (𝐷, 𝑅, 𝑃) , where
• 𝐷 = {𝛼, 𝛽,𝛾 · · · } is a set of direct dependencies of 𝜁 𝑣 .
• 𝑅 = {𝐶𝜁 𝑣→𝛿 | 𝛿 ∈ 𝐷}, where 𝐶𝜁 𝑣→𝛿 denotes the version con-
straint on the dependency 𝛿 specified by 𝜁 𝑣 .
• 𝑃 maps each dependency 𝛿 ∈ 𝐷 to its declaration order.

In our experiments to detect unknown DC issues, Watchman
extracted 1,423,291 versions of 191,787 distinct libraries from a snap-
shot of PyPI on 15 Jun 2019. For each library version 𝜁 𝑣 ∈ 𝐿, where
𝐿 represents all library versions, it obtained the structured meta-
data 𝐺 (𝜁 𝑣) via analyzing the dependency configuration script of
𝜁 𝑣 . Such metadata of all extracted library versions formed an ini-
tial metadata repository G, which is defined as {𝐺 (𝜁 𝑣) |𝜁 𝑣 ∈ 𝐿}.
This repository enables the queries of dependency relationships
among all upstream and downstream projects on PyPI.

4.2 Analyzing the Impacts of Library Updates
The analysis mainly consists of two steps as explained below.

Step 1: Monitoring library updates. Library updates on PyPI
often cause DC issues. There are two types of library updates on
PyPI: new versions of an existing library being released and new
libraries being released. Watchman computes 𝐿𝑢𝑝 by monitoring
the two types of library updates on a daily basis. For each library
version 𝜁 𝑣 ∈ 𝐿𝑢𝑝 , Watchman collects the metadata 𝐺 (𝜁 𝑣) and
adds it to the repository G. In this manner, the metadata repository
G can be synchronized with the evolution of the libraries on PyPI.

Step 2: Identifying affected downstream projects. Watch-
man performs backward search for identifying the set of down-
stream projects affected by 𝐿𝑢𝑝 , denoted 𝐿𝑎𝑓 , following the pro-
cess as described in Algorithm 1. The algorithm works as follows.
First, it initializes 𝐿𝑎𝑓 to an empty set (Line 1). For each library
𝜁 𝑣 ∈ 𝐿𝑢𝑝 , Watchman analyzes which libraries in the ecosystem
may be directly affected by the update via calling the function
identifyAffectedLibrary (Lines 2–3), which takes 𝜁 𝑣 , 𝐿𝑎𝑓 , and G as
input and updates 𝐿𝑎𝑓 when needed. For each piece of metadata
𝐺 (𝛿𝑢) = (𝐷, 𝑅, 𝑃) in G, if 𝜁 is directly referenced by 𝛿𝑢 (i.e., 𝜁 ∈ 𝐷)
and the version number 𝑣 satisfies the version constraint 𝐶𝛿𝑢→𝜁 ,
then 𝛿𝑢 is possibly affected by 𝜁 𝑣 and thus added to 𝐿𝑎𝑓 . Then,
Watchman performs a depth-first search to recursively find more
downstream projects affected by 𝛿𝑢 and update 𝐿𝑎𝑓 accordingly.

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Updated?
Keep Monitoring

Identify Affected
Downstream Projects

Construct Full
Dependency Graphs

Detecting DC Issues

Predicting DC Issues
YesNo

Figure 4: The overall architecture of Watchman

4.3 Detecting DC Issues
As discussed earlier, the topological structure of a Python project’s
dependency tree determines the installed library versions. In order
to diagnose DC issues for each library version 𝜁 𝑣 ∈ 𝐿𝑎𝑓 , we need
to analyze the relationships among all library versions that would
be installed by pip to build 𝜁 𝑣 . To capture such relationships, we
propose a formal model Full Dependency Graph (FDG).

Definition 2 (Full Dependency Graph): The full dependency
graph of a library version 𝜁 𝑣 , denoted 𝐹𝐷𝐺 (𝜁 𝑣), is a three-tuple,
(𝑁, 𝐸, 𝐹𝑅), where
• 𝑁 = 𝑁 ′ ∪ {𝜁 𝑣} is the set of nodes in the graph, and 𝑁 ′ denotes
a set of library versions that pip installs for building 𝜁 𝑣 . The
libraries here include both direct and transitive dependencies.
• 𝐸 = {⟨𝛼𝑥 , 𝛽𝑦⟩|𝛼𝑥 , 𝛽𝑦 ∈ 𝑁 } is a set of directed edges, where the
edge from 𝛼𝑥 to 𝛽𝑦 represents that the version 𝑥 of library 𝛼
directly depends on library 𝛽 .
• 𝐹𝑅 maps each edges 𝑒 = ⟨𝛼𝑥 , 𝛽𝑦⟩ ∈ 𝐸 to the version constraint
that the library version 𝛼𝑥 sets on the library 𝛽 , i.e., 𝐶𝛼𝑥→𝛽 .
Note that the FDG of a library version may change overtime

