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ABSTRACT
Spatial-temporal forecasting has attracted tremendous attention

in a wide range of applications, and traffic flow prediction is a

canonical and typical example. The complex and long-range spatial-

temporal correlations of traffic flow bring it to a most intractable

challenge. Existing works typically utilize shallow graph convolu-

tion networks (GNNs) and temporal extracting modules to model

spatial and temporal dependencies respectively. However, the repre-

sentation ability of such models is limited due to: (1) shallow GNNs

are incapable to capture long-range spatial correlations, (2) only

spatial connections are considered and a mass of semantic connec-

tions are ignored, which are of great importance for a comprehen-

sive understanding of traffic networks. To this end, we propose

Spatial-Temporal Graph Ordinary Differential Equation Networks

(STGODE).
1
. Specifically, we capture spatial-temporal dynamics

through a tensor-based ordinary differential equation (ODE), as a

result, deeper networks can be constructed and spatial-temporal fea-

tures are utilized synchronously. To understand the network more

comprehensively, semantical adjacency matrix is considered in our

model, and a well-design temporal dialated convolution structure

is used to capture long term temporal dependencies. We evalu-

ate our model on multiple real-world traffic datasets and superior

performance is achieved over state-of-the-art baselines.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Net-
works → Network structure.
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1 INTRODUCTION
Spatial-temporal forecasting has been widely studied in recent

years. It has large scale applications in our daily life, such as traffic

flow forecasting [8, 10], climate forecasting [3, 15], urban moni-

toring system analysis [22] and so on. For this reason, accurate

spatial-temporal forecasting plays a significant role in improving

the service quality of these applications. In this paper, we study one

of the most representative in spatial-temporal forecasting, traffic

flow forecasting, which is an indispensable component in Intelli-

gent Transportation System (ITS). Traffic flow forecasting attempts

to predict the future traffic flow given historical traffic conditions

and underlying road networks.

This task is challenging principally due to the complex and long-

range spatial-temporal dependencies in traffic networks. As an

intrinsic phenomenon of traffic, the travel distances of different

people vary a lot [25], which means that nearby and distant spatial

dependencies largely exist at the same time. As Fig 1(a) shows,

a node is not only connected to its geographical neighbors but

also distant relevant nodes. Furthermore, traffic flow series exhibit

diversified temporal pattern for their distinct behavior attributes as

Fig 1(b) shows. Moreover, when the spatial attributes and temporal

patterns are united, the complex interactions in between leading to

an intractable problem for traffic flow forecasting.

Graph Neural Networks (GNNs) for traffic forecasting have at-

tracted tremendous attention in recent years. Owing to its strong

ability to deal with graph-structured data, GNN enables to update

node representations by aggregating representations from their

neighbors, whereby GNN yields effective and efficient performance

in various tasks like node classification and graph classification

[11, 16, 19, 21]. A large number of works have been proposed to

utilize GNNs to extract spatial features in traffic networks, STGCN
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Figure 1: (a) shows the geographical and semantic connec-
tions of nodes. (b) shows examples of traffic flow with di-
verse patterns, like morning peak, evening peak and rela-
tively steady patterns.

[32] and DCRNN [18] are the representative. Most of them combine

GNNs with RNNs to obtain spatial representations and temporal

representation respectively [24, 35], and multiple works improve

recurrent structure with convolution structure for better training

stability and efficiency [9, 34].

However, there are two problems that have been persistently ne-

glected. On the one hand, most methods model spatial patterns and

temporal patterns separately without considering their interactions,

which restricts the representation ability of the models a lot. On

the other hand, neural networks generally perform better with the

stack of more layers, while GNNs benefit little from the depth. On

the contrary, the best results are achieved when two-layer graph

neural networks are cascaded, and more layers may lead to inferior

performance in practice [17, 36]. Ordinary GNNs have been proved

to suffer from the over-smoothing problem, i.e. all node represen-

tations will converge to the same value with deeper layers. Such

drawbacks severely limit the depth of GNNs and make it hardly

possible to obtain deeper and richer spatial features. However, to

the best of our knowledge, there are fewworks considering network

depth in spatial-temporal forecasting, which is of great importance

for capturing long-range dependencies.

