
Achieving Zero AsymptoticQueueing Delay for Parallel Jobs

WENTAO WENG, Institute for Interdisciplinary Information Sciences, Tsinghua University, China

WEINA WANG, Computer Science Department, Carnegie Mellon University, USA

Zero queueing delay is highly desirable in large-scale computing systems. Existing work has shown that it can

be asymptotically achieved by using the celebrated Power-of-𝑑-choices (Po𝑑) policy with a probe overhead

𝑑 = 𝜔

(
log𝑁

1−𝜆

)
, and it is impossible when 𝑑 = 𝑂

(
1

1−𝜆

)
, where 𝑁 is the number of servers and 𝜆 is the load of

the system. However, these results are based on the model where each job is an indivisible unit, which does

not capture the parallel structure of jobs in today’s predominant parallel computing paradigm.

This paper thus considers a model where each job consists of a batch of parallel tasks. Under this model,

we propose a new notion of zero (asymptotic) queueing delay that requires the job delay under a policy to

approach the job delay given by the max of its tasks’ service times, i.e., the job delay assuming its tasks entered

service right upon arrival. This notion quantifies the effect of queueing on a job level for jobs consisting
of multiple tasks, and thus deviates from the conventional zero queueing delay for single-task jobs in the

literature.

We show that zero queueing delay for parallel jobs can be achieved using the batch-filling policy (a variant

of the celebrated Po𝑑 policy) with a probe overhead 𝑑 = 𝜔

(
1

(1−𝜆) log𝑘

)
in the sub-Halfin-Whitt heavy-traffic

regime, where 𝑘 is the number of tasks in each job and 𝑘 properly scales with 𝑁 (the number of servers).

This result demonstrates that for parallel jobs, zero queueing delay can be achieved with a smaller probe

overhead. We also establish an impossibility result: we show that zero queueing delay cannot be achieved

if 𝑑 = exp

(
𝑜

(
log𝑁

log𝑘

))
. Simulation results are provided to demonstrate the consistency between numerical

results and theoretical results under reasonable settings, and to investigate gaps in the theoretical analysis.

1 INTRODUCTION
In view of the rise in the amount of latency-critical workloads in today’s datacenters [31, 37], load-

balancing policies with ultra-low latency have attracted great attention (see, e.g., [12, 23–25, 28]). In

particular, it is highly desirable to have a policy under which the delay due to queueing is minimal.

In a classical setting of load-balancing, the celebrated greedy policy, Join-the-Shortest-Queue

(JSQ), achieves a minimal queueing delay in the sense that the queueing delay is diminishing as

the system becomes large, even in heavy-traffic regimes [28, 41, 42]. Therefore, we say that JSQ

achieves a zero (asymptotic) queueing delay. Specifically, consider a system with 𝑁 servers where

jobs arrive into the system following a Poisson process. Each server has its own queue and serves

jobs in the queue in a First-Come-First-Serve manner. Under JSQ, each incoming job will be assigned

to a server with the shortest queue length. Then the expected time (in steady state) a job spends in

the queue before entering service goes to zero as 𝑁 goes to infinity.

However, a drawback of JSQ is that it has a high communication overhead, which can cancel out

its advantage of achieving zero queueing delay. For assigning each job, JSQ requires the knowledge

of the queue-length information of all the 𝑁 servers, which will be referred to as having a probe
overhead of 𝑁 . In a typical cluster of servers, 𝑁 is in the tens of thousands range, resulting in

intolerable delay due to communication [31, 37].

A load-balancing algorithm that provides tradeoffs between queueing delay and communication

overhead is the Power-of-𝑑-choices (Po𝑑) policy [27, 38]. For each incoming job, Po𝑑 selects 𝑑

queues out of 𝑁 queues uniformly at random, and assigns the job to a shortest queue among the 𝑑

selected queues. Therefore, Po𝑑 has a probe overhead of 𝑑 . It is easy to see that when 𝑑 = 𝑁 , Po𝑑

Authors’ addresses: Wentao Weng, wwt17@mails.tsinghua.edu.cn, Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing, 100084, China; Weina Wang, weinaw@cs.cmu.edu, Computer Science Department, Carnegie

Mellon University, PA, 15213-3890, USA.

ar
X

iv
:2

00
4.

02
08

1v
3

 [
cs

.P
F]

 3
1

O
ct

 2
02

0

2 Wentao Weng and Weina Wang

coincides with JSQ, thus achieving a zero queueing delay. However, a fundamental question is: Can
zero queueing delay be achieved by Po𝑑 with a 𝑑 value smaller than 𝑁 ? Or, what is the smallest 𝑑 for
achieving zero queueing delay?
This question has been recently answered in a line of research [23–25, 28]. In particular, the

following results are the most relevant to our paper. Suppose the job arrival rate is 𝑁𝜆 and job

service times are exponentially distributed with rate 1. Then the load of the system is 𝜆. Consider a

heavy-traffic regime with 𝜆 = 1− 𝛽𝑁 −𝛼
, where 𝛼 and 𝛽 are constants with 0 < 𝛽 ≤ 1 and 0 < 𝛼 < 1.

It has been shown that Po𝑑 achieves zero queueing delay when 𝑑 = Ω
(
log𝑁

1−𝜆

)
for 𝛼 ∈ (0, 0.5) and

when 𝑑 = Ω
(
log

2 𝑁

1−𝜆

)
for 𝛼 ∈ [0.5, 1); and it does not have zero queueing delay when 𝑑 = 𝑂

(
1

1−𝜆
)
.

However, although these prior results provide great insights into achieving zero queueing delay,

they are all for the classical setting where each job is an indivisible unit.

In today’s applications, parallel computing is becoming increasingly popular to support the

rapidly growing data volume and computation demands, especially in large scale clusters that

support data-parallel frameworks such as [36, 46]. A job with a parallel structure is no longer a

single unit, but rather has multiple components that can run in parallel. In particular, the vast

number of data analytic and scientific computing workloads are parallel or embarrassingly parallel

[21, 30, 31]. Additional application examples include data replications in distributed file systems

[8, 22] and hyper-parameter tuning and Monte-Carlo search in machine learning [21, 29].

In this paper, inspired by this emerging paradigm of parallel computing, we revisit the funda-

mental question on the minimum probe overhead needed for achieving zero queueing delay, and

answer it under parallelism. To capture the parallel structure, we consider a model where each job

consists of 𝑘 tasks that can run on different servers in parallel. We assume that task service times

are independent and exponentially distributed with rate 1. Under such a model, we focus on delay

performance on a job level, i.e., we are interested in job delay, which is the time from when a job

arrives until all of its tasks are completed. We choose this performance metric since usually a job is

a meaningful unit for users. In fact, minimizing the delay of jobs, rather than the delay of their

tasks, is the design goal of many practical schedulers [4, 9, 16, 31].

We reiterate that we consider the asymptotic regime that 𝑁 → ∞. We assume that 𝑘 , the number

of tasks per job, properly scales with 𝑁 .

Zero queueing delay for parallel jobs. The term “zero queueing delay” is usually used to refer

to the regime where the delay due to queueing is minimal, i.e., where jobs barely wait behind each

other and are thus only subject to delay due to their inherent sizes. In the non-parallel model, it is

clear that the delay due to queueing for a job is just the time a job spends waiting in the queue.

However, when a job consists of multiple tasks, quantifying the delay due to queueing is more

complicated since different tasks experience different queueing times.

In this paper, we propose the following notion of zero queueing delay for parallel jobs. Let

𝑋1, 𝑋2, . . . , 𝑋𝑘 denote the service times of a job’s 𝑘 tasks. Then if a job does not experience any

queueing, its delay is given by𝑇 ∗ = max{𝑋1, 𝑋2, . . . , 𝑋𝑘 }. This is the job delay when all the tasks of

the job enter service immediately, so we call it the inherent delay. Note that here the inherent delay
is not the total size of all the tasks of a job, but rather the delay of the job when it is parallelized.

Let 𝑇 denote the delay of a job in steady state under a load-balancing policy. Then the delay due to

queueing can be characterized by the difference E[𝑇 −𝑇 ∗]. We say zero queueing delay is achieved

if

E[𝑇 −𝑇 ∗]
E[𝑇 ∗] → 0 as 𝑁 → ∞, (1)

i.e., the queueing delay takes a diminishing fraction of the inherent delay.

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 3

Our notion of zero queueing delay recovers the conventional notion for non-parallel jobs when

𝑘 = 1. However, it is different from the requirement that under the parallel job model, all the tasks

of a job should have zero queueing delay. Such a requirement is rather strong since all the tasks

would need to be assigned to empty queues simultaneously. We will discuss this alternative notion

in more detail in Section 6.

Probe overhead and batch-filling policy. When a job arrives into the system, a task-assigning

policy samples some queues to obtain their queue length information, and then decides how to

assign the 𝑘 tasks to the sampled servers. If the policy samples 𝑘𝑑 queues, then we say its probe
overhead [31, 45] is 𝑑 since 𝑑 is the average number of samples per task.

In this paper, we focus on a policy called batch-filling. It samples 𝑘𝑑 queues for an incoming job

and then assigns its tasks one by one to the shortest queue, where the queue length is updated after

every task assignment. Batch-filling has been shown to outperform the per-task version of Po𝑑 and

also a policy called batch-sampling [31, 45].

Note that the queueing dynamics under batch-filling with a probe overhead of 𝑑 is also very

different from that under the policy that runs Po-𝑘𝑑 for each task, although in both polices a task

gets to join the shortest queue among a set of 𝑘𝑑 queues. For this per-task version of Po-𝑘𝑑 , tasks

of the same job pick their own 𝑘𝑑 queues independently. Then it could happen that some task

picks 𝑘𝑑 lightly loaded servers while some other task lands in 𝑘𝑑 highly busy servers. While under

batch-filling, all the tasks in a job experience the same set of 𝑘𝑑 servers. Therefore, the analyses of

batch-filling and per-task Po-𝑘𝑑 will be very different.

Challenges and our results. The parallel structure of jobs makes a load-balancing system more

challenging to analyze in the following two aspects: (i) The delay of an incoming job in steady

state (tagged job) depends on the system state (queue lengths) in a more intricate way since its

tasks may be assigned to different queues. (ii) The dynamics of the system state is complicated

by the simultaneous arrival of a batch of tasks and the coordination in assigning tasks. Due to

these intricacies, existing techniques for analyzing non-parallel models do not directly carry over

to parallel models.

We address these difficulties by first deriving a sufficient condition on the state for an incoming

job to achieve zero queueing delay. Notably, this condition involves all the servers whose queue

lengths range from zero to a threshold that is in the order of 𝑜 (log𝑘). This is in contrast to the

condition for the non-parallel model, which only depends on the fraction of idle servers. Based

on this first step, we recognize that we only need to understand the system dynamics in terms of

whether the steady state concentrates around the set of desirable states that satisfy the sufficient

condition. Towards this end, a key in our analysis is an interesting state-space collapse result we

discover, which enables us to use the powerful framework of Stein’s method [6, 7].

Specifically, we consider a system with a job arrival rate of 𝑁𝜆/𝑘 . We focus on a heavy-traffic

regime where the load 𝜆 = 1 − 𝛽𝑁 −𝛼
with 0 < 𝛽 ≤ 1 and 0 < 𝛼 < 0.5, i.e., the sub-Halfin-Whitt

regime. Note that the larger 𝛼 is, the faster the load approaches 1 as 𝑁 → ∞. All the order notation

and asymptotic results in this paper are with respect to the regime that 𝑁 → ∞.

Our main result is that zero queueing delay is achievable when the probe overhead 𝑑 satisfies

𝑑 = 𝜔

(
1

(1 − 𝜆) log𝑘

)
, (2)

where the number of tasks 𝑘 satisfies 𝑘 = 𝑜

(
𝑁 0.5−𝛼

log
2 𝑁

)
and

𝑘
log𝑘

= Ω(log𝑁). For example, this includes

𝑘 = log
2 𝑁 and 𝑘 = 𝑁 0.1

with 𝛼 < 0.4. Recall that for the non-parallel model, a lower bound result

4 Wentao Weng and Weina Wang

is that zero queueing cannot be achieved when the probe overhead is 𝑂
(

1

1−𝜆
)
. In contrast, we can

see that for parallel jobs, the probe overhead in (2) can be orderly smaller than
1

1−𝜆 .
We comment that this reduction in probe overhead reflects the overall effect of parallelization on

the system. There are several factors at play that are brought by parallelization all together, making

it hard to quantify their individual effects. First, for tasks of the same job, the probe overhead quota

is pooled together and their assignment is coordinated, leading to a more effective use of the state

information. Second, a job with parallel tasks can better tolerate task delays since the job delay is

anyway determined by the slowest task. Furthermore, work arrives to the system in a more bursty

fashion under parallelization due to the batch effect. Such an effect of parallelization has also been

investigated in some recent papers [32, 39]. But generally, understanding parallel jobs is a much

underexplored research area.

To complement our achievability results, we also prove an impossibility result on the minimum

probe overhead needed: zero queueing delay can not be achieved if

𝑑 = 𝑒
𝑜

(
log𝑁

log𝑘

)
, (3)

where 𝑘 satisfies that 𝑘 = 𝑒
𝑜

(√
log𝑁

)
and 𝑘 = 𝜔 (1). To establish this lower bound, we utilize the tail

bound given by a Lyapunov function in a “reversed” way.

To the best of our knowledge, our paper is the first one that characterizes zero queueing delay

on a job level for jobs with parallel tasks. The very limited amount of prior work that does study

parallel jobs only has fluid-level optimality and only considers a constant load. Furthermore, we

develop a new technique for lower-bounding queues, which may be of separate interest itself given

the scarcity of lower-bounding techniques in queueing systems in general.

A reminder of Bachmann–Landau asymptotic notation. Since Bachmann–Landau asymp-

totic notation is heavily used in this paper, here we briefly recap the definitions for ease of ref-

erence. For two real-valued functions 𝑓 and 𝑔 of 𝑁 where 𝑔 takes positive values, we say that

𝑓 (𝑁) = 𝑂 (𝑔(𝑁)) if there exists a positive number𝑀 such that |𝑓 (𝑁) | ≤ 𝑀 ·𝑔(𝑁) for large enough
𝑁 , or equivalently if lim sup𝑁→∞

��� 𝑓 (𝑁)
𝑔 (𝑁)

��� < ∞. We say that 𝑓 (𝑁) = 𝑜 (𝑔(𝑁)) if lim𝑁→∞
𝑓 (𝑁)
𝑔 (𝑁) = 0;

𝑓 (𝑁) = Ω(𝑔(𝑁)) if lim inf𝑁→∞
𝑓 (𝑁)
𝑔 (𝑁) > 0; and 𝑓 (𝑁) = 𝜔 (𝑔(𝑁)) if lim inf𝑁→∞

��� 𝑓 (𝑁)
𝑔 (𝑁)

��� = ∞. In this

paper, the asymptotic regime is when 𝑁 , the number of servers, goes to infinity.

Related work. Load-balancing systems for non-parallel jobs have been extensively studied in the

literature. It is well-known that JSQ is delay-optimal under a wide range of assumptions [41, 42].

Although getting exact-form stationary distributions is typically not feasible for most load-balancing

policies, many results and approximations are known for various asymptotic regimes.

For JSQ in heavy-traffic regimes, Eschenfeldt and Gamarnik [10] obtain a diffusion approximation

in the Halfin-Whitt regime (𝛼 = 0.5), which has a zero queueing delay in the diffusion limit. The

convergence result in [10] is on the process level. Braverman [5] later establish steady-state results

and their results imply the convergence of the stationary distributions to the diffusion limit. JSQ

has also been studied in the nondegenerate slowdown (NDS) regime (𝛼 = 1) [17].

The problem of achieving zero queueing delay with Po𝑑 has been studied in [23–25, 28]. Mukher-

jee et al. [28] show through stochastic coupling that the diffusion limit of Po𝑑 with𝑑 = 𝜔 (𝑁 0.5
log𝑁)

converges to that of JSQ in the Halfin-Whitt regime, thus resulting in a zero queueing delay. The

convergence to the diffusion limit in [28] is on the process level. Zero queueing delay for Po𝑑 in

steady state is first studied by Liu and Ying [23] for the regime where 𝛼 < 1

6
, where they show

that the waiting probability goes to 0 as 𝑁 → ∞ when 𝑑 = 𝜔
(

1

1−𝜆
)
. The results are later extended

to the sub-Halfin-Whitt regime (0 < 𝛼 < 0.5) for both exponential and Coxian-2 service times

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 5

…
…

…
! tasks per job

Server 1 Server 2 Server 3 Server "

dispatcher

Fig. 1. A 𝑁 -server system with batch arrivals.

#

…
…

Server 1 Server 2 Server 3 Server "

ℓ = 2

Fig. 2. An example of the number of spaces below
a threshold ℓ in a set of queues: ℓ = 2, set of
queues A = {1, 2, 3}, and 𝑁ℓ (A) = 3.

[24, 25] and beyond-Halfin-Whitt regime (0.5 ≤ 𝛼 < 1) [24], where it is shown that zero queueing

delay is achieved when 𝑑 = Ω
(
log𝑁

1−𝜆

)
for 𝛼 ∈ (0, 0.5), and when 𝑑 = Ω

(
log

2 𝑁

1−𝜆

)
for 𝛼 ∈ [0.5, 1). The

paper [23] also provides a lower bound result: the waiting probability is bounded away from 0

when 𝑑 = 𝑂
(

1

1−𝜆
)
for 0 ≤ 𝛼 < 1.