when the library’s upstream projects are updated on PyPI. Algo-
rithm 2 describes the process of constructing the FDG for a li-
brary version 𝜁 𝑣 .Watchman constructs 𝐹𝐷𝐺 (𝜁 𝑣) following pip’s
breadth-first installation strategy: pip first installs direct depen-
dencies for a project, and then installs dependencies at the next
level according to the project’s dependency tree, and this process
continues until all dependencies are installed. In the algorithm,
we use a queue named 𝑄𝑢𝑒𝑢𝑒 to record the order of traversing
and installing dependencies, and 𝜁 𝑣 is initially added to the queue.
When visiting each dependency 𝛼𝑥 in 𝑄𝑢𝑒𝑢𝑒 , Watchman first re-
trieves its metadata 𝐺 (𝛼𝑥) ≡ (𝐷, 𝑅, 𝑃). It then tries to add each
dependency 𝛽 in 𝐷 to the FDG. If 𝛽 has not yet been loaded (or
installed), Watchman determines the version to be loaded based
on constraint 𝐶𝛼𝑥→𝛽 (recorded in 𝑅) following pip’s installation
rules (Line 8). 𝑁 and 𝑄𝑢𝑒𝑢𝑒 are then updated accordingly (Line 9).
If 𝛽 has already been added to the FDG, Watchman will retrieve
the loaded version (Line 11). A new edge ⟨𝛼𝑥 , 𝛽𝑦⟩ is then added
to 𝐸 (Line 12). The algorithm uses another queue 𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠
to record the order in which the edges are traversed (Line 13).
Watchman also sets the version constraint of this edge (Line 14),
which can be retrieved from 𝑅. After traversing all dependencies
in 𝑄𝑢𝑒𝑢𝑒 , the FDG of a library is completely constructed.

DC Issue Detection. Watchman detects DC issues by analyz-
ing the FDG of each project 𝜁 𝑣 ∈ 𝐿𝑎𝑓 in the following steps. First,
Watchman traverses 𝐹𝐷𝐺 (𝜁 𝑣) and locates those nodes with mul-
tiple incoming edges. A node has multiple incoming edges when
there are multiple projects that directly depend on the library rep-
resented by the node. Next, for each such node 𝛼𝑥 ,Watchman an-
alyzes the set of its incoming edges, denoted 𝐸𝛼 . Note that there is
one edge 𝑒 in 𝐸𝛼 that is traversed first when constructing 𝐹𝐷𝐺 (𝜁 𝑣).
Suppose that 𝑥 is the latest version number of the library 𝛼 that sat-
isfies the constraint 𝐹𝑅(𝑒). To detect DC issues,Watchman checks

Algorithm 2: Constructing FDG via Breath-First Search
Input: 𝜁 𝑣 and G
Output: 𝐹𝐷𝐺 (𝑙𝑣) = (𝑁, 𝐸, 𝐹𝑅)

1 𝑁 ← {𝜁 𝑣 }; 𝐸 ← {}; 𝐹𝑅 ← {};
2 𝑄𝑢𝑒𝑢𝑒.𝑎𝑑𝑑 (𝜁 𝑣) ; 𝐿𝑜𝑎𝑑𝑒𝑑 ← {𝜁 };𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠 ← {};
3 while !𝑄𝑢𝑒𝑢𝑒.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () do
4 𝛼𝑥 ← 𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 () ;𝐿𝑜𝑎𝑑𝑒𝑑 ← 𝐿𝑜𝑎𝑑𝑒𝑑 ∪ {𝛼 } ;
5 𝐺 (𝛼𝑥) ≡ (𝐷,𝑅, 𝑃) ← getMetadata(𝛼𝑥 , G) ;
6 foreach 𝛽 ∈ 𝐷 do
7 if 𝛽 ∉ 𝐿𝑜𝑎𝑑𝑒𝑑 then
8 𝛽𝑦 ← getToLoadVersion(𝛽,𝐶𝛼𝑥→𝛽) ;
9 𝑁 ← 𝑁 ∪ {𝛽𝑦 };𝑄𝑢𝑒𝑢𝑒.𝑎𝑑𝑑 (𝛽𝑦) ;

10 else
11 𝛽𝑦 ← getLoadedVersion(𝛽, 𝑁) ;

12 𝐸 ← 𝐸 ∪ {⟨𝛼𝑥 , 𝛽𝑦 ⟩ };
13 𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠.𝑎𝑑𝑑 (⟨𝛼𝑥 , 𝛽𝑦 ⟩) ;
14 𝐹𝑅 (⟨𝛼𝑥 , 𝛽𝑦 ⟩) ← 𝐶𝛼𝑥→𝛽 ;

𝑥 against the set of constraints associated with other edges in 𝐸𝛼 ,
i.e., {𝐹𝑅(𝑒 ′) | 𝑒 ′ ∈ 𝐸𝛼\{𝑒}}. If 𝑥 violates any such constraints,
Watchman will report a DC issue to the project 𝜁 .

4.4 Predictive Analysis for DC Issues
The constructed FDGs by Watchman can also enable us to per-
form predictive analysis for proactive prevention of DC issues via
detecting the two types of smells discussed earlier (Findings 3–4).

Type 1: Restricting a dependency to a specific version. If a project
restricts a dependency to a specific version, its downstreamprojects
may suffer from DC issues. Specifically, DC issues may arise if the
following conditions hold:

(1) There is a version 𝑣 of project 𝜁 , denoted 𝜁 𝑣 , that restricts its
direct dependency 𝛼 to a specific version 𝑥 .

(2) There is a version 𝑦 of a downstream project 𝛽 that depends
on both 𝜁 and 𝛼 , and 𝜁 𝑣 and 𝛼𝑥 are the installed library versions
for 𝛽𝑦 at the time of analysis.

Let 𝐷𝑃 be the set of downstream projects (e.g., 𝛽) thus found.
The larger |𝐷𝑃 | is, the more likely that DC issues can arise. This
is because each project in 𝐷𝑃 independently sets its own version
constraints on 𝛼 . If 𝜁 𝑣 only accepts the version 𝑥 of 𝛼 , the possibil-
ity that the constraint ⟨= 𝑥⟩ conflicts with other constraints on 𝛼
set by the projects in 𝐷𝑃 is high, especially when 𝐷𝑃 is large. In
our experiments, we will warn the developers of the project 𝜁 , if
|𝐷𝑃 | is larger than a threshold value, which is set empirically.

Figure 5(a) gives an illustrative example. In project C2.0, the con-
straint for library A is restricted to ⟨= 2.0⟩. In addition, C’s down-
stream project B5.0 depends on both C2.0 and A2.0. In such a case,
it is very likely that the restrictive constraint C sets on A would
cause conflicts for B (e.g., when A gets updated on PyPI). The risk
of conflicts gets higher if we find more such downstream projects.
Watchmanwill find such cases and suggest project C’s developers
to relax its constraint on A, to avoid potential DC issues.

