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ABSTRACT
Sophisticated user interaction in the automotive industry is a fast
emerging topic. Mid-air gestures and speech already have numerous
applications for driver-car interaction. Additionally, multimodal
approaches are being developed to leverage the use of multiple
sensors for added advantages. In this paper, we propose a fast and
practical multimodal fusion method based on machine learning for
the selection of various control modules in an automotive vehicle.
The modalities taken into account are gaze, head pose and finger
pointing gesture. Speech is used only as a trigger for fusion. Single
modality has previously been used numerous times for recognition
of the user’s pointing direction. We, however, demonstrate how
multiple inputs can be fused together to enhance the recognition
performance. Furthermore, we compare different deep neural net-
work architectures against conventional Machine Learning meth-
ods, namely Support Vector Regression and Random Forests, and
show the enhancements in the pointing direction accuracy using
deep learning. The results suggest a great potential for the use of
multimodal inputs that can be applied to more use cases in the
vehicle.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods; • Computing methodologies → Neural networks;
Support vector machines; Classification and regression trees.

KEYWORDS
Data fusion; Late fusion; Neural Networks; CNN; RNN; SVR

1 INTRODUCTION
With the evolution of the technology for user interaction, the focus
of the interface has gradually shifted from being computer-centered
to being human-centered. In the last few decades, we have seen
a great interest in the use of eye-tracking for Human-Computer
Interaction (HCI) [8, 21, 33]. The use of eyes as an input method to
track the users’ gaze direction provides a natural interface without
having touch-based inputs. However, the robustness of the eye-
tracking methods depend on various factors such as the sensors
used (e.g. head-mounted tracking device or a non-contact tracking
device). Eye-gaze for user interaction imposes some restrictions
as it can be very volatile and has an ‘always-on’ characteristic.
Therefore, it lacks a natural trigger for object selection.

Another important and natural source of input for user interac-
tion are mid-air gestures. Since early interactive systems, such as
Bolt’s seminal work ("Put that there" [3]), mid-air pointing gestures

Figure 1: Driver makes a pointing gesture to interact with
the car. Image courtesy of [1]

have also been of significant interest for user interaction [29, 32].
This is because they enable users to point to and reference objects
that are too far away to touch in a natural manner, especially with
the help of speech commands [27].

In this paper, we integrate the deictic information from gaze
and head pose, along with a specific gesture, i.e., finger pointing
gesture, in order to combine the efficiency and naturalness of these
modes of interaction, using a late fusion approach. There are two
main reasons for this multimodal integration: 1) to compensate the
drawbacks in one modality using the other and 2) to enhance the
overall performance of the user interaction by taking advantage of
the temporal relations between them. Although the use of multiple
inputs for interaction can have numerous applications such as for
assistance of people with disabilities, we focus our work on the
use of head pose, eye-tracking and finger pointing for applications
in the automobile industry. The motivation is driven by the direct
application in the BMWNatural Interaction, presented at theMobile
World Congress 2019, that enables genuine multimodal operation
for the first time [22].

While driving, the driver’s cognitive attention is affected by nu-
merous tasks such as navigating the infotainment system, operating
the in-vehicle control units etc. It has been observed that the gestu-
ral interfaces are fairly easy to use and they reduce the cognitive
load on the driver [23, 26]. For this reason, intuitive interactions via
free hand pointing gestures are becoming increasingly prevalent
for in-vehicle infotainment systems, which is particularly useful
for novice users [2]. Furthermore, multimodal interfaces also have
a tendency to reduce the driver load while driving [14]. We, there-
fore, propose an in-vehicle user interaction, that supplements the
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touch-based inputs, in which the driver is able to operate control
modules in the vehicle in a touchless and natural manner that is
also comparatively less distracting. In order to identify the desired
object or Area-of-Interest (AOI), the user may use a finger point-
ing gesture, as this type of gesture provides a deictic reference to
the various real-world objects, as shown in Figure 1. The action to
be performed on the selected object may be provided by speech
commands, such as, "what is that?" or "close that window".

