
Explicit Semantic Cross Feature Learning via Pre-trained Graph
Neural Networks for CTR Prediction

Feng Li∗, Bencheng Yan∗, Qingqing Long, Pengjie Wang‡, Wei Lin, Jian Xu and Bo Zheng†
Alibaba Group

{adam.lf,bencheng.ybc,lantu.lqq,pengjie.wpj,xiyu.xj,bozheng}@alibaba-inc.com,lwsaviola@163.com

ABSTRACT
Cross features play an important role in click-through rate (CTR)
prediction. Most of the existing methods adopt a DNN-based model
to capture the cross features in an implicit manner. These implicit
methods may lead to a sub-optimized performance due to the limi-
tation in explicit semantic modeling. Although traditional statistical
explicit semantic cross features can address the problem in these
implicit methods, such features still suffer from some challenges,
including lack of generalization and expensive memory cost. Few
works focus on tackling these challenges. In this paper, we take
the first step in learning the explicit semantic cross features and
propose Pre-trained Cross Feature learning Graph Neural Networks
(PCF-GNN), a GNN based pre-trained model aiming at generating
cross features in an explicit fashion. Extensive experiments are
conducted on both public and industrial datasets, where PCF-GNN
shows competence in both performance and memory-efficiency in
various tasks.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
CTR prediction; Pre-trained GNNs; Cross Features; Explicit Fashion
ACM Reference Format:
Feng Li∗, Bencheng Yan∗, Qingqing Long, Pengjie Wang‡, Wei Lin, Jian
Xu and Bo Zheng† . 2021. Explicit Semantic Cross Feature Learning via
Pre-trained Graph Neural Networks for CTR Prediction. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3404835.3463015

1 INTRODUCTION
Modeling the complex relationships among features is the key to
click-through rate (CTR) prediction. A major way to characterize
such relationships is to introduce the cross features. For example, a

∗ These authors contributed equally to this work and are co-first authors.
‡ This author gave a lot of guidance in this work.
† Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3463015

user who is a basketball player likes to click the recommended item
"Nike-Air Jordan". While a user who is a programmer may be more
likely to click digital products. These suggest that the interactions
(i.e., cross features) <user_occupation, item> can be taken as a strong
signal for CTR prediction. In practice, such cross features have
achieved remarkable results in modeling feature interactions and
improving the CTR performance [15, 17].

There are two ways to model the cross features, i.e., implicit
semantic modeling and explicit semantic modeling. Most of the ex-
isting works focus on implicit semantic modeling. The main idea of
these works is to adopt a deep neural network (DNN) and hope the
capacity of DNN can characterize the cross features in an implicit
manner (e.g., Wide & Deep [2], DeepFM [4], DCN[16], Cross-GCN
[3], and Fi-GNN [9]). Although this kind of methods has achieved
great success in cross features modeling, it is restricted to the im-
plicit semantic modeling, and we can never guarantee the learned
cross features are what we want, leading to a sub-optimized perfor-
mance (Note in these methods, although the involved two features
may be explicitly fed into a same DNN-based layer, the learned
cross features can only contain implicit semantic information.).
Therefore explicit semantic information is an important signal to
make up the limitation of the above methods.

However, few works focus on learning the explicit semantic
information of cross features effectively. On the contrary, almost
all the existing methods adopt simple statistical explicit semantic
cross features (SESCF) manually to describe the explicit semantic
information [13]. Specifically, SESCF can be modeled by count-
ing how many clicks or calculating the click rate among features
from history [13]. For example, we can count the times that a user
who is a basketball player clicks "Nike-Air Jordan" in the history,
and take this counting value as the explicit semantic cross feature
<user_occupation=basketball player, item=Nike-Air Jordan> for the
samples having the same user occupation and items. Obviously,
such a counting value describes the feature relationship explicitly.
A higher value refers to a higher correlation among these features.
However, simply adopting such SESCF poses great challenges.
(1) Lack of generalization. SESCF mainly relies on the statistical
counting from history and has no ability to infer the new pairs
of cross features which are never shown before. For example, the
latest "Nike-Air Jordan" may be heavily browsed by the user who
is a basketball player recently, and rarely shown to a user who is a
programmer. In this case, the SESCF about <user_occupation, item>
cannot give any suggestions for the recommendation of the latest
"Nike-Air Jordan" to a programmer user. Hence, there is a large
requirement for predicting new pairs and a generalized model on
explicit semantic cross features still remains a significant challenge.

ar
X

iv
:2

10
5.