Type 2: The installed version of a library is close to the upper
bound specified in the version constraint. If the installed version of a

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

Type 1 Type 2

⟨＞1.0 ∧⩽
2.0⟩

⟨= 1.0⟩

⟨= 2.0⟩
⟨⩽ 3.0⟩

＞1.2 ∧
⩽ 2.0 𝟏 = 1.0 𝟑

⩾ 4.0 𝟒

= 2.0 𝟔

＞2.0 ∧⩽
4.0 𝟓⩽ 4.0 𝟐

Downstream
Project 2

Downstream
Project 3

Downstream
Project 1

𝑪𝟐.𝟎
𝑭𝟏.𝟎

𝑨𝟐.𝟎

𝑩𝟓.𝟎

𝑨𝟐.𝟎 is the latest version of A

𝑸𝟓.𝟎

𝑿𝟐.𝟎
𝒁𝟐.𝟎

𝑷𝟒.𝟎
𝑻𝟒.𝟎

𝑶𝟐.𝟎
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑬𝒅𝒈𝒆 𝑻𝒓𝒂𝒗𝒆𝒓𝒔𝒆 𝑶𝒓𝒅𝒆𝒓

…
…

(b)(a)

Figure 5: Illustrative examples of potential DC issues

library satisfies the concerned version constraint but is close to the
upper bound specified in the constraint, build failures may occur
when the library evolves. Watchman deems that a project 𝜁 𝑣 has
a potential DC issue, if the following conditions hold:

(1) In 𝐹𝐷𝐺 (𝜁 𝑣) = (𝑁, 𝐸, 𝐹𝑅), there exists a node 𝛼𝑢 with mul-
tiple incoming edges, where 𝛼 is a dependency of 𝜁 𝑣 and 𝑢 is the
installed version of 𝛼 . Let 𝐸𝛼 be the set of incoming edges to 𝛼𝑢 .

(2) The version constraint of the first traversed edge 𝑒 in 𝐸𝛼 does
not specify an upper bound on 𝛼 (e.g., the constraint is of the form
⟨≥ 𝑦⟩) or the specified upper bound is greater than𝛼 ’ latest version
𝑧 on PyPI. In this case, any updates of 𝛼 on PyPI will affect the
version of 𝛼 to be installed.

(3) There exists another edge 𝑒 ′ in 𝐸𝛼 (𝑒 ′ ≠ 𝑒), of which the as-
sociated constraint 𝐹𝑅(𝑒 ′) specifies an upper bound on the version
of 𝛼 (e.g., the constraint is of the form ⟨≤ 𝑥⟩) and the upper bound
is greater than or equal to the latest version of 𝛼 , i.e., 𝑧.

Figure 5(b) gives an illustrative example. In the FDG of project
Q5.0, there are two incoming edges to project T4.0, one from project
X2.0 and the other from project P4.0. Suppose that the former edge
is traversed before the latter. Since the constraint that X2.0 sets on
T has no upper bound, the latest version 4.0 of T will be installed.
There is no dependency conflict at the time of analysis. However,
since the constraint associated with latter edge, i.e., ⟨> 2.0 ∧ ≤
4.0⟩, restricts T to a version range, build failures may occur if de-
velopers release a newer version (e.g., 4.1) of T on PyPI.

5 EVALUATION
To evaluateWatchman, we study two research questions:

• RQ3 (Effectiveness): How effective is Watchman in detecting
real DC issues and predicting potential ones?
• RQ4 (Usefulness): Can Watchman monitor DC issues in PyPI
and provide useful diagnostic information to developers?

To answer RQ3, we replayed the evolution history of all libraries
on PyPI from 1 Jan 2017 to 30 Jun 2019.We first constructed ameta-
data repository for PyPI’s snapshot on 1 Jan 2017, and then con-
ducted incremental analysis to extract daily updates of all libraries
until 30 Jun 2019. For each library update, we applied Watchman
to detect DC issues and predict potential ones via identifying de-
pendency smells. Since we have the whole evolution history, we
could evaluateWatchman’s effectiveness by checkingwhether the
detected DC issues have been resolved and whether the predicted
ones have indeed evolved into real issues subsequently.

To answer RQ4, we deployedWatchman to monitor PyPI since
1 Jul 2019, and configured it to detect new DC issues of Pattern A,
as well as potential ones that could be induced by the smells of
Type 1 and Type 2. Note that issues of Pattern B can hardly be

Table 2: Basic information of experimental subjects
Period 1 Period 2 Period 3 Period 4 Period 5

Projects 1,454 1,535 2,279 2,398 2,673
Releases 11,759 13,202 18,418 18,984 19,746
Commits 530 646 338 740 694

detected since they are affected by developers’ local environments,
on which we have no knowledge.

We then consolidated the detected DC issues and submitted re-
ports to the concerned projects’ issue tracking systems; if: (1) the
detected issues have not been reported or fixed in the unreleased
master branches of the projects and (2) the concerned projects have
maintenance records in the last two years (still active). In each is-
sue report, we pointed out the detected conflicts and explained how
they arose. Such diagnostic information can be easily provided by
Watchman since it simulates the build process of each project. The
report also includes fixing suggestions generated by Watchman
based on our observed common fixing strategies.