In the context of this paper, we focus on the recognition of
the object that the user selects with a combination of gaze, head
pose and finger pointing. It has been observed that drivers make
relatively large errors in pointing [4, 25], and the integration of
gaze improves the accuracy of pointing while driving [24]. This
is because, while driving, the eye-gaze is mainly focused on the
road, but momentarily moves and fixates on the target object. In
the past, it was observed that gaze anchoring to a target existed
for the entire duration of the pointing movement of the finger [17].
More recently, Ahmed et al. show that in most cases, the driver first
looks towards the desired object before making the pointing gesture
and that there exists a misalignment between the gaze and finger
movements [2]. We exploit this relation between the eye-gaze and
the finger pointing motion to accurately choose the object located
in the entire field-of-view of the driver. Furthermore, we include
head pose as well as it is directly linked with eye-gaze [9].

2 RELATEDWORK
Multimodal user interaction has a wide variety of applications for
in-vehicle functions. Mitrevska et al. demonstrate the use cases of
an adaptivemultimodal control of in-vehicle functions with the help
of an individual modality (speech, gaze or gesture) or a combination
of two or more modalities [15].

Apart from the applications, research has shown that the use of
multiple input modalities have a potential to outperform systems
with a single input modality [6, 12, 31]. Due to this, the fusion of
multiple modalities has been used by many researchers for user
interaction. A multimodal technique for selection of objects on
the screen, namely the MAGIC pointing, was presented by Zhai
et al. about two decades ago [33]. This technique allows the user
to select objects on a screen by fixating on the target and pressing
a regular manual input device to trigger the selection. The Midas-
touch problem faced in this technique can be overcome by using
mid-air gestures to trigger the selection as presented in [5, 18, 29].
Gaze is often used for selection of objects on a screen while using an
additional trigger such as using a speech command [13]. However,
selection performed exclusively by gaze is difficult, especially when
objects are placed very close to each other [7].

EyePointing is an extension to MAGIC pointing that uses fin-
ger pointing as a trigger for object selection [29]. Chatterjee et al.
demonstrated a better outcome with the integration of gaze and
gesture as inputs as compared to systems with only gaze or gesture
[5]. Similarly, Nesselrath et al. use a combination of three modalities,
speech, gaze and gestures, to initially select objects of the vehicle,
e.g., side mirrors or windows, and then use gestures or speech to
control these objects [18].

These approaches primary use the gaze information and enhance
the naturalness of the user interaction with secondary modality, e.g.

gestures or speech. In contrast to this, Sauras-Perez et al. propose
the use of speech with the finger pointing gesture for selection of
Points-of-Interest (POI) while driving a vehicle [27].

Unlike these approaches, we do not use finger pointing gesture as
a trigger for selection, but rather use the finger ray-cast in addition
to gaze ray-cast and head pose to fuse them together. The fusion of
the modalities is used for better performance while using speech as
the trigger. Each modality is treated equally at the input, and the
model learns the weights on its own during the training process.

The problem of object selection inside a car has also been pre-
sented by Roider et al. who integrate eye gaze with finger pointing
gestures in a passive manner using a simple rule-based fusion ap-
proach. They have shown that the selection on an in-vehicle display
screen achieves increased pointing accuracy over the single modal-
ity, i.e., finger pointing [24]. This experiment is limited to only four
objects on a screen adjacent to each other. In our work, we enhance
the object selection using a late fusion approach to select a wide
range of objects inside the vehicle that lie in the hemisphere in front
of the driver. We use an additional modality, i.e. head pose, because
the head pose and gaze direction are mostly directly related and are
usually considered together for recognizing the visual behaviour
[10, 16]. Another reason for including head pose is that eyes can be
easily occluded when using eye-tracking sensors that are fixed for
practical reasons rather than head-mounted. Head pose may prove
to be beneficial in such cases.

Head pose and gaze direction are used by Jha and Busso, in their
work, to estimate driver’s gaze direction [9]. They use simple linear
regression models to predict the direction of gaze. Compared to
this, the novelty in our method is that we allow the neural network
to learn the relations between the three modalities, and then use
linear regression to predict the output.