In our Spatial-Temporal Graph Ordinary Differential Equation

Network (STGODE), several components are elaborately designed

to tackle the aforementioned problems. First, in order to depict

spatial correlations from both geographical and semantic views, we

construct two types of adjacency matrices, i.e. spatial adjacency ma-

trix and semantic adjacency matrix, based on spatial connectivity

and semantical similarity of traffic flow respectively. Second, mo-

tivated by residual networks [12], residual connections are added

between layers to alleviate the over-smoothing problem. Further-

more, it is proved that the discrete layers with residual connections

can be viewed as a discretization of an Ordinary Differential Equa-

tion (ODE) [5], and so a continuous graph neural network (CGNN)

is derived [31]. Here in this paper, a continuous GNN with residual

connections is introduced to avoid the over-smoothing problem

and hence be able to model long-range spatial-temporal dependen-

cies. Last but not least, a spatial-temporal tensor is constructed to

consider spatial and temporal patterns simultaneously and model

complex spatial-temporal interactions. We present the superiority

of our model with a toy example. As Fig 2 shows, compared with

STGCN, STGODE possesses a wider receptive field and thus can

adjust outputs according to shifting circumstances to achieve better

performance.

STGODE

STGCN

Figure 2: A performance schematic of STGODE

Our main contributions are summarized as follows,

• We propose a novel continuous representation of GNNs in

tensor form for traffic flow forecasting, which breaks through

the limit of network depth and improves the capacity of

extracting longer-range spatial-temporal correlations, and a

theoretical analysis is given in detail.

• Weutilize both spatial neighbors and semantical neighbors of

road nodes to consider spatial correlations comprehensively.

• Extensive experiments are conducted on real-world traffic

datasets, and the results show that our model outperforms

existing baseline models.

2 RELATEDWORK
2.1 Traffic Flow Forecasting
In recent years a large body of research has been conducted on

traffic flow forecasting, which has always been a critical problem in

intelligent transportation systems(ITS)[23]. Traffic flow forecasting

can be viewed as a spatial-temporal forecasting task leveraging

spatial-temporal data collected by various sensors to predict fu-

ture traffic conditions. Classic methods, including autoregressive

integrated moving average (ARIMA), k-nearest neighbors algo-

rithm (kNN), and support vector machine (SVM), can only take

temporal information into account, without considering spatial

features.[14, 28, 29]. Due to the limitation of modeling complex

spatial-temporal relationships with classical methods, deep neural

network models are proposed, which have been widely used in

various challenging traffic prediction tasks. Specifically, FC-LSTM

combines CNN and LSTM to model spatial and temporal relations

through an extended fully-connected LSTM with embedded convo-

lutional layers [26]. ST-ResNet utilizes a deep residual CNN network

to predict citywide crowd flow [33], where the strong power of the

residual network is exhibited. Despite impressive results that have

been achieved, all above-mentioned methods are designed for grid

data, thus not suitable for the traffic scene with graph-structured

data.

2.2 Graph Neural Networks
GNN is an effective framework for the representation learning of

graphs. GNNs follow a neighborhood aggregation scheme, where



the computation of node representation is carried out by sampling

and aggregating features of neighboring nodes [11, 16, 20]. Strenu-

ous efforts have been made to utilize graph convolution methods

in traffic forecasting considering that traffic data is a classic kind of

non-Euclidean structured graph data. For example, DCRNN [18]

view the traffic flow as a diffusion process and captures the spatial

dependency with bidirectional random walks on a directed graph.