07
75

2v
1

 [
cs

.A
I]

 1
7

M
ay

 2
02

1

https://doi.org/10.1145/3404835.3463015
https://doi.org/10.1145/3404835.3463015

(2) Expensivememory cost. In real applications, we usually need
to keep a <cross feature, counting value> (e.g., «basketball player,
"Nike-Air Jordan">, 100>) mapping table for online severing. The
challenge is that maintaining such a mapping table may need exces-
sively vast storage resources especially for a web-scale application
[2, 17]. For instance, if there are 𝑁1 occupations and 𝑁2 items, the
number of rows in the mapping table is related to 𝑁1𝑁2. In other
words, the corresponding memory cost is 𝑂 (𝑁1𝑁2) (i.e., Carte-
sian product). Therefore, modeling the interaction among features
which have a large-scale vocabulary (e.g., User ID) may need huge
memory cost which definitely hurts the severing efficiency.

None of the existing works try to address the above challenges
in the view of the explicit semantic modeling. To tackle these chal-
lenges, we propose a Pre-trained Cross Feature learning Graph
Neural Networks (PCF-GNN), a GNN [11] based pre-trained model.
Specifically, we first transform the interactions among features in
history to an informative graph. Because abundant interactions
can be naturally modeled as edges in a graph, and the graph can
further provide us the convenience to understand the complex in-
teractions. In this graph, each node refers to a single feature (e.g.,
user_occupation), each edge refers to a feature interaction, and the
edge attributes are assigned with the counting value (i.e., SESCF).
Then a self-supervised edge-attributes prediction task is designed to
pre-train a GNN (a most powerful architecture in node relationship
modeling [6, 12]) to allow the model to have the domain knowledge
about the explicit semantic information of cross features and have
the ability to infer the attributes of new edges (addressing challenge
one). Furthermore, such a design makes us free from storing the
huge mapping table since we can simply infer rather than store the
explicit semantic cross features (i.e., edge attributes) (addressing
challenge two). Detailed analysis can be found in Section 2.5.

We summarize our contributions as follows: (1) We propose PCF-
GNN, a pre-trained GNN model to learn explicit semantic cross
features. To the best of our knowledge, we take the first step in
learning the explicit semantic cross features, and the pre-trained
GNN is also first introduced in this area. (2) A pre-training pipeline
is designed and a weighted loss based on interactions between
features is proposed, to capture explicit semantic cross features. (3)
We carry out extensive experiments on both public and industrial
datasets, where PCF-GNN shows competence in both performance
and memory-efficiency.
2 MODEL: PCF-GNN
In this section, we introduce our model. Generally speaking, we
adopt a two-stage pipeline, i.e., pre-training stage (Section 2.1–2.3)
and downstream task application stage (Section 2.4).
2.1 Graph Construction
We first construct the graph based on the interactions among fea-
tures in history. As shown in Fig. 1, given samples of users’ click
history, we take the interactions <User, Item> and <Item, Shop> as an
example (in practice, abundant kinds of interactions are considered),
and construct an informative graph where nodes refer to features,
edges refer to feature interactions and the edge attributes refer to
statistical explicit semantic cross features. Formally, in this paper,
the attribute 𝑎𝑢,𝑖 of edge 𝑒𝑢,𝑖 can be calculated as,

𝑎𝑢,𝑖 = 𝐶𝑜𝑢𝑛𝑡 (𝑢, 𝑖) | (𝑐𝑙𝑖𝑐𝑘 = 1)/𝐶𝑜𝑢𝑛𝑡 (𝑢, 𝑖) (1)

Figure 1: An example graph constructed from history.

Figure 2: An overview of the proposed PCF-GNN.
where 𝐶𝑜𝑢𝑛𝑡 (𝑢, 𝑖) denotes the number of co-occurrence that fea-
tures 𝑢 and 𝑖 are presented in the same history samples. Note 𝑎𝑢,𝑖
characterizes the interactions between features 𝑢 and 𝑖 explicitly.