A driver query system, similar to our experimental setup, is
presented by Kang et al. in which the smart car is able to figure
out where the driver is looking at using visual cues, head pose
and speech [11]. We show that the accuracy of the driver’s query
can be further improved tremendously by adding finger pointing.
However, we do not consider speech as an input to the fusion as
it is a very different problem altogether, but rather use speech as
a trigger for fusion. The dialogue duration has an impact on the
interaction between the car and user [30], which we do not explore.

Deep neural networks have been applied to feature fusion for var-
ious tasks [19], but they usually deal with abstract data or abstract
features. In [20], Olabiyi uses Deep Recurrent Neural Networks to
perform a fusion of sensory inputs to predict driver actions. We
use a similar concept and apply Convolutional Neural Networks
(CNN) on the sequential (temporal) input data.

To sum up, we extend and combine concepts from various previ-
ous research for a more robust performance that can be practically
applied in a real car. While many studies have been performed in
simulators, only a few are presented in a real-world scenario. For
practical reasons, our experiments are performed in a real car to
provide the users a more realistic impression, and, therefore, to
achieve more significant results than a simulation.
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Figure 2: The 12 AOIs in the cockpit

3 DATA COLLECTION
We consider a simple yet a very productive cockpit use case, that is
object selection inside the vehicle.We chose to set up our sensors for
data collection in a stationary but functional BMW vehicle rather
than a simulator to have apt uses in real world. This is why we
do not use head-mounted sensors as they may hinder the driver’s
cognitive abilities while driving.

We do not consider the action to be performed in the context
of this work. The selection of objects outside the car is excluded
in this work. It is a future extension of this work, and we hope to
integrate outside use cases in the future as well, e.g., pointing to
buildings or landmarks, and inquiring about them.

3.1 Apparatus
There are two types of camera systems used to capture the 3D
information of the driver: the Gesture Camera System and the
Visual Camera System.

3.1.1 Gesture Camera System. The gesture camera, mounted next
to the Roof Function Centre of the car, captures hand and finger
movements in the 3D space using a Time-of-Flight (ToF) camera. It
has awide Field-of-View so that it covers almost the entire operating
zone of the driver. The gesture camera system detects a finger
pointing gesture and calculates the vector from the tip of the finger
to the base of the finger. The 3D coordinates of the fingertip are
used as the finger position.

3.1.2 Visual Camera System. The visual camera is a high-definition
camera with a built-in technology that evaluates the images of
the driver and calculates the required 3D vector data for the head
pose and eye-tracking. It uses an actively illuminated infrared (IR)
sensor to capture eye and head movements even in low lighting.
The camera is placed behind the steering wheel in such a way that
eye-occlusion is minimal, and it does not interfere with the driver’s
attention on the road. The algorithm integrated into the camera
system calculates the head rotation as three Euler angles (roll, pitch
and yaw), and the 3D coordinates of the estimated centre position
of the head. In addition to this, it provides eye position which is
the 3D coordinates of the cyclops eye (i.e., centre point between
the two human eyes), and the 3D vector coordinates of the eye
direction merged together from both the left and the right eye.

Figure 3: 3D scatter plot of the measured AOI points.

3.1.3 Speech command. Apart from the visual camera and the
gesture camera systems, we use a speech command along with the
pointing gesture which we implemented with the Wizard-of-Oz
(WoZ) method. In order to record the timestamp of the pointing
gesture, a secondary person (acting as the wizard) pushes a button
manually that stores the timestamp at the instant when the primary
user points to an object and says, "what is that?" The aim was to
note the timestamp when the word "that" is said. However, there
may be human error involved in measuring this timestamp.

3.1.4 Selection of AOIs. Based on the use-cases for the driver in-
teraction, we chose twelve distinct, but closely situated, control
modules in the cockpit of the car as Areas-of-Interest (AOIs). They
are illustrated with red circles in Figure 2. A 3D scatter plot of all
the measured points for each of the 12 AOIs is illustrated in Figure
3. The ‘x’ represent measured points, whereas the ‘o’ shows the
mean of the measured point of the AOI.

