Edge Estimation with Independent Set Oracles*

Paul Beame'!, Sariel Har-Peled*?, Sivaramakrishnan Natarajan
Ramamoorthy®3, Cyrus Rashtchian4, and Makrand Sinha®

1 Paul G. Allen School of Computer Science & Engineering, University of
Washington, Seattle, USA
beame@cs.washington.edu

2 Dept. of Computer Science, University of Illinois, Urbana-Champaign, USA
sariel@illinois.edu

3 Paul G. Allen School of Computer Science & Engineering, University of
Washington, Seattle, USA
sivanr@cs.washington.edu

4  Paul G. Allen School of Computer Science & Engineering, University of
Washington, Seattle, USA
cyrash@cs.washington.edu

5 Paul G. Allen School of Computer Science & Engineering, University of
Washington, Seattle, USA
makrand@cs.washington.edu

—— Abstract

We study the problem of estimating the number of edges in a graph with access to only an
independent set oracle. Independent set queries draw motivation from group testing and have
applications to the complexity of decision versus counting problems. We give two algorithms
to estimate the number of edges in an n-vertex graph: one that uses only polylog(n) bipartite
independent set queries, and another one that uses n?/3 - polylog(n) independent set queries.
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and Problem Complexity
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portance Sampling
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1 Introduction

We study the problem of estimating the number of edges in a simple, unweighted, undirected
graph G = ([n], E), where [n] := {1,2,...,n} and m = | E|, using only an oracle that answers
independent set queries. For a parameter € > 0, we wish to output an estimate m satisfying
(I —e)m <m < (1 + ¢)m with high probability. We consider randomized algorithms with
access to one of the two following independent set oracles:

* A full version of the paper is available at [2], https://arxiv.org/abs/1711.07567

Supported in part by the NSF under agreement CCF-1524246.

Supported in part by NSF AF awards CCF-1421231 and CCF-1217462. Work done while visiting
University of Washington on Sabbatical in 2017.

Supported by the NSF under agreements CCF-1149637, CCF-1420268 and CCF-1524251.

9 Work partially completed while the author was at Microsoft Research.

=k

%723

© Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy,
5v Cyrus Rashtchian, and Makrand Sinha;
licensed under Creative Commons License CC-BY
9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Editor: Anna R. Karlin; Article No. 38; pp. 38:1-38:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.38
https://arxiv.org/abs/1711.07567
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2

Edge Estimation with Independent Set Oracles

Bipartite independent set (BIS) oracle: Given disjoint subsets A, B C [n], a BIS query
answers whether A, B satisfy e(A, B) = 0, where e(A, B) denotes the number of edges
with one endpoint in A and the other in B.

Independent set (IS) oracle: Given a subset A C [n], an IS query answers whether A
satisfies e(A) = 0, where e(A) denotes the number of edges with both endpoints in A.

Previous work on graph parameter estimation has primarily focused on local queries,
such as degree queries (which output the degree of a vertex v), edge existence queries (which
answer whether a pair (u,v) forms an edge), or neighbor queries (which provide the 4!
neighbor of a vertex v). However, such queries cannot achieve sub-polynomial query costs
on certain lower bound graphs identified by Feige [13] and Goldreich and Ron [15], essen-
tially due to the fact that these queries can only obtain local information about the graph.
This motivates an investigation of other types of queries that may enable very efficient para-
meter estimation. The independent set queries described above naturally generalize an edge
existence query, and their non-locality opens the door for sub-polynomial query algorithms
for various graph parameter estimation tasks.

1.1 Motivation and Related Work

The most relevant previous work comes from the area of sub-linear time algorithms for graph
parameter estimation. BIS and IS queries also have interesting connections to the classical
area of group testing, to emptiness versus counting questions in computational geometry,
and to the complexity of decision versus counting problems.

Graph Parameter Estimation. Many researchers have studied the problem of estimating
various parameters of graphs using many types of queries. Feige [13] estimated the number
of edges in a graph using degree queries, where a degree query returns the degree deg(v)
of a specified vertex v in G([n], E). In a follow-up work, Goldreich and Ron [15] estimated
the number of edges in a graph using both degree and neighbor queries, where a neighbor
query returns the j*" neighbor of a vertex v for j,v € [n]. Related work has also appeared
on estimating the number of stars [16], the minimum vertex cover [18], the number of
triangles [10, 20], and the number of k-cliques [9]. A special case of BIS query termed a
group query (where one of the bipartition sets is a singleton) was considered for testing
k-colorability of graphs [3] and edge estimation [24].

The results of Feige [13] and Goldreich and Ron [15] on estimating the number of edges in
a graph are quite relevant to our work. Feige [13] showed how to use O (y/n/e) degree queries
to output an estimate m that satisfies (2 —e)m < m < (24 ¢)m. Moreover, he showed that
any algorithm achieving better than a 2-approximation must use a nearly linear number of
queries in the worst case. Goldreich and Ron [15] showed that by using both degree and
neighbor queries, the approximation could be improved to (1 —e)m < m < (14 ¢&)m by
using /n - poly(logn, 1/¢) queries. Finally, we mention that Feige [13] and Goldreich and
Ron [15] have identified certain hard instances showing that these upper bounds cannot be
improved, up to polylog(n) factors.

Group Testing. A classic estimation problem involves efficiently approximating the number
of defective items or infected individuals in a certain collection or population [5, 7, 23]. To
query a population, a small group is formed, and all the individuals in the group are tested
in one shot. For example, in genome-wide association studies, combined pools of DNA may
be tested as a group for certain variants [17]. In group testing, the result of a test often
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indicates only whether there is at least one infected or defective unit, or if there is none. Such
a dichotomous outcome resembles the independent set queries that we study. Group testing
in the graph setting suggests the interpretation that we wish to test pairwise interactions
between items or individuals, instead of singular events.

Computational Geometry. Certain geometric applications exhibit the phenomena that
emptiness queries have more efficient algorithms than counting queries. For example, in
three dimensions, for a set P of n points, half-space counting queries (i.e., what is the
size of the set |P N h|, for a query half-space h), can be answered in O(n?/3) time, after
near-linear time preprocessing. On the other hand, emptiness queries (i.e., is the set PN h
empty?) can be answered in O(logn) time. Aronov and Har-Peled [1] used this to show
how to answer approximate counting queries (i.e., estimating |P N h|), with polylogarithmic
emptiness queries.

As another geometric example, consider the task of counting edges in disk intersection
graphs using GPUs [14]. For these graphs, IS queries decide if a subset of the disks have
any intersection (this can be done using sweeping in O(nlogn) time [4]). Using a GPU, one
could quickly draw the disks and check if the sets share a common pixel. In cases like this
— when IS and BIS oracles have fast implementations — algorithms exploiting independent
set queries may be useful.