2.2 Pre-training Task Design
The key idea is that we need to give the domain knowledge about
the explicit semantic cross features to the pre-training task. Specifi-
cally, since the edge attributes in the constructed graph refer to the
explicit semantic cross features, we can design a self-supervised
task, i.e., predicting the edge attributes. Formally, the pre-training
task can be represented as | |𝑝𝑢,𝑣−𝑎𝑢,𝑣 | |2 where 𝑝𝑢,𝑣 is the output of
the PCF-GNN. In this way, with the guidance of the edge attribute,
the learned 𝑝𝑢,𝑣 can explicitly characterize the cross features.

2.3 Architecture Design
As shown in Fig 2, the architecture of PCF-GNN can be divided into
two parts, i.e., node encoding module and CrossNet.

2.3.1 Node Encoding Module. This module is a GNN which can
capture the neighbor structure and learn the node embeddings.
Specifically, considering the constructed graph is a heterogeneous
graph, we propose a multi-relation based aggregation function,

𝑚
(𝑘)
𝑖,𝑟

= AGGREGATE
({
ℎ
(𝑘−1)
𝑗

, 𝑗 ∈ 𝑁𝑟 (𝑖)
})

(2)

ℎ
(𝑘)
𝑖

= COMBINATION
(
ℎ
(𝑘−1)
𝑖

,

{
𝑚

(𝑘)
𝑖,𝑟

, 𝑟 ∈ [1, 𝑅]
})

, (3)

where ℎ (𝑘)
𝑖

denotes the output vector for node 𝑖 at the 𝑘-th layer,
𝑁𝑟 (𝑖) refers to the neighbors have the relationship 𝑟 with the node
𝑖 .𝑚 (𝑘)

𝑖,𝑟
refers to the embedding of 𝑁𝑟 (𝑖). The ℎ (0)𝑖

are the attributes
of nodes. For simplicity, in practice, the node attributes are defined
as a learnable vector. The ℎ (𝐾)

𝑖
refers to the output of node 𝑖 at the

last layer of the node encoding module. Actually, we take ℎ (𝐾)
𝑖

as
the pre-trained embedding of node 𝑖 . In this paper, We take identical

Figure 3: PCF-GNN application on the CTR prediction task.
AGGREGATE and COMBINATION as GraphSAGE [5] while
being flexible to more sophisticated methods.

2.3.2 CrossNet. TheCrossNet transforms the neighbor aware node-
level embeddingℎ (𝐾)

𝑖
into a edge (i.e., cross feature) space and gives

a prediction for the edge attribute. Formally, for each edge 𝑒𝑢,𝑣 , the
edge attribute can be predicted by,

𝑝𝑢,𝑣 = CrossNet(ℎ (𝐾)𝑢 , ℎ
(𝐾)
𝑣) (4)

where 𝑝𝑢,𝑣 is the predicted edge attribute, and CrossNet can be
a simple dot production or a multilayer perceptron (MLP). In this
paper, we implement CrossNet as a single perceptron layer.

2.3.3 Weighted Square Loss. When obtaining the edge attribute
prediction 𝑝𝑢,𝑣 , we can simply apply a square loss to train the PCF-
GNN, i.e., 𝑙𝑜𝑠𝑠 =

∑
𝑒𝑢,𝑣 | |𝑝𝑢,𝑣 − 𝑎𝑢,𝑣 | |2 . The problem is that, in this

loss, each edge takes as an equal contribution to the loss optimiza-
tion. However, different edges take different importance in CTR
tasks. For example, the pair <basketball player, "Nike-Air Jordan">
may appear more times than the pair <basketball player, mouse>
in history. If we treat these two pairs equally in loss calculation,
the learned PCF-GNN may be difficult to distinguish which kind of
cross features is important for the interaction modeling and may
mislead the CTR model to recommend a mouse to a basketball
player. To address this problem, we propose a simple but effective
weighted square loss. The key idea is allocating different weight to
different edges by their co-occurrence,

𝑙𝑜𝑠𝑠 =
∑
𝑒𝑢,𝑣 𝑙𝑜𝑔(𝐶𝑜𝑢𝑛𝑡 (𝑢, 𝑣) + 𝑡) | |𝑝𝑢,𝑣 − 𝑎𝑢,𝑣 | |2 (5)

where 𝑙𝑜𝑔 is a smooth operation which is used to avoid an extremely
large𝐶𝑜𝑢𝑛𝑡 (𝑢, 𝑣), and 𝑡 is a small positive constant (𝑡 = 1 as default)
to avoid a zero weight produced by 𝑙𝑜𝑔.