3.2 Participants
In this experiment, we collected data from 22 participants aging
between 20 and 40 years old. 5 of these participants were female,
and the remaining 17 were male. The drivers were asked to point
to the various AOIs in a stationary vehicle and give the command,
"what is that?" There was no further instruction provided so that
the pointing gesture can be as natural as possible. The participants
were free to choose either hand and use any finger for pointing. 15
% samples of pointing samples were performed with left hand while
the remaining were with the right hand. About 30 % of participants
wore glasses, 10 % wore contact lenses, and the remaining had no
glasses or lenses.

3.3 Dataset Statistics
From each of the 22 drivers, we collected 10 pointing gesture events
for each of the 12 AOIs. The entire dataset consisted of 120 samples
for every participant where each data sample consists of exactly
one gesture pointing event. In total, we had 2640 samples that we
collected for the cockpit use case. Due to errors in recording, 60
samples were discarded. Therefore, 2580 samples were used.

The difference between the estimated and actual direction, cal-
culated for each of the modalities, is termed as the estimation error.
An error in estimation is considered when the vector direction is
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Figure 4: The modalities used: gaze and finger ray-cast (left)
and head pose (right)

Figure 5: Change of origin from centre of front axle of the
car (left) to the centre of the driver’s seat (right)

outside the visible surface area of the AOIs. The mean and stan-
dard deviation of the estimation error for the three modalities in
the horizontal direction (azimuth) and the vertical direction (ele-
vation) are shown in Table 1. It can be seen that the eye direction
has relatively large errors for the first three AOIs, while the head
direction has relatively large errors for AOIs 10 and 11. The large
errors in the elevation angle of the head direction suggest that the
head movement in the vertical direction is considerably small even
when looking downwards (as almost all of the AOIs lie below the
car windscreen).

This is a relatively small dataset, especially when using deep
neural networks. However, the outcomes that we achieved from
such a small dataset (in section 5), show a great proficiency in
our approach, which may even be enhanced using a larger dataset.
Consequently, a much larger dataset that will be used in the future
is being collected which incorporates more use cases as well.

AOI
Eye Direction Head Direction Finger Direction

Azimuth Elevation Azimuth Elevation Azimuth Elevation
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

1 26° (18°) 13° (11°) 5° (7°) 37° (10°) 17° (35°) 15° (17°)
2 23° (17°) 11° (11°) 4° (6°) 36° (10°) 11° (22°) 7° (14°)
3 25° (16°) 19° (13°) 3° (8°) 46° (11°) 15° (30°) 17° (17°)
4 2° (5°) 1° (4°) 2° (5°) 23° (8°) 1° (7°) 4° (8°)
5 1° (4°) 1° (5°) 1° (4°) 22° (8°) 1° (5°) 5° (8°)
6 5° (5°) 3° (2°) 7 (8°) 21° (8°) 9° (16°) 8° (11°)
7 1° (3°) 1° (2°) 3° (7°) 10° (7°) 1° (6°) 1° (5°)
8 3° (6°) 3° (6°) 5° (5°) 32° (11°) 3° (10°) 4° (8°)
9 2° (4°) 3° (6°) 21° (12°) 33° (14°) 9° (19°) 6° (11°)
10 12° (13°) 4° (7°) 34° (14°) 36° (14°) 29° (29°) 26° (23°)
11 25° (14°) 9° (11°) 45° (14°) 31° (13°) 27° (28°) 25° (24°)
12 17° (18°) 4° (5°) 11° (14°) 15° (7°) 10° (26°) 6° (11°)

Table 1: Mean (M) and Standard Deviation (SD) of the estima-
tion error (in degrees) of eye, head and finger direction.

4 METHODOLOGY
Our proposed architecture is given in Figure 6. The camera systems
are treated as black boxes that provide input processed from the
images. A late fusion is applied on the preprocessed data to estimate
the driver’s referenced object by matching to the known AOIs.