Po𝑑 has also been analyzed in the regime with a constant load (𝛼 = 0) as 𝑁 → ∞. Mean-field

analysis has been derived for a constant 𝑑 in [27, 38], and Mukherjee et al. [28] show 𝑑 = 𝜔 (1)
leads to zero queueing delay. We remark that mean-field analysis results are also available for other

policies such as Join-the-Idle-Queue (JIQ) [26, 34], and also for delay-resource tradeoffs [12].

To the best of our knowledge, very limited work has been done on achieving zero queueing

delay for parallel jobs, or on analyzing delay for parallel jobs in general. Only the regime with

a constant load as 𝑁 → ∞ has been studied. Mukherjee et al. [28] briefly touch upon this topic

and show that fluid-level optimality can be achieved with probe overhead 𝑑 ≥ 1

1−𝜆−𝜖 under the

so-called batch-sampling policy [31]. Ying et al. [45] provide limiting distributions for the stationary

distributions under (batch-version) Po𝑑 , batching-sampling, and batch-filling, but have not analyzed

delay of jobs. Wang et al. [39] analyze job delay under a (batch-version) random-routing policy,

which does not achieve zero queueing delay. There have been no results for heavy-traffic regimes.

Finally, the techniques we use in this paper are based on Stein’s method and drift-based state-

space collapse. Proposed in [33], Stein’s method has been an effective tool for bounding the

distance between two distributions. The seminal papers [6, 7, 18] build an analytical framework for

Stein’s method in queueing theory that consists of generator approximation, gradient bounds, and

possibly state-space collapse. The papers [6, 7] use Stein’s method to study steady-state diffusion

approximation, and [2, 5, 14, 15, 23, 25, 43, 44] use Stein’s method to obtain convergence rates to

the mean-field limit. A similar approach has also been developed by Stolyar [35].

2 MODEL
We consider a system with 𝑁 identical servers, illustrated in Figure 1. Each server has its own queue

and serves tasks in its queue in a First-Come-First-Serve manner. Since each queue is associated

with a server, we will refer to queues and servers interchangeably. Jobs arrive into the system

following a Poisson process. To capture the parallel structure of jobs, we assume that each job

consists of 𝑘 tasks that can run on different servers in parallel. A job is completed when all of its

tasks are completed. We study the large-system regime where the number of servers, 𝑁 , becomes

large, and we will let 𝑘 increase to infinity with 𝑁 to capture the trend of growing job sizes.

6 Wentao Weng and Weina Wang

We denote the job arrival rate by𝑁𝜆/𝑘 and assume that the service times of tasks are independent

and exponentially distributed with rate 1. Then 𝜆 is the load of the system. We consider a heavy-

traffic regime where 𝜆 = 1 − 𝛽𝑁 −𝛼
with 0 < 𝛽 ≤ 1 and 0 < 𝛼 < 0.5, i.e., the so-called sub-Halfin-

Whitt regime [19, 25].

When a job arrives into the system, we sample 𝑘𝑑 queues and obtain their queue length in-

formation. Since the average overhead is 𝑑 samples per task, the probe overhead is 𝑑 . We then

assign the 𝑘 tasks of the job to the 𝑘𝑑 selected queues using the batch-filling policy proposed in

[45]. Batch-filling assigns the 𝑘 tasks one by one to the shortest queue, where the queue length

is updated after each task assignment. Specifically, the task assignment process runs in 𝑘 rounds.

For each round, we put a task into the shortest queue among sampled queues. We then update the

queue length, and continue to the next round.

Now we give an equivalent description of batch-filling, which is useful in our analysis. For each

queue and a positive integer ℓ , we use the number of spaces below threshold ℓ to refer to the quantity
max{ℓ − queue length, 0}, i.e., the number of tasks we can put in the queue such that the queue

length after receiving the tasks is no larger than ℓ . For a set of queues A, we use 𝑁ℓ (A) (or just 𝑁ℓ

when it is clear from the context) to denote the total number of spaces below ℓ in A. Figure 2 gives

an example of 𝑁ℓ (A). We say a task is at a queueing position 𝑝 if there are 𝑝 − 1 tasks ahead of it in

the queue. With the above terminology, the batch-filling policy can be described in the following

way: it finds a minimum threshold ℓ such that the total number of spaces below ℓ in the sampled

queues is at least 𝑘 . Then it fills the 𝑘 tasks into these spaces from low positions to high positions.

Recall that we propose the following notion of zero queueing for parallel jobs. Let 𝑋1, 𝑋2, · · · , 𝑋𝑘

be the service times of the tasks of a job. If a job does not experience any queueing, its delay is

given by 𝑇 ∗ = max {𝑋1, · · · , 𝑋𝑘 }, which we call the inherent delay of this job. Then if the actual

delay of the job is very close to its inherent delay, it is as if the job almost experiences no queueing.

We say zero queueing delay is achieved if the steady-state job delay, 𝑇 , is larger than 𝑇 ∗
only by a

diminishing fraction; i.e., if 𝑇 satisfies E[𝑇 −𝑇 ∗]/E[𝑇 ∗] → 0 as 𝑁 → ∞ as in (1). We note that as

the service time of each task is exponentially distributed with mean 1, it holds that

E[𝑇 ∗] = 𝐻𝑘 = ln𝑘 + 𝑜 (ln𝑘),

where 𝐻𝑘 = 1 + 1

2
+ · · · + 1

𝑘
is the 𝑘-th harmonic number.

We make the following interesting observation, which provides a basis for our delay analysis

of parallel jobs: a job can have zero queueing delay even when its tasks are assigned to non-idle

servers. In fact, we establish a necessary and sufficient condition: a job has zero queueing delay

if and only if all of its tasks are at queueing positions below a threshold ℎ with ℎ = 𝑜 (log𝑘) after
assigned to servers, noting that the inherent delay is ln𝑘 + 𝑜 (ln𝑘). The formal proof is based on

Lemma 4.1. This phenomenon allows us to have a zero queueing delay with low probe overhead.

But it also makes the analysis hard since it implies that there are many situations that can lead to

zero queueing delay.

We assume that every queue has a finite buffer size of 𝑏 including the task in service. If the

dispatcher routes a task to a queue with length equal to 𝑏, we simply discard this task and all the

other tasks of the same job. In this case, we say the job is dropped; otherwise, we say the job is

admitted. We remark that this assumption is not restrictive for the following two reasons: (1) our

results hold for a very large range of 𝑏 (see Theorem 3.1); and (2) the probability of discarding a job

is very small (see Theorem 3.2).

To represent the state of the system, let 𝑆𝑖 (𝑡) denote the fraction of servers that have at least 𝑖 jobs
at time 𝑡 , where 0 ≤ 𝑖 ≤ 𝑏. Note that it always holds 𝑆0 (𝑡) = 1. Then 𝑺 (𝑡) = (𝑆0 (𝑡), 𝑆1 (𝑡), · · · , 𝑆𝑏 (𝑡))
forms a continuous-time Markov chain (CTMC) since batch-filling is oblivious to labels of servers.

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 7

The state space is as follows:

S = {𝒔 = (𝑠0, 𝑠1, 𝑠2, · · · , 𝑠𝑏) : 1 = 𝑠0 ≥ 𝑠1 ≥ 𝑠2 ≥ · · · 𝑠𝑏,where 𝑁𝑠𝑖 ∈ N,∀1 ≤ 𝑖 ≤ 𝑏} .

It can be verified that {𝑺 (𝑡) : 𝑡 ≥ 0} is irreducible and positive recurrent, thus having a unique

stationary distribution. Let 𝜋𝑺 denote this stationary distribution, and let 𝑺 = (𝑆1, · · · , 𝑆𝑏) be a
random element with distribution 𝜋𝑺 .

3 MAIN RESULTS
Ourmain results provide bounds on queue lengths and delay, which lead to corresponding conditions

on the probe overhead for achieving zero queueing delay. We divide our results into achievability
and impossibility results. Again, all the asymptotics are with respect to the regime that the number

of servers, 𝑁 , goes to infinity.

Achievability Results. In Theorem 3.1, we give an upper bound that characterizes E
[∑𝑏

𝑖=1 𝑆𝑖

]
,

which is equal to the average expected number of tasks per server. This upper bound underpins

our analysis of job delay.

Theorem 3.1. Consider a system with 𝑁 servers where each job consists of 𝑘 tasks. Let the load be
𝜆 = 1 − 𝛽𝑁 −𝛼 with 0 < 𝛽 ≤ 1 and 0 < 𝛼 < 0.5. Under the batch-filling policy with a probe overhead
of 𝑑 such that 𝑑 ≥ 8

(1−𝜆)ℎ for some ℎ = 𝑜 (log𝑘) and ℎ = 𝜔 (1), it holds that

E

[
max

{
𝑏∑︁
𝑖=1

𝑆𝑖 − ℎ

(
1 − 1

2

𝛽𝑁 −𝛼
)
, 0

}]
≤ 5

√
𝑁 log𝑁

, (4)

where we assume that 𝑘 satisfies 𝑘 = 𝑜

(
𝑁 0.5−𝛼

log
2 𝑁

)
and 𝑘

log𝑘
= Ω(log𝑁), the buffer size 𝑏 is given by

𝑏 = min

{
𝑁𝛼 , 𝑁

0.5−𝛼

𝑘

}
, and 𝑁 is sufficiently large.

We remark that the ℎ = 𝑜 (log𝑘) in this theorem represents the threshold position we pointed

out for zero queueing delay, i.e., a job has zero queueing delay if all of its tasks are at queueing

positions below ℎ after assigned to servers.

The upper bound in Theorem 3.1 enables us to analyze the probability that all the tasks of an

incoming job end up in positions below ℎ under batch-filling, which further leads to the zero

queueing delay result below in Theorem 3.2. Recall that the buffer size 𝑏 of each queue is finite, so

a job will get dropped if at least one of its tasks is assigned to a queue with a full buffer. We denote

the probability of dropping an incoming job in steady state by 𝑝d.

Theorem 3.2. Under the assumptions of Theorem 3.1, the steady-state delay of jobs that are admitted
under batch-filling satisfies that

E[𝑇 | admitted] = ln𝑘 + 𝑜 (ln𝑘),

with a dropping probability 𝑝d ≤ 11

𝑏
√
𝑁 log𝑁

when 𝑁 is sufficiently large.

Theorem 3.2 thus implies that zero queueing delay for parallel jobs can be achieved with a probe

overhead 𝑑 = 𝜔

(
1

(1−𝜆) log𝑘

)
. This breaks the lower bound of 𝜔

(
1

1−𝜆
)
for achieving zero queueing

delay for non-parallel jobs, i.e., single-task jobs [23], as we discussed in Section 1.

8 Wentao Weng and Weina Wang

Impossibility Results. To complement the achievability results, below we investigate when zero

queueing delay cannot be achieved. In Theorem 3.3, we find conditions under which

∑ℎ
𝑖=1 𝑆𝑖 is

lower bounded with a constant probability.

Theorem 3.3. Consider a system with 𝑁 servers where each job consists of 𝑘 tasks. Let the load
be 𝜆 = 1 − 𝛽𝑁 −𝛼 with 0 < 𝛽 ≤ 1 and 0 < 𝛼 < 0.5. Assume that buffers have unlimited sizes and 𝑘

satisfies that 𝑘 = 𝑒
𝑜

(√
log𝑁

)
and 𝑘 = 𝜔 (1). Under the batch-filling policy with a probe overhead 𝑑 such

that 𝑑 = 𝑒
𝑜

(
log𝑁

log𝑘

)
and for any ℎ with ℎ = 𝑂 (log𝑘), it holds that when 𝑁 is sufficiently large,

P

{
ℎ∑︁
𝑖=1

𝑆𝑖 ≥ ℎ − 1

3𝑑

}
≥ 1

4𝑒2
. (5)

The lower bound on

∑ℎ
𝑖=1 𝑆𝑖 in Theorem 3.3 guarantees that an incoming jobwill have a significant

delay in addition to its inherent delay, and thus fails to have zero queueing delay. This result is

formally stated in Theorem 3.4 below.

Theorem 3.4. Under the assumptions of Theorem 3.3, the steady-state job delay, 𝑇 , satisfies that

E[𝑇] ≥ 2 ln𝑘 (6)

when 𝑁 is sufficiently large. Therefore, to achieve zero queueing delay, the probe overhead 𝑑 needs to

be at least 𝑒Ω
(
log𝑁

log𝑘

)
.

4 PROOFS FOR ACHIEVABILITY RESULTS (THEOREMS 3.1 AND 3.2)
Before we dive into the proofs of Theorems 3.1 and 3.2, we first develop more understanding of

zero queueing delay on a job level through Lemmas 4.1 and 4.2. Due to the space limit, the proofs of

the lemmas are presented in Appendix A. Then we provide a proof sketch for Theorems 3.1 and 3.2

to outline the main steps. Detailed proofs of Theorems 3.1 and 3.2 are presented in Sections 4.1 and

4.2, respectively. Throughout this section, we assume that the assumptions in Theorem 3.1 hold.

Zero queueing delay and queue lengths. Lemma 4.1 below gives an upper bound on the ex-

pected job delay given the lengths of the queues that the tasks of a job are assigned to. Specifically,

suppose the 𝑘 tasks of a job are sent to𝑚 queues (𝑚 ≤ 𝑘) with queue lengths 𝑛1, 𝑛2, . . . , 𝑛𝑚 , where

the queue lengths have included these newly arrived tasks. Note that multiple tasks of the job

could be sent to the same queue, but to compute the job delay, we only need to consider the last

task of the job in that queue. Let 𝑌𝑖 with 1 ≤ 𝑖 ≤ 𝑚 denote the delay of the last task of the job in

queue 𝑖 . Then the job delay can be written as max {𝑌1, · · · , 𝑌𝑚}. Lemma 4.1 gives an upper bound

on E[max {𝑌1, · · · , 𝑌𝑚}].

Lemma 4.1. Consider 𝑚 independent random variables 𝑌1, · · · , 𝑌𝑚 with 𝑚 ≤ 𝑘 , where each 𝑌𝑖
(1 ≤ 𝑖 ≤ 𝑚) is the sum of 𝑛𝑖 i.i.d. random variables that follow the exponential distribution with rate
1. In the asymptotic regime that 𝑘 goes to infinity, if max {𝑛1, · · · , 𝑛𝑚} = 𝑜 (log𝑘), then

E[max {𝑌1, · · · , 𝑌𝑚}] ≤ ln𝑘 + 𝑜 (ln𝑘).

The upper bound in Lemma 4.1 implies that a sufficient condition for this job to have zero

queueing delay is that the lengths of the queues that its tasks are assigned to are of order 𝑜 (log𝑘).
As we pointed out earlier, this is different from the single-task job model since here zero queueing

delay on a job level allows non-zero queueing delay for each of the tasks.

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 9

Zero queueing delay and states. Lemma 4.2 below establishes a condition on the state seen by
a job arrival for all of its tasks to be assigned to queues of length 𝑜 (log𝑘) with high probability,

which is a sufficient condition for the job to have zero queueing delay by Lemma 4.1. Specifically,

we consider the event that all the 𝑘 tasks of an incoming job are assigned to queueing positions

below some threshold value ℓ , and let this event be denoted by FILLℓ . Lemma 4.2 shows that FILLℓ

happens with high probability given a proper condition on the state 𝒔 for several values of interest
for ℓ . Note that if we take ℓ = ℎ, which is 𝑜 (log𝑘), then FILLℓ leads to zero queueing delay. But

Lemma 4.2 is more general in the sense that it allows other values for ℓ , which is essential for other

parts of the proofs including proving a state-space collapse result (Lemma 4.3) and bounding the

dropping probability (Theorem 3.2).

Lemma 4.2 (Filling Probability). Under the assumptions of Theorem 3.1, given that the system is
in a state 𝒔 such that

ℓ∑︁
𝑖=1

𝑠𝑖 ≤ ℓ

(
1 − 1

4

𝛽𝑁 −𝛼
)
, (7)

the probability of the event FILLℓ for any ℓ ∈ {ℎ − 1, ℎ, 𝑏} can be bounded as P {FILLℓ } ≥ 1− 1

𝑁
when

𝑁 is sufficiently large.

Here we provide an intuitive explanation for the condition (7) when ℓ = ℎ. When a job arrives and

sees state 𝒔, if we choose one queue uniformly at random from all the queues, then the probability

for the chosen queue to have a length of 𝑖 is 𝑠𝑖 − 𝑠𝑖+1. So the expected number of spaces below

position ℎ in the chosen queue is

∑ℎ
𝑖=0 (ℎ − 𝑖) (𝑠𝑖 − 𝑠𝑖+1) = ℎ − ∑ℎ

𝑖=1 𝑠𝑖 . The batch-filling policy

samples 𝑘𝑑 queues. Thus the total expected number of spaces below position ℎ in the 𝑘𝑑 sampled

queues is 𝑘𝑑

(
ℎ − ∑ℎ

𝑖=1 𝑠𝑖

)
. To fit all the 𝑘 tasks of the incoming job to positions below ℎ, we need

𝑘 ≤ 𝑘𝑑

(
ℎ − ∑ℎ

𝑖=1 𝑠𝑖

)
, which becomes the following condition when 𝑑 ≥ 8

(1−𝜆)ℎ = 8𝑁𝛼

𝛽ℎ
as required

in Theorem 3.1:

ℎ∑︁
𝑖=1

𝑠𝑖 ≤ ℎ

(
1 − 1

8

𝛽𝑁 −𝛼
)
.

We strengthen this requirement to the condition

∑ℎ
𝑖=1 𝑠𝑖 ≤ ℎ

(
1 − 1

4
𝛽𝑁 −𝛼)

to obtain a high-

probability guarantee using concentration bounds based on Hoeffding’s results on sampling without

replacement [20, Theorem 4].