Decision versus Counting Complexity. A generalization of IS and BIS queries has previ-
ously appeared in a line of work investigating the relationship between decision and counting
problems [21, 22, 6]. Stockmeyer [21, 22] showed how to estimate the number of satisfying
assignments for a given circuit with queries to an NP oracle. Ron and Tsur [19] observed
that Stockmeyer implicitly provided an algorithm for estimating set cardinality using subset
queries, where a subset query specifies a subset X C U and answers whether | X NS| =0 or
not. Subset queries generalize IS and BIS queries because S corresponds to the set of edges
in the graph with |S| and X is an arbitrary subset of pairs of vertices.

In what follows, we consider subset queries in the context of edge estimation and fix
|S| = m and |U| = (}). Stockmeyer provided an algorithm using O(loglogm - poly(1/e))
subset queries to estimate m within a factor of (1 4 €) with a constant success probability.
Note that for a high probability bound, which is what we focus on in this paper, the algorithm
would naively require O(logn -loglogm-poly(1/e)) queries to achieve success probability at
least 1 — 1/n. Falahatgar, Jafarpour, Orlitsky, Pichapati, and Suresh [12] gave an improved
algorithm that estimates m up to a factor of (1+¢) with probability 1 —4 using 2loglog m+
O((1/?)log(1/6)) subset queries. Nearly matching lower bounds are also known for subset
queries [21, 22, 19, 12]. Ron and Tsur [19] also study a restriction of subset queries, called
interval queries, where the universe U is ordered and the subsets are intervals of elements.
We view the independent set queries as another natural restriction of subset queries.

Analogous to Stockmeyer’s results, a recent work of Dell and Lapinskas [6] provides a
framework that relates edge estimation using BIS and edge existence queries to a question in
fine-grained complexity. They study the relationship between decision and counting versions
of problems such as 3SUM and Orthogonal Vectors. We first describe their edge estimation
result and then explain their connection to fine-grained complexity. They prove the following
for bipartite graphs.

6
» Theorem 1 ([6]). For every 0 < e < 1, there exists an algorithm using W BIS
queries and %}f’g(") edge existence queries, and outputs m satisfying (1 —e)m < m <

(1 + &)m with probability at least 1 — 1/n?.
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Dell and Lapinskas [6] used their edge estimation algorithm to obtain approximate count-
ing algorithms for problems in fine-grained complexity. For instance, given an algorithm for
3SUM with runtime 7', they obtain an algorithm that estimates the number of YES in-
stances of 3SUM with runtime 7T - 0(1(56 n 4 "'p01§°g("). The relationship is quite simple
and natural. The decision version of 3SUM corresponds to checking if there is at least one
edge in a certain bipartite graph. The counting version then corresponds to counting the
edges in this graph. We note that in their application, the large number O(n - polylog(n))
of edge existence queries does not affect the dominating term in the overall time in their
reduction; the larger term in the time is a product of the time to decide 3SUM and the
number of BIS queries.

1.2 Our Results

We present two new algorithms. In what follows, let G = ([n], E') be a simple, unweighted
graph with |E| = m edges. Our first algorithm, using BIS queries, gives the following.

» Theorem 2. Given n > 16 and 361% <e< %, there exists an algorithm that makes
%‘Zg(") BIS queries and outputs m satisfying (1 —e)m < m < (1+ e)m with probability at
least 1 — %‘;g(").

We remark that since polylog(n) BIS queries can simulate a degree query (see the full
version [2] for a proof) one obtains a (2 + ¢)-factor approximation of m by using Feige’s
algorithm [13], which uses degree queries. This algorithm uses O(y/n - polylog(n)/poly(¢))
BIS queries. Theorem 2, however, provides better guarantees in terms of the approximation
and the number of BIS queries.

Compared to the result of Dell and Lapinskas [6] (Theorem 1), our algorithm uses a
significantly fewer number of queries, since we do not have to make n - polylog(n) edge exist-
ence queries. In terms of their specific applications, it does not seem that our improvement
implies anything significant for fine-grained complexity. It would be interesting to find prob-
lems where a more efficient BIS estimation algorithm would lead to better decision versus
counting complexity results.

Our second algorithm, using only IS queries, gives the following.

» Theorem 3. Given n > 8 and %\/‘%g‘l" <e< %, there exists an algorithm that makes

e2m’ ¢

min{ n? ‘/E} - polylog(n) IS queries and outputs m satisfying (1 —e)m < m < (1+¢&)m
with probability at least 1 — n—lz

The first term ’;—2 -polylog(n) comes from a folklore algorithm that estimates the number
g“m

of edges using edge existence queries (see for a proof). The second term @ - polylog(n) is

the number of queries used by our new algorithm.

Since min { E’r};, \/f} < ZZ—;_:, we also get the following corollary.

» Corollary 4. Given n > 8 and % <e<
Zz—js - polylog(n) IS queries and outputs m satisfying (1 —e)m < m < (14 &)m such that
1

"Lj'

%, there is an algorithm that makes
(
with probability at least 1 —

Comparing the above theorems, we observe that, perhaps surprisingly, BIS queries are
much more effective for estimating the number of edges than IS queries.
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Table 1 Comparison of the best known algorithms using a variety of queries for estimating the
number of edges m in a graph with n vertices. The bounds stated are for high probability results,
with error probability at most 1/n. Constant factors are suppressed for readability.

Query Types Approximation # Queries (up to const. factors) Reference

Edge Existence 1+e RZ poly(logn,1/¢) Folklore (see [2])
Degree 24¢ % logn [13]

Degree + Neighbor 1+e¢ v/n - poly(logn, 1/¢) [15]

Subset 1+e¢ logn - poly(1/¢) [22, 12]

BIS + Edge Existence 1+e¢ n - poly(logn, 1/¢) [6]

BIS l1+e¢ poly(logn,1/e) This Work

IS 1+4e¢ min {\/ﬁ, Zj} -poly(logn,1/e) This Work

1.2.1 Comparison with Other Queries.

Table 1 quantitatively summarizes the results for estimating the number of edges in a graph
in the context of various query types. Given some of the results in Table 1 on edge estimation
using other types of queries, a natural question is how well BIS and IS queries can simulate
such queries. In the full version [2] of the paper, we show that polylog(n) BIS queries are
sufficient to simulate degree queries. On the other hand, we do not know how to simulate a
neighbor query (to find a specific neighbor) with few BIS queries, but a random neighbor of
a vertex can be found with O(logn) BIS queries (see [3]). For IS queries, it turns out that

estimating the degree of a vertex v up to a constant factor requires at least ) ( Toa! U)) IS

queries (we expand on this in the full version of the paper).