2.4 PCF-GNN Application
When PCF-GNN is pre-trained, the learned knowledge about the
explicit semantic information can be well characterized by 𝑝𝑢,𝑣 .
Then we can use this knowledge to help the downstream task, espe-
cially for the CTR prediction task. Here we take the CTR prediction
task as an example to show how to combine PCF-GNN with down-
stream models. As shown in Fig 3, the right part is a standard CTR
model which follows an Embedding&MLP architecture [2, 4, 13].
Then we can take the predicted 𝑝𝑢,𝑣 as an additional feature, and
concatenate it with the embeddings of the CTR model (as shown
in the dotted part in Fig 3). In this stage, by default, we drop the
node encoding module for the efficient purpose and directly keep
the output ℎ (𝐾)

𝑖
of this module as the pre-trained embedding and

the parameters in PCF-GNN are fixed. (Note when considering the
fine-tuning strategy, the complete PCF-GNN including the node
encoding module needs to be introduced in the CTR model). In this
way, the explicit semantic cross features learned by PCF-GNN can
help to improve the performance of the CTR model.

2.5 Discussion
In this section, we provide a brief discussion of our model on ad-
dressing the two challenges mentioned in Section 1.
Generalization. In PCF-GNN, the explicit semantic cross features
(i.e., edge attribute) are inferred by pre-trained node embeddings. It
can infer the explicit semantic cross features of new pairs (i.e., new
edges). For example, even if there have no interactions between a
programmer and the latest "Nike-Air Jordan" in history, PCF-GNN
can still infer the new cross pair <programmer, the latest "Nike-Air
Jordan"> by the pre-trained node embeddings of the programmer
and the latest "Nike-Air Jordan", which finally can help the recom-
mendation of the latest "Nike-Air Jordan" to a programmer user.
Low memory cost. As introduced in Section 1, theoretically, the
memory cost of statistical explicit semantic cross features is𝑂 (𝑁1𝑁2).
While the main cost of inferred explicit cross features comes from
the pre-trained node embedding table, i.e.,𝑂 ((𝑁1 + 𝑁2)𝑑) where 𝑑
is the embedding dimension. Considering 𝑁1 and 𝑁2 are usually
a large number in the web-scale application, we can reduce the
memory cost from 𝑂 (𝑁1𝑁2) to 𝑂 ((𝑁1 + 𝑁2)𝑑).

3 EXPERIMENTS
3.1 Experiment Setup
Datasets.We conduct experiments on a large-scale industrial Al-
ibaba dataset (containing 60 billion samples) collected by the on-
line platform and a public MovieLens dataset (containing 1000209
samples). Note each dataset is split into pre-trained data used for
constructing graphs, downstream training data, and downstream
test data respectively.
Baselines. We compare PCF-GNN with the following baselines.
(1) Implicit semantic modeling methods, including Wide&Deep [2],
DeepFM [4], AutoInt [14], FiBiNET [7]. (2) GNN-based methods
that capture implicit semantic cross features, including Fi-GNN
[10]. (3) Graph pre-trained models, which are originally designed
to capture neighbor structure rather than explicit semantic cross
features, i.e., GraphSAGE [5] and PGCN [6]. Note methods in (1)(2)
can be directly taken as the downstream models for the CTR task.
Hyperparameter Settings. We take 8-dimensional embeddings
for all pre-trained methods. Parameters of other baselines follow
recommended settings in relevant codes. For PCF-GNN, we take
2-layer networks with a hidden layer sized 64.