Proof sketch for Theorems 3.1 and 3.2. We start by setting the goal to be proving the zero

queueing delay result in Theorem 3.2, and we will see how Theorem 3.1 emerges as an essential

characterization of the system that is needed for Theorem 3.2.

Considering the condition in Lemma 4.2 on the system state, we upper bound the steady-state

job delay 𝑇 in the following way:

E[𝑇] ≤ E
[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)]

(8)

+ E
[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 > ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)]

· P
{

ℎ∑︁
𝑖=1

𝑆𝑖 > ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)}

, (9)

where we have used the fact that P
{∑ℎ

𝑖=1 𝑆𝑖 ≤ ℎ
(
1 − 1

4
𝛽𝑁 −𝛼)} ≤ 1. We can easily bound the first

summand (8) using Lemma 4.2 since this is the case where all the tasks of an incoming jobs are

10 Wentao Weng and Weina Wang

sent to queues with lengths no larger than ℎ, which satisfies ℎ = 𝑜 (log𝑘) and thus results in zero

queueing delay.

We now focus on bounding the second summand (9), for which it suffices to show that the

probability P
{∑ℎ

𝑖=1 𝑆𝑖 > ℎ
(
1 − 1

4
𝛽𝑁 −𝛼)}

is small enough. By the Markov inequality,

P

{
ℎ∑︁
𝑖=1

𝑆𝑖 > ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)}

≤
E

[
max

{∑𝑏
𝑖=1 𝑆𝑖 − ℎ

(
1 − 1

2
𝛽𝑁 −𝛼) , 0}]

1

4
𝛽𝑁 −𝛼 .

It then boils down to bounding E
[
max

{∑𝑏
𝑖=1 𝑆𝑖 − ℎ

(
1 − 1

2
𝛽𝑁 −𝛼) , 0}] , which is what Theorem 3.1

achieves.

To prove Theorem 3.1, we follow the general framework of Stein’s method (see, e.g., [7, 25]). The

main idea is to couple our Markov chain {𝑺 (𝑡) : 𝑡 ≥ 0} with an auxiliary process that is easier to

analyze, and bound their difference through generator approximation. In particular, we compare

the dynamics of

∑𝑏
𝑖=1 𝑆𝑖 (𝑡) with a continuous function 𝑥 (𝑡) given by the following simple fluid

model as our auxiliary process:

¤𝑥 (𝑡) = (−𝛿)1{𝑥>0},

where 𝛿 is a properly chosen parameter that reflects the drift of

∑𝑏
𝑖=1 𝑆𝑖 (𝑡). We reiterate that a

key in our analysis is a novel state-space collapse result (Lemma 4.3) that we establish, which

characterizes how balanced the queues are from a job’s point of view.

Combining the arguments above for bounding (8) and (9), we can conclude that the steady-state

job delay E[𝑇] achieves zero queueing delay.

4.1 Proof of Theorem 3.1
Proof. As explained in the proof sketch, we compare our system with the following fluid model:

¤𝑥 (𝑡) = (−𝛿)1{𝑥>0}, (10)

where 𝑥 (𝑡) is continuous and 𝛿 =
(𝑘+1) log𝑁√

𝑁
. When viewed as a continuous-time Markov chain, this

fluid model (with a possibly random initial state) can be described by its generator [11], denoted as

𝐺 and given by

𝐺𝑔(𝑥) = 𝑔′(𝑥) · (−𝛿)1{𝑥>0}

for any differentiable function 𝑔. Recall that we will compare the dynamics of

∑𝑏
𝑖=1 𝑆𝑖 (𝑡) in our

load-balancing system with 𝑥 (𝑡).
The quantity of interest in Theorem 3.1 is E

[
max

{∑𝑏
𝑖=1 𝑆𝑖 − 𝜂, 0

}]
, where we have used the

notation 𝜂 = ℎ
(
1 − 1

2
𝛽𝑁 −𝛼)

for conciseness. Recall that 𝑺 follows the stationary distribution of

{𝑺 (𝑡) : 𝑡 ≥ 0}. To couple {𝑺 (𝑡) : 𝑡 ≥ 0} with the fluid model, we solve for a function 𝑔 such that

𝐺𝑔(𝑥) = max {𝑥 − 𝜂, 0} ,
𝑔(0) = 0.

(11)

It is not hard to see that the solution is

𝑔(𝑥) = (𝑥 − 𝜂)2
2(−𝛿) 1{𝑥≥𝜂 } . (12)

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 11

Now we utilize this function 𝑔 to bound E
[
max

{∑𝑏
𝑖=1 𝑆𝑖 − 𝜂, 0

}]
through generator approxima-

tion. Let 𝐺 be the generator of {𝑺 (𝑡) : 𝑡 ≥ 0}. Then

𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑠𝑖

)
=

∑︁
𝒔′∈S

𝑟𝒔→𝒔′

(
𝑔

(
𝑏∑︁
𝑖=1

𝑠 ′𝑖

)
− 𝑔

(
𝑏∑︁
𝑖=1

𝑠𝑖

))
,

where 𝑟𝒔→𝒔′ is the transition rate from state 𝒔 to 𝒔 ′. Since 𝑔
(∑𝑏

𝑖=1 𝑠𝑖

)
is bounded on S, it holds that

E

[
𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)]
= 0. (13)

Combining this with the equations in (11) gives,

E

[
max

{
𝑏∑︁
𝑖=1

𝑆𝑖 − 𝜂, 0

}]
= E

[
𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)]
= E

[
𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
−𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)]
= E

[
𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) −𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)]
. (14)

This is what is referred to as a generator approximation since we are approximating the generator

𝐺 with 𝐺 .

Next we take a closer look at the term𝐺𝑔

(∑𝑏
𝑖=1 𝑆𝑖

)
and derive an upper bound for (14). Let 𝑃𝐴 (𝒔)

be the probability that a job arrival is admitted into the system given that the system is at state 𝑠 ,

i.e., the probability that all the tasks of the job are routed to positions below 𝑏. Then

𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑠𝑖

)
=
𝑁𝜆

𝑘
𝑃𝐴 (𝒔)

(
𝑔

(
𝑏∑︁
𝑖=1

𝑠𝑖 +
𝑘

𝑁

)
− 𝑔

(
𝑏∑︁
𝑖=1

𝑠𝑖

))
+ 𝑁𝑠1

(
𝑔

(
𝑏∑︁
𝑖=1

𝑠𝑖 −
1

𝑁

)
− 𝑔

(
𝑏∑︁
𝑖=1

𝑠𝑖

))
,

where first term is the drift due to a job arrival and the second term is due to a task departure. To

derive an upper bound on (14), we divide the discussion into the three cases below. Recall that

𝑔(𝑥) = (𝑥−𝜂)2
2(−𝛿) 1{𝑥≥𝜂 } and 𝑔

′(𝑥) = 𝑥−𝜂
−𝛿 1{𝑥≥𝜂 } .

Case 1:
∑𝑏

𝑖=1 𝑆𝑖 < 𝜂 − 𝑘
𝑁
. In this case, clearly 𝑔′

(∑𝑏
𝑖=1 𝑆𝑖

)
= 0 and 𝐺𝑔

(∑𝑏
𝑖=1 𝑆𝑖

)
= 0.

Case 2:
∑𝑏

𝑖=1 𝑆𝑖 ∈ [𝜂 − 𝑘
𝑁
, 𝜂 + 1

𝑁
). By the mean value theorem,

𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) −𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
= 𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) −

(
𝑁𝜆

𝑘
𝑃𝐴 (𝑺)

𝑘

𝑁
𝑔′(𝜉) + 𝑁𝑆1

−1
𝑁

𝑔′(˜𝜉)
)

≤ 𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) − 𝜆𝑔′(𝜉) + 𝑆1𝑔

′(˜𝜉), (15)

where 𝜉 ∈
(∑𝑏

𝑖=1 𝑆𝑖 ,
∑𝑏

𝑖=1 𝑆𝑖 + 𝑘
𝑁

)
,
˜𝜉 ∈

(∑𝑏
𝑖=1 𝑆𝑖 − 1

𝑁
,
∑𝑏

𝑖=1 𝑆𝑖

)
, and (15) is true since 𝑃𝐴 (𝑺) ≤ 1 and

𝑔′(𝑥) ≤ 0 for all 𝑥 .

12 Wentao Weng and Weina Wang

Case 3:
∑𝑏

𝑖=1 𝑆𝑖 ≥ 𝜂 + 1

𝑁
. Since 𝑔′(𝑥) is continuous for all 𝑥 , by the second order Taylor expansion

in the Lagrange form,

𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) −𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
= 𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) − 𝑁𝜆

𝑘
𝑃𝐴 (𝑺)

(
𝑘

𝑁
𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
+ 𝑘2

2𝑁 2
𝑔′′(𝜁)

)
− 𝑁𝑆1

(
−1
𝑁

𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
+ 1

2𝑁 2
𝑔′′(˜𝜁)

)
≤ 𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿 − 𝜆 + 𝑆1) −

1

2𝑁

(
𝜆𝑘𝑔′′(𝜁) + 𝑆1𝑔

′′(˜𝜁)
)
, (16)

where 𝜁 ∈
(∑𝑏

𝑖=1 𝑆𝑖 ,
∑𝑏

𝑖=1 𝑆𝑖 + 𝑘
𝑁

)
,
˜𝜁 ∈

(∑𝑏
𝑖=1 𝑆𝑖 − 1

𝑁
,
∑𝑏

𝑖=1 𝑆𝑖

)
.

Combining these three cases yields

E

[
𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) −𝐺𝑔

(
𝑏∑︁
𝑖=1

𝑆𝑖

)]
≤ E

[(
𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿) − 𝜆𝑔′(𝜉) + 𝑆1𝑔

′(˜𝜉)
)
1{∑𝑏

𝑖=1 𝑆𝑖 ∈[𝜂− 𝑘
𝑁
,𝜂+ 1

𝑁
)}

]
(17)

− 1

2𝑁
E

[
(𝜆𝑘𝑔′′(𝜁) + 𝑆1𝑔

′′(˜𝜁))1{∑𝑏
𝑖=1 𝑆𝑖 ≥𝜂+ 1

𝑁 }
]

(18)

+ E
[
𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿 − 𝜆 + 𝑆1)1{∑𝑏

𝑖=1 𝑆𝑖 ≥𝜂+ 1

𝑁 }

]
. (19)

The first two terms (17) and (18) are easy to bound oncewe notice that for any𝑥 ∈
[
𝜂 − 𝑘+1

𝑁
, 𝜂 + 𝑘+1

𝑁

]
,

|𝑔′(𝑥) | ≤ |𝑥−𝜂 |
𝛿

≤ 1√
𝑁 log𝑁

, and for any 𝑥 ∈ (𝜂, +∞), |𝑔′′(𝑥) | = 1

𝛿
=

√
𝑁

(𝑘+1) log𝑁 . Then when 𝑁 is

sufficiently large,

|(17)| ≤ 1

√
𝑁 log𝑁

(
(𝑘 + 1) log𝑁

√
𝑁

+ 1 + 1

)
≤ 3

√
𝑁 log𝑁

,

and

| (18) | ≤ 1

2𝑁

√
𝑁

(𝑘 + 1) log𝑁 (𝜆𝑘 + 1) ≤ 1

√
𝑁 log𝑁

.

The key in this proof is to bound the term (19), for which we utilize the state-space collapse

result we establish in Lemma 4.3 below. The proof of Lemma 4.3 is given in Appendix A.3.

Lemma 4.3 (State-Space Collapse). Under the assumption of Theorem 3.1, consider the following
Lyapunov function:

𝑉 (𝒔) = min

{
1

ℎ − 1

𝑏∑︁
𝑖=ℎ

𝑠𝑖 , 𝑏

((
1 − 1

2

𝛽𝑁 −𝛼
)
− 1

ℎ − 1

ℎ−1∑︁
𝑖=1

𝑠𝑖

)+}
,

where the superscript + denotes the function 𝑥+ = max{𝑥, 0}. Let 𝐵 = 𝑏−ℎ+1
ℎ−1

(
𝛽𝑁 −𝛼 + log𝑁√

𝑁

)
. Then for

any state 𝒔 such that 𝑉 (𝒔) > 𝐵, its Lyapunov drift can be upper bounded as follows

Δ𝑉 (𝒔) = 𝐺𝑉 (𝒔) ≤ − 𝑏
√
𝑁
.

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 13

Consequently, when 𝑁 is sufficiently large,

P

{
𝑉 (𝑺) > 𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

}
≤ 𝑒−

1

2
log

2 𝑁 .

With Lemma 4.3, we partition the probability space based on the value of𝑉 (𝑆) for bounding (19).
Note that 𝑔′

(∑𝑏
𝑖=1 𝑆𝑖

)
(−𝛿 − 𝜆 + 𝑆1)1{∑𝑏

𝑖=1 𝑆𝑖 ≥𝜂+ 1

𝑁 } is always no larger than
2𝑏
𝛿
for large enough 𝑁 .

Then (19) can be upper bounded as:

(19) ≤ E
[
𝑔′

(
𝑏∑︁
𝑖=1

𝑆𝑖

)
(−𝛿 − 𝜆 + 𝑆1) · 1{∑𝑏

𝑖=1 𝑆𝑖 ≥𝜂+ 1

𝑁 }

����� 𝑉 (𝑺) ≤ 𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

]
+ 2𝑏

𝛿
P

{
𝑉 (𝑺) > 𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

}
. (20)

Now we focus on the case where we are given the condition that 𝑉 (𝑺) ≤ 𝐵 + 2𝑘𝑏 log
2 𝑁

(ℎ−1)
√
𝑁
. Our goal

is to show that 𝑆1 is large enough such that 𝛿 + 𝜆 − 𝑆1 < 0. Intuitively, this condition on 𝑉 (𝑺)
implies that we either have a small

∑𝑏
𝑖=ℎ

𝑆𝑖 , which leads to a large 𝑆1 when combined with the

condition

∑𝑏
𝑖=1 𝑆𝑖 ≥ 𝜂 + 1

𝑁
in the indicator, or a large

∑ℎ−1
𝑖=1 𝑆𝑖 , which directly gives a large 𝑆1 since

𝑆1 ≥ · · · ≥ 𝑆ℎ−1.

If
1

ℎ−1
∑𝑏

𝑖=ℎ
𝑆𝑖 ≤ 𝑏

((
1 − 1

2
𝛽𝑁 −𝛼) − 1

ℎ−1
∑ℎ−1

𝑖=1 𝑆𝑖

)+
in 𝑉 (𝑺), the condition 𝑉 (𝑺) ≤ 𝐵 + 2𝑘𝑏 log

2 𝑁

(ℎ−1)
√
𝑁

implies that

1

ℎ − 1

𝑏∑︁
𝑖=ℎ

𝑆𝑖 ≤
𝑏 − ℎ + 1

ℎ − 1

(
𝛽𝑁 −𝛼 + log𝑁

√
𝑁

)
+ 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁
. (21)

Recall that 𝑏 = min

{
𝑁𝛼 , 𝑁

0.5−𝛼

𝑘

}
and ℎ = 𝑜 (log𝑘). Note that the indicator function in (20) makes

it sufficient to consider the case where

∑𝑏
𝑖=1 𝑆𝑖 ≥ 𝜂 + 1

𝑁
, which implies (ℎ − 1)𝑆1 +

∑𝑏
𝑖=ℎ

𝑆𝑖 ≥ 𝜂.

Combining this with (21) gives

𝑆1 ≥
𝜂

ℎ − 1

− 𝑏 − ℎ + 1

ℎ − 1

(
𝛽𝑁 −𝛼 + log𝑁

√
𝑁

)
− 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

≥ 1 + (1 − 𝛽) 1

ℎ − 1

− 1

2

𝛽𝑁 −𝛼 + 𝑜
(
1

ℎ

)
when 𝑁 is sufficiently large. Note that 𝛿 = 𝑜

(
1

ℎ

)
and 𝜆 = 1 − 𝛽𝑁 −𝛼

. Therefore, 𝜆 + 𝛿 − 𝑆1 < 0 when

𝑁 is sufficiently large.

If
1

ℎ−1
∑𝑏

𝑖=ℎ
𝑆𝑖 > 𝑏

((
1 − 1

2
𝛽𝑁 −𝛼) − 1

ℎ−1
∑ℎ−1

𝑖=1 𝑆𝑖

)+
in 𝑉 (𝑺), the condition 𝑉 (𝑺) ≤ 𝐵 + 2𝑘𝑏 log

2 𝑁

(ℎ−1)
√
𝑁

implies that

𝑏

(
1 − 1

2

𝛽𝑁 −𝛼 − 1

ℎ − 1

ℎ−1∑︁
𝑖=1

𝑆𝑖

)
≤ 𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁
.

Then

𝑆1 ≥
1

ℎ − 1

ℎ−1∑︁
𝑖=1

𝑆𝑖

≥ 1 − 1

2

𝛽𝑁 −𝛼 − 1

𝑏

(
𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

)

14 Wentao Weng and Weina Wang

≥ 1 − 1

2

𝛽𝑁 −𝛼 + 𝑜 (𝑁 −𝛼).

As a result, again we have 𝜆 + 𝛿 − 𝑆1 ≤ − 1

2
𝛽𝑁 −𝛼 + 𝑜 (𝑁 −𝛼) < 0 when 𝑁 is sufficiently large.

Inserting these bounds back to (20) gives that when 𝑁 is sufficiently large,

(19) ≤ 0 + 2𝑏

𝛿
P

{
𝑉 (𝑺) > 𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

}
≤ 2𝑏

𝛿
𝑒−

1

2
log

2 𝑁

≤ 1

√
𝑁 log𝑁

.