Notation. Throughout this text, log and In will denote the logarithm taken in base two
and e, respectively. For a positive integer k, the set {1,...,k} will be denoted by [k]. The
notation x = polylog(n) means z = O(log®n) for some constant ¢ > 0. When we say
Ay, ..., Ay is a partition of the set A into k parts we allow A; to be empty. In particular, a
uniformly random partition of A into k& parts is chosen by coloring each element of A with
a random number in [k] and identifying A; with elements colored 1.

2  Overview of the Algorithms

We describe our algorithms using BIS and IS queries separately.

2.1 BIS Algorithm

Our discussion of the BIS algorithm will parallel Figure 1, which depicts the main compon-
ents of one level of our recursive algorithm.

Our algorithms rely on the ability to exactly count the edges between two subsets of
vertices, in time nearly linear in the number of such edges. In particular, we provide a simple,
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Figure 1 A depiction of one level of the BIS algorithm. In the first step, we color the vertices and
sparsify the graph by only looking at the edges between vertices of the same color. In the second
step, we coarsely estimate the number of edges in each colored subgraph. Next, we group these
subgraphs based on their coarse estimates, and we subsample from the groups with a relatively
large number of edges. In the final step, we exactly count the edges in the sparse subgraphs, and
we recurse on the dense subgraphs.

deterministic divide and conquer algorithm to determine e(A4, B) using O(e(A, B) logn) BIS
queries. More concretely, we will prove the following in the next section.

» Lemma 5. For disjoint A, B C [n], there is a deterministic algorithm that exactly computes
e(A, B) using at least e(A’izB)'H and at most 5 - e(A, B)[logn] + 1 BIS queries.

Given this algorithm, it is natural to wonder if the graph could be sparsified in such a
way that the number of remaining edges is a good estimate for the original number of edges
(after scaling). Consider sparsifying the graph by coloring the vertices of graph and only
looking at the edges going between certain pairs of color classes (in our algorithm, these
pairs will be a matching of the color classes). We prove that it suffices to only count the
edges between the color classes, and we can ignore the edges with both endpoints inside a
single color class.
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» Lemma 6 (Basic Sparsification). Let G be an n-vertex graph with m edges. For k such that
1<k<|n/2],let Ay,..., Ak, B1,..., By be a uniformly random partition of [n]. Then,

|

An important consequence of this lemma is that we can assume without loss of generality

k

ka G(Ai7 Bz) —m

i=1

1
> 18k - v/mlogn ] <
n

that the graph is bipartite. Indeed, invoking the lemma with k = 2, estimating the edges
between the two color classes is equivalent to estimating the total number of edges, up to a
factor of two. In what follows, we consider colorings that respect the bipartition.

After coloring the graph, we have reduced the problem to estimating the total number
of edges in a collection of bipartite subgraphs. However, certain subgraphs may still have
a large number of edges, and it would be too expensive to directly use the exact counting
algorithm. To remedy this, we develop an algorithm that coarsely estimates the number of
edges in a subgraph, up a O(log®n) factor, using only O(log®n) BIS queries.

Using the coarse estimates we can form O(logn) groups of bipartite subgraphs, where
each group contains subgraphs with a comparable number of edges. For the groups with
only a polylogarithmic number of edges, we can exactly count edges using polylog(n) BIS
queries. For the remaining groups, we subsample a polylogarithmic number of subgraphs
from each group. Since the groups contained subgraphs with a similar number of edges, the
number of edges in the subsampled subgraphs will be proportional to the total number of
edges in the group, up to a scaling factor depending on the group, with high probability.
This corresponds to the technique of importance sampling that is used for variance reduction
when estimating a sum of random variables that have comparable magnitudes.

After exactly counting the edges in the sparse subgraphs, we are left with the task
of estimating the number of edges in the subsampled subgraphs. By the sparsification
guarantee, the number of edges in these subgraphs has gone down by a factor of k (which
will be a constant) with high probability. We now recurse on the collection of subsampled
subgraphs. Since the number of edges has gone down by a constant fraction, we only
need to repeat this process a logarithmic number of times. Overall, at every level of the
recursion, we work with a polylogarithmic number of subgraphs, and hence, we only make
a polylogarithmic number of BIS queries in total.

Note that we have to scale the estimates after the sparsification step and the subsampling
step. We handle this in our algorithm by associating each subgraph with a weight, and
outputting the weighted sum of the estimates of the subgraphs. The scaling factors after
sparsification and subsampling are reflected by updating the weights appropriately. These
weights are also used when grouping subgraphs based on the coarse estimates. Overall, the
final estimate corresponds to the weighted sum of the estimates of the subgraphs. Figure 1
depicts the main components of one level of our algorithm.

We now describe the algorithms for exact counting and coarse estimation in more detail.

2.1.1 Exact Counting

Let A, B be disjoint subsets of vertices. We explain how to use BIS queries to compute
e(A, B), the number of edges between A and B. We use a divide and conquer approach.
Let Ay, As and By, Bs be equipartitions of A and B, respectively. Observe that e(A, B) =
e(A1,B1) + e(A1, Bs) + e(Az, B1) + e(Az, By). For any pair (A;, B;) with no edges, we
determine e(4;, B;) = 0 with one BIS query. Otherwise, we recursively determine e(A;, B;).

We build a quadtree starting with (A, B) as the root. If |A| = |B| = 1, then we query this
pair directly and label it with the value of e(A, B), which is 0 or 1 in this case. Otherwise,
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we still query the pair (A4, B), and if e(A, B) = 0, label the node as 0 and terminate. In the
remaining case, we know that e(A, B) # 0, and the algorithm will recurse on the four children
of (A, B), which will correspond to the pairs (A1, By), (41, Ba), (As, B1), and (As, Bs).

To determine e(A, B), the algorithm simply needs to sum the labels of all the leaves in
this tree. The number of queries is equal to total number of nodes in the tree. One can
prove that the number of nodes is at most O(e(A, B) -logn) + 1. The intuition is that the
number of leaves labeled with a 1 is exactly e(A, B), and the number labeled with a zero is
at most O(e(A, B) -logn) + 1.

2.1.2 Coarse Estimator

We explain how to estimate e(A, B) up to a factor of O(log? n) using O(log® n) BIS queries.
As a warm-up, assume all vertices in A have degree in the range (2¢,2!] for some i > 0.
Sample a subset A’ C A by including every vertex in A independently with probability 2¢/¢
for an estimate € we will determine later. Then, sample B’ C B by including every vertex
in B independently with probability 1/2!. When € ~ e(A, B), there will be an edge between
A’ and B’ with good probability, and when € > e(A, B) - log(n), then there will be no such
edge with good probability. Therefore, we can perform a geometric search for € ~ e(A, B)
to determine e(A, B).