4.1 Preprocessing
The visual camera and the gesture camera systems provide the
head, eye and gesture pose. Pose consists of both position and
direction/rotation of the individual modalities. The finger and eye-
gaze directions use ray casting while, for the head rotation, we use
yaw, pitch and roll as inputs, as shown in Figure 4. The direction
vectors of eye and finger are normalized to have a unit norm. Due
to occlusion of the eyes or the finger, there are some frames with
missing data. Occlusion of the eyes mainly occurs when the driver
looks downward, and therefore, the eyelids occlude the pupils,
or when the pointing arm comes in front of the face. To fill the
missing data, we use linear interpolation from the two nearest
neighbouring frames. Afterwards, camera calibrations are applied
to give real-world coordinates with respect to the origin, i.e., the
centre of the front axle of the car, which is the ISO standard [28].
We apply a translation in order to translate the origin point to the
centre of the driver’s seat as illustrated in Figure 5. We observed
from experiments that using such a translation makes the learning
process in neural networks slightly better, i.e., the translation lead
to an increased accuracy.

We evaluated different time intervals to figure out the right
interval to use as input. The results are omitted in this paper. It was
found out that choosing a small time period of 0.2 seconds at the
instant when the WoZ button is pressed provided sufficiently good
results. At about 45 fps, this time period amounts to 8 frames from
each sample, 4 frames before the noted timestamp by the wizard,
and 4 frames after it.

4.2 Fusion Algorithm
We use machine learning methods, particularly Deep Neural Net-
works (DNN), to fuse the three modalities. The motivation behind
the choice is that there may be a number of different cases that
may be difficult to address with a rule based approach. DNNs, with
supervised learning, have a tendency to tackle the different cases on
their own, provided that the dataset has a large variance. Addition-
ally, DNNs are easily expandable to add more use cases which we
will consider in the future work as well. We present a base model
and show the comparison of results to other similar models.

4.2.1 Ground Truth Definition. The corner points of the AOIs in the
car were measured, w.r.t to the origin (i.e. the centre of the driver’s
seat), as illustrated in Figure 3. We then define the ground truth as
the 3D vector (with unit norm) calculated from the origin to the
mean point of the measured points. The mean of the measurements
reveal to be very close to the actual centre of the AOI (see Figure 3).

4.2.2 Base model. The input to the model, 𝑥 , is a batch of samples
of size 𝑏, such that 𝑥 ∈ R𝑏×𝑓 ×𝑎×𝑑 , where 𝑓 is the number of frames
used, 𝑎 is the number of feature attributes used and 𝑑 is the number
of dimensions in each attribute. We chose 6 feature attributes as
inputs: the position and direction of eye, head and finger. Each of
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Figure 6: A multimodal late fusion architecture

these has 3 dimensions, representing a point or a vector in the 3D
vector space. The inputs from 8 frames are concatenated together.
The base model is a deep Convolutional Neural Network (CNN),
consisting of two 2D convolutional layers and one fully connected
layer. The output is linearly regressed to give a (3 × 1) vector for
the fused direction.

We use the cosine similarity between the predicted vector and
the ground truth vector as the loss function, i.e., the cosine of the
angle between the two vectors. The loss function is, thus, given as:

L =
1
𝑁

𝑁∑︁
𝑖=1

cos(𝜃𝑖 ) =
1
𝑁

𝑁∑︁
𝑖=1

ŷ𝑖 . y𝑖
∥ŷ𝑖 ∥ ∥y𝑖 ∥

(1)

where ŷ 𝑖 is the 𝑖-th predicted fusion vector, y𝑖 is the 𝑖-th ground
truth vector, 𝜃𝑖 is the angle between the two 3D vectors, and 𝑁 is
the total number of samples. Therefore, we have L ∈ [−1, 1].

4.2.3 Other models. The base CNN model is compared with other
models to show the performance of the fusion using various ap-
proaches. These include a Fully-Connected Neural Network (FC-
NN), Recurrent Neural Network (RNN), Support Vector Regression
(SVR), and Random Forests (RF) regression. The RNN has 2 LSTM
(Long Short-Term Memory) layers and 1 fully connected layer. The
FC-NN consists of 3 fully connected layers. Both, FC-NN and RNN,
use the cosine similarity as the loss function. Conventional machine
learning approaches, namely SVR and RF, are evaluated to figure
out if the model complexity with DNNs is an overkill. For the SVR,
the polynomial kernel is used with degree 2.

4.3 Matching Predictions with AOIs
In order to identify the desired object by the user, we measure the
cosine similarity between the predicted vector and the 12 AOIs
separately. The one with the highest cosine similarity is chosen. In

other words, the one with the lowest angular deviation from the
predicted value is chosen.