5.1 RQ3: Effectiveness
Data collection. A project’s evolution history provides useful in-
formation about how DC issues manifested themselves (and got
fixed). To ease experiments, we divided the whole time period from
1 Jan 2017 to 30 Jun 2019 into the following five sub-periods: 1 Jan 2017
–30 Jun 2017 (Period 1), 1 Jul 2017–31 Dec 2017 (Period 2), 1 Jan 2018
–30 Jun 2018 (Period 3), 1 Jul 2018–31 Dec 2018 (Period 4), and
1 Jan 2019 –30 Jun 2019 (Period 5). For each sub-period, we col-
lected open-source Python projects satisfying the following two
criteria as our experimental subjects: (1) having more than five re-
lease versions during this sub-period (active), and (2) having more
than 300 commits during this sub-period (well-maintained). Ta-
ble 2 lists the basic information of these subjects. On average, there
are 16,421 releases of 2,067 projects for each sub-period. We then
appliedWatchman to detect DC issues of Pattern A and predict po-
tential ones that may be induced by smells of Type 1 (Type 1 issues)
and Type 2 (Type 2 issues), during each of the five sub-periods on
a daily basis.

Evaluation metrics. To evaluate Watchman’s effectiveness,
we define two metrics, resolving ratio and lasting time:

• For each detected issue of Pattern A, we checked whether it
had been resolved in the latest version of the project released
on PyPI, up to the date 20 Jul 2019. The metric resolving ratio
measures the proportion of resolved DC issues in those detected
byWatchman. Higher resolving ratios indicate better effective-
ness of Watchman. Themetric lasting timemeasures the gap be-
tween the detection time of a DC issue and the resolving time of
this issue. A longer lasting time indicates a wider impact caused
by a DC issue on the concerned downstream projects.
• For the predicted issues, we checked whether they had turned
into real ones. There are two cases: (1) the predicted issue indeed
arose (reported) in history due to library updates, and was fixed
by developers in subsequent project releases; (2) the predicted
issue was not reported in history but developers still fixed it to
avoid certain undesirable consequences. Accordingly, the metric
resolving ratio measures the proportion of the predicted DC is-
sues that belong to either case. The metric lasting timemeasures
the gap between the time an issue was predicted and the time
it was reported for Case (1), and the gap between the time an

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Results of DC issues reported by Watchman from 1 Jan
2017 to 30 Jun 2019

Period 1 Period 2 Period 3 Period 4 Period 5 Summary

Pattern A 56 42 84 72 115 369★

Fixed 56 42 84 72 115 369★

Resolving ratio 100% 100% 100% 100% 100% 100%♮

Lasting time (days) 25.2 27.3 25.0 20.8 31.6 26.0♮

Type 1 10 13 12 11 15 61★

Type 2 16 18 19 21 21 95★

Case (1) 2 2 3 4 2 13★

Case (2) 22 25 26 26 31 130★

Resolving ratio 92.3% 87.1% 93.5% 93.8% 91.7% 91.7%♮

Lasting time (days) 101.6 77.1 100.8 51.0 63.9 78.9♮
♮ denotes the average value while★ denotes the sum.

issue was predicted and the time it was resolved by developers
for Case (2).

Results. Table 3 presents the experimental results. For all the
five sub-periods, Watchman detected a total of 369 DC issues of
Pattern A, and all of them had been fixed by developers (i.e., re-
solving ratio = 100%). This strongly suggests that Watchman can
precisely detect DC issues. Watchman also predicted a total of
156 Type 1 and Type 2 issues, 143 of which had been resolved
by developers, resulting in an average resolving ratio of 91.7% (=
(13+ 130)/(61+ 95)). The resolving ratio of the predicted issues for
different periods ranges from 87.1% to 93.8%, which are generally
satisfactory. This suggests thatWatchman is also effective in pre-
dicting potential DC issues. Besides, we observed that all detected
369 DC issues were resolved by developers within a month (on av-
erage, 26 days).Watchmanmay help reduce this delay since it can
detect DC issues timely (it performs analysis on a daily basis) and
report them to developers along with fixing suggestions. If devel-
opers are able to fixWatchman’s detected issues in due course, the
side effect of these issues on downstream projects will be largely
diminished.

As at 20 Jul 2019, 13 (8.7%) of the 156 DC issues predicted by
Watchman had not evolved into real ones. By further analyzing
the concerned projects, we found that the dependencies introduc-
ing these issues were no longer active. For instance, in the project
finance-dl [5], Watchman found multiple version constraints
for library idna. When building finance-dl, pip would install
version 2.8 of idna, which is equal to the upper bound of the con-
straint ⟨≥ 2.5∧ ≤ 2.8⟩ introduced by the latest version of the li-
brary selenium-requests. However, this potential DC issue (Type
2) did not evolve into a real one, since selenium-requests had
stopped its update on PyPI (at our study time).

5.2 RQ4: Usefulness
Watchman detected and predicted a total of 189 DC issues since
we started our online monitoring on 1 Jul 2019. We filtered out 23
issues that had been reported in the corresponding projects’ issue
tracking systems and 49 issues whose associated projects had no
maintenance record in the last two years. After filtering, we re-
ported the remaining 117 DC issues to developers. As shown in
Table 4, 63 issues (53.8%) were confirmed by developers as real DC
issues within a few days. 38 out of the 63 confirmed issues (60.3%)

were quickly fixed, and 25 confirmed issues (38.7%) are under fix-
ing. The remaining 54 issues are still pending, mainly due to inac-
tive maintenance of the associated projects. We provide a detailed
analysis in the following.

5.2.1 Feedback on reported issues. For 64 detected issues of Pat-
tern A, which were caused by library updates, Watchman got a
higher confirmation rate (60.9% = 39/64), which is within our ex-
pectation. For these 39 confirmed DC issues, developers agreed
that the detected conflicts would cause build failures, and invited
us to submit patches to help resolve them. For instance, in issue
report #70 [32] of the project Osmedeus, the developer mentioned
that they had indeed encountered our reported DC issue when de-
ploying the project, and left a comment “I also get that error when
installing the project but my server works fine. Just submit a PR and
I will review the patch”.