Now, we are left with the task of finding a value i* such that a good fraction of all
the edges in the graph are incident on the vertices in A that have degree roughly 2¢ . By
grouping vertices of degree (2¢,2"1] together, the pigeonhole principle guarantees that there
is an i* € {0,...,logn} such that the edges touching the vertices of degree roughly 21" is
1/logn fraction of all the edges. To find the value of i*, we perform a geometric search over
the possible values ¢t = 1,2,4,8,...,2logn.

The two sources of error thus come from the estimate of i* and the acceptance probability
based on the estimate for €. Since each contributes a factor of O(logn) to the error, the
coarse estimate for e(A, B) will have the following guarantee.

» Lemma 7. Let n > 16. For disjoint A,B C [n], the algorithm CoarseEstimator(A, B)
that makes ccelog®n BIS queries (for a constant cce) and outputs € < n? such that with
probability at least 1 — 2128 it holds that es(fzfn) <e<e(4,B)-8logn.

O,
n

2.2 IS Algorithm

As with the BIS algorithm, the main building block for the IS algorithm is an efficient way
to exactly count edges using IS queries. The strategy for the BIS exact counting algorithm
fails because the total number of nodes in the tree can be much large than e(A U B), up to
O(n?) in the worse case. However, if we pick the sets A;, Ay at random, then the overall
number of queries will be small with high probability. Thus, this randomized modification
of the BIS exact counting algorithm computes e(A, B) using O(e(A U B)log®n) IS queries
with high probability. In particular, we prove the following result.

» Lemma 8. For every disjoint A, B C [n], there is a randomized algorithm that exactly
computes e(A, B) using at least % and at most ¢ - e(AU B)[log> n] + 1 IS queries for
a constant ¢, with probability at least 1 — %

With this lemma in hand, we will again sparsify the graph to reduce the overall number of
IS queries. In contrast to the BIS queries, we do not know how to design a coarse estimator
using only IS queries. This prohibits us from designing an analogous recursive algorithm.
Instead, we estimate the number of edges in one shot, by coloring the graph with a large
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number of colors and estimating the number of edges going between a matching of the color
classes. We now discuss the reasons behind using a matching of the color classes.

An initial sparsification attempt might be to count only the edges going between a single
pair of colors. If the total number of colors is 2k, then we expect to see m/ (22k) edges between
this pair. Therefore, we could set k to be large and invoke Lemma 8. Scaling by a factor of
(2k), we would hope to get an unbiased estimator for m.

2
Unfortunately, a star graph demonstrates that this approach fails, due to large variance.

If we randomly color the vertices of the star graph with 2k colors, then out of the (22k) pairs
of color classes, only 2k — 1 pairs have any edge going across. So, if we only chose one pair
of color classes, then with high probability one of the following two cases occurs: either
(i) there is no edge crossing the color pair, or (ii) the number of edges crossing the pair is
~ m/2k. In both cases, the estimate after scaling by a factor of (22k) is far from the truth.

At the other extreme, the vast majority of edges will be present if we look at the edges
crossing all pairs of color classes. Indeed, the only edges we miss have both endpoints in a
color class, and this accounts for only a 1/k fraction of the total number of edges. Thus,
this does not achieve any substantial sparsification.

By using a matching of the color classes, we simultaneously get a reliable estimate of the
number of edges and a sufficiently sparsified graph, as already testified by Lemma 6. Let
Ay, -+, Ay, By, -+, B be a random partition of the vertices into 2k color classes. Lemma 6
implies that the estimator 2k Zle e(A;, B;) is in the range m + O(ky/mlogn) with high
probability. Hence, when k to is less than e\/m/polylog(n), we approximate m up to a
factor of (14 O(e)). We use a geometric search to find such a k efficiently.

To bound on the number of IS queries, we claim that we can compute Zle e(A;, By)
using Lemma 8, with a total of (k + %) - polylog(n) IS queries. The first term arises since
we use one query for each of the k color pairs (even if there are no edges between them). For
the second term, we pay for both (i) the edges between the color classes and (ii) the total
number of edges with both endpoints within a color class (since the number of IS queries in
Lemma 8 scales with e(A U B)). By the sparsification lemma, we know that (i) is bounded

by O(%) with high probability and we can prove an analogous statement for (ii). Hence,
N

m, the total number of IS queries is bounded by +/m - polylog(n)/e.

plugging in a k ~

2.3 Outline

The rest of the paper is organized as follows. In Section 3, we formally present the algorithm
to exactly count edges between two subsets of vertices using BIS queries (Lemma 5). In
Section 4, we prove our sparsification result (Lemma 10). In Section 5.1, we present the
algorithm that uses BIS queries to coarsely estimate the number of edges between two subsets
of vertices (Lemma 7). We combine these building blocks to construct our edge estimation
algorithm using BIS queries in Section 5.2. In Section 6, we present our algorithm using IS
queries. We conclude in Section 7 and mention open questions.

3 Exact Edge Counting using BIS and IS Queries

In this section, we prove Lemma 5. We give a deterministic algorithm that builds a tree
by repeatedly partitioning A and B using BIS queries. The leaves of this tree identify
the edges we want to count and the number of BIS queries made to construct this tree is
O(e(A, B)logn). We prove Lemma 8 in the full version [2] of the paper where we give a
similar randomized algorithm that uses random partitioning and makes O(e(A U B)log? n)
IS queries. To present the proof, we will need the following definition.
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» Definition 9. An equipartition of a set A with |A| > 2 is a partition A;, A5 of A satisfying
|A1] = [|A|/2] and |As] = [|A|/2]. A random equipartition is an equipartition chosen
uniformly at random from all equipartitions.

3.1 Proof of Lemma 5

We construct a rooted tree where every vertex is identified with a pair (A’, B’), where A’ C A
and B’ C B, and the root of the tree is the input pair (A, B). The leaves of the tree will
correspond to (A’, B') with either |A’| = |B'| = 1 or e(4’,B’) = 0. These leaves will be
labeled with 1 if e(A’, B’) > 1 and 0 otherwise. The tree has the property that every edge
contributing to e(A, B) appears as a leaf, and there will be exactly e(A, B) leaves labeled 1.
Thus, the leaves and their labels suffice to compute e(A, B). Finally, this tree can be built
and labeled using BIS queries.

We now proceed to describe the tree, which is constructed recursively by the following
deterministic process. If e(A4, B) = 0, then assign a 0 to the root and terminate. Otherwise,
let (A’, B’) be the current internal node. Then

if e(A’,B") > 1, |A'| > 1 and |B’| > 1, let A}, A, (resp. B, Bj) be an equipartition of

A’ (resp. B’). Add the nodes (A}, BY), (4%, BS), (A}, BY) and (A}, BY) as the children.

if e(A’,B') > 1, |A'| =1 and |B’| > 1, let B}, B be any equipartition of B’. Add the

nodes (A’, By) and (A’, B}) as the children.

if e(A’,B') > 1, |A'| > 1 and |B'| =1, let A, A} be any equipartition of A’. Add the

nodes (A}, B’) and (A}, B’) as the children.