Combining the bounds for (17), (18) and (19), we have

E

[
max

{
𝑏∑︁
𝑖=1

𝑆𝑖 − ℎ

(
1 − 1

2

𝛽𝑁 −𝛼
)
, 0

}]
≤ 5

√
𝑁 log𝑁

,

which completes the proof of Theorem 3.1. □

4.2 Proof of Theorem 3.2
Proof. We first bound the dropping probability 𝑝d using Lemma 4.2 with the threshold value

ℓ = 𝑏. Note that an incoming job does not get dropped if and only if all its 𝑘 tasks are routed to

queueing positions below threshold 𝑏, which is the complement of the event FILL𝑏 in Lemma 4.2.

Thus,

𝑝d = 1 − P{FILL𝑏}

= 1 − P
{
FILL𝑏

����� 𝑏∑︁
𝑖=1

𝑆𝑖 ≤ 𝑏

(
1 − 1

4

𝛽𝑁 −𝛼
)}

· P
{

𝑏∑︁
𝑖=1

𝑆𝑖 ≤ 𝑏

(
1 − 1

4

𝛽𝑁 −𝛼
)}

− P
{
FILL𝑏

����� 𝑏∑︁
𝑖=1

𝑆𝑖 > 𝑏

(
1 − 1

4

𝛽𝑁 −𝛼
)}

· P
{

𝑏∑︁
𝑖=1

𝑆𝑖 > 𝑏

(
1 − 1

4

𝛽𝑁 −𝛼
)}

.

We can easily have that P
{
FILL𝑏

��� ∑𝑏
𝑖=1 𝑆𝑖 ≤ 𝑏

(
1 − 1

4
𝛽𝑁 −𝛼)} ≤ 1

𝑁
using Lemma 4.2.

Now we bound P
{∑𝑏

𝑖=1 𝑆𝑖 > 𝑏
(
1 − 1

4
𝛽𝑁 −𝛼)}

using Theorem 3.1. Note that

P

{
𝑏∑︁
𝑖=1

𝑆𝑖 > 𝑏

(
1 − 1

4

𝛽𝑁 −𝛼
)}

≤ P
{
max

{
𝑏∑︁
𝑖=1

𝑆𝑖 − ℎ

(
1 − 1

2

𝛽𝑁 −𝛼
)
, 0

}
> 𝑏 − 𝑏

4

𝛽𝑁 −𝛼 − ℎ

}
≤ P

{
max

{
𝑏∑︁
𝑖=1

𝑆𝑖 − ℎ

(
1 − 1

2

𝛽𝑁 −𝛼
)
, 0

}
>

𝑏

2

}
,

where we have used the fact that
𝑏
4
𝛽𝑁 −𝛼 +ℎ ≤ 𝑏

2
when𝑁 is sufficiently large due to our assumptions

on 𝑏 and ℎ. Then by Markov’s inequality,

P

{
𝑏∑︁
𝑖=1

𝑆𝑖 > 𝑏

(
1 − 1

4

𝛽𝑁 −𝛼
)}

≤
E

[
max

{∑𝑏
𝑖=1 𝑆𝑖 − ℎ

(
1 − 1

2
𝛽𝑁 −𝛼) , 0}]

𝑏
2

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 15

≤ 10

𝑏
√
𝑁 log𝑁

.

Combining the arguments above yields

𝑝d ≥ 1 − 1

𝑁
− 10

𝑏
√
𝑁 log𝑁

≥ 1 − 11

𝑏
√
𝑁 log𝑁

when 𝑁 is sufficiently large.

Next we bound the expected job delay given that a job is admitted, i.e., E[𝑇 | admitted]. We define

the delay of a job that is dropped to be zero since it leaves the system immediately after arrival.

Then E[𝑇] = E[𝑇 | admitted] · (1− 𝑝d) + E[𝑇 | dropped] · 𝑝d, and thus E[𝑇 | admitted] = E[𝑇]
1−𝑝

d

. So

we can focus on bounding E[𝑇], following the outline given in the proof sketch.

We bound E[𝑇] in the following way

E[𝑇] ≤ E
[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)]

(22)

+ E
[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 > ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)]

· P
{

ℎ∑︁
𝑖=1

𝑆𝑖 > ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)}

. (23)

For the first term (22) in this upper bound, as described in the proof sketch, we will rely on

the fact that with high probability, all the 𝑘 tasks are assigned to queueing positions below ℎ.

Specifically,

E

[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)]

= E

[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)
, FILLℎ

]
· P

{
FILLℎ

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)}

+ E
[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)
, FILLℎ

]
· P

{
FILLℎ

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)}

,

where FILLℎ is the complement of FILLℎ .

Suppose FILLℎ is true. Suppose that the 𝑘 tasks of the incoming job land in𝑚 distinct queues

with𝑚 ≤ 𝑘 . We call the tasks with the highest positions in these𝑚 queues tasks 1, 2, . . . ,𝑚, and

let 𝑛1, 𝑛2, . . . , 𝑛𝑚 denote these positions. Then the delay of task 𝑖 can be written as 𝑌𝑖 =
∑𝑛𝑖

𝑗=1
𝑋𝑖, 𝑗 ,

where 𝑋𝑖, 𝑗 is the service time of the task at position 𝑗 in the same queue as task 𝑖 . Clearly 𝑋𝑖, 𝑗 ’s are

i.i.d. with an exponential distribution of rate 1. We know that 𝑛𝑖 ≤ ℎ, 𝑖 = 1, 2, . . . ,𝑚 given FILLℎ .

Then by Lemma 4.1,

E[max {𝑌1, · · · , 𝑌𝑚}] ≤ ln𝑘 + 𝑜 (ln𝑘).

When FILLℎ is true, E
[
𝑇

��� ∑ℎ
𝑖=1 𝑆𝑖 ≤ ℎ

(
1 − 1

4
𝛽𝑁 −𝛼) , FILLℎ] ≤ 𝑏𝑘 since the highest

position for a task is 𝑏 and the maximum is upper bounded by the sum. Further,

P
{
FILLℎ

��� ∑ℎ
𝑖=1 𝑆𝑖 ≤ ℎ

(
1 − 1

4
𝛽𝑁 −𝛼)} ≤ 1

𝑁
by Lemma 4.2.

Combining the arguments above, we have the following bound for term (22):

E

[
𝑇

����� ℎ∑︁
𝑖=1

𝑆𝑖 ≤ ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)]

≤ ln𝑘 + 𝑜 (ln𝑘) + 𝑏𝑘

𝑁
.

16 Wentao Weng and Weina Wang

Now we go back to the term (23). Again, it is easy to see that E
[
𝑇

��� ∑ℎ
𝑖=1 𝑆𝑖 > ℎ

(
1 − 1

4
𝛽𝑁 −𝛼)] ≤

𝑏𝑘 . Utilizing Theorem 3.1, we have

P

{
ℎ∑︁
𝑖=1

𝑆𝑖 > ℎ

(
1 − 1

4

𝛽𝑁 −𝛼
)}

≤ P
{
max

{
𝑏∑︁
𝑖=1

𝑆𝑖 − ℎ

(
1 − 1

2

𝛽𝑁 −𝛼
)
, 0

}
>

1

4

ℎ𝛽𝑁 −𝛼

}

≤
E

[
max

{∑𝑏
𝑖=1 𝑆𝑖 − ℎ

(
1 − 1

2
𝛽𝑁 −𝛼) , 0}]

1

4
ℎ𝛽𝑁 −𝛼

≤ 20

ℎ𝛽𝑁
1

2
−𝛼

log𝑁
.

With the bounds above on (22) and (23), we have

E[𝑇] ≤ ln𝑘 + 𝑜 (ln𝑘) + 𝑏𝑘

𝑁
+ 20𝑏𝑘

ℎ𝛽𝑁
1

2
−𝛼

log𝑁
.

Consequently,

E[𝑇 | admitted] = E[𝑇]
1 − 𝑝d

≤
ln𝑘 + 𝑜 (ln𝑘) + 𝑏𝑘

𝑁
+ 20𝑏𝑘

ℎ𝛽𝑁
1

2
−𝛼

log𝑁

1 − 𝑝d

≤ ln𝑘 + 𝑜 (ln𝑘),
which completes the proof. □

5 PROOFS FOR IMPOSSIBILITY RESULTS (THEOREMS 3.3 AND 3.4)
In this section, we prove the impossibility results in Theorems 3.3 and 3.4. Throughout this section,

we assume that the assumptions in Theorem 3.3 hold true. Due to the space limit, the lemmas

needed and their proofs are presented in Appendix B.

Proof sketch. We focus on proving the lower bound in Theorem 3.3 since the non-zero queueing

delay result in Theorem 3.4 follows from that rather straightforwardly.

Our proof of Theorem 3.3 uses a novel lower bounding technique we develop. We derive the

lower bound on P
{∑ℎ

𝑖=1 𝑆𝑖 ≥ ℎ − 1

3𝑑

}
by lower-bounding P {𝑆1 − 𝑆ℎ ≤ 𝑐ℎ} for a properly chosen 𝑐ℎ ,

for which our proof proceeds in an inductive fashion.

• We first lower bound P {𝑆1 − 𝑆2 ≤ 𝑐2} utilizing a tail bound for 𝑆1, which can be easily obtained

from Little’s law. This step uses Lyapunov-based tail bounds in a “reverse” way in the following

sense. Typically, one can analyze the terms in the Lyapunov drift to obtain a tail bound. But

here, we utilize a tail bound obtained through other ways to bound a term (the probability in

Lemma A.1) in the Lyapunov drift.

• We then lower bound P {𝑆1 − 𝑆3 ≤ 𝑐3} based on the lower bound on P {𝑆1 − 𝑆2 ≤ 𝑐2} in the

previous step following a similar argument. We continue this procedure inductively until we get

the desired lower bound on P {𝑆1 − 𝑆ℎ ≤ 𝑐ℎ}.

5.1 Proof Of Theorem 3.3
Proof. As outlined in the proof sketch, we first lower-bound P {𝑆1 − 𝑆ℎ ≤ 𝑐ℎ} using arguments

in an inductive fashion. We start by lower-bounding P {𝑆1 − 𝑆2 ≤ 𝑐2} for a properly chosen 𝑐2. This

base case relies on the fact that E[𝑆1] = 1 − 𝛽𝑁 −𝛼
, which can be easily proven using Little’s law.

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 17

To simplify notation, let 𝑢 = 2𝑘𝑑 . Consider the Lyapunov function 𝑉1 (𝒔) = 𝑠1. Let ℎ = 𝑂 (log𝑘)
and 𝐵1 = 1 − ℎ𝛽𝑁 −𝛼

. For some state 𝒔 such that 𝑉1 (𝒔) > 𝐵1, it holds that

Δ𝑉1 (𝒔) =
∑︁

𝒔′:𝒔→𝒔′ due to an arrival

𝑟𝒔→𝒔′ (𝑉1 (𝒔 ′) −𝑉1 (𝒔)) +
∑︁

𝒔′:𝒔→𝒔′ due to a departure

𝑟𝒔→𝒔′ (𝑉1 (𝒔 ′) −𝑉1 (𝒔))

(a)

≤ 𝑢ℎ𝛽𝑁 −𝛼 − 𝑁 (𝑠1 − 𝑠2)
1

𝑁

= 𝑢ℎ𝛽𝑁 −𝛼 − (𝑠1 − 𝑠2),

where (a) is due to Lemma B.2.

Consider the set of states E1 =
{
𝒔 ∈ S|𝑠1 − 𝑠2 > 𝑢ℎ2𝛽𝑁 −𝛼 }

. Let 𝑝2 = P {𝑺 ∉ E1}, which is equal

to P
{
𝑆1 − 𝑆2 ≤ 𝑢ℎ2𝛽𝑁 −𝛼 }

. We now use the tail bound in Lemma A.1. Assume that we follow the

notation in the lemma. Consider the following two cases:

• 𝒔 ∉ E1, Δ𝑉1 (𝒔) ≤ 𝑢ℎ𝛽𝑁 −𝛼 C 𝛿 .

• 𝒔 ∈ E1. Let 𝛾 = −Δ𝑉1 (𝒔). It holds 𝛾 ≥ 𝑢ℎ𝛽𝑁 −𝛼 (ℎ − 1).
Following the definition in A.1, it is easy to verify that 𝜈max ≤ 𝑘

𝑁
and 𝑓max ≤ 1 for 𝑉1 (𝒔). Let

𝑗1 =

(
1 + 𝑁𝛼

𝛽𝑢ℎ (ℎ−1)

)
log

2 𝑁 . By Lemma A.1, it holds that

P {𝑉1 (𝑺) > 𝐵1 + 2𝜈max 𝑗1} ≤
(

𝑓max

𝑓max + 𝛾

) 𝑗1
+

(
𝛿

𝛾
+ 1

)
P {𝑺 ∉ E1}

≤
(

𝑓max

𝑓max + 𝛾

) 𝑗1
+ ℎ

ℎ − 1

𝑝2.

Note thatwhen𝑁 is large enough,

(
𝑓max

𝑓max+𝛾

) 𝑗1
≤ (1 + 𝑢ℎ𝛽𝑁 −𝛼 (ℎ − 1))−

(
1+𝑁𝛼 1

𝛽𝑢ℎ (ℎ−1)

)
log

2 𝑁 ≤ 𝑒− log
2 𝑁 .

As a result,

P {𝑉1 (𝑺) > 𝐵1 + 2𝜈max 𝑗1} ≤ 𝑁 − log𝑁 + ℎ

ℎ − 1

𝑝2.

Since 0 < 𝛼 < 0.5 and𝑘 = 𝑒
𝑜

(√
log𝑁

)
, we have 𝐵1+2𝜈max 𝑗1 = 1−ℎ𝛽𝑁 −𝛼+2 𝑘

𝑁

(
1 + 𝑁𝛼

𝛽𝑢ℎ (ℎ−1)

)
log

2 𝑁 <

1 − (ℎ − 1)𝛽𝑁 −𝛼
when 𝑁 is large enough. It then follows that

P {𝑉1 (𝑺) > 1 − (ℎ − 1)𝛽𝑁 −𝛼 } ≤ P {𝑉1 (𝑺) > 𝐵1 + 2𝜈max 𝑗1} ≤ 𝑁 − log𝑁 + ℎ

ℎ − 1

𝑝2 .

We now combine the bound above with the following bound given by Lemma B.1:

P {𝑉1 (𝑺) > 1 − (ℎ − 1)𝛽𝑁 −𝛼 } ≥ 1 − 1

ℎ − 1

.

Therefore,
ℎ

ℎ−1𝑝2 + 𝑁 − log𝑁 ≥ ℎ−2
ℎ−1 , and thus

P
{
𝑆1 − 𝑆2 ≤ 𝑢ℎ2𝛽𝑁 −𝛼 } = 𝑝2 ≥

ℎ − 2

ℎ
− 𝑁 − log𝑁 .

Let 𝑏𝑞 = 𝑢𝑞−1ℎ𝑞𝛽𝑁 −𝛼
for an integer 𝑞 > 0. Define a sequence 𝑎𝑞 , such that 𝑎1 = 0, 𝑎2 = 1 and

𝑎𝑞 = (𝑞 − 2)𝑎𝑞−1 + 2 for 𝑞 > 2. With this notation, the lower bound above on 𝑝2 can be rewritten as

P {𝑆1 − 𝑆2 ≤ 𝑎2𝑏2} ≥ ℎ−2
ℎ

− 𝑁 − log𝑁 . We can use Lemma B.3 inductively to show that for all 𝑞 with

2 ≤ 𝑞 ≤ ℎ,

P
{
𝑆1 − 𝑆𝑞 ≤ 𝑎𝑞𝑏𝑞

}
≥

(
ℎ − 2

ℎ

)𝑞−1
− (𝑞 − 1)𝑁 − log𝑁 .

18 Wentao Weng and Weina Wang

Let us condition on 𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ . For ease of notation, let 𝑝c =

(
ℎ−2
ℎ

)ℎ−1
− (ℎ − 1)𝑁 − log𝑁

,

which is a lower bound on the probability of the condition. Note that

E[𝑆1] ≤ E [𝑆1 | 𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ] · P {𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ} + 1 · P {𝑆1 − 𝑆ℎ > 𝑎ℎ𝑏ℎ} .

Thus

E [𝑆1 | 𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ] ≥
1 − 𝛽𝑁 −𝛼 − (1 − P {𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ})

P {𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ}

≥ 1 − 𝛽

𝑝c
𝑁 −𝛼 .

We can also see that

P

{
ℎ∑︁
𝑖=1

𝑆𝑖 ≥ ℎ − 1

3𝑑

}
≥ P

{
ℎ∑︁
𝑖=1

𝑆𝑖 ≥ ℎ − 1

3𝑑

����� 𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ

}
P {𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ}

≥ 𝑝cP

{
ℎ𝑆1 − ℎ(𝑆1 − 𝑆ℎ) ≥ ℎ − 1

3𝑑

���� 𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ

}
≥ 𝑝cP

{
𝑆1 ≥ 1 − 1

3𝑑ℎ
+ 𝑎ℎ𝑏ℎ

���� 𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ

}
.

(24)

Utilizing the Markov inequality gives

(24) ≥ 𝑝c

(
1 − 3𝑑ℎ − 3𝑑ℎE [𝑆1 | 𝑆1 − 𝑆ℎ ≤ 𝑎ℎ𝑏ℎ]

1 − 3𝑑ℎ𝑎ℎ𝑏ℎ

)
≥ 𝑝c

(
1 − 𝛽

𝑝c

3𝑑ℎ

1 − 3𝑑ℎ𝑎ℎ𝑏ℎ
𝑁 −𝛼

)
.