For the 21 predictedDC issues of Type 1, 11 of themhave already
been spotted by developers and resolved in the master branches of
the corresponding projects (but not yet released on PyPI) before
we reported them. For instance, the project MycroftAI adapt
relaxed its version constraint on library six from ⟨= 1.10.0⟩ to
⟨≥ 1.10.0⟩ in commit 7eeadeb [1] with a log “to avoid incompati-
bility with downstream projects adapt-parser and jsonschema ”.
Therefore, we reported only the remaining 10 issues of Type 1 to
the developers of the corresponding projects, and 4 of them have
been confirmed by developers. Encouragingly, in the issue report
#182 [12] of the project dynamic-prefer -ences, we got the fol-
lowing comment from developers after they resolved our reported
issue: “It is a hazzle to keep track of all the frozen versions of some
dependencies, especially for larger projects. I think it would be good to
get an automatic notification as maintainer somehow, if one of your
dependencies has locked its own libraries on a specific version.”

For the 43 predicted Type 2 issues, 20 of them have been con-
firmed by developers, although these issues may not cause build
failures immediately.We observed that some of Watchman’s warn-
ings quickly caught developers’ attention, and they added labels
“bug” and “deployment problem” to our issue reports (e.g., [19, 20]).

Among the 63 confirmedDC issues (including both detected and
predicted ones), developers resolved 54 (85.7%) of them following
our suggested solutions. For example, we reported an issue of Pat-
tern A.a to the developers of webinfo along with three fixing so-
lutions (issue #9 [34]). The developer chose the one Watchman
generated based on Strategy 2 to resolve this conflict. For the re-
maining nine confirmed issues, for which our fixing solutions have
not been adopted by developers, we found that these projects can
be sensitive to certain library updates and our suggested changes
might introduce other side effects, such as vulnerability or compat-
ibility issues (e.g., issue #16 [10] in project kindred).

5.2.2 Feedback onWatchman. Besides confirming our reported
DC issues, some developers expressed interests in our toolWatch-
man. For example, a developer left the following comment in the
pull request #71 [40] of the project arxiv-submission-core:

“A better mechanism of maintaining the dependency constraints
among projects on PyPI like what you did, is much-needed!”

In issue report #492 [30] of the project pywb, we found an en-
couraging comment from an experienced lead developer who is
also the founder of the webrecorder community [4]:

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Wang, Wen, Liu, Wang, Li, Wang, Yu, Cheung, Xu, Zhu

Table 4: Results of 117 DC issues reported by Watchman from 11 Jul 2019 to 16 Aug 2019

Manifestation Issue reports (Each item gives the issue report ID and the project name)

Pattern A.a

Issue#1, aucome; Issue#110, crypto; Issue#1, OrcaSong; Issue#2, pypmml-spark; Issue#138, toolium; Issue#26, GatewayFramework; Issue#56, Airbnb-data; Issue#2, Runcible;
Issue#95, identification; Issue#96, identification; Issue#1813, tasking-manager; Issue#356, Archery; Issue#325, bocadillo; Issue#21, crema; Issue#4, what-digit-you-write;
Issue#9, webinfo-crawler; Issue#35, zarp; Issue#4, open-helpdesk; Issue#5, languagecrunch; Issue#103, account-creator; Issue#9, jawfish; Issue#212, openpose-plus; Issue#16, kindred;
Issue#13, Generator-GUI; Issue#3, tabular; Issue#5, whats-bot; Issue#65, armory-bot; Issue#39, derrick; Issue#16, Historical-Prices; Issue#688, dxr; Issue#18526, erpnext;
Issue#1, scrapy-qtwebkit; Issue#4778, InstaPy; Issue#2, api-indotel; Issue#145, cert-issuer; Issue#146, django; Issue#4, pymacaron; Issue#1, mgz-db; Issue#1, twitterbots;
Issue#2, gremlin; Issue#17, AWSBucketDump; Issue#198, fabric-cli; Issue#1, BlockCluster; Issue#3, gateway; Issue#2, beauty_image; Issue#1389, Indy-node; Issue#130, swapi;
Issue#279, explorer; Issue#34 footmark; Issue#3, driver-acs; Issue#56, driver-napi; Issue#11, simulator; Issue#9, Friends-Finder; Issue#1, chatbot-template; Issue#545, djangopackages;
Issue#2048, cadasta-platform; Issue#122, adminset; Issue#45, Wallpaper; Issue#21, ltiauthenticator; Issue#28, cryptography;

Pattern A.b Issue#243, bakerydemo; Issue#4, pytools; Issue#70, Osmedeus; Issue#101, aldryn-search;

Type 1 Issue#182, dynamic-preferences; Issue#20, ldapdomaindump; Issue#326, py-cluster; Issue#986, faker; Issue#717, newspaper; Issue#120, mixer; Issue#3, client-python;
Issue#75, PyInquirer; Issue#953, compressor; Issue#26, certstream;

Type 2

Issue#8, AutoCrawler; Issue#31, BBScan; Issue#492, pywb; Issue#8, ct-exposer; Issue#71, EagleEye; Issue#1179, mythril; Issue#1, frida-util; Issue#34, python-urwid;
Issue#4, SecurityManageFramwork; Issue#295, sherlock; Issue#2077, freqtrade; Issue#36, trains; Issue#298, glastopf; Issue#5, Machine-Learning-with-Python; Issue#569, kalliope;
Issue#98, bless; Issue#70, arxiv-submission-core; Issue#2729, plaso; Issue#17, oauth-dropins; Issue#303, ripping-machine; Issue#27, ChannelBreakoutBot; Issue#167, tldextract;
Issue#183, messytables; Issue#9, kuberdock-platform; Issue#42, python-weixin; Issue#25, NoDB; Issue#146, Photon; Issue#911, pyspider; Issue#7, fan; Issue#126, historical;
Issue#49, stephanie-va; Issue#979, subliminal; Issue#56, WPSeku; Issue#3, zhihu-crawler; Issue#38, network-topology; Issue#647, marathon-lb; Issue#9, Konan; Issue#181, JBOPS;
Issue#962, hangoutsbot; Issue#41, GyoiThon; Issue#120, automation-tools; Issue#4, start-vm; Issue#10, ahmia-index;

Status 1 : The issues have already been fixed using our suggested solutions; Status 2 : The issues have already been fixed using other solutions; Status 3 : The issues have been confirmed and are under fixing
using our suggested solutions. Status 4 : The issues have been confirmed and are under fixing using other solutions. Status 5 : The issues are still pending.
We do not present the link of these issues due to page limit. The detailed information of them can be found on our project website (http://www.watchman-pypi.com/buglist).