We claim that this process uses at most 5e(A, B)[logn] + 1 BIS queries. First, note
that since we make one query for each node, we simply have to bound the number of nodes.
We argue that each internal node of this tree lies on a path from the root to a leaf with
value 1. Indeed, if (A’, B") is an internal node, then e(A’, B’) > 1, and hence some leaf in
the sub-tree rooted at (A, B’) is labeled 1.

Notice that the depth of the tree is [logn] and the number of leaves with value 1 is
e(A, B). This implies that the total number of internal nodes is at most e(A, B)([logn] — 1).
The number of leaves that are assigned a 0 is at most 4e(A, B)[logn| + 1 (since each
node has at most 4 children). Therefore, the total number of nodes in the tree is at most
e(A, B)[logn] + 4e(A, B)[logn] + 1, in turn implying that the total number of BIS queries
made is at most 5e(A, B)[logn] + 1.

The number of BIS queries made is always at least max{e(A, B),1} > e(%ﬁ since
every edge with one endpoint in A and the other in B is identified.

4  Sparsification by Coloring

We present and prove our sparsification lemma. For technical reasons, we need a slightly
more general sparsification statement than the one (Lemma 6) described in Section 2.

» Lemma 10. Let G = ([n], E) be a graph with m edges. For any 1 < k < |n/2], let
A1, ..., Asg be a uniformly random partition of [n]. Then,

k
m 1
— — : )| > < —
(a) }P’l ok 2 e(A;, Apyi)| > 9\/m10gn] <
m 2K 1
- — | > < —.
(b) IP’[ % 2 e(4;) Qﬁlognl <3
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Furthermore, for disjoint sets A, B C [n] and 2 < k < max{|A|,|B|}, let A1,...,Ar and
By, ..., B be uniformly random partitions of A and B, respectively. Then,

k
(c) P (AkB) Z (A;,B;)| > 9/ e(A,B)logn
i=1

1
<A4,

Proof.

(a) Consider the random process that colors vertex t at step ¢ € [n] with a uniformly random
color X; € [2k]. The colors correspond to the partition of [n] into classes Ay, ..., Agy.
Define f(Xi,...,X,) = Zle e(A;, Ax+:), and notice that E[f] = m/(2k) and that
OSf(Xl,...,Xn) Sm
When the vertex ¢ is colored, let N;; be the number of neighbors of ¢ colored with color
1 among the first ¢t — 1 vertices. Now, define d; = Zie[2k] N; + to be the total number of
colored neighbors of vertex ¢t. Observe that d; is deterministic and that Zle di = m
holds, since d; is the number of edges between the vertex ¢ and the vertices in [t — 1.
Notice that E[N; ;] = d;/(2k). For i € [2k], let &;; be the event that

< 2+y/d;Inn. (1)

.

t
2k
Note that when d; = 0, the event &;; holds with probability 1 and when deg(t) > 1,
applying Lemma 17(a) (with r = d;, p = % and s = 2V/d;Inn) gives us that &,
holds with probability at least 1 — 2n~%. Since 2k < n, a union bound implies that
with probability at least 1 —2n~7 the events & -+, &, hold simultaneously, that is,
&t = Nicppr)€i holds. Defining 5 = N¢en)€t, by a union bound we have that £ holds
with probability at least 1 — 2n~

To prove our claim, we will use Lemma 19, a version of Azuma’s inequality that takes

into account a rare bad event. We will set the bad event to be £. We have just argued
that P[€] < 2n~5. Letting ¢; = 4v/d; Inn + %, we will show

E[f | X1, Xem1, Xe =4, E] —E[f | X1,... . Xpm1, Xe = j,€]| < (2)
for any two colors i, j € [2k] chosen for the vertex ¢. For ¢ € [n], let M; be the number
of edges incident to the set of uncolored vertices {¢ + 1,...,n} that go between the
colored pairs (A1, A14k), (A2, Aoyk), ..., (Ag, Agg). For every i, j € [2k],

Elf | X1,..., X1, Xe =4, &) —E[f | X1,..., X4-1, Xt = 4, €]

=|Nit +EM | X1,..., X1, X =0,E] = Nj —E[M,; | Xq,..., X1, X = §, €]
< |Nit = Njil
+|E[M; | X1, 0, X4, Xe =0, ] —E[M; | Xq,..., Xe1, Xt = 4,€E]],
where the inequality follows from the triangle inequality. Note that for any i € [n], we

have 0 < E[M; | X1,..., X1, Xy = i,E] < m. Also, since M; only involves vertices
{t+1,...,n}, we have, for any j € [n],

E[M, | X1,..., Xi_1,X; = i) = E[M, | X1,..., Xs—1, X; = j]. (3)
and combining (1) and (3), and conditioning on &,

At S max |NZ t — j’t‘
i,5€[2k]

P[E] - |
+T|]E[Mt |X1,...,Xt :Z,g]*]E[Mt|X1,...,Xt :j,g”

2 IP’
< max |N2t_ jt‘ m H <4\/dtlnn+—

T ijE[2K]
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To apply Lemma 19, using Y ;" , d; = m, we compute ), c? as follows:

th —16lnn2dt+ Z ——!—— Z v diInn

[n]

f16mlnn+1—+— Z VdiInn

1 Iml
§16mlnn+—6+32 mnn§17mlnn7
n n

where the penultimate inequality follows from the concavity of the square-root function.
Setting s = 9y/mlogn — 1 > 9y/mInn — 1 and invoking Lemma 19 finishes the proof.
(b) The proof is analogous to the one in part (a) with f(X1,...,X,) = Efkl e(4;).
(c) Let A = {ai,...,ap4} and B = {b1,...,bp}. The vertex sequence is ay,..., a4
followed by b1, ...,b 5 where X; € [k] is the color of the ith vertex, for i € [[A| + |B]].
Then f(Xy,...,X,) = Z?Zl e(A;, B;), and the proof is analogous to part (a). <

5 Edge Estimation using BIS Queries

First, we prove Lemma 7 about the coarse estimator. Then, we use this coarse estimator
and importance sampling (Lemma 18), sparsification (Lemma 10), and exact edge counting
(Lemma 5) to design our overall algorithm.

5.1 Coarse Estimator

We prove Lemma 7 by giving an efficient algorithm that coarsely estimates the number of
edges e(A, B) between A and B using O(log®n) BIS queries. To describe the algorithm,
we will need some more notation. For a subset S C [n], define N(S) to be the union of
the neighbors of all the vertices in S and for a vertex v, let degg(v) denote the number
of neighbors of v that lie in S. For i € [logn], define the set of vertices in A with degree
between 2¢ and 217! as A; = {v | v € A, 2¢ < degg(v) < 2771} and let Ay denote the
vertices in A with degp(v) < 2. We start with the following claim.