STGCN [32] builds a model with complete convolutional structures

on both spatial and temporal view, which enables faster training

speed with fewer parameters. ASTGCN [10] introduces attention

mechanism to capture dynamics of spatial dependencies and tem-

poral correlations. All these methods use two separate components

to capture temporal and spatial dependencies respectively instead

of simultaneously, thus STSGCN [27] makes attempts to incorpo-

rate spatial and temporal blocks altogether through an elaborately

designed spatial-temporal synchronous modeling mechanism.

Long-range spatial-temporal relationship, as a common-sense

in traffic circumstances, is expected to be explored with deeper

neural networks. However, the over-smoothing phenomenon of

deep GNNs, which has been proved in a great number of studies

[17, 36], will lead to similar node representations. Thus the depth

of GNNs is restricted, and the long-range dependencies between

nodes are largely ignored.

2.3 Continuous GNNs
Neural Ordinary Differential Equation(ODE) [5] models a contin-

uous dynamic system based on parameterizing the derivative of

the hidden state using a neural network, instead of specifying dis-

crete sequences of hidden layers. CGNN [31] first extends this

method to graph-structured data, which develops a continuous

message-passing layer through defining the derivatives as com-

bined representations of current and initial nodes. The key factor

for alleviating the over-smoothing effect is the use of restart dis-

tribution, which motivates us in this paper. With proving simple

GCN as a discretization of a kind of ODE, they characterize the

continuous dynamics of node representations and enable deeper

networks. To the best of our knowledge, there are no works about

graph ODE in spatial-temporal forecasting.

3 PRELIMINARIES
Definition 1. (Traffic network G) We represent the road network

as a graph G = (𝑉 , 𝐸,𝐴), where 𝑉 is a set of 𝑁 nodes; E is a set of

edges; 𝐴 ∈ R𝑁×𝑁
is an adjacency matrix. Here in this paper, two

kinds of adjacency matrix are adopted, spatial adjacency matrix

𝐴𝑠𝑝
and semantic adjacency matrix 𝐴𝑠𝑒

.

Definition 2. (Graph signal tensor X) We use x𝑖𝑡 ∈ R𝐹 to de-

note the observation of node 𝑖 at time 𝑡 , and 𝐹 is the length of an

observation vector. 𝑋𝑡 =

(
x1𝑡 , x

2

𝑡 , · · · , x𝑁𝑡
)
∈ R𝑁×𝐹

denotes the ob-

servations of all nodes at time 𝑡 . X = (𝑋1, 𝑋2, · · · , 𝑋𝑇 ) ∈ R𝑇×𝑁×𝐹

denotes the observations of all nodes at all time.

3.1 Problem Formulation
Given the tensorX observed on a traffic network G, the goal of traf-

fic forecasting is to learn a mapping function 𝑓 from the historical

𝑇 observations to predict future 𝑇 ′
traffic observations,

[𝑋𝑡−𝑇+1, 𝑋𝑡−𝑇+2, · · · , 𝑋𝑡 ;G]
𝑓

−→ [𝑋𝑡+1, 𝑋𝑡+2, · · · , 𝑋𝑡+𝑇 ′] .

3.2 Regularized adjacency matrix
Given an adjacency matrix 𝐴 ∈ R𝑁×𝑁

, we typically normalize it

as 𝐴̃ = 𝐷− 1

2𝐴𝐷− 1

2 , where 𝐷 is the degree matrix of 𝐴. 𝐴̃ has an

eigenvalue decomposition [6] and the eigenvalues are in the interval

[−1, 1]. Negative eigenvalues can lead to unstable training process,

thus a self-loop is commonly added to avoid it. The regularized

form [16] of 𝐴̃ is adopted in this paper:

𝐴 =
𝛼

2

(
𝐼 + 𝐷− 1

2𝐴𝐷− 1

2

)
, (1)

where 𝛼 ∈ (0, 1) is a hyperparameter, as a result the eigenvalues of

𝐴 are in the interval [0, 𝛼].