5 EXPERIMENTS AND RESULTS
In the context of this paper, we report only one use-case, i.e., the
cockpit use case. Figure 7 shows an example of the driver pointing
to one of the AOIs. Other experiments are in progress for further
use cases, and the results will be presented in future publications.

Due to the small size of the dataset, we use cross validation to
report the results. A leave-one-out cross-validation (22-fold cross-
validation) is used for training and evaluation of the dataset. The
dataset is split into three, training, validation and testing. With the
leave-one-out cross validation, the test set covers the entire dataset.
The train/test split of the data is user-based, i.e., no sample from
the participants in the training set appears in either the validation
or the test set and vice versa. This means that each fold of the data
contains 120 samples (≈ 5%) from each driver, respectively.

We train the model for 100 epochs using a batch size of 8 and the
Adam optimizer with a learning rate of 0.001. The best performing
model on the validation set is selected and tested on the test set
in order to avoid overfitting. The test results on the 22 folds are
averaged to give the final value. By averaging using the cross-
validation, we avoid the bias in the results which may occur due to
certain user specific referencing.

5.1 Metrics
For the training and test loss, we use the cosine similarity function
as shown in Equation (1). For performance measures, we use two
metrics: accuracy and Mean Angular Deviation (MAD).

5.1.1 Accuracy. We use accuracy to evaluate the classification per-
formance of the models for the 12 AOIs. Accuracy is the percentage



Abdul Rafey Aftab, Michael von der Beeck, Michael Feld

Figure 7: Driver points to AOI 5 (multimedia) in the car. The face is blurred due to the privacy policy.

of the correctly identified finger pointing samples:

Accuracy =
𝑇𝑃

𝑁
× 100% (2)

where 𝑁 is the total number of predictions and 𝑇𝑃 is the total
number of true predictions (or correct identification) by the model.

5.1.2 Mean Angular Deviation (MAD). We defineMAD as the mean
of the angles between the predicted vectors and the corresponding
ground truth vectors in the 3D vector space. This evaluates the
performance of the regression output. Consequently, the lower the
MAD, the better. Mathematically, we have:

MAD =
1
𝑁

𝑁∑︁
𝑖=1

𝜃𝑖 =
1
𝑁

𝑁∑︁
𝑖=1

arccos
(

ŷ𝑖 . y𝑖
∥ŷ𝑖 ∥ ∥y𝑖 ∥

)
(3)

5.2 Ablation Study
In order to see the effect of each individual modality, we first do
an ablation study. The ablation study also includes the removal of
the difficult cases of AOIs, and analyzing the results. For all the
experiments in the ablation study, the base model (CNN) is used
with a 22-fold cross-validation.

5.2.1 Effect of removing modalities. The training consists of either
one modality (e.g. position and direction of eye only), a combination
of two modalities or a fusion of all three modalities. The cross-
validation scores are shown in Table 2. It can be seen that the finger
pointing accuracy (64.5%) is significantly higher than the other two
modalities. One possible reason for the low accuracy for the gaze
(38%) might be given by the missing gaze data. In the data, we found
662 samples out of 2640 to have the gaze data missing at the instant
when the wizard pushes the trigger. Half of the missing gaze data
occurs for the AOI 1, 2 and 3 for which the driver needs to look
downwards to the right, while a quarter of these occur for AOI 10
and 11. The effect can also be seen in the confusion matrix shown
in Figure 8 where AOIs 1, 2 and 3 as well as AOIs 10 and 11 have
many misclassifications.

From the results, we see that the main contributor is the finger
pointing gesture. By adding an additional modality on top of finger,
there is a slight increase of about 4% in performance. Moreover,
using all the three modalities, increases the accuracy of further by
about 4 - 5%. In a way, the head pose compensates for the missing

eye gaze information and vice versa to improve the monomodal
resultant of finger pointing.

5.2.2 Effect of removing difficult classes. As it was observed that
there was a significant amount of gaze data that was missing for
the AOIs 1, 2, and 3, we removed these samples from our dataset to
see the effect of gaze. There were 1940 samples that remained in
total. The results are shown in Table 3.