» Claim 11. There exists an i* € {0,1,...,logn} such that

e(A, B)
“logn+1

e(4, B) 1
21" 2(logn +1)°

e(A4;+,B) > and | A;-

>

Proof. Since Ziogon e(A;, B) = e(A, B), the proof of the first inequality follows from aver-
aging. To see the second inequality, observe that for every i, we have e(A;, B) < |A4;]2¢1.

Hence, using the first inequality |A;«| > e(;;;IB) > (A*B) 2(1og1n+1)' <

Suppose we have an estimate € for e(A, B). Consider CheckEstimate from Algorithm 1
for checking if € is correct up to logarithmic factors using logarithmically many BIS queries.
We have the following claim about the test described in Algorithm 1.

» Claim 12. Let n > 16. If e(A, B) > 0, then
(a) ife > 4e(A, B)(logn + 1), CheckEstimate((A, B),€) accepts with probability at most ;.
(b) ife< A B) , CheckEstimate((A, B), €) accepts with probability at least % .
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Algorithm 1: CheckEstimate((A, B),¢)

1

N

[=2 IS, B Y

7
8

Input: ((A, B),€) where A, B C [n] are disjoint and € is a guess for e(A, B)

fori=0,1,...,logn do
Sample A’ C A by choosing each vertex in A with probability min {Q—i, 1}.
Sample B’ C B by choosing each vertex of B with probability 2i
if e(4’,B") # 0 then
‘ Output accept;
end
end
Output reject.

Algorithm 2: CoarseEstimator(A, B)

© g O ;A W N K

Input: (A, B) where A, B C [n] are disjoint
Output: An estimate € for the number of edges e(A, B)

if e(A4, B) =0 then
‘ Output 0;
end
for j =2logn,...,0do
Run t := 128logn independent trials of CheckEstimate((A, B), 27).
if at least % ‘of them output accept then
Output 27;
end
end

Proof.

(a)

(b)

For any value of the loop variable i, the probability that a fixed edge is present in
the induced subgraph on A’ and B’ is min{Q—i,l} . % < L Thus, Ele(A’,B")] =

E(AAELB) < 4(10g1n+1) and hence, the probability that the event e(A’, B’) # 0 happens

for a particular value of i is Ple(A’, B') # 0] < Ele(4’, B)] < m.
bound over the loop variable, the probability that the test accepts is at most i.

It is enough to show that the probability is at least % when the loop variable attains

e(A,B) 1
z 2¢*  2(logn+1)

By the union

the value i* where ¢* is given by Claim 11. Then, we have that | A;-
and

i 1A

PlA' N A;. = 2] = (1 - N)

. m 1
xp| o=
e = &P € 2(logn+1)

4logn )< 1

< [ P
_exp( 2(logn+1) ) — el:6’

—

% and the final uses n > 16.

Furthermore, since degp(v) > 2" for any v € Ay, it follows that when A’ N A # @,
then |N(A’ N A;-)| > 27 So, we can bound

where the penultimate inequality follows since € <

o
1
PBNNA NAx:)=2 | ANAx#2] < (1—21.*> <

Q| =
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From the above, we get

Ple(A’, B') £ 0] = P[A' N Ai # 2] P[B'AN(A' N Ap) £ 2 | AN Ay # 2]

1 1 1
= () (023 )

Armed with the above test, we can easily estimate the number of edges up to a O(logn)
factor by just doing a search, where we start with € = n? and halve the number of edges each
iteration. The algorithm is given in Algorithm 2 and the following claim gives an analysis.

» Claim 13. Let n > 16. CoarseEstimator(A, B) outputs ¢ < n? satisfying %(fzgi) <e

<

8e(A, B) log n with probability at least 1— 410%" The number of BIS queries made is cce log® n
for a constant cee.

Proof. For any fixed value of j such that 27 > 4(e(4, B)logn + 1), the expected number of
accepts is at most i using Claim 12(a). The probability that we see at least % = i—l—é accepts
2
can be bounded by e=2t(3) < n~2 by taking p, = % and s = % in Lemma 17(a). By a union
bound over j, the probability that none of the iterations satisfying 27 > 8e(A, B)logn >
4e(A, B)(logn + 1) accept is at least 1 — ZIO%’H by the choice of t = 128logn.
On the other hand, when 27 <7 e(A

, the expected number of accepts is at least % and

2
so the probability that we see at least % = % — % accepts is at least 1 — e~2t(3) >1-— i
by applying Lemma 17(a) with p; = % and s = 3 Hence, conditioned on the event that the
e(A, B)

4logn ?

is at least 1 —n—

estimator has not accepted for any j satisfying 23

for the unique j that satisfies e(A B) <2< Z(ﬁ’gi),

Overall, by the union bound the probability of outputting an estimate ¢ that does not
satisfy 8(1 B) <& < 8e(A, B)logn is at most 210“’37’”2 < 41°g" The number of queries is at
most 128 1og n-(2logn+1)(logn+1) = 256log® n—l— O(log? n) since for each value of j there

are t = 128log n trials of CheckEstimate, each of which makes logn + 1 BIS queries. |

the probability that we accept
4

5.2 Overall BIS Algorithm (Proof of Theorem 2)

We now describe EdgeEstimator (Algorithm 3) that makes M BIS queries to estimate
m within a factor of (1 £ ¢). The subroutine BlpartlteEstlmator is given by Algorithm 4.

» Theorem 14. Letn > 16. If%l% <e< %, then with probability at least 1—%@5(7&

(a) |m — EdgeEstimator(e)| < e -m,

(b) EdgeEstimator(e) uses O (103;46") BIS queries.

To prove the above, we first analyze BipartiteEstimator. To this end, we need some more
definitions. Let L be a list of (4, B,w), for A, B C [n] that are disjoint and w > 1. For
every 0 < 0 < 3210gn’ L is good if |L| < 2tlog(n) and for every (4, B,w) € L, e(A, B) > s,
where ¢ = 213 . 10% ™ and s = 81 - kl%% ™ as defined in Step 5 of BipartiteEstimator. Define
e(L) = Z(A,B,w)eL e(4, B).

We have the following guarantee on BipartiteEstimator.

» Lemma 15. Letn>16 If L is good and 0 < 0 <

16kt log n- log(71
1- T , the following holds

(a) |wt(L) — BipartiteEstimator(L, k, )| < 46 log k1 e(L) -wt(L).

321 , then with probability at least
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Algorithm 3: EdgeEstimator(c)

[V

(<23 =1 B NS U

©

Input: (n,e): n is the number of vertices and ¢ is an error parameter.
Output: Estimate m for the number of edges m = |E]|.