Recall that 𝑎𝑞 = (𝑞−2)𝑎𝑞−1+2 for𝑞 > 2 and 𝑎2 = 1. We have 𝑎ℎ ≤ 2ℎℎ , and thus 𝑎ℎ𝑏ℎ ≤ 2𝛽𝑢ℎℎ2ℎ𝑁 −𝛼
.

As 𝑑 = 𝑒𝑜 (log𝑁 /log𝑘) , 𝑘 = 𝑒𝑜 (
√
log𝑁) , ℎ = 𝑂 (log𝑘), we have ln(𝑎ℎ𝑏ℎ) = −Ω(log𝑁). Furthermore,

since ln(3𝑑ℎ) = 𝑜 (log𝑁 /log𝑘) +𝑂 (log𝑘), 𝛼 > 0, it holds

1 − 𝛽

𝑝c

3𝑑ℎ

1 − 3𝑑ℎ𝑎ℎ𝑏ℎ
𝑁 −𝛼 ≥ 1

2

if 𝑁 is sufficiently large. Note that 𝑝c is equal to

(
ℎ−2
ℎ

)ℎ−1
− (ℎ − 1)𝑁 − log𝑁

which converges to
1

𝑒2
.

We could conclude that when 𝑁 goes to infinity, we have

P

{
ℎ∑︁
𝑖=1

𝑆𝑖 ≥ ℎ − 1

3𝑑

}
≥ 1

4𝑒2
.

□

5.2 Proof Of Theorem 3.4
Proof. Let ℎ = 12𝑒2 ln𝑘 . Then ℎ = 𝑂 (log𝑘). Suppose that we have an incoming job. By Theorem

3.3 and the PASTA property of a Poisson arrival process, with probability at least
1

4𝑒2
, this job will

see a state 𝒔 such that

∑ℎ
𝑖=1 𝑠𝑖 ≥ ℎ − 1

3𝑑
. By Lemma B.4, the dispatcher will route at least one task of

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 19

this job into a queue of length at least ℎ + 1 with probability 1 − 𝑜 (1). Let 𝑇 be the delay of the job.

Then it holds for a large enough 𝑁 ,

E[𝑇] ≥ 3 ln𝑘 (1 − 𝑜 (1)) ≥ 2 ln𝑘,

which completes the proof. □

6 DISCUSSION ON AN ALTERNATIVE NOTION OF ZERO QUEUEING DELAY
In this section, we consider an alternative notion of zero queueing delay that may be of interest

and may provide more understanding into the dynamics of systems with parallel jobs. We will

refer to this alternative notion as zero waiting to differentiate it from the zero queueing delay we

consider in the main part of the paper. We say that zero waiting is achieved if in steady state, all

the tasks of an incoming job enter service immediately upon arrival without waiting in queues

with high probability as 𝑁 → ∞. It is easy to see that zero waiting is a much stronger requirement

than zero queueing delay. Indeed, we show in Theorem 6.1 below, the minimum probe overhead

needed for achieving zero waiting is larger than
1

2(1−𝜆) , which is in the same order as the value in

the impossibility results for non-parallel jobs. The proof of Theorem 6.1 is straightforward and

given in Appendix C.

Note that although this notion of zero waiting for parallel jobs seems to resemble the zero

queueing delay for non-parallel jobs, the two systems have fundamentally different dynamics and

thus it is hard to directly compare these two notion. For parallel jobs, a batch of tasks arrive together

and zero waiting requires all of them to be assigned to idle servers simultaneously. In contrast, for

non-parallel jobs, there is no concept of batches. The single-task jobs arrive one by one and zero

queueing delay requires a job to be assigned to an idle server when it arrives.

Theorem 6.1. Consider a system with 𝑁 servers where each job consists of 𝑘 tasks. Let the load be
𝜆 = 1 − 𝛽𝑁 −𝛼 with 0 < 𝛽 ≤ 1 and 𝛼 ≥ 0. Assume that the buffers have unlimited sizes. Under the
batch-filling policy with a probe overhead 𝑑 such that 1 ≤ 𝑑 ≤ 1

2(1−𝜆) , the probability in steady state
that all the tasks of an incoming job are assigned to idle servers is smaller than or equal to 0.5.

7 SIMULATION RESULTS
In this section, we perform two sets of simulations to demonstrate our theoretical results and explore

settings beyond those in our theoretical analysis. The first set illustrates the scaling behavior of the

system as 𝑁 grows under various probe ratios, and investigates the gap between our achievability

results and impossibility results. The second set of simulations experiment on more general service

time distributions beyond the exponential distribution and correlation among task service times.

7.1 Scaling Behavior with Various Probe Ratios
This set of simulations use the setting of our theoretical results with 𝜆 = 1 − 𝑁 −0.3

(𝛼 = 0.3 and

𝛽 = 1). We let 𝑘 , the number of tasks per job, scale with 𝑁 as 𝑘 = ⌊ln2 𝑁 ⌋. The values for 𝑁 and

the corresponding 𝑘 used in the simulations are given in Table 1. These values are reasonable in

practice considering that datacenters nowadays typically have tens of thousands of nodes (each

with multiple cores) per cluster and a job may consist of hundreds of tasks [1].

𝑁 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

𝑘 12 17 23 30 38 48 58 69 81 94 108 122

Table 1. Scaling parameters

20 Wentao Weng and Weina Wang

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

Number of Servers

0.0

0.2

0.4

0.6

0.8

1.0

E
[𝑇

−
𝑇
∗]
/E

[𝑇
∗]

𝑑1 = 𝑂 (𝑁 𝛼/ℎ)
𝑑2 = exp (𝑂 (log(𝑁)/log(𝑘)))
𝑑3 = 𝑑2 +

√︁
𝑑1

𝑑4 = 𝑑2 + 𝑑7/8
1

Fig. 3. Queueing delays under different probe ra-
tios:𝑑1 is sufficient for convergence to zero queue-
ing delay; 𝑑1 > 𝑑4 > 𝑑3 > 𝑑2.

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

Number of Servers

0.0

0.2

0.4

0.6

0.8

1.0

E
[𝑇

−
𝑇
∗]
/E

[𝑇
∗]

Exponential
Hyper-Exponential
Pareto
S&X

Fig. 4. Queueing delays under different service
time distributions.

We explore four scaling settings of the probe ratio. The first setting uses a probe ratio of

𝑑1 = 4

(1−𝜆)ℎ = 4𝑁𝛼

ℎ
with ℎ = ⌈ log𝑘

log log𝑘
⌉, which satisfies the conditions in Theorems 3.1 and 3.2 to

achieve zero queueing delay. The second setting uses a probe ratio of 𝑑2 = exp (0.5 log𝑁 /log𝑘),
which is slightly larger than the value in Theorems 3.3 and 3.4 that guarantees non-zero queueing

delay. The other two settings use probe ratio values 𝑑3 and 𝑑4 that interpolate between 𝑑1 and 𝑑2 to

investigate the threshold under which the system transits from zero queueing delay to non-zero

queueing delay. Note that 𝑑1 > 𝑑4 > 𝑑3 > 𝑑2 for all values of 𝑁 in the simulations. More details of

the settings can be found in Appendix D.1.

Figure 3 shows the simulation results for the queueing delay
E[𝑇−𝑇 ∗]
E[𝑇 ∗] , where the results are

averaged over ten independent runs. Please refer to Appendix D.2 for the exact values and standard

deviations. Since the standard deviations are very small (∼ 10
−4
), the error bars are not visible in

the plots. The curve for 𝑑1 demonstrates the trend for the queueing delay to converge to zero as

predicted by the theoretical results. It does not exactly reach zero but becomes reasonably close.

Under the probe ratios 𝑑2 and 𝑑3, the queueing delay clearly deviates from zero. Under the probe

ratio 𝑑4, the queueing delay flattens out after some initial drop as 𝑁 becomes large. Therefore, it is

plausible that the transition from zero queueing delay to non-zero queueing delay happens at a

probe ratio value near 𝑑4. Since 𝑑4 is much closer to 𝑑1 than to 𝑑2, we expect our impossibility results

to be not tight. Pinning down the exact threshold for the transition (or proving the nonexistence of

such a threshold) is of great theoretical interest and we leave it for future research.

To further investigate how 𝑘 , the number of tasks per job, affects the scaling behavior under

different probe ratios, we examine another setting where 𝑘 = ⌊
√
𝑁 ⌋. This scaling of 𝑘 is beyond

our theoretical framework, but the queueing delays exhibit similar trends as those in the setting

where 𝑘 = ⌊ln2 𝑁 ⌋. Details of the simulation results are given in Appendix D.3.

7.2 More General Settings for Task Service Times
This set of simulations explore distributions beyond the exponential distribution for task service

times and correlation among their service times. Figure 4 shows the results for four settings:

(1) i.i.d. exponential distribution with rate 1 (denoted as Exp(1)). This is the baseline distribution
that is assumed for our theoretical analysis. (2) i.i.d. bounded Pareto in range [1, 1000] with a shape

constant 1.5. (3) i.i.d. hyper-exponential that follows Exp(1) with probability 0.99 and Exp(0.01) with
probability 0.01. We re-scale the arrival rates so all the systems have the same load 𝜆 = 1 − 𝑁 −0.3

.

(4) S&X model for correlated task service times, which is a model proposed in [13] and has been

extensively studied since then. In the S&X model, the service time of the each task in a job can

be written as 𝑆 · 𝑋 , where every task in the same job shares the same 𝑋 , but different tasks have

their own 𝑆 ’s that are independent among tasks. Here we assume 𝑆 and 𝑋 are both exponentially

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 21

distributed with rate 1. The probe overhead is chosen to be the 𝑑1 in Section 7.1 such that zero

queueing delay is provably achievable under the exponential distribution.

We observe that empirically, the queueing delay has a trend that approaches zero under all

the four settings, despite of the larger coefficients of variation for the bounded Pareto and hyper-

exponential distributions and the correlation among task service times in the S&X model. These

simulation results suggest that our theoretical results have some robustness with respect to service

time distributions and correlations. We comment that there is little existing work on zero queueing

delay for general service time distributions with the exception of [24], which studies the Coxian-2

distribution for non-parallel jobs. Generalizing our analysis to general service time distributions

with possible correlations is a research direction that deserves much further effort, as it is for many

problems in queueing systems.

8 CONCLUSIONS
We studied queueing delay in a system where jobs consist of parallel tasks. We first proposed a

notion of zero queueing delay in a relative sense for such parallel jobs. We then derived conditions

on the probe overhead for achieving zero queueing delay and for guaranteeing non-zero queueing

delay. One interesting implication of the results is that under parallelization, the probe overhead

needed for achieving zero queueing delay is lower than that in a system with non-parallel (single-

task) jobs under the same load. Through simulations, we demonstrated that the numerical results are

consistent with the theoretical results under reasonable settings, and investigated several questions

that are hard to answer analytically.

Acknowledgment: The work of Wentao Weng was conducted during a visit to the Computer

Science Deparment, CMU in 2019.

REFERENCES
[1] George Amvrosiadis, Jun Woo Park, Gregory R Ganger, Garth A Gibson, Elisabeth Baseman, and Nathan DeBardeleben.

2018. On the diversity of cluster workloads and its impact on research results. In Proc. USENIX Ann. Technical Conf.
(ATC). 533–546.

[2] Sayan Banerjee and Debankur Mukherjee. 2019. Join-the-shortest queue diffusion limit in Halfin–Whitt regime: Tail

asymptotics and scaling of extrema. Ann. Appl. Probab. 29, 2 (2019), 1262–1309.
[3] Dimitris Bertsimas, David Gamarnik, and John N. Tsitsiklis. 2001. Performance of Multiclass Markovian Queueing

Networks Via Piecewise Linear Lyapunov Functions. Ann. Appl. Probab. 11, 4 (11 2001), 1384–1428.
[4] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou. 2014.

Apollo: Scalable and coordinated scheduling for cloud-scale computing. In Proc. USENIX Conf. Operating Systems
Design and Implementation (OSDI). USENIX, 285–300.

[5] Anton Braverman. 2018. Steady-state analysis of the Join the Shortest Queue model in the Halfin-Whitt regime.

arXiv:1801.05121 [math.PR] (2018).
[6] Anton Braverman and JG Dai. 2017. Stein’s method for steady-state diffusion approximations of𝑀/Ph/𝑛 +𝑀 systems.

Ann. Appl. Probab. 27 (Feb. 2017), 550–581. https://doi.org/10.1214/16-AAP1211

[7] Anton Braverman, JG Dai, and Jiekun Feng. 2017. Stein’s method for steady-state diffusion approximations: an

introduction through the Erlang-A and Erlang-C models. Stoch. Syst. 6, 2 (2017), 301–366.
[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, andWerner Vogels. 2007. Dynamo: amazon’s highly available key-value

store. SIGOPS Oper. Syst. Rev. 41, 6 (2007), 205–220.
[9] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015. Tarcil: reconciling scheduling speed and quality

in large shared clusters. In Proc. ACM Symp. Cloud Computing (SOCC). 97–110.
[10] Patrick Eschenfeldt andDavidGamarnik. 2018. Join the shortest queuewithmany servers. The heavy-traffic asymptotics.

Math. Oper. Res. 43, 3 (2018), 867–886.
[11] Stewart N. Ethier and Thomas G. Kurtz. 1986. Markov Processes: Characterization and Convergence. John Wiley & Sons,

New York.

https://doi.org/10.1214/16-AAP1211

22 Wentao Weng and Weina Wang

[12] David Gamarnik, John N Tsitsiklis, and Martin Zubeldia. 2016. Delay, memory, and messaging tradeoffs in distributed

service systems. In Proc. ACM SIGMETRICS/PERFORMANCE Jt. Int. Conf. Measurement and Modeling of Computer
Systems. ACM, 1–12.

[13] Kristen Gardner, Mor Harchol-Balter, and Alan Scheller-Wolf. 2016. A Better Model for Job Redundancy: Decoupling

Server Slowdown and Job Size. In IEEE Int. Symp. Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS). London, United Kingdom, 1–10.

[14] Nicolas Gast. 2017. Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate. In Proc. ACM
Measurement and Analysis of Computing Systems (POMACS), Vol. 45. ACM, 50–50.

[15] Nicolas Gast and Benny Van Houdt. 2017. A refined mean field approximation. In Proc. ACM Measurement and Analysis
of Computing Systems (POMACS), Vol. 1. ACM, 33.

[16] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NMWatson, and Steven Hand. 2016. Firmament: Fast, centralized

cluster scheduling at scale. In Proc. USENIX Conf. Operating Systems Design and Implementation (OSDI). USENIX,
99–115.

[17] Varun Gupta and Neil Walton. 2019. Load Balancing in the Nondegenerate Slowdown Regime. Oper. Res. 67, 1 (2019),
281–294.

[18] Itai Gurvich. 2014. Diffusion models and steady-state approximations for exponentially ergodic Markovian queues.

Ann. Appl. Probab. 24, 6 (2014), 2527–2559.
[19] Shlomo Halfin and Ward Whitt. 1981. Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29, 3

(1981), 567–588.

[20] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random Variables. J. Amer. Stat. Assoc. 58, 301
(1963), 13–30. http://www.jstor.org/stable/2282952

[21] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Occupy the cloud: Distributed

computing for the 99%. In Proc. ACM Symp. Cloud Computing (SOCC). 445–451.
[22] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system. SIGOPS Oper.

Syst. Rev. 44, 2 (2010), 35–40.
[23] Xin Liu and Lei Ying. 2018. On achieving zero delay with power-of-d-choices load balancing. In Proc. IEEE Int. Conf.

Computer Communications (INFOCOM). Honolulu, HI, USA, 297–305.
[24] Xin Liu and Lei Ying. 2019. On Universal Scaling of Distributed Queues under Load Balancing. arXiv:1912.11904

[math.PR] (2019).
[25] Xin Liu and Lei Ying. 2020. Steady-state analysis of load-balancing algorithms in the sub-Halfin–Whitt regime. J. Appl.

Probab. 57, 2 (2020), 578–596.
[26] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R. Larus, and Albert Greenberg. 2011. Join-Idle-Queue: A Novel

Load Balancing Algorithm for Dynamically Scalable Web Services. Perform. Eval. 68, 11 (Nov. 2011), 1056–1071.
[27] Michael Mitzenmacher. 2001. The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib.

Syst. 12, 10 (2001), 1094–1104.
[28] Debankur Mukherjee, Sem C Borst, Johan SH Van Leeuwaarden, and Philip AWhiting. 2018. Universality of power-of-d

load balancing in many-server systems. Stoch. Syst. 8, 4 (2018), 265–292.
[29] Willie Neiswanger, Chong Wang, and Eric Xing. 2013. Asymptotically exact, embarrassingly parallel MCMC.

arXiv:1311.4780 [stat.ML] (2013).
[30] Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman, Reynold Xin, Sylvia Ratnasamy, Scott Shenker,

and Ion Stoica. 2013. The case for tiny tasks in compute clusters. In Proc. USENIX Conf. Hot Topics in Operating Systems
(HotOS).

[31] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow: distributed, low latency scheduling. In

Proc. ACM Symp. Operating Systems Principles (SOSP). ACM, 69–84.

[32] Seva Shneer and Alexander Stolyar. 2020. Large-scale parallel server system with multi-component jobs.

arXiv:2006.11256 [math.PR] (2020).
[33] Charles Stein. 1972. A bound for the error in the normal approximation to the distribution of a sum of dependent

random variables. In Proc. 6th Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability
Theory. The Regents of the University of California.

[34] Alexander L Stolyar. 2015. Pull-based load distribution in large-scale heterogeneous service systems. Queueing Syst.
80, 4 (2015), 341–361.