“Are you an ’automation’ written by Github community to help
resolve dependency conflict issues for Python projects? If so, a piece
of nice work! I’d say this is a good approach, a nice friendly bot to
inform of potential dependency issues.”

Such feedback indicates that monitoring library updates and de-
tecting/predicting dependency conflicts is indeed important to and
welcomed by real-world Python developers. The information pro-
vided byWatchman is also useful to help developers diagnose DC
issues in practice.

6 DISCUSSIONS
Threats to validity. Keyword search can introduce irrelevant is-
sues into our dataset. Such noises pose a threat to the validity of our
study results. The errors in our manual analysis of the DC issues
may also affect our study results. To reduce these threats, three co-
authors independently investigated our collected DC issues and
cross-validated their analysis results.
Limitations. Our work has three limitations. First, we focus on
the DC issues that cause build failures. However, in some cases, de-
pendency conflicts may lead to semantic inconsistencies, runtime
errors, or other consequences in Python projects. Second, the rules
adopted in the predictive analysis can only help find a subset of all
possible DC issues that may be induced by the two types of depen-
dency smells. The rule set is designed based on our observed real
cases in the empirical study and is not meant to be complete. Third,
Watchman currently is not able to detect all patterns of DC issues
observed in our empirical study. We will address these limitations
in future work.

7 RELATEDWORK
Studies of dependency conflicts. Pradel et al. [52] studied the
dependency conflicts among JavaScript libraries and proposed a
detection strategy. Suzaki et al. [45] conducted an extensive case
study of conflict defects, including conflicts on resource access,
conflicts on configuration data, and interactions between uncom-
mon combinations of packages. Soto-Valero et al. [54] studied the
problem of multiple versions of the same library co-existing in

Maven Central, and presented empirical evidence about how the
immutability of artifacts in Maven Central supports the emer-
gence of natural software diversity. Wang et al. [56] conducted
an empirical study to characterize dependency conflicts in Java
projects and developed Riddle to generate tests to collect crash-
ing stack traces to facilitate DC issue diagnosis [57]. To the best of
our knowledge, there is no previous work focusing on characteriz-
ing and detecting DC issues in the Python world.
Studies of software ecosystem. Serebrenik et al. [53] performed
ameta-analysis of the difficult tasks in software ecosystem research
and identified six types of challenges, e.g., how to scale the analysis
to amassive amount of data. Mens [50] studied software ecosystem
from the socio-technical view on software maintenance and evolu-
tion. Zimmermann et al. [59] studied the security risks in the npm
ecosystem by analyzing data such as dependencies between pack-
ages and publicly reported security issues. Another study by Ler-
twittayatrai et al. [48] used network analysis techniques to study
the topology of the JavaScript package ecosystem and extracted
insights about dependencies and their relations. Our work stud-
ies software ecosystem from a novel perspective by taking into
account the interference between the version constraints of up-
stream and downstream projects. We also propose a technique to
continuously monitor dependency conflicts for Python projects.

8 CONCLUSION AND FUTUREWORK
In this work, we first conducted an empirical study of 235 real de-
pendency conflict issues in Python projects to understand the man-
ifestation patterns and fixing strategies of dependency conflict is-
sues. Motivated by our empirical findings, we then designed a tech-
nique,Watchman, to continuously monitor dependency conflicts
for the PyPI ecosystem. Evaluation results show that Watchman
can effectively detect dependency conflict issues with a high preci-
sion and provide useful diagnostic information to help developers
fix the issues. In future, we plan to further improve the detection
capability of Watchman and generalize our technique to other
Python library ecosystems such as Anaconda to make it accessi-
ble to more developer communities.

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

ACKNOWLEDGMENTS
The authors would like to sincerely thank the anonymous review-
ers of ICSE 2020 for their constructive comments that helped im-
prove this paper. Part of the work was conducted during the first
author’s internship at HKUST in 2018. This work is supported by
theNational Natural Science Foundation of China (grants #61932021,
#61902056, #61802164, #61977014), the Hong Kong RGC/GRF grant
#16211919, MSRA grant, and the Program for University Key Lab-
oratory of Guangdong Province (Grant #2017KSYS008).

REFERENCES
[1] 2020. Commit 7eeadeb of adapt. https://github.com/MycroftAI/adapt/commit/

7eeadeb4744b7e2dd7a9aa61e0350c4e22350eba. (2020). Accessed: 2020-02-06.
[2] 2020. conda. https://conda.io/. (2020). Accessed: 2020-02-06.
[3] 2020. Dependency specification for Python. https://www.python.org/dev/peps/

pep-0508/. (2020). Accessed: 2020-02-06.
[4] 2020. An experienced developer. https://github.com/ikreymer. (2020). Accessed:

2020-02-06.
[5] 2020. finance-dl. https://github.com/jbms/finance-dl. (2020). Accessed: 2020-

02-06.
[6] 2020. Issue #1277 of channels. https://github.com/django/channels/issues/1277.

(2020). Accessed: 2020-02-06.
[7] 2020. Issue #152 of channels. https://github.com/django/

channels_redis/issues/152. (2020). Accessed: 2020-02-06.
[8] 2020. Issue #1525 of molecule. https://github.com/ansible-community/

molecule/issues/1525. (2020). Accessed: 2020-02-06.
[9] 2020. Issue #1586 of crossbar. https://github.com/crossbario/crossbar/issues/

1586. (2020). Accessed: 2020-02-06.
[10] 2020. Issue #16 of kindred. https://github.com/jakelever/kindred/issues/16.