3.3 Neural ODE
We consider a continuous-time(depth) model,

x(𝑡) = x(0) +
∫ 𝑡

0

dx
d𝜏

d𝜏 = x(0) +
∫ 𝑡

0

𝑓 (x(𝜏), 𝜏)d𝜏, (2)

where 𝑓 (x(𝜏), 𝜏) will be parameterised by a neural network to

model the hidden dynamic. We can backpropagate the process

through an ODE solver without any internal operations [5], which

allows us to build it just as a block for the whole neural network.

3.4 Tensor Calculation
A tensor T can be viewed as a multidimensional array, and a tensor-

matrix multiplication is defined on some mode fiber, for example,

(T ×2 𝑀)𝑖𝑙𝑘 =

𝑛2∑︁
𝑗=1

T𝑖 𝑗𝑘 ·𝑀𝑗𝑙 , (3)

where T ∈ R𝑛1×𝑛2×𝑛3 , 𝑀 ∈ R𝑛2×𝑛′
2 ,T ×2 𝑀 ∈ R𝑛1×𝑛′

2
×𝑛3

, ×2 de-

notes that the tensor-matrix multiplication is conducted on mode-2,

i.e. the second subscript. There are some mathematical properties

about tensor-matrix multiplication which will be used in this paper,

• T ×𝑖 𝑀1 ×𝑖 𝑀2 = T ×𝑖 (𝑀1𝑀2)
• T ×𝑖 𝑀1 ×𝑗 𝑀2 = T ×𝑗 𝑀2 ×𝑖 𝑀1 (𝑖 ≠ 𝑗) .

Above properties can be easily proved with Eq 3 through the multi-

plication rule.

4 MODEL
Figure 3(a) shows the overall framework of our proposed model,

i.e. Spatial-Temporal Graph ODE. It mainly consists of three com-

ponents, two Spatial-Temporal Graph ODE (STGODE) layers com-

posed of multiple STGODE blocks, a max-pooling layer, and an

output layer. A STGODE block consists of two temporal dilation

convolution (TCN) blocks and a tensor-based ODE solver in be-

tween, which is applied to capture complex and long-range spatial-

temporal relationships simultaneously. The spatial adjacency ma-

trix and the semantical adjacency matrix will be fed into the solver

separately to obtain features from different levels. The details of

the model will be described in the following section.
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Figure 3: (a) is the framework of the STGODE network. Several STGODE blocks in parallel constitute a STGODE layer, and two
STGODE layers are cascaded to extract higher-order features. (b) is the detail of STGODE blocks, where an ODE solver is sand-
wiched between two TCNswith residual connections and two kinds of adjacencymatrices are utilized formore comprehensive
characterization.

4.1 Adjacency Matrix Construction
Two kinds of adjacency matrix are leveraged in our model. Follow-

ing STGCN [32], the spatial adjacency matrix is defined as

𝐴
𝑠𝑝

𝑖 𝑗
=


exp

(
−
𝑑2
𝑖 𝑗

𝜎2

)
, if exp

(
−
𝑑2
𝑖 𝑗

𝜎2

)
≥ 𝜖

0 , otherwise

, (4)

where 𝑑𝑖 𝑗 is the distance between node 𝑖 and node 𝑗 . 𝜎2 and 𝜖 are

thresholds to control sparsity of matrix 𝐴𝑠𝑝
.

Besides, contextual similarities between nodes provide a wealth

of information and should be taken into consideration. For example,

similar traffic patterns are shared among roads near commercial

areas regardless of the remote geographical distance, while such cor-

relations cannot be revealed in spatial graph. To capture above men-

tioned semantic correlations, the Dynamic Time Warping (DTW)

algorithm is applied to calculate the similarity of two time series

[1], which is superior to other metric methods on account of its

sensitivity to shape similarity rather than point-wise similarity. As

shown in Fig 4, the point 𝑎 of series X will be related to the point 𝑐

but not 𝑏 of series Y by the DTW algorithm. Specifically, given two

time series 𝑋 = (𝑥1, 𝑥2, · · · , 𝑥𝑚) and 𝑌 = (𝑦1, 𝑦2, · · · , 𝑦𝑛), DTW is

a dynamic programming algorithm defined as

𝐷 (𝑖, 𝑗) = 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑦 𝑗 ) +min (𝐷 (𝑖 − 1, 𝑗), 𝐷 (𝑖, 𝑗 − 1), 𝐷 (𝑖 − 1, 𝑗 − 1)) ,
(5)