3.2 Performance on CTR Task
3.2.1 Performance on the public dataset. To investigate whether
PCF-GNN captures explicit semantic cross features and further
improves the performance, we conduct the experiments on the
downstream CTR task where the additional features generated by
SESCF or pre-trained models are combined into the downstream
models (similar to Fig 3). Here we construct the graph based on the
interactions between User_id and Genres on MovieLens. There is a
total of 60,574 edges and 5,992 nodes. Then we use AUC [1] as the

Downstream
Task

Downstream
Model No ESCF SESCF GraphSAGE PGCN PCF-GNN

CTR

Wide&Deep 0.7144 0.7253 0.7254 0.7259 0.7266
DeepFM 0.7238 0.7268 0.7285 0.7288 0.7293
FiBiNET 0.7171 0.7210 0.7251 0.7254 0.7261
AutoInt 0.7238 0.7280 0.7276 0.7280 0.7282
Fi-GNN 0.7256 0.7301 0.7277 0.7283 0.7315

Task1 LightGBM 0.7110 0.7107 0.7126 0.7127 0.7239
Task2 LightGBM 0.5791 0.5862 0.5839 0.5931 0.5990

Table 1: Results of different tasks on MoiveLens dataset.

Model DNN DNN + SESCF DNN + PCF-GNN
AUC 0.7442 0.7466 0.7477

Table 2: CTR performance on industrial Alibaba dataset.
metric (Note it is noticeable that a slightly higher AUC at 0.001-
level is regarded significant for the CTR task [14, 17]). Results are
reported in Table 1 (Note ESCF refers to explicit semantic cross
features). We summarize the following findings: (1) The proposed
PCF-GNN outperforms all baselines, which shows the effectiveness
of our model. (2) Compared with No ESCF, even if most of the
downstream models capture cross features implicitly, the models
with ESCF (including SESCF and PCF-GNN) are able to improve
CTR results, which shows the usefulness of explicit semantic mod-
eling. (3) Compared with SESCF, PCF-GNN can further improve
the CTR performance. It shows PCF-GNN has the superiority of
explicit semantic modeling. (4) Compared with other pre-trained
models (i.e., GraphSAGE and PGCN), although due to capture the
structure of the constructed interaction-based graph they can im-
prove CTR performance, PCF-GNN achieves the best performance.
It illustrates the design of our pre-training task and our model can
capture explicit semantic cross features better.

3.2.2 Performance on the in-house industrial dataset. We further
conduct experiments on an industrial dataset (Alibaba). Here, we
construct a heterogeneous graph based on 11 kinds of cross features.
There is a total of 20 billion edges and 0.7 billion nodes. The results
are reported in Table 2. Note DNN refers to Wide & Deep [2] which
is taken as the CTR model. We can find that PCF-GNN still achieves
the best performance. It indicates that PCF-GNN can well model
the explicit semantic cross features.

3.3 Performance on Other Downstream Tasks
To show the universality of PCF-GNN, we evaluate PCF-GNN on
various related downstream tasks. Detailedly, we select some fea-
tures (i.e., age and occupation) on MovieLens as labels (Note other
features can also be considered as labels) and conduct experiments
on predicting the corresponding labels, i.e., predicting user’s age
(defined as Task1) and user’s occupation (defined as Task2). We use
LightGBM [8] as the downstream classifier, and accuracy as the
metric. Results are shown in Table 1. We observe that PCF-GNN sig-
nificantly improves the results of all downstream tasks, compared
with other competitors. It shows the effectiveness of the learned
explicit cross feature in various related downstream tasks.

3.4 Evaluation of Model Generalization
Here we conduct experiments to evaluate the generalization of
models (addressing challenge one). Specifically, we first calculate
the Hit Rate (HR) of explicit semantic cross features on test data
of MovieLens where there may exist some new cross feature pairs.

Model HR New Δ𝑁𝑒𝑤 Org Δ𝑂𝑟𝑔
DNN – 0.6972 – 0.7144 –

DNN + SESCF 78.27% 0.6916 -0.0056 0.7253 0.0109
DNN + PCF-GNN 91.81% 0.7010 0.0038 0.7266 0.0122

Table 3: Results about generalization.

Method SESCF PCF-GNN Change
Memory Cost (GB) 84 37 -56%

Table 4: Memory cost of different methods.