(2020). Accessed: 2020-02-06.
[11] 2020. Issue #1607 of molecule. https://github.com/ansible-community/

molecule/issues/1607. (2020). Accessed: 2020-02-06.
[12] 2020. Issue #182 of dynamic-preferences. https://github.com/EliotBerriot/

django-dynamic-preferences/issues/182. (2020). Accessed: 2020-02-06.
[13] 2020. Issue #1824 of allennlp. https://github.com/allenai/allennlp/issues/1824.

(2020). Accessed: 2020-02-06.
[14] 2020. Issue #2195 of allennlp. https://github.com/allenai/allennlp/issues/2195.

(2020). Accessed: 2020-02-06.
[15] 2020. Issue #229 of gallery-dl. https://github.com/mikf/gallery-dl/issues/229.

(2020). Accessed: 2020-02-06.
[16] 2020. Issue #2483 of allennlp. https://github.com/allenai/allennlp/issues/2483.

(2020). Accessed: 2020-02-06.
[17] 2020. Issue #25316 of pandas. https://github.com/pandas-dev/pandas/issues/

25316. (2020). Accessed: 2020-02-06.
[18] 2020. Issue #25487 of pandas. https://github.com/pandas-dev/pandas/issues/

25487. (2020). Accessed: 2020-02-06.
[19] 2020. Issue #2729 of plaso. https://github.com/log2timeline/plaso/issues/2729.

(2020). Accessed: 2020-02-06.
[20] 2020. Issue #295 of sherlock. https://github.com/sherlock-project/sherlock/

issues/295. (2020). Accessed: 2020-02-06.
[21] 2020. Issue #3118 of pipenv. https://github.com/pypa/pipenv/issues/3118. (2020).

Accessed: 2020-02-06.
[22] 2020. Issue #32 of valinor. https://github.com/ARMmbed/valinor/issues/32.

(2020). Accessed: 2020-02-06.
[23] 2020. Issue #36 of dbxfs. https://github.com/rianhunter/dbxfs/issues/36. (2020).

Accessed: 2020-02-06.
[24] 2020. Issue #3826 of rasa. https://github.com/RasaHQ/rasa/issues/3826. (2020).

Accessed: 2020-02-06.
[25] 2020. Issue #407 of wandb/client. https://github.com/wandb/client/issues/407.

(2020). Accessed: 2020-02-06.
[26] 2020. Issue #409 of bandit. https://github.com/PyCQA/bandit/issues/409. (2020).

Accessed: 2020-02-06.
[27] 2020. Issue #4669 of requests. https://github.com/psf/requests/pull/4669. (2020).

Accessed: 2020-02-06.
[28] 2020. Issue #4674 of requests. https://github.com/psf/requests/pull/4674. (2020).

Accessed: 2020-02-06.
[29] 2020. Issue #4675 of requests. https://github.com/psf/requests/pull/4675. (2020).

Accessed: 2020-02-06.
[30] 2020. Issue #492 of pywb. https://github.com/webrecorder/pywb/issues/492.

(2020). Accessed: 2020-02-06.
[31] 2020. Issue #66 of pythoncoveralls. https://github.com/z4r/pythoncoveralls/

issues/66. (2020). Accessed: 2020-02-06.

[32] 2020. Issue #70 of Osmedeus. https://github.com/j3ssie/Osmedeus/issues/70.
(2020). Accessed: 2020-02-06.

[33] 2020. Issue #740 of yotta. https://github.com/ARMmbed/yotta/issues/740. (2020).
Accessed: 2020-02-06.

[34] 2020. Issue #9 of webinfocrawler. https://github.com/lubosson/webinfocrawler/
issues/9. (2020). Accessed: 2020-02-06.

[35] 2020. Issue #9090 of spyder. https://github.com/spyder-ide/spyder/issues/9090.
(2020). Accessed: 2020-02-06.

[36] 2020. pip. https://pypi.org/project/pip/. (2020). Accessed: 2020-02-06.
[37] 2020. pip documentation. https://pip.pypa.io/en/stable/reference/pip_install.

(2020). Accessed: 2020-02-06.
[38] 2020. pipenv. https://docs.pipenv.org/. (2020). Accessed: 2020-02-06.
[39] 2020. PR #1675 of molecule. https://github.com/ansible-community/molecule/

pull/1675. (2020). Accessed: 2020-02-06.
[40] 2020. PR #71 of arxiv-submission-core. https://github.com/arXiv/arxiv-

submission-core/pull/71. (2020). Accessed: 2020-02-06.
[41] 2020. Project molecule. https://github.com/ansible-community/molecule.

(2020). Accessed: 2020-02-06.
[42] 2020. PyPI. https://pypi.org/. (2020). Accessed: 2020-02-06.
[43] 2020. virtualenv. https://virtualenv.pypa.io/en/latest/. (2020). Accessed: 2020-

02-06.
[44] Pietro Abate and Roberto Di Cosmo. 2011. Predicting upgrade failures using

dependency analysis. In Proceedings of the IEEE 27th International Conference on
Data Engineering Workshops. 145–150.

[45] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano
Zacchiroli. 2012. Why do software packages conflict?. In Proceedings of the 9th
IEEE Working Conference on Mining Software Repositories (MSR’18). 141–150.

[46] Alexandre Decan, Tom Mens, and Maelick Claes. 2016. On the topology of
package dependency networks: A comparison of three programming language
ecosystems. In Proccedings of the 10th European Conference on Software Architec-
ture Workshops. 21.

[47] Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang. 2018.
A Tale of Two Cities: How WebView Induces Bugs to Android Applications. In
Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE’18). 702–713.