[35] Alexander L. Stolyar. 2015. Tightness of Stationary Distributions of a Flexible-Server System in the Halfin-Whitt

Asymptotic Regime. Stoch. Syst. 5, 2 (2015), 239–267.
[36] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas

Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin

Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource Negotiator. In Proc. ACM Symp.
Cloud Computing (SOCC) (Santa Clara, California). ACM, New York, NY, USA.

http://www.jstor.org/stable/2282952

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 23

[37] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. 2015.

Large-scale cluster management at Google with Borg. In Proc. European Conf. Computer Systems (EuroSys) (Bordeaux,
France).

[38] Nikita Dmitrievna Vvedenskaya, Roland L’vovich Dobrushin, and Fridrikh Izrailevich Karpelevich. 1996. Queueing

system with selection of the shortest of two queues: An asymptotic approach. Problems of Information Transmission 32,

1 (1996), 15–27.

[39] Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, and R. Srikant. 2019. Delay asymptotics and

bounds for multitask parallel jobs. Queueing Syst. 91, 3 (01 April 2019), 207–239.
[40] Weina Wang, Siva Theja Maguluri, R Srikant, and Lei Ying. 2018. Heavy-traffic delay insensitivity in connection-level

models of data transfer with proportionally fair bandwidth sharing. In Proc. ACM SIGMETRICS Int. Conf. Measurement
and Modeling of Computer Systems, Vol. 45. ACM, 232–245.

[41] Richard R Weber. 1978. On the optimal assignment of customers to parallel servers. J. Appl. Probab. 15, 2 (1978),

406–413.

[42] Wayne Winston. 1977. Optimality of the shortest line discipline. J. Appl. Probab. 14, 1 (1977), 181–189.
[43] Lei Ying. 2016. On the approximation error of mean-field models. ACM SIGMETRICS Perform. Evaluation Rev. 44, 1

(2016), 285–297.

[44] Lei Ying. 2017. Stein’s method for mean field approximations in light and heavy traffic regimes. ACM SIGMETRICS
Perform. Evaluation Rev. 45, 1 (2017), 49.

[45] Lei Ying, R. Srikant, and Xiaohan Kang. 2015. The power of slightly more than one sample in randomized load

balancing. In Proc. IEEE Int. Conf. Computer Communications (INFOCOM). Kowloon, Hong Kong, 1131–1139.
[46] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster Computing

with Working Sets. In Proc. USENIX Conf. Hot Topics in Cloud Computing (HotCloud) (Boston, MA). USENIX, USA.

A PROOFS OF LEMMAS 4.1, 4.2 AND 4.3
A.1 Proof of Lemma 4.1

Lemma 4.1 [Restated]. Consider𝑚 independent random variables 𝑌1, · · · , 𝑌𝑚 with𝑚 ≤ 𝑘 , where
each 𝑌𝑖 (1 ≤ 𝑖 ≤ 𝑚) is the sum of 𝑛𝑖 i.i.d. random variables that follow the exponential distribution
with rate 1. In the asymptotic regime that 𝑘 goes to infinity, if max {𝑛1, · · · , 𝑛𝑚} = 𝑜 (log𝑘), then

E[max {𝑌1, · · · , 𝑌𝑚}] ≤ ln𝑘 + 𝑜 (ln𝑘).

Proof. The general proof idea is folklore, but here we derive the exact bounds for our purpose.

Let𝑀𝑋 (𝑠) be themoment generating function of a random variable𝑋 . By assumption,𝑌𝑖 =
∑𝑛𝑖

𝑗=1
𝑋𝑖, 𝑗 ,

and 𝑋𝑖, 𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖 are all independent and exponentially distributed with mean 1.

Therefore, for any 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖 and any 𝑠 with 0 < 𝑠 < 1,

𝑀𝑋𝑖,𝑗
(𝑠) = E

[
𝑒𝑠𝑋𝑖,𝑗

]
=

1

1 − 𝑠
,

𝑀𝑌𝑖 (𝑠) = E
[
𝑒𝑠𝑌𝑖

]
=

(
1

1 − 𝑠

)𝑛𝑖
.

Let 𝑞 = max {𝑛1, · · · , 𝑛𝑚}. It holds that for any 𝑠 with 0 < 𝑠 < 1,

exp

(
𝑠E

[
𝑚

max

𝑗=1
𝑌𝑗

])
≤ E

[
exp(𝑠 𝑚

max

𝑗=1
𝑌𝑗)

]
(25)

= E

[
𝑚

max

𝑗=1
exp(𝑠𝑌𝑗)

]
(26)

≤
𝑚∑︁
𝑗=1

E
[
exp(𝑠𝑌𝑗)

]
(27)

≤ 𝑚

(
1

1 − 𝑠

)𝑞
, (28)

24 Wentao Weng and Weina Wang

where (25) is due to Jensen’s inequality and (27) is true since the maximum is upper bounded by

the sum. As a result,

E

[
𝑚

max

𝑗=1
𝑌𝑗

]
≤ ln𝑚

𝑠
+ 𝑞 · − ln(1 − 𝑠)

𝑠
(29)

≤ ln𝑘

𝑠
+ 𝑞 · − ln(1 − 𝑠)

𝑠
, (30)

where we have used the assumption that𝑚 ≤ 𝑘 . Since we assume that 𝑞 = 𝑜 (log𝑘), we can write 𝑞

as 𝑞 = ℓ (𝑘) ln𝑘 where ℓ (𝑘) → 0
+
as 𝑘 → ∞. Let 𝑠 = 1 − ℓ (𝑘) in (30), then

E

[
𝑚

max

𝑗=1
𝑌𝑗

]
≤ ln𝑘

1 − ℓ (𝑘) (1 − ℓ (𝑘) ln ℓ (𝑘)) (31)

= (ln𝑘)
(
1 + ℓ (𝑘)

1 − ℓ (𝑘)

)
(1 − ℓ (𝑘) ln ℓ (𝑘)) . (32)

Note that lim𝑘→∞ ℓ (𝑘) ln ℓ (𝑘) = 0. Then as 𝑘 → ∞,

E

[
𝑚

max

𝑗=1
𝑌𝑗

]
≤ (ln𝑘) (1 + 𝑜 (1)),

which completes the proof. □

A.2 Proof of Lemma 4.2 (Filling Probability)
Lemma 4.2 (Filling Probability) [Restated]. Under the assumptions of Theorem 3.1, given that

the system is in a state 𝒔 such that
ℓ∑︁

𝑖=1

𝑠𝑖 ≤ ℓ

(
1 − 1

4

𝛽𝑁 −𝛼
)
, (33)

the probability of the event FILLℓ for any ℓ ∈ {ℎ − 1, ℎ, 𝑏} can be bounded as P {FILLℓ } ≥ 1− 1

𝑁
when

𝑁 is sufficiently large.

Proof. Assume that a job arrival sees a state 𝑺 = 𝒔 that satisfies

ℓ∑︁
𝑖=1

𝑠𝑖 ≤ ℓ

(
1 − 1

4

𝛽𝑁 −𝛼
)
.

We focus on the the number of spaces below the threshold ℓ in the sampled queues, denoted by 𝑁ℓ .

Then 𝑁ℓ is the maximum number of tasks that can be put into these queues such that all of these

tasks are at queueing positions below ℓ . Therefore,

P {FILLℓ } = P {𝑁ℓ ≥ 𝑘} ≥ 1 − P {𝑁ℓ ≤ 𝑘} .
Now we bound P {𝑁ℓ ≤ 𝑘}. We can think of the sampling process of batch-filling as sampling 𝑘𝑑

queues one by one without replacement. Let 𝑋1, 𝑋2, · · · , 𝑋𝑘𝑑 be the numbers of spaces below ℓ in

the 1st, 2nd, . . . , 𝑘𝑑th sampled queues, respectively. Then 𝑁ℓ = 𝑋1 + · · · + 𝑋𝑘𝑑 . It is not hard to see

that for each of the sampled queue and each integer 𝑥 with 1 ≤ 𝑥 ≤ ℓ ,

P{𝑋𝑖 = 𝑥} = 𝑠ℓ−𝑥 − 𝑠ℓ−𝑥+1,

and P{𝑋𝑖 = 0} = 𝑠ℓ .

Note that since we sample without replacement, 𝑋1, 𝑋2, . . . , 𝑋𝑘𝑑 are not independent. But we

can still derive concentration bounds using a result of Hoeffding [20, Theorem 4]. By this result,

we have E
[
𝑓

(∑𝑘𝑑
𝑖=1𝑋𝑖

)]
≤ E

[
𝑓

(∑𝑘𝑑
𝑖=1 𝑌𝑖

)]
for any continuous and convex function 𝑓 (·), where

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 25

𝑌1, 𝑌2, . . . , 𝑌𝑘𝑑 are i.i.d. and follow the same distribution as 𝑋1. We take the function 𝑓 (·) to be

𝑓 (𝑥) = 𝑒−𝑡𝑥 with 𝑡 > 0. Then

P {𝑁ℓ ≤ 𝑘}

= P
{
𝑒−𝑡𝑁ℓ ≥ 𝑒−𝑡𝑘

}
≤ 𝑒𝑡𝑘

𝑘𝑑∏
𝑖=1

E
[
𝑒−𝑡𝑌𝑖

]
= 𝑒𝑡𝑘

𝑘𝑑∏
𝑖=1

(
1 −

ℓ∑︁
𝑗=1

(
𝑠ℓ−𝑗 − 𝑠ℓ−𝑗+1

) (
1 − 𝑒−𝑡 𝑗

))
.

Since 1 − 𝑥 ≤ 𝑒−𝑥 for each 𝑥 ≥ 0, this can be further bounded as

P {𝑁ℓ ≤ 𝑘}

≤ exp

(
𝑡𝑘 − 𝑘𝑑

ℓ∑︁
𝑗=1

(
𝑠ℓ−𝑗 − 𝑠ℓ−𝑗+1

) (
1 − 𝑒−𝑡 𝑗

))
≤ exp

(
𝑡𝑘 + 𝑘𝑑

ℓ∑︁
𝑗=1

(
𝑠 𝑗−1 − 𝑠 𝑗

) (
𝑒−𝑡 (ℓ−𝑗+1) − 1

))
. (34)

Rearranging the terms in the sum in (34), we get

ℓ∑︁
𝑗=1

(
𝑠 𝑗−1 − 𝑠 𝑗

) (
𝑒−𝑡 (ℓ−𝑗+1) − 1

)
=

(
𝑒−𝑡ℓ − 1

)
+

(
𝑒𝑡 − 1

) ℓ∑︁
𝑗=1

𝑠 𝑗𝑒
−𝑡 (ℓ−𝑗+1) . (35)

Since 1 ≥ 𝑠1 ≥ · · · 𝑠ℓ and we have assumed that

∑ℓ
𝑗=1 𝑠 𝑗 ≤ ℓ

(
1 − 1

4
𝛽𝑁 −𝛼)

)
, (35) is maximized when

𝑠1 = 𝑠2 = · · · = 𝑠ℓ = 1 − 1

4

𝛽𝑁 −𝛼 .

Therefore, the upper bound becomes

P {𝑁ℓ ≤ 𝑘} ≤ exp

(
𝑡𝑘 + 𝑘𝑑

(
𝑒−𝑡ℓ − 1

) 1
4

𝛽𝑁 −𝛼
)
.

Now we apply the condition that 𝑑 ≥ 8𝑁𝛼

𝛽ℎ
and let 𝑡 =

ln(2ℓ)−lnℎ
ℓ

. Then

P {𝑁ℓ ≤ 𝑘}

≤ exp

(
𝑡𝑘 + 2𝑘

ℎ

(
𝑒−𝑡ℓ − 1

))
= exp

(
𝑘

ℎ

(
ℎ

ℓ
(ln(2ℓ) − lnℎ) + ℎ

ℓ
− 2

))
.

Recall the we have assumed that
𝑘
ℎ
= 𝜔 (log𝑁) and ℎ = 𝜔 (1). Then it can be verified that with a

sufficiently large 𝑁 ,
ℎ
ℓ
(ln(2ℓ) − lnℎ) + ℎ

ℓ
+ 2𝑁 −0.5 − 2 is smaller than a negative constant for all

ℓ ∈ {ℎ − 1, ℎ, 𝑏}. Thus
P {𝑁ℓ ≤ 𝑘} ≤ exp(−𝜔 (log𝑁)) ≤ 1

𝑁
.

26 Wentao Weng and Weina Wang

As a result,

P {FILLℓ } ≥ 1 − P{𝑁ℓ ≤ 𝑘} ≥ 1 − 1

𝑁
,

which completes the proof.

□

A.3 Proof of Lemma 4.3
Our proof of Lemma 4.3 relies on Lemma A.1 below. Lemma A.1 slightly generalizes the well-known

Lyapunov-based tail bounds (see, e.g., [40], [24] and [3]) in that it allows different drift bounds

depending on whether a state 𝒔 is in a set E or not. In our proof of Lemma 4.3, we only need to

let E be the whole state space. But this generalization will be needed in the proof of impossibility

results in Section 5. We omit the proof of Lemma A.1 since it only needs minor modification to the

arguments used in proving the well-known existing bounds.

Lemma A.1. Consider a continuous time Markov chain {𝑺 (𝑡) : 𝑡 ≥ 0} with a finite state space S
and a unique stationary distribution 𝜋 . For a Lyapunov function 𝑉 : S → [0, +∞), define the drift of
𝑉 at a state 𝒔 ∈ S as

Δ𝑉 (𝒔) =
∑︁

𝒔′∈S,𝒔≠𝒔′
𝑟𝒔→𝒔′ (𝑉 (𝒔 ′) −𝑉 (𝒔)),

where 𝑟𝒔→𝒔′ is the transition rate from state 𝒔 to 𝒔 ′. Suppose that

𝜈max := sup

𝒔,𝒔′∈S:𝑟𝒔→𝒔′>0
|𝑉 (𝒔) −𝑉 (𝒔 ′) | < ∞

𝑓max := max

0, sup𝒔∈S

∑︁
𝒔′:𝑉 (𝒔′)>𝑉 (𝒔)

𝑟𝒔→𝒔′ (𝑉 (𝒔 ′) −𝑉 (𝒔))
 < ∞.

Then if there is a set E with 𝐵 > 0, 𝛾 > 0, 𝛿 ≥ 0 such that
• Δ𝑉 (𝒔) ≤ −𝛾 when 𝑉 (𝒔) ≥ 𝐵 and 𝒔 ∈ E,
• Δ𝑉 (𝒔) ≤ 𝛿 when 𝑉 (𝒔) ≥ 𝐵 and 𝒔 ∉ E,

it holds that for all 𝑗 ∈ N,

P {𝑉 (𝒔) ≥ 𝐵 + 2𝜈max 𝑗} ≤
(

𝑓max

𝑓max + 𝛾

) 𝑗
+

(
𝛿

𝛾
+ 1

)
P {𝑠 ∉ E} .

Now we are ready to present to proof of Lemma 4.3.

Lemma 4.3 (State-Space Collapse) [Restated]. Under the assumption of Theorem 3.1, consider
the following Lyapunov function:

𝑉 (𝒔) = min

{
1

ℎ − 1

𝑏∑︁
𝑖=ℎ

𝑠𝑖 , 𝑏

((
1 − 1

2

𝛽𝑁 −𝛼
)
− 1

ℎ − 1

ℎ−1∑︁
𝑖=1

𝑠𝑖

)+}
,

where the superscript + denotes the function 𝑥+ = max{𝑥, 0}. Let 𝐵 = 𝑏−ℎ+1
ℎ−1

(
𝛽𝑁 −𝛼 + log𝑁√

𝑁

)
. Then for

any state 𝒔 such that 𝑉 (𝒔) > 𝐵, its Lyapunov drift can be upper bounded as follows

Δ𝑉 (𝒔) = 𝐺𝑉 (𝒔) ≤ − 𝑏
√
𝑁
.

Consequently, when 𝑁 is sufficiently large,

P

{
𝑉 (𝑺) > 𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

}
≤ 𝑒−

1

2
log

2 𝑁 .

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 27

Proof. Consider the Lyapunov function in the lemma, i.e.,

𝑉 (𝒔) = min

{
1

ℎ − 1

𝑏∑︁
𝑖=ℎ

𝑠𝑖 , 𝑏

((
1 − 1

2

𝛽𝑁 −𝛼
)
− 1

ℎ − 1

ℎ−1∑︁
𝑖=1

𝑠𝑖

)+}
.

We will refer to the first term and second term in the minimum as T1 and T2, respectively. Let
𝐵 = 𝑏−ℎ+1

ℎ−1

(
𝛽𝑁 −𝛼 + log𝑁√

𝑁

)
and suppose 𝑉 (𝒔) > 𝐵. Recall that the drift of 𝑉 is given by

Δ𝑉 (𝒔) = 𝐺𝑉 (𝒔) =
∑︁

𝒔′∈S,𝒔≠𝒔′
𝑟𝒔→𝒔′ (𝑉 (𝒔 ′) −𝑉 (𝒔)),

where 𝑟𝒔→𝒔′ is the transition rate from state 𝒔 to 𝒔 ′. Let 𝑒𝑖 =
(
0, · · · , 0, 1

𝑁
, 0, · · · , 0

)
be a vector of

length 𝑏 whose 𝑖th entry is
1

𝑁
and all the other entries are zero. We divide the discussion into two

cases.

Case 1: T1 ≤ T2. In this case 𝑉 (𝒔) = T1. When the state transition is due to a task departure from a

queue of length 𝑖 , which has a rate of 𝑁 (𝑠𝑖 − 𝑠𝑖+1), then

𝑉 (𝒔 − 𝑒𝑖) =
{
𝑉 (𝒔), if 1 ≤ 𝑖 < ℎ,

𝑉 (𝒔) − 1

𝑁 (ℎ−1) , if ℎ ≤ 𝑖 ≤ 𝑏.