It is observed that using these 9 AOIs (AOI 4 - 12) only, the
eye-gaze accuracy significantly improves from 38% to 57%. The
MAD also improves with a decrease of 1.6°. This demonstrates that
the data collected for the AOIs 1, 2 and 3 has some errors. The
accuracy of fusion (of all three modalities) also increases by about
4%. The confusion matrix for the fusion is shown in Figure 10. The
most misclassifications are seen between AOI 10 and 11 which are
very close together on the bottom-left side of the driver. A possible
reason may be occlusion of the eyes from the arm when the driver
uses the right hand for pointing.

The model accuracy and MAD after further removing AOIs 10
and 11 can be seen in Table 4. The confusion matrix, for the model
that uses all modalities, is shown in Figure 9. The accuracy by using
only gaze information as input, is increased by 8% to 65%, while
the accuracy by using all modalities increases by 6% to 83.9%.

5.3 Model Performance on Individual Drivers
We observed that different driver’s point in a very different way.
The scatter plot of performance of the CNN based model on the
different drivers in the test set is illustrated in Figure 11. We plotted
the accuracy on the ‘y’ axis and MAD on the ‘x’ axis. Therefore, the
best point on the plot would be top-left and the worst point would
be bottom-right. We found out that accuracy and MAD of testing
the base model on some participants is more than 80% and less
then 3°, respectively. On the other hand, test results on a few other
participants demonstrate significantly poor pointing performance,
i.e., less than 50% accuracy and more than 8°MAD. This can be seen
at the bottom left corner of the Figure 11. Upon removing the two
users from the dataset, and performing a 20-fold cross-validation,
the model achieved a test accuracy of 75.1% and a MAD of 5.4°.
There is only a slight increase because the dataset becomes even
smaller with 20 users.
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Figure 8: Confusionmatrix for fusion of all threemodalities
for the 12 classes

Modality Accuracy ↑ MAD ↓
Head 30.4 % 11.7°
Gaze 38.1 % 9.8°
Finger 64.5 % 9.7°

Gaze + Head 50.5 % 7.7°
Finger + Head 68.5 % 6.5°
Finger + Gaze 69.5 % 7.1°

Finger + Gaze + Head 73.7 % 5.2°
Table 2: Modality based results using 12 classes (AOIs 1 - 12)

Figure 9: Confusionmatrix for fusion of all threemodalities
for the 7 classes

Figure 10: Confusion matrix for fusion of all three modali-
ties for the 9 classes

Modality Accuracy ↑ MAD ↓
Head 38.5 % 11.2°
Gaze 57.1 % 8.2°
Finger 70.6 % 9.7°

Gaze + Head 64.5 % 6.8°
Finger + Head 72.3 % 5.9°
Finger + Gaze 71.7 % 6.6°

Finger + Gaze + Head 77.6 % 4.9°
Table 3: Modality based results using 9 classes (AOIs 4 - 12)

Modality Accuracy ↑ MAD ↓
Gaze 65.0 % 7.0°

Finger + Gaze + Head 83.9 % 4.1°
Table 4: Modality based results using 7 classes (AOIs 4-9, 12)

Figure 11: Model performance on the individual drivers
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Model Linear regression Classification
Accuracy ↑ MAD ↓ Accuracy ↑

CNN (base model) 73.7 % 5.1° 73.9 %
RNN 73.3 % 5.9° 73.0 %
FC-NN 72.1 % 5.5° 74.9 %

SVR / SVM* 55.0 % 8.4° 71.4 % *
RF 69.4 % 6.1° 76.8 %

Table 5: A comparison ofMachine learningmodels using lin-
ear regression (with the cosine similarity loss for DNNs) and
classification (using softmax loss for DNNs)

Upon carefully analyzing the videos, we could not find any sub-
stantial reason for the poor performance on some users. One of the
possible reasons could be very sunny conditions that caused the
drivers to clench their eyes slightly. This resulted in poor quality
of gaze data, which had some errors in measurements. Another
observation was the alternative use of right or left hand for pointing
towards the same AOI. This resulted in different pointing angles
because of the position of the arm. However, we can not concretely
conclude on any of these reasons. A more extensive study needs to
be conducted to explain the reasons behind this user behaviour. The
differences in recognition of the pointing direction of the different
drivers, shows the need for a personalized fusion approach or the
implementation of an online adaptive learning approach.