[48] Nuttapon Lertwittayatrai, Raula Gaikovina Kula, Saya Onoue, Hideaki Hata,
Arnon Rungsawang, Pattara Leelaprute, and Kenichi Matsumoto. 2017. Extract-
ing insights from the topology of the javascript package ecosystem. In Proceed-
ings of the 24th Asia-Pacific Software Engineering Conference (APSEC’17). 298–
307.

[49] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and detect-
ing performance bugs for smartphone applications. In Proceedings of the 36th
International Conference on Software Engineering, (ICSE’14). 1013–1024.

[50] Tom Mens. 2016. An ecosystemic and socio-technical view on software mainte-
nance and evolution. In 2016 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME’16). 1–8.

[51] Fabio Nelli. 2015. Python data analytics. Berkeley: Apress (2015).
[52] Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: Finding and

understanding conflicts between javascript libraries. In Proceedings of the 40th
International Conference on Software Engineering (ICSE’18). 741–751.

[53] Alexander Serebrenik and Tom Mens. 2015. Challenges in software ecosystems
research. In Proceedings of the 2015 European Conference on Software Architecture
Workshops. 40.

[54] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and
Benoit Baudry. 2019. The Emergence of Software Diversity in Maven Central. In
Proceedings of the 16th IEEE Working Conference on Mining Software Repositories
(MSR’19). 1–11.

[55] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level de-
terminants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’18). 644–655.

[56] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,
Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the dependency conflicts in my
project matter?. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’18). 319–330.

[57] YingWang, MingWen, RongxinWu, Zhenwei Liu, Shin Hwei Tan, Zhiliang Zhu,
Hai Yu, and Shing-Chi Cheung. 2019. Could I Have a Stack Trace to Examine the
Dependency Conflict Issue?. In Proceedings of the 41th International Conference
on Software Engineering (ICSE’19). 572–583.

[58] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmen-
tation: Characterizing and Detecting Compatibility Issues for Android Apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, (ASE’16). 226–237.

[59] Markus Zimmermann, Cristianalexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small World with High Risks: A Study of Security Threats in the
npm Ecosystem. arXiv: Cryptography and Security (2019).

https://github.com/MycroftAI/adapt/commit/7eeadeb4744b7e2dd7a9aa61e0350c4e22350eba
https://github.com/MycroftAI/adapt/commit/7eeadeb4744b7e2dd7a9aa61e0350c4e22350eba
https://conda.io/
https://www.python.org/dev/peps/pep-0508/
https://www.python.org/dev/peps/pep-0508/
https://github.com/ikreymer
https://github.com/jbms/finance-dl
https://github.com/django/channels/issues/1277
https://github.com/django/channels
https://github.com/django/channels
https://github.com/ansible-community/molecule/issues/1525
https://github.com/ansible-community/molecule/issues/1525
https://github.com/crossbario/crossbar/issues/1586
https://github.com/crossbario/crossbar/issues/1586
https://github.com/jakelever/kindred/issues/16
https://github.com/ansible-community/molecule/issues/1607
https://github.com/ansible-community/molecule/issues/1607
https://github.com/EliotBerriot/django-dynamic-preferences/issues/182
https://github.com/EliotBerriot/django-dynamic-preferences/issues/182
https://github.com/allenai/allennlp/issues/1824
https://github.com/allenai/allennlp/issues/2195
https://github.com/mikf/gallery-dl/issues/229
https://github.com/allenai/allennlp/issues/2483
https://github.com/pandas-dev/pandas/issues/25316
https://github.com/pandas-dev/pandas/issues/25316
https://github.com/pandas-dev/pandas/issues/25487
https://github.com/pandas-dev/pandas/issues/25487
https://github.com/log2timeline/plaso/issues/2729
https://github.com/sherlock-project/sherlock/issues/295
https://github.com/sherlock-project/sherlock/issues/295
https://github.com/pypa/pipenv/issues/3118
https://github.com/ARMmbed/valinor/issues/32
https://github.com/rianhunter/dbxfs/issues/36
https://github.com/RasaHQ/rasa/issues/3826
https://github.com/wandb/client/issues/407
https://github.com/PyCQA/bandit/issues/409
https://github.com/psf/requests/pull/4669
https://github.com/psf/requests/pull/4674
https://github.com/psf/requests/pull/4675
https://github.com/webrecorder/pywb/issues/492
https://github.com/z4r/pythoncoveralls/issues/66
https://github.com/z4r/pythoncoveralls/issues/66
https://github.com/j3ssie/Osmedeus/issues/70
https://github.com/ARMmbed/yotta/issues/740
https://github.com/lubosson/webinfocrawler/issues/9
https://github.com/lubosson/webinfocrawler/issues/9
https://github.com/spyder-ide/spyder/issues/9090
https://pypi.org/project/pip/
https://pip.pypa.io/en/stable/reference/pip
https://docs.pipenv.org/
https://github.com/ansible-community/molecule/pull/1675
https://github.com/ansible-community/molecule/pull/1675
https://github.com/arXiv/arxiv-submission-core/pull/71
https://github.com/arXiv/arxiv-submission-core/pull/71
https://github.com/ansible-community/molecule
https://pypi.org/
https://virtualenv.pypa.io/en/latest/

	SPD-cover-page-horizontal (no license)
	Untitled
	Untitled
	Untitled

	Ying_ICSE2020

	Publication information: Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem
	Authors: Wang, Ying; Wen, Ming; Liu, Yepang; Wang, Yibo; Li, Zhenming; Wang, Chao; Yu, Hai; Cheung, Shing Chi; Xu, Chang; Zhu, Zhiliang
	Source: ICSE '20: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, June 2020, Pages 125-135
	Version: Accepted Version
	DOI: 10.1145/3377811.3380426
	Publisher: Association for Computing Machinery
	copyright: © Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published at https://dl.acm.org/doi/10.1145/3377811.3380426