Now consider the state transition due to a job arrival. Let 𝑎𝑖 be the queueing position that task 𝑖 is

assigned to. Then the next state can be written as

𝒔 + 𝑒𝑎1 + · · · + 𝑒𝑎𝑘 .

Note that when the event FILLℎ−1 happens, the dispatcher puts all 𝑘 tasks to positions below

threshold ℎ − 1. Then under FILLℎ−1, 𝑠𝑖 does not change for 𝑖 ≥ ℎ, which implies that

𝑉 (𝒔 + 𝑒𝑎1 + · · · + 𝑒𝑎𝑘) = 𝑉 (𝒔).
We can show that P {FILLℎ−1} ≥ 1 − 1

𝑁
using Lemma 4.2 since T2 ≥ T1 > 𝐵 > 0. Otherwise, i.e.,

when FILLℎ−1 is not true, it is easy to see that

𝑉 (𝒔 + 𝑒𝑎1 + · · · + 𝑒𝑎𝑘) ≤ 𝑉 (𝒔) + 𝑘

𝑁 (ℎ − 1) .

Therefore,

Δ𝑉 (𝒔) ≤
𝑏∑︁
𝑖=1

𝑁 (𝑠𝑖 − 𝑠𝑖+1) (𝑉 (𝒔 − 𝑒𝑖) −𝑉 (𝒔)) + 𝑁𝜆

𝑘

1

𝑁

𝑘

𝑁 (ℎ − 1)

=
1

𝑁 (ℎ − 1) −
𝑠ℎ

ℎ − 1

≤ 1

𝑁 (ℎ − 1) −
1

ℎ − 1

1

𝑏 − ℎ + 1

𝑏∑︁
𝑖=ℎ

𝑠𝑖 .

By the assumption that T1 > 𝐵, we have

1

𝑏 − ℎ + 1

𝑏∑︁
𝑖=ℎ

𝑠𝑖 ≥
ℎ − 1

𝑏 − ℎ + 1

𝐵 = 𝛽𝑁 −𝛼 + log𝑁
√
𝑁

.

Inserting this back to the upper bound on Δ𝑉 (𝒔) gives

Δ𝑉 (𝒔) ≤ − 1

ℎ − 1

(
− 1

𝑁
+ 𝛽𝑁 −𝛼 + log𝑁

√
𝑁

)
.

28 Wentao Weng and Weina Wang

Since
𝛽𝑁 −𝛼

ℎ−1 ≥ 𝑁 −𝛼

𝑘
≥ 𝑏√

𝑁
and

log𝑁√
𝑁

≥ 1

𝑁
when 𝑁 is sufficiently large, this upper bound becomes

Δ𝑉 (𝒔) ≤ − 𝑏
√
𝑁
.

Case 2: T1 > T2. In this case 𝑉 (𝒔) = T2. Similarly, a task departs from a queue of length 𝑖 at a rate

of 𝑁 (𝑠𝑖 − 𝑠𝑖+1). The change in 𝑉 (𝒔) can be bounded as

𝑉 (𝒔 − 𝑒𝑖) −𝑉 (𝒔) ≤
{

𝑏
𝑁 (ℎ−1) , if 1 ≤ 𝑖 < ℎ,

0, if ℎ ≤ 𝑖 ≤ 𝑏.

When a job arrives, under the event FILLℎ−1,

𝑉 (𝒔 + 𝑒𝑎1 + · · · + 𝑒𝑎𝑘) = 𝑉 (𝒔) − 𝑘𝑏

𝑁 (ℎ − 1) ,

where we have used the fact that T2 > 𝐵. Again, P {FILLℎ−1} ≥ 1 − 1

𝑁
by Lemma 4.2. Otherwise,

i.e., when FILLℎ−1 is not true, 𝑉 (𝒔 + 𝑒𝑎1 + · · · + 𝑒𝑎𝑘) ≤ 𝑉 (𝒔).
Therefore,

Δ𝑉 (𝒔) ≤
𝑏∑︁
𝑖=1

𝑁 (𝑠𝑖 − 𝑠𝑖+1) (𝑉 (𝒔 − 𝑒𝑖) −𝑉 (𝒔)) + 𝑁𝜆

𝑘

(
1 − 1

𝑁

) (
− 𝑘𝑏

𝑁 (ℎ − 1)

)
≤ 𝑏

ℎ − 1

(𝑠1 − 𝑠ℎ) −
𝑏

ℎ − 1

(
1 − 1

𝑁

)
(1 − 𝛽𝑁 −𝛼)

≤ 𝑏

ℎ − 1

(
1 −

(
𝛽𝑁 −𝛼 + log𝑁

√
𝑁

)
−

(
1 − 1

𝑁

)
(1 − 𝛽𝑁 −𝛼)

)
, (36)

=
𝑏

ℎ − 1

(
− log𝑁

√
𝑁

+ 1

𝑁
(1 − 𝛽𝑁 −𝛼)

)
≤ − 𝑏

ℎ − 1

log𝑁 − 1√
𝑁√

𝑁
,

where (36) is due to the fact that 𝑠1 ≤ 1 and the fact that 𝑠ℎ ≥ 𝛽𝑁 −𝛼 + log𝑁√
𝑁

following similar

arguments as those in Case 1 noting that T1 > T2 > 𝐵. When 𝑁 is sufficiently large, this upper

bound becomes

Δ𝑉 (𝒔) ≤ − 𝑏
√
𝑁
,

which completes the proof of the drift bound in Lemma 4.3.

For this Lyapunov function 𝑉 , under the notation in Lemma A.1, we have that 𝜈max ≤ 𝑘𝑏
𝑁 (ℎ−1)

and 𝑓max ≤ 𝑏
ℎ−1 . Let E = S and 𝑗 =

√
𝑁 log

2 𝑁 . Then by Lemma A.1, the drift bound implies that

P

{
𝑉 (𝑺) > 𝐵 + 2𝑘𝑏 log2 𝑁

(ℎ − 1)
√
𝑁

}
= P

{
𝑉 (𝑺) > 𝐵 + 2𝑘𝑏

(ℎ − 1)𝑁 𝑗

}
≤

(
1 + ℎ − 1

√
𝑁

)−𝑗

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 29

≤
((
1 + 1

√
𝑁

)√𝑁+1
)− 1√

𝑁 +1

√
𝑁 log

2 𝑁

≤ 𝑒−
1

2
log

2 𝑁 ,

where the last inequality holds when 𝑁 is sufficiently large. This completes the proof. □

B LEMMAS NEEDED FOR IMPOSSIBILITY RESULTS
B.1 Lemma B.1

Lemma B.1. Assume that the system is stable. Then for any 𝑥 > 0,

P {𝑆1 < 1 − 𝑥} ≤ 𝛽𝑁 −𝛼

𝑥
.

Proof. By work conservation law, it holds that E[𝑆1] = 𝜆 = 1 − 𝛽𝑁 −𝛼 . Then E[1 − 𝑆1] = 𝛽𝑁 −𝛼 .
Therefore, by the Markov inequality, for any 𝑥 > 0,

P {𝑆1 < 1 − 𝑥} = P {1 − 𝑆1 > 𝑥} ≤ 𝛽𝑁 −𝛼

𝑥
.

□

B.2 Lemma B.2
Lemma B.2. Let ℓ be a threshold such that 1 ≤ ℓ ≤ ℎ with ℎ = 𝑂 (log𝑘). Suppose that an incoming

job sees a state 𝒔 such that
∑ℓ

𝑖=1 𝑠𝑖 ≥ ℓ − 𝑥 , where 𝑥 = Ω(ℎ𝑁 −𝛼) and 𝑥 = 𝑒−Ω (log𝑁) . Consider a
Lyapunov function 𝑉ℓ (𝒔) = 𝑠1 + 𝑠2 + · · · + 𝑠ℓ . It holds that when 𝑁 is sufficiently large,∑︁

𝒔′:𝒔→𝒔′ due to an arrival

𝑟𝒔→𝒔′ (𝑉ℓ (𝒔 ′) −𝑉ℓ (𝒔)) ≤ 2𝑘𝑑𝑥,

where 𝑟𝒔→𝒔′ is the transition rate, and 𝒔 → 𝒔 ′ due to an arrival means that 𝒔 will move to state 𝒔 ′ on
the Markov chain only if there is an incoming job.

Proof. Suppose that an arrival sees a state 𝒔. Given
∑ℓ

𝑖=1 𝑠𝑖 ≥ ℓ − 𝑥 , we have 𝑠ℓ ≥ 1 − 𝑥 since

𝑠𝑖 ≤ 1 for all 1 ≤ 𝑖 ≤ ℓ . Without loss of generality, we can think of the batch-filling policy as

sampling the 𝑘𝑑 queues one by one. During the sampling, we always choose at most 𝑘𝑑 servers of

length at least ℓ . The probability that all 𝑘𝑑 sampled servers have length at least ℓ is thus larger or

equal to (
𝑁 (1 − 𝑥) − 𝑘𝑑

𝑁

)𝑘𝑑
=

(
1 −

(
𝑥 + 𝑘𝑑

𝑁

))𝑘𝑑
.

Recall that by the assumptions in Theorem 3.3, we have 𝑥 = 𝑒−Ω (log𝑁) , 𝑘𝑑 = 𝑜 (𝑁 1−𝛼), and thus

𝑥 + 𝑘𝑑
𝑁

> −1 when 𝑁 is sufficiently large. Furthermore, applying Bernoulli’s Inequality and the

assumption that 𝑥 = Ω(ℎ𝑁 −𝛼), it holds(
1 −

(
𝑥 + 𝑘𝑑

𝑁

))𝑘𝑑
≥ 1 − 𝑘𝑑

(
𝑥 + 𝑘𝑑

𝑁

)
≥ 1 − 2𝑥𝑘𝑑

30 Wentao Weng and Weina Wang

for a large 𝑁 . Note that if we put all tasks of this arrival into servers of length at least ℓ , we will

not affect the value of 𝑉𝑙 (𝒔). As a result,∑︁
𝒔′:𝒔→𝒔′ due to an arrival

𝑟𝒔→𝒔′ (𝑉ℓ (𝒔 ′) −𝑉𝑙 (𝒔))

≤ (1 − 2𝑘𝑑𝑥) · 0 · 𝜆
𝑘
+ 2𝑘𝑑𝑥 · 𝑘 𝜆

𝑘

≤2𝑘𝑑𝑥,

which completes the proof. □

B.3 Lemma B.3
Lemma B.3 is a key in establishing the inductive proof. This lemma relates 𝑆𝑞 to 𝑆𝑞−1 for 3 ≤ 𝑖 ≤ ℎ.

Lemma B.3. Define 𝑢 = 2𝑘𝑑 and 𝑏𝑞 = 𝑢𝑞−1ℎ𝑞𝛽𝑁 −𝛼 for 𝑞 ∈ N. Define a sequence 𝑎𝑞 , such that
𝑎1 = 0, 𝑎2 = 1 and 𝑎𝑞 = (𝑞 − 2)𝑎𝑞−1 + 2 for 𝑞 > 2. For any 𝑞 with 3 ≤ 𝑞 ≤ ℎ, if

P
{
𝑆1 − 𝑆𝑞−1 ≤ 𝑎𝑞−1𝑏𝑞−1

}
≥

(
ℎ − 2

ℎ

)𝑞−2
− (𝑞 − 2)𝑁 − log𝑁 ,

then

P
{
𝑆1 − 𝑆𝑞 ≤ 𝑎𝑞𝑏𝑞

}
≥

(
ℎ − 2

ℎ

)𝑞−1
− (𝑞 − 1)𝑁 − log𝑁 .

Proof. The proof is close to that of Theorem 3.3. Recall that for each 1 ≤ ℓ ≤ ℎ and state 𝒔 ∈ S,
we define the Lyapunov function

𝑉ℓ (𝒔) =
ℓ∑︁

𝑖=1

𝑠𝑖 .

For 𝑞 such that 3 ≤ 𝑞 ≤ ℎ, by assumption,

P
{
𝑆1 − 𝑆𝑞−1 ≤ 𝑎𝑞−1𝑏𝑞−1

}
≥

(
ℎ − 2

ℎ

)𝑞−2
− (𝑞 − 2)𝑁 − log𝑁 .

It holds

P
{
𝑉𝑞−1 (𝑺) < 𝑞 − 1 −

(
(𝑞 − 2)𝑎𝑞−1 + 1

)
𝑏𝑞−1

}
≤ P

{
𝑉𝑞−1 (𝑺) < 𝑞 − 1 −

(
(𝑞 − 2)𝑎𝑞−1 + 1

)
𝑏𝑞−1,

𝑆1 − 𝑆𝑞−1 ≤ 𝑎𝑞−1𝑏𝑞−1
}

+ P
{
𝑆1 − 𝑆𝑞−1 > 𝑎𝑞−1𝑏𝑞−1

}
≤ P

{
(𝑞 − 1)𝑆1 < 𝑞 − 1 − 𝑏𝑞−1

}
+ 1 −

(
ℎ − 2

ℎ

)𝑞−2
+ (𝑞 − 2)𝑁 − log𝑁

≤ 𝑞 − 1

𝑢𝑞−2ℎ𝑞−1
+ 1 −

(
ℎ − 2

ℎ

)𝑞−2
+ (𝑞 − 2)𝑁 − log𝑁 .

(37)

The last inequality uses Lemma B.1 and 𝑏𝑞−1 = 𝑢𝑞−2ℎ𝑞−1𝛽𝑁 −𝛼 .

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 31

Now let 𝐵𝑞−1 = 𝑞 − 1 −
(
(𝑞 − 2)𝑎𝑞−1 + 2

)
𝑏𝑞−1. We can see that 𝐵𝑞−1 = 𝑞 − 1 − 𝑎𝑞𝑏𝑞−1. For a state

𝒔 such that 𝑉𝑞−1 (𝒔) > 𝐵𝑞−1, it holds

Δ𝑉𝑞−1 (𝒔) =
∑︁

𝒔′:𝒔→𝒔′ due to an arrival

𝑟𝒔→𝒔′
(
𝑉𝑞−1 (𝒔 ′) −𝑉𝑞−1 (𝒔)

)
+

∑︁
𝒔′:𝒔→𝒔′ due to a departure

𝑟𝒔→𝒔′
(
𝑉𝑞−1 (𝒔 ′) −𝑉𝑞−1 (𝒔)

)
.

Recall that we define 𝑢 = 2𝑘𝑑 and 𝑏𝑞 = 𝑢𝑞−1ℎ𝑞𝛽𝑁 −𝛼
. As𝑉𝑞−1 (𝒔) > 𝑞 − 1 − 𝑎𝑞𝑏𝑞−1, by Lemma B.2, it

holds

Δ𝑉𝑞−1 (𝒔) ≤ 2𝑘𝑑𝑎𝑞𝑏𝑞−1 − (𝑠1 − 𝑠𝑞)
= 𝑎𝑞𝑢

𝑞−1ℎ𝑞−1𝛽𝑁 −𝛼 − (𝑠1 − 𝑠𝑞).
Let P

{
𝑆1 − 𝑆𝑞 ≤ 𝑎𝑞𝑏𝑞

}
= 𝑝𝑞, E𝑞−1 =

{
𝑠 ∈ S | 𝑠1 − 𝑠𝑞 > 𝑎𝑞𝑏𝑞

}
. Then P

{
𝑆 ∉ E𝑞−1

}
= 𝑝𝑞 . For a state

𝒔, consider the following two cases.

• 𝒔 ∉ E𝑞−1, Δ𝑉𝑞−1 (𝒔) ≤ 𝑎𝑞𝑢
𝑞−1ℎ𝑞−1𝛽𝑁 −𝛼 C 𝛿 .

• 𝒔 ∈ E𝑞−1. Let 𝛾 = −Δ𝑉𝑞−1 (𝒔). It holds

𝛾 ≥ 𝑎𝑞𝑢
𝑞−1ℎ𝑞−1𝛽𝑁 −𝛼 (ℎ − 1).

We then utilize the tail bound, Lemma A.1. Following the definition in Lemma A.1, it is easy to

verify that 𝜈max ≤ 𝑘
𝑁
, 𝑓max ≤ 1 for the Lyapunov function 𝑉𝑞−1 (𝒔). Let

𝑗𝑞−1 =

(
1 + 𝑁𝛼

𝑎𝑞𝑢
𝑞−1ℎ𝑞−1 (ℎ − 1)𝛽

)
log

2 𝑁 .

Using Lemma A.1,

P
{
𝑉𝑞−1 (𝑺) > 𝐵𝑞−1 + 2𝜈max 𝑗𝑞−1

}
≤

(
𝑓max

𝑓max + 𝛾

) 𝑗𝑞−1
+

(
𝛿

𝛾
+ 1

)
P

{
𝑺 ∉ E𝑞−1

}
≤

(
𝑓max

𝑓max + 𝛾

) 𝑗𝑞−1
+ ℎ

ℎ − 1

𝑝𝑞 .

Note that when 𝑁 is sufficiently large,(
𝑓max

𝑓max + 𝛾

) 𝑗𝑞−1
≤ 𝑒− log

2 𝑁 .

Besides, we assume that 0 < 𝛼 < 0.5, 𝑘 = 𝑒𝑜 (
√
log𝑁)

and ℎ = 𝑂 (log𝑘). As a result, for a large 𝑁 ,

P
{
𝑉𝑞−1 (𝑺) ≥ 𝑞 − 1 − ((𝑞 − 2)𝑎𝑞−1 + 1)𝑏𝑞−1

}
≤ P

{
𝑉𝑞−1 (𝑺) > 𝐵 + 2𝜈max 𝑗𝑞−1

}
≤ 𝑒− log

2 𝑁 + ℎ

ℎ − 1

𝑝𝑞 .