Base Base+GNN Base+GNN+WL Base+GNN+WL+FT
AUC 0.7256 0.7261 0.7266 0.7268

Table 5: Results of the ablation study.
Then we evaluate the AUC of different methods on the test samples
which only contain new cross feature pair (defined as New). We
also provide the results on the whole test samples (defined as Org)
for comparison. The results are reported in Table 3. Note DNN
refers to Wide & Deep [2] and Δ𝑋𝑋 means the gap with DNN on
the test dataset 𝑋𝑋 . We can find that (1) Since SESCF cannot infer
the explicit semantic cross feature of new pairs, SESCF can cover
only 78.27% of test samples. While PCF-GNN can cover 91.81%
of test samples. (2) SESCF shows a negative impact on the New
dataset. While PCF-GNN can always achieve improvement both on
the New and Org datasets. These demonstrate that PCF-GNN has
a good generalization ability and can infer the explicit semantic
cross feature of new pairs to improve the model performance.

3.5 Evaluation of Memory Cost
In this section, we conduct experiments on the industrial Alibaba
dataset to analyze the memory cost of PCF-GNN (addressing chal-
lenge two). The memory cost of modeling the explicit semantic
cross features of different methods is reported in Table 4. With the
help of PCF-GNN, we can save 56% memory cost compared with
SESCF which efficiently improves memory storage. Note when each
feature has interactions with all other features, theoretically, the
memory cost can be reduced from 𝑂 (𝑁1𝑁2) to 𝑂 ((𝑁1 + 𝑁2)𝑑).

3.6 Ablation Study
We conduct experiments to analyze the influence of Weighted Loss
(Section 2.3.3), Fine-Tune (Section 2.4), and the GNN architecture
in the node encoding module (Section 2.3.1), to provide better un-
derstandings of PCF-GNN. Specifically, we conduct experiments
on MovieLens with Wide & Deep as the CTR model to verify the
analysis. Results are shown in Table 5 (Note WL refers to weighted
loss and FT refers to fine-tune. Base refers to PCF- GNN without
GNN, WL, and FT). We conclude that the weighted loss, Fine-tune,
and GNN can improve the model performance.

4 CONCLUSION
In this paper, we propose PCF-GNN, a pre-trained recommendation
model based on GNNs. We first transform the interactions among
features in history into an informative graph. Then we introduce
pre-trained GNN models to learn efficient and effective explicit
relationships among features. We propose a novel training loss
to capture explicit semantic cross features. Experiments on both
online and public datasets show our model is competent in both
performance and memory-efficiency.

REFERENCES
[1] Andrew P Bradley. 1997. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),
1145–1159.

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[3] Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2020. Cross-GCN:
Enhancing Graph Convolutional Network with 𝑘-Order Feature Interactions.
arXiv preprint arXiv:2003.02587 (2020).

[4] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[6] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for Pre-training Graph Neural Networks. In
International Conference on Learning Representations.

[7] Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combining fea-
ture importance and bilinear feature interaction for click-through rate prediction.
In Proceedings of the 13th ACM Conference on Recommender Systems. 169–177.

[8] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017), 3146–
3154.

[9] Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-gnn:
Modeling feature interactions via graph neural networks for ctr prediction. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge

Management. 539–548.
[10] Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang.

2019. Feature generation by convolutional neural network for click-through rate
prediction. In The World Wide Web Conference. 1119–1129.

[11] Qingqing Long, Yilun Jin, Guojie Song, Yi Li, andWei Lin. 2020. Graph Structural-
topic Neural Network. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1065–1073.

[12] Qingqing Long, Yiming Wang, Lun Du, Guojie Song, Yilun Jin, and Wei Lin. 2019.
Hierarchical Community Structure Preserving Network Embedding: A Subspace
Approach. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management. 409–418.

[13] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016.
Deep crossing: Web-scale modeling without manually crafted combinatorial
features. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. 255–262.

[14] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[15] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 839–848.

[16] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[17] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 1059–1068.

	Abstract
	1 Introduction
	2 Model: PCF-GNN
	2.1 Graph Construction
	2.2 Pre-training Task Design
	2.3 Architecture Design
	2.4 PCF-GNN Application
	2.5 Discussion

	3 Experiments
	3.1 Experiment Setup
	3.2 Performance on CTR Task
	3.3 Performance on Other Downstream Tasks
	3.4 Evaluation of Model Generalization
	3.5 Evaluation of Memory Cost
	3.6 Ablation Study

	4 Conclusion
	References