where 𝐷 (𝑖, 𝑗) represents the shortest distance between subseries

𝑋 = (𝑥1, 𝑥2, · · · , 𝑥𝑖 ) and 𝑌 = (𝑦1, 𝑦2, · · · , 𝑦 𝑗 ), and 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑦 𝑗 ) is
some distancemetric like absolute distance. As a result,𝐷𝑇𝑊 (𝑋,𝑌 ) =
𝐷 (𝑚,𝑛) is set as the final distance between 𝑋 and 𝑌 , which better

reflects the similarity of two time series compared to the Euclidean

distance.

t

Y

X

a

b

c

Euclidan distance 
DTW distance 

Figure 4: An example of the difference between the Eu-
clidean distance and the DTW distance.

Accordingly, we define the semantic adjacency matrix through

the DTW distance as following,

𝐴𝑆𝐸
𝑖 𝑗 =

{
1, 𝐷𝑇𝑊 (𝑋 𝑖 , 𝑋 𝑗 ) < 𝜖

0, otherwise
(6)

where𝑋 𝑖
denotes time series of node 𝑖 , and 𝜖 determine the sparsity

of the adjacency matrix.

4.2 Tensor-based Spatial-Temporal Graph ODE
GNNs update embeddings of nodes through aggregating features

of their own and neighbors with a graph convolution operation.

The classic form of convolution operation can be formulated as:

𝐻𝑙+1 = 𝐺𝐶𝑁 (𝐻𝑙 ) = 𝜎 (𝐴𝐻𝑙𝑊 ), (7)

where𝐻𝑙 ∈ R𝑁×𝐶
denotes the input of the 𝑙-th graph convolutional

layer, 𝐴 ∈ R𝑁×𝑁
is the normalized adjacency matrix, and𝑊 ∈

R𝐶×𝐶
′
is a learnable parametermatrix, whichmodels the interaction

among different features. However, such GNNs have been proved

to suffer from over-smoothing problem when networks go deeper

[17, 36], which largely limits the capacity of modeling long-range

dependencies. For this reason, our STGODE block is proposed.

A discrete version is first shown as:

H𝑙+1 = H𝑙 ×1 𝐴 ×2 𝑈 ×3𝑊 + H0, (8)



where H𝑙 ∈ R𝑁×𝑇×𝐹
is a spatial-temporal tensor representing

nodes’ hidden embedding of the 𝑙-th layer, ×𝑖 denotes the tensor-
matrix multiplication on mode 𝑖 , 𝐴 is the regularized adjacency

matrix, 𝑈 is the temporal transform matrix,𝑊 is the feature trans-

form matrix, andH0 denotes the initial input of GNN, which can

be acquired through another neural network. Different from ex-

isting works, we treat the spatial-temporal tensor as input and

hence enable to handle spatial information and temporal informa-

tion simultaneously. The intricate spatial-temporal correlation is

coupled through tensor multiplication on each mode. Motivated

by CGNN [31], a restart distribution H0 is involved to alleviate the

over-smoothing problem.

Specifically, the expansion of Eq 8 is shown as below,

H𝑙 =

𝑙∑︁
𝑖=0

(
H0 ×1 𝐴

𝑖 ×2 𝑈
𝑖 ×3𝑊

𝑖
)
, (9)

where we can see clearly that the output representation H𝑙 aggre-

gates information from all layers, that’s to say, the final outputs

collect information from all no more than 𝑙-order neighbors with-

out losing initial features. To show the necessity of the restart

distribution, let’s suppose another version withoutH0 like

H𝑙+1 = H𝑙 ×1 𝐴 ×2 𝑈 ×3𝑊,

where the final output will be

H𝑛 = H0 ×1 𝐴
𝑛 ×2 𝑈

𝑛 ×3𝑊
𝑛 .