5.4 Comparison of Different Models
In this section we compare the different machine learning mod-
els. The results are shown in Table 5. As can be seen, there is no
significant difference between the deep neural network models.
However, when compared with SVR, there is a big difference of
19% in accuracy and a difference of 3° in MAD. When analyzing
RF regression against CNN, there is only a small difference of 4%
in accuracy and 1° in MAD. From these results, we can see that
even with a small dataset, the deep neural networks are able to
learn appropriately, and produce sufficiently good results when
compared to conventional machine learning.

5.5 Processing Speed
We used an Intel Xeon 16 core processor with a Quadro P5000 GPU
for evaluating the models. The processing speeds for all the models
are presented in Table 6. It is to be noted here that SVR and RF are
run on the CPU, while the rest use the GPU. SVR appears to be the
fastest, processing about 17,800 frames per second (fps) and taking
0.5 milliseconds (ms) to process a sample of 8 frames. RNN, on the
other hand, is the slowest taking 15 ms for one sample. Nonetheless,
as the neural networks are not very deep, the processing times are
practically applicable and fast, especially when using CNN.

5.6 Alternate Approach Using Softmax Loss
As we are dealing with a classification problem, we also use the
softmax loss instead of cosine similarity. Softmax loss function has
properties well suited for classification. Similarly, instead of using
SVR and RF with the matching algorithm presented in section 4.3,
we use Support Vector Machine (SVM) and RF classifier. The results

Model Time per sample ↓ Speed ↑ Processor
CNN 1.1 ms 7,520 fps GPU
RNN 15.4 ms 520 fps GPU
FC-NN 2.2 ms 2,800 fps GPU
SVR 0.5 ms 17,800 fps CPU
RF 4.2 ms 1,950 fps CPU

Table 6: Processing time of Machine learning models

are shown in the last column of Table 5. There is only a slight
difference in the accuracy of all the different models. Angular devi-
ation is no longer applicable as there is no output vector, but rather
probabilities for each class. SVM and RF classifier perform better
than SVR and RF regression, respectively, because of intrinsic prop-
erties suited for classification. In this case, however, we observe RF
classifier to outperform CNN in terms of the classification accuracy.
This can be associated with the relatively small dataset when using
deep neural networks. We also did not tune the hyper-parameters
of the neural networks, which may have also have an impact.

While using the softmax function as loss, there is a very slight
increase in accuracy, which shows our approach using regression
and the matching algorithm is almost equally good. The reason for
using regression is scalability and flexibility for future work when
we work with Points-of-Interest (POI) on the outside of the car. In
such a case, the number of classes are not known beforehand, and
such a classification approach would be difficult to realize.

6 CONCLUSION
In this paper, we presented a unique approach for user interaction
inside the car where the driver can select various control modules
of the car without a touch based input. To validate our approach, we
conducted an experiment in a real but stationary car, and developed
a novel approach using different deep neural networks to fuse
three modalities for a more robust recognition of the driver’s focus
of visual attention. Unlike previous research work, we used all
the three different modalities, namely finger, head pose and gaze,
simultaneously. We have demonstrated that the use of multiple
sources of input increases the performance. However, using three
modalities instead of two (finger and eye gaze) only results in a
negligible enhancement in the recognition accuracy of the driver’s
selected area-of-interest.

Furthermore, a comparison of deep learning methods and two
conventional machine learning methods (namely SVR and RF) to
perform the multimodal fusion is presented. We showed that, even
with a considerably small dataset, the deep neural networks are
able to learn the weights and produce better predictions for the
user’s referencing direction than the other two methods.

The work presented in this paper is preliminary and is motivated
by the BMW Natural Interaction [1]. Based on the results achieved
in the experiment, we can conclude that there is much potential
with this approach for future user experience applications in the
automotive industry. Our future work will focus on extending this
to various other use cases, especially in the driving case, with a
much larger dataset.
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