Partition the vertices randomly into A and B.
Compute € = CoarseEstimator(A4, B).
if &< 22191 then

‘ Compute m = 2 - ¢(A, B) exactly using Lemma 5.
end
else

‘ Compute m = 2 - BipartiteEstimator ([(A7 B,1)],4 ) (Algorithm 4).

-
’ 32logn
end
return m.

Algorithm 4: BipartiteEstimator(L, k, ¢)

O VI

© ® N o o

10
11
12

13

14
15
16
17
18

Input: (L,k,0): L is a list of triples (A, B,w) where A, B C [n] are disjoint subsets
and w > 1 is a positive weight for the pair (A, B), k is an integer, and 0 is
an error parameter.

Output: Estimate for the sum wt(L) := >4 5 ,)er @ - €(4, B).

Les = Refine(L, k).
for each (A, B,w) € Ly do

‘ ¢(A, B) = CoarseEstimator(A, B).
end

Set t :=213. —1(’%2 % and s:=81- kl%%zn‘
Define Liignt = {(A4, B,w) | (A, B,w) € L, €(A4, B) < 8slogn}.

Compute wt(Lignt) = -4 Bow)eLige W e(A, B) exactly using Lemma 5.

Remove Lijight from Lyes.

For j € [2logn], let S; = {(A, B,w) | (A, B,w) € Lyef, w-e(A, B) € (27,291},
Define €(S;) = Z(A,B,w)esj e(A, B).

for j=1,---,2logn do

if |S;| > t then
Sample t elements uniformly and independently from S;. Denote this
multiset by S7.
Update Ly by replacing each (A, B, w) € S; that was sampled in S; with
(A, B, M) where p is the number of copies of (4, B,w) in 5.
Remove each (A, B,w) € S; from Ly that is not in Sj
end
end
Let Lgyp be the current list.

return wt(Lign) + BipartiteEstimator(Lsub, k&, 9).
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Algorithm 5: Refine(L, k)
Input: (L,k): L is a list of triples (4, B,w) where A, B C [n] are disjoint subsets
and w > 1 is a positive weight for the pair (A, B), k is an integer

1 for each (A, B,w) € L do

2 Partition A and B uniformly each into k classes A1,...,A; and By, ..., By.
3 Update L by replacing (A, B, w) with (4, By, wk),- -, (Ag, Bk, wk).

4 end

5 return L.

(b) the number of BIS queries is at most cppkst log*n - 10g(%w e(L) where cpp = 20 + 2cce
and cce 18 the constant from Lemma 7.

We prove Theorem 14 using Lemma 15. Lemma 15 is applied with L = [(A, B,1)], k = 4
and § = m. Since e(L) < n?, the number of BIS queries is at most Closg# for a constant
¢ (after plugging in the values of k, s, ¢,0).

We first informally describe BipartiteEstimator, expanding on the overview presented in
Section 2. The list L, which is the input to BipartiteEstimator, corresponds to the collection
of bipartite subgraphs along with their weights. The quantity e(L) denotes the total number
of edges in this collection without the weights. The algorithm BipartiteEstimator returns an
estimate of wt(L), which is the weighted sum of the number of edges in the subgraphs.

At every level of the recursion, we maintain two invariants about the list we recurse on.
The first is that the list size is O(tlogn). This comes from the fact that we only keep a
small collection of bipartite subgraphs that we recurse on. The second invariant is that for
every element (A, B,w) in the list, we have e(A, B) > s. This says that we only recurse on
those subgraphs that are dense. These invariants are captured in the definition of L being
good. Both parameters ¢t and s will be set to polylog(n) while k£ will be a constant.

Let L be the input to BipartiteEstimator. The algorithm starts with sparsifying each sub-
graph (A, B,w) € L by further partitioning it into k parts (A1, B1),..., (Ak, Br). Denoting
the new list by Lyer, Lemma 10 then guarantees that e(Lyef) =~ e(L)/k (graph is sparsified)
and wt(Lyef) &~ wt(L) (weighted sum of the number of edges in the sparsified graph is a good
estimate of the original number of edges) since we partition each (A, B,w) € L individually
and increase the weight of each one by a factor of k.

Next, the algorithm BipartiteEstimator computes the coarse estimates €(A, B) for every
(A,B,w) in L. Whenever the coarse estimate is O(slogn) = polylog(n), it computes w -
e(A, B) exactly using the algorithm from Lemma 5. For the rest of the elements in the
list which correspond to the dense subgraphs, the algorithm groups them into 2logn lists
S1,...,5210gn according to the weighted coarse estimates w-e(A, B) such that w-€(A, B) =
27 for every element in the list S;. This allows us to use importance sampling (Lemma 18)
— we can subsample ¢ elements from each list and increase the weights by a factor of |S;|/t.
Since the coarse estimates are an O(log2 n) factor approximation of the true estimates, and
as we set ¢ = polylog(n), we are guaranteed that for the subsampled lists S;, we have
that wt(S?7) ~ wt(S;). The algorithm BipartiteEstimator then recurses on this subsampled
collection of bipartite subgraphs and the subsampling step ensures that the size of the list we
recurse on is O(tlogn). Also, assuming our coarse estimates were correct, each subgraph in
the subsampled list is dense, so our invariant about the input list being good is maintained.

Overall, the quantity e(L) goes down by a factor of k in every level of the recursion
because of sparsification, so there are O(log, e(L)) = O(logn) levels. Each level of the
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recursion incurs an additive error of d/logn, so that the overall error is O(d). Also, in
each level of the recursion, the queries are only made by CoarseEstimator and for the exact
counting of the edges. The dominating term comes from the exact counting and since we
only count the edges exactly if €(A, B) < O(slogn), the total number of queries made is
O(kstlog*n -logy e(L)) = polylog(n).

We move on to prove Theorem 14 and defer the proof of Lemma 15 to the full version [2].

Proof of Theorem 14. Let A, B be the random partition chosen in Step 1 of the algorithm.
Let £ be the event that both

|2-e(A,B) —m| < 18y/m - logn, (4)
and
e(A,B)  _
<e<e(A,B)-81 .
Slogn <e<e(A,B)-8logn (5)

Let & be the event that when Step 7 of the algorithm is executed,

12¢(A, B) — | <

< g -¢(A, B), (6)

Jogl6
28— for a constant ¢ to be

and the number of BIS queries (made in Step 7) is at most
set later. Conditioned on & N&,, we will bound the number of queries the algorithm makes,
and we will prove that the estimate is within the desired range. Then, we will show that

&1 N &, holds with high probability.

Correctness. Observe that m computed in either Step 4 or Step 7 satisfies (6). Indeed,
for Step 4, this follows by the setting of m = 2e(A, B), and for Step 7, this follows by
conditioning on &£. Thus, the triangle inequality combined with (4) and (6) implies

|m — EdgeEstimator(e)| = |m — m| < |m — 2¢e(A, B)| + [2¢(A, B) — m|

<18vmlogn+ = - e(4,B) < - -m+ - -e(4,B) <em,

where we used the assumption ¢ > 361% and the fact e(A, B) < m.