Together with Eq.(37), we have(
ℎ − 2

ℎ

)𝑞−2
− 𝑞 − 1

𝑢𝑞−2ℎ𝑞−1
− (𝑞 − 2)𝑁 − log𝑁

≤ P
{
𝑉𝑞−1 (𝑺) > 𝑞 − 1 − ((𝑞 − 2)𝑎𝑞−1 + 1)𝑏𝑞−1

}
≤ 𝑒− log

2 𝑁 + ℎ

ℎ − 1

𝑝𝑞 .

32 Wentao Weng and Weina Wang

We can conclude that for a large 𝑁 ,

P
{
𝑆1 − 𝑆𝑞 ≤ 𝑎𝑞𝑏𝑞

}
= 𝑝𝑞 ≥

(
ℎ − 2

ℎ

)𝑞−1
− (𝑞 − 1)𝑁 − log𝑁 ,

which completes the proof. □

B.4 Lemma B.4
Lemma B.4 complements the probability bound in Lemma 4.2. Recall that FILLℎ denotes the event

that all the 𝑘 tasks of an incoming job are assigned to queueing positions below a threshold ℎ.

Lemma B.4 gives a condition on the total queue length for FILLℎ to happen with low probability.

Lemma B.4. Suppose an incoming job sees a state 𝒔 such that
∑ℎ

𝑖=1 𝑠𝑖 > ℎ − 1

3𝑑
. Then when 𝑁 is

sufficiently large,

P {FILLℎ} = 𝑜 (1).

Proof. We use a similar argument as the proof of Lemma 4.2. Suppose that an arrival sees a

state 𝒔. By assumption, it holds

ℎ∑︁
𝑖=1

𝑠𝑖 ≥ ℎ − 1

3𝑑
.

Let 𝑋1, · · · , 𝑋𝑘𝑑 be the numbers of places below ℎ in each sampled server. The goal is to show

P {FILLℎ} = P
{

𝑘𝑑∑︁
𝑖=1

𝑋𝑖 ≥ 𝑘

}
= 𝑜 (1)

when 𝑁 is large enough.

We could see that for each integer 𝑥 such that 1 ≤ 𝑥 ≤ ℎ, P{𝑋𝑖 = 𝑥} = 𝑠ℎ−𝑥 − 𝑠ℎ−𝑥+1, and
P{𝑋𝑖 = 0} = 𝑠ℎ . Since we are sampling without replacement, 𝑋1, · · · , 𝑋𝑘𝑑 are not independent. But

still, utilizing a result of Hoeffding [20, Theorem 4], we have E
[
𝑓

(∑𝑘𝑑
𝑖=1𝑋𝑖

)]
≤ E

[
𝑓

(∑𝑘𝑑
𝑖=1 𝑌𝑖

)]
for any continuous and convex function 𝑓 (·), where 𝑌1, · · · , 𝑌𝑘𝑑 are i.i.d. and follow the same

distribution as 𝑋1. Take 𝑓 (·) to be 𝑓 (𝑥) = 𝑒𝑡𝑥 where 𝑡 is some positive value.

It then holds

P {FILLℎ} = P
{

𝑘𝑑∑︁
𝑖=1

𝑋𝑖 ≥ 𝑘

}
= P

{
𝑒𝑡

∑𝑘𝑑
𝑖=1 𝑋𝑖 ≥ 𝑒𝑡𝑘

}
≤ 𝑒−𝑡𝑘

𝑘𝑑∏
𝑖=1

E
[
𝑒𝑡𝑌𝑖

]
= 𝑒−𝑡𝑘

𝑘𝑑∏
𝑖=1

(
1 +

ℎ∑︁
𝑗=1

(
𝑒𝑡 (ℎ−𝑗+1)−1 − 1

))
.

Since for all 𝑥 > 0, 1 + 𝑥 ≤ 𝑒𝑥 , we can further have

P {FILLℎ} ≤ 𝑒−𝑡𝑘 exp

(
𝑘𝑑

ℎ∑︁
𝑗=1

(
𝑒𝑡 (ℎ−𝑗+1) − 1

)
(𝑠 𝑗−1 − 𝑠 𝑗)

)
. (38)

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 33

Rearranging the sum in (38), we get

ℎ∑︁
𝑗=1

(
𝑒𝑡 (ℎ−𝑗+1) − 1

)
(𝑠 𝑗−1 − 𝑠 𝑗)

= 𝑒𝑡ℎ −
ℎ∑︁
𝑗=1

𝑠 𝑗

(
𝑒𝑡 (ℎ−𝑗+1) − 𝑒𝑡 (ℎ−𝑗)

)
= 𝑒𝑡ℎ − (𝑒𝑡 − 1)

ℎ∑︁
𝑗=1

𝑠 𝑗𝑒
𝑡 (ℎ−𝑗) .

(39)

Recall that

∑ℎ
𝑗=1 𝑠 𝑗 ≥ ℎ − 1

3𝑑
, and 1 ≥ 𝑠1 ≥ 𝑠2 ≥ · · · ≥ 𝑠ℎ ≥ 0. Eq. (39) is maximized when

𝑠1 = 𝑠2 = · · · = 𝑠ℎ = 1 − 1

3𝑑ℎ
and thus,

(39) ≤ (𝑒𝑡ℎ − 1) 1

3𝑑ℎ
.

Plug it into Inequality (38),

P {FILLℎ} ≤ min

𝑡>0
exp

(
𝑘

(
−𝑡 + 𝑒𝑡ℎ − 1

3ℎ

))
.

Pick 𝑡 = ln 3

ℎ
. It holds

P {FILLℎ} ≤ exp

(
𝑘

3ℎ
(−3 ln 3 + 2)

)
.

By the assumption that
𝑘
ℎ
= 𝜔 (1), we could conclude that

P {FILLℎ} = 𝑜 (1)

when 𝑁 is sufficiently large. □

C PROOF OF THEOREM 6.1
Proof. Let I be the event that all the tasks of an incoming job are assigned to idle servers in

steady state. Then what we need to show is P{I} ≤ 0.5.

From the stability of batch-filling [45] and the Little’s law, it holds E𝑆1 = 𝜆. For a job arrival of

𝑘 tasks, in order to schedule every task to an idle server, batch-filling needs to find at least 𝑘 idle

servers. Suppose batch-filling probes 𝑘𝑑 servers with state 𝑋1, · · · , 𝑋𝑘𝑑 where 𝑋𝑖 is a 0 − 1 random

variables indicating whether the sampled 𝑖th server is idle. Then

P{I} = P{𝑋1 + · · · + 𝑋𝑘𝑑 ≥ 𝑘}.

Notice that E [𝑋1 + · · · + 𝑋𝑘𝑑] = 𝑘𝑑 (1 − 𝜆) by the linearity of expectations. If 𝑑 ≤ 1

2(1−𝜆) , this

expectation is upper bounded by
𝑘
2
. Therefore,

P{I} = P{𝑋1 + · · · + 𝑋𝑘𝑑 ≥ 𝑘} ≤ E [𝑋1 + · · · + 𝑋𝑘𝑑]
𝑘

≤ 0.5.

□

34 Wentao Weng and Weina Wang

D MORE DETAILS ON SIMULATIONS
D.1 Probe Ratios
In the simulations, we need to adjust the definition of probe ratio a little. Let 𝐷𝑖 = ⌊min(𝑁,𝑘𝑑𝑖)⌋
for 1 ≤ 𝑖 ≤ 4. Then 𝐷𝑖 is the true number of probes used in batch-filling for each job. When 𝑁 is

small, 𝐷𝑖 may be equal to 𝑁 . In this case, we adjust the value of 𝑑𝑖 as
𝐷𝑖

𝑘
, which is the true expected

probe ratio of each task. The exact value of 𝑑𝑖 is shown in Table 2.

𝑁 𝑑1 𝑑2 𝑑3 𝑑4
32 2.7 2.1 2.7 2.7

64 3.8 2.2 3.8 3.8

128 5.6 2.2 4.7 5.6

256 7.6 2.3 5.1 8.2

512 9.3 2.4 5.5 9.4

1024 11.3 2.5 5.9 10.8

2048 13.7 2.6 6.3 12.4

4096 16.6 2.7 6.8 14.4

8192 20.2 2.8 7.3 16.7

16384 24.5 3.0 7.9 19.4

32768 29.9 3.1 8.5 22.6

65536 36.5 3.2 9.3 26.5

Table 2. Probe Ratios for Different Scales of System

D.2 Numerical Values for Figures 3 and 4
We give the numerical values and standard deviations for Figures 3 and 4 in Tables 3 and 4,

respectively.

𝑁 𝑑1 𝑑2 𝑑3 𝑑4
32 0.23(±3.8 × 10

−4) 0.27(±3.2 × 10
−4) 0.23(±3.8 × 10

−4) 0.23(±3.8 × 10
−4)

64 0.20(±4.5 × 10
−4) 0.30(±3.0 × 10

−4) 0.20(±4.5 × 10
−4) 0.20(±4.5 × 10

−4)
128 0.17(±2.4 × 10

−4) 0.33(±9.9 × 10
−4) 0.18(±3.6 × 10

−4) 0.17(±2.4 × 10
−4)

256 0.14(±3.7 × 10
−4) 0.35(±6.6 × 10

−4) 0.19(±1.0 × 10
−4) 0.14(±1.7 × 10

−4)
512 0.13(±6.2 × 10

−4) 0.37(±7.8 × 10
−4) 0.19(±3.6 × 10

−4) 0.13(±1.1 × 10
−4)

1024 0.12(±1.5 × 10
−4) 0.40(±1.8 × 10

−4) 0.20(±3.8 × 10
−4) 0.12(±2.3 × 10

−5)
2048 0.10(±2.1 × 10

−4) 0.41(±3.0 × 10
−4) 0.21(±4.3 × 10

−4) 0.11(±1.1 × 10
−4)

4096 0.09(±6.4 × 10
−4) 0.43(±1.6 × 10

−3) 0.24(±4.8 × 10
−4) 0.10(±2.9 × 10

−4)
8192 0.08(±2.0 × 10

−4) 0.45(±8.3 × 10
−4) 0.26(±1.9 × 10

−4) 0.10(±4.7 × 10
−4)

16384 0.07(±2.7 × 10
−4) 0.48(±6.7 × 10

−4) 0.28(±5.8 × 10
−4) 0.09(±4.1 × 10

−4)
32768 0.05(±2.5 × 10

−4) 0.51(±1.1 × 10
−3) 0.30(±2.1 × 10

−4) 0.08(±2.8 × 10
−4)

65536 0.05(±2.2 × 10
−4) 0.54(±5.3 × 10

−4) 0.31(±2.2 × 10
−4) 0.10(±4.7 × 10

−4)
Table 3. Values of E[𝑇−𝑇

∗]
E[𝑇 ∗] in Figure 3

Achieving Zero Asymptotic Queueing Delay for Parallel Jobs 35

D.3 Delay Scaling when 𝑘 = ⌊
√
𝑁 ⌋

In this section, we provide simulation results for the setting where 𝑘 = ⌊
√
𝑁 ⌋. The scalings of probe

ratios are the same as in Section 7.1. The results are demonstrated in Figure 5, and the numerical

values and standard deviations are given in Table 5.

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

Number of Servers

0.0

0.2

0.4

0.6

0.8

1.0

E
[𝑇

−
𝑇
∗]
/E

[𝑇
∗]

𝑑1 = 𝑂 (𝑁 𝛼/ℎ)
𝑑2 = exp (𝑂 (log(𝑁)/log(𝑘)))
𝑑3 = 𝑑2 +

√︁
𝑑1

𝑑4 = 𝑑2 + 𝑑7/8
1

Fig. 5. Queueing delays when 𝑘 = ⌊
√
𝑁 ⌋ under different probe ratios: 𝑑1 is sufficient for convergence to zero

queueing delay; 𝑑1 > 𝑑4 > 𝑑3 > 𝑑2.

𝑁 Exponential Hyper-Exponential Bounded Pareto S & X

32 0.23(±3.8 × 10
−4) 0.84(±2.7 × 10

−3) 0.49(±1.4 × 10
−3) 0.55(±8.1 × 10

−4)
64 0.20(±4.5 × 10

−4) 0.73(±1.8 × 10
−3) 0.46(±1.6 × 10

−3) 0.53(±1.2 × 10
−3)

128 0.17(±2.4 × 10
−4) 0.61(±8.3 × 10

−4) 0.41(±6.0 × 10
−4) 0.48(±8.5 × 10

−4)
256 0.14(±3.7 × 10

−4) 0.50(±9.5 × 10
−4) 0.36(±1.2 × 10

−3) 0.44(±1.8 × 10
−3)

512 0.13(±6.2 × 10
−4) 0.42(±4.1 × 10

−4) 0.31(±2.7 × 10
−4) 0.40(±4.3 × 10

−4)
1024 0.12(±1.5 × 10

−4) 0.34(±6.3 × 10
−4) 0.27(±2.7 × 10

−4) 0.34(±5.3 × 10
−4)

2048 0.10(±2.1 × 10
−4) 0.27(±4.3 × 10

−4) 0.23(±4.0 × 10
−4) 0.28(±9.3 × 10

−4)
4096 0.09(±6.4 × 10

−4) 0.19(±9.2 × 10
−3) 0.19(±2.7 × 10

−4) 0.23(±8.6 × 10
−4)

8192 0.08(±2.0 × 10
−4) 0.12(±4.7 × 10

−4) 0.13(±4.6 × 10
−4) 0.18(±7.1 × 10

−4)
16384 0.07(±2.7 × 10

−4) 0.07(±9.0 × 10
−4) 0.10(±4.0 × 10

−4) 0.12(±5.2 × 10
−4)

32768 0.05(±2.5 × 10
−4) 0.03(±4.0 × 10

−3) 0.03(±2.0 × 10
−4) 0.08(±3.0 × 10

−4)
65536 0.05(±2.2 × 10

−4) 0.01(±2.3 × 10
−4) 0.02(±1.4 × 10

−4) 0.06(±1.0 × 10
−3)

Table 4. Values of E[𝑇−𝑇
∗]

E[𝑇 ∗] in Figure 4

36 Wentao Weng and Weina Wang

𝑁 𝑑1 𝑑2 𝑑3 𝑑4
32 0.13(±5.2 × 10

−4) 0.15(±5.2 × 10
−4) 0.10(±2.0 × 10

−4) 0.08(±2.9 × 10
−4)

64 0.11(±4.2 × 10
−4) 0.21(±8.1 × 10

−4) 0.11(±4.1 × 10
−4) 0.09(±4.1 × 10

−4)
128 0.10(±7.6 × 10

−4) 0.25(±6.5 × 10
−4) 0.12(±4.8 × 10

−4) 0.09(±7.2 × 10
−4)

256 0.10(±3.4 × 10
−4) 0.30(±4.7 × 10

−4) 0.14(±7.5 × 10
−4) 0.09(±3.0 × 10

−4)
512 0.09(±3.8 × 10

−4) 0.34(±2.6 × 10
−4) 0.16(±2.7 × 10

−4) 0.09(±2.7 × 10
−4)

1024 0.09(±1.4 × 10
−4) 0.37(±8.2 × 10

−4) 0.18(±4.9 × 10
−4) 0.09(±9.5 × 10

−5)
2048 0.09(±2.9 × 10

−4) 0.4(±2.1 × 10
−4) 0.21(±4.0 × 10

−4) 0.10(±1.9 × 10
−4)

4096 0.08(±2.6 × 10
−4) 0.43(±9.8 × 10

−4) 0.24(±5.0 × 10
−4) 0.10(±2.2 × 10

−4)
8192 0.08(±3.5 × 10

−4) 0.46(±2.2 × 10
−4) 0.26(±1.3 × 10

−4) 0.10(±3.9 × 10
−4)

16384 0.08(±5.3 × 10
−4) 0.50(±7.0 × 10

−4) 0.28(±1.7 × 10
−4) 0.11(±3.1 × 10

−4)
32768 0.08(±4.9 × 10

−4) 0.53(±1.7 × 10
−4) 0.29(±1.5 × 10

−4) 0.12(±1.9 × 10
−4)

65536 0.07(±3.1 × 10
−4) 0.56(±9.8 × 10

−4) 0.29(±1.6 × 10
−4) 0.12(±3.8 × 10

−4)
Table 5. Values of E[𝑇−𝑇

∗]
E[𝑇 ∗] in Figure 5

	Abstract
	1 Introduction
	2 Model
	3 Main Results
	4 Proofs for Achievability Results (Theorems 3.1 and 3.2)
	4.1 Proof of Theorem 3.1
	4.2 Proof of Theorem 3.2

	5 Proofs for Impossibility Results (Theorems 3.3 and 3.4)
	5.1 Proof Of Theorem 3.3
	5.2 Proof Of Theorem 3.4

	6 Discussion on an alternative notion of zero queueing delay
	7 Simulation Results
	7.1 Scaling Behavior with Various Probe Ratios
	7.2 More General Settings for Task Service Times

	8 Conclusions
	References
	A Proofs of Lemmas 4.1, 4.2 and 4.3
	A.1 Proof of Lemma 4.1
	A.2 Proof of Lemma 4.2 (Filling Probability)
	A.3 Proof of Lemma 4.3

	B Lemmas needed for impossibility results
	B.1 Lemma B.1
	B.2 Lemma B.2
	B.3 Lemma B.3
	B.4 Lemma B.4

	C Proof of Theorem 6.1
	D More Details on Simulations
	D.1 Probe Ratios
	D.2 Numerical Values for Figures 3 and 4
	D.3 Delay Scaling when k = N