Number of Queries. In Step 2, CoarseEstimator makes O(log3 n) queries, by Lemma 7. In
Step 4, the algorithm from Lemma 5 makes at most 5e(A, B) - logn + 2 queries. This is

bounded by 5e(A, B) -logn +2 < 40¢-log’n+2 =0 (log—”‘) , where we used (5) to upper

52
bound e(A, B) and the assumption on € in Step 3 to achieve the final bound. Finally, in
Step 7, conditioned on &, the number of queries is O (bi#)

Probability. We now analyze the probability of £, NE&;. In particular, we will show P|& | <

- ’ 8
% and ]P’[Sg\gl] < %, for a constant ¢’ > 0. This suffices since then

P UE) = P[E1] + B[ N &) < P& + B[6le,] = P8

n

The claim that IP[E] < 412# follows directly from Lemma 10, Lemma 7 and a union bound.
To bound P[&;|&;], we invoke Lemma 15 to show that both (6) holds and the number of

clog'®n
od

BIS queries is with high probability where ¢ = 4cpp - 213 - 81 and ¢y, is the constant
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Algorithm 6: EdgeEstimatorIS(n, ¢)

Input: (n,e): n is the number of vertices, and ¢ is an error parameter.
Output: Estimate m for the number of edges m = |E|.

1 In parallel for k = 27 with 1 <2/ < |n/2| do
2 mg- = ColorCountIS(n, k)
3 | Set k= | ke |

181log?n
4 Terminate the whole parallel for loop when the earliest iteration finishes.
5 end

6 return m = ColorCountlS(n, k*).

Algorithm 7: ColorCountlS(n, k)

Input: (n,k): n is the number of vertices, and k is the number of colors.
Output: Estimate m for the number of edges m = |E]|.

1 Partition the vertices into 2k color classes Ay, ..., Ag; uniformly at random.
k
2 Exactly compute m = Z e(A;, Ag+i) using the algorithm from Lemma 8.
i=1

3 return 2k - m.

from Lemma 15. The lemma requires that L is good, which holds because L = [(4, B, 1)],
k=4,6= m, and using (5),
¢ 210. 81 -log*n _ 8lklogn
A, B) > >
e(4, )_810gn> g2 - 62 ’

where 1tghe second inequality holds since BipartiteEstimator executes in Step 7 only when
¢ > 28Lle’n Ty verify (6), we see wt([(4, B,1)]) = e([(4,B,1)]) = e(4,B) < n2.

c 10
cplog'" n
e2nt

Lemma 15 implies that with probability at least 1 — (where ¢, is a constant). Thus,

~ H H 1 6
[2¢(A, B) — | =2 ]wt({(A,B, 1))) - BipartiteEstimator (KAv B4, w) ‘

“log(n*)e(A, B) <

-e(A, B).

N ™

32 logn

and the number of BIS queries is O (%#) Since € > % > %, it follows that

. 10 /1.8
P[&)&1] < C”;’fﬂ L lfl% ™ for a constant ¢’ > 0. <

6 Edge Estimation using IS Queries

We briefly describe the sparsification based algorithm that uses v/m-polylog(n)/e IS queries.
The algorithm is given in Algorithm 6, and its guarantees are captured in Lemma 16. We
defer the proof of Lemma 16 to the full version [2].

» Lemma 16. For any e,m > 0 such that € > %, Algorithm 6 outputs m satisfying

(I—e)m <m < (14¢)m and uses O (@) IS queries with probability at least 1 — 2.
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To get Theorem 3 from the above lemma, we combine this with the folklore algorithm
that computes a (14¢) approximation with n?-polylog(n)/(¢%m) edge existence queries, i.e.,
we run both algorithms in parallel and output the estimate of the algorithm that terminates
earlier. A complete analysis of the folklore algorithm can be found in the full version [2].

7 Conclusion

We studied the task of using either BIS or IS queries to estimate the number of edges
in a graph. We presented randomized algorithms giving a (1 + €)-approximation using
polylog(n)/e* BIS queries and min {n?/(e*m),/m/c} - polylog(n) IS queries. Our al-
gorithms estimated the number of edges by first sparsifying the graph and then exactly
counting edges spanning certain bipartite subgraphs. We now describe open questions.

7.1 Open Directions

An obvious unresolved question is whether there is an algorithm to estimate the number
of edges with o(y/m) IS queries when m = o(n*/?). In this context proving a lower bound
of Q(y/m) IS queries would also be very interesting. In the full version [2] of the paper we
present arguments which suggest that a non-trivial lower bound might hold for IS queries.
Other open questions include using polylog(n) BIS queries to estimate the number of
cliques in a graph (see [9] for an algorithm using degree, neighbor and edge existence queries)
or to sample a uniformly random edge (see [11] for an algorithm using degree, neighbor and
edge existence queries). In general, any graph estimation problems may benefit from BIS
or IS queries, possibly in combination with standard queries (such as neighbor queries).
Finally, it would be interesting to know what other oracles, besides subset queries, enable
estimating the number of edges (or other graph parameters) with polylog(n) queries.
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A Concentration Bounds

For proofs of the following bounds, see the book by Dubhashi and Panconesi [8].

» Lemma 17 (Chernoff Bounds). Let Xi,...,X, be r i.i.d. random variables with 0 <
X; <1 and define X = >"._, X;. For p = E[X], let ju; and p, be real numbers such that
M < S g , ,

(a) For any s >0, we have P[X < p; — s] < e 25/" and P[X > pu, + 5] < e 25/7.

(b) Forany0 <6 <1, we have P[X < (1-0)] < 6_:1% and P[X > (140)py) < e "3
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(c) Forany d > 1, we have P[X > (1 + )] <e "5
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» Lemma 18 (Importance Sampling). Let U = {z1,...,x.} be a set of numbers, all contained
in the interval [, ab], for a > 0 and b > 1. Let v > 0 be a parameter. Consider the sum
I =3Y"_,x. Let X; be a random sample chosen uniformly (and independently) from the
set U, for i = 1,...,t, and consider the estimate Y = (r/t) 22:1 X; for I'. Then, for

t> %(1 + ln%), we have that P[|Y —T'| > eI'] < 7.
We will need the following version of Azuma’s that takes into account rare bad events.

» Lemma 19. Let f be a function of r random variables X1, ..., X, with f(X1,...,X,) <b.
Let B be any event and let for i € [r] let ¢; satisfy

Blf | X150, Xio1, Xi = a3, Bl = E[f | X1, ..., X;1, X; = a, B]| < e
Then for any s > 0, we have that

252

P[f ~Elf]| > s +b-P(B)] < exp (—2_102

)+ 8
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