Take 𝐴 as a simple example, assuming 𝐴 has an eigenvalue de-

composition as 𝐴 = 𝑃Λ𝑃𝑇 , where Λ = diag(𝜆1, 𝜆2, · · · , 𝜆𝑚) is a
diagonal matrix. Obviously,

𝐴𝑛 = 𝑃diag
(
𝜆𝑛
1
, 𝜆𝑛

2
, · · · , 𝜆𝑛𝑚

)
𝑃𝑇

= 𝜆𝑛
1
𝑃diag

(
1, ( 𝜆2

𝜆1
)𝑛, · · · , ( 𝜆𝑚

𝜆1
)𝑛

)
𝑃𝑇

−→ 𝜆𝑛
1
𝑃diag (1, 0, · · · , 0) 𝑃𝑇

(10)

when n goes to infinity with 𝜆1 > 𝜆2 > · · · 𝜆𝑚 . The diagonal

elements converge to zero except the largest one, which causes

much loss of information.

Such residual structure as Eq 8 is powerful but tough to train

due to its enormous amount of parameters, thus we aim to extend

the discrete formulation to a continuous expression. Intuitively,

we replace 𝑛 with a continuous variable 𝑡 , and view the expansion

equation as a Riemann sum from 0 to 𝑛 on 𝑖 , which is,

H𝑛 =

𝑛∑︁
𝑖=0

(
H0 ×1 𝐴

𝑖 ×2 𝑈
𝑖 ×3𝑊

𝑖
)

=

𝑛+1∑︁
𝑖=1

(
H0 ×1 𝐴

(𝑖−1)×Δ𝑡 ×2 𝑈
(𝑖−1)×Δ𝑡 ×3𝑊

(𝑖−1)×Δ𝑡Δ𝑡
) (11)

where Δ𝑡 = 𝑡+1
𝑛+1 with 𝑡 = 𝑛. When n goes to∞, we can formulate

the following integral:

H(𝑡) =
∫ 𝑡+1

0

H0 ×1 𝐴
𝜏 ×2 𝑈

𝜏 ×3𝑊
𝜏
d𝜏, (12)

The critical point here is to transform the residual structure to an

ODE structure, obviously we already have an ordinary differential

equation given by

dH(𝑡)
d𝑡

= H0 ×1 𝐴
𝑡+1 ×2 𝑈

𝑡+1 ×3𝑊
𝑡+1, (13)

but𝐴𝑡+1,𝑈 𝑡+1,𝑊 𝑡+1
are intractable to compute especially when t is

a non-integer. Motivated by the work in [31], we have the following

corollary.

Corollary 1. The discrete update in Eq 8 is a discretization of

following ODE:

dH(𝑡)
d𝑡

= H(𝑡) ×1 ln𝐴 +H (𝑡) ×2 ln𝑈 +H (𝑡) ×3 ln𝑊 +H0, (14)

whereH0 = 𝑓 (X) is the output of upstream networks.

Proof. Starting from Eq 13, we consider the second-derivative

ofH(𝑡) through derivative rules,

d
2H(𝑡)
d𝑡2

=
dH(𝑡)
d𝑡

×1 ln𝐴 + dH(𝑡)
d𝑡

×2 ln𝑈 + dH(𝑡)
d𝑡

×3 ln𝑊

(15)

Then integrate over 𝑡 in both sides of the above equation, we can

get:

dH(𝑡)
d𝑡

= H(𝑡) ×1 ln𝐴+H (𝑡) ×2 ln𝑈 +H (𝑡) ×3 ln𝑊 +𝑐𝑜𝑛𝑠𝑡 (16)

To solve the 𝑐𝑜𝑛𝑠𝑡 , we can put Eq 13 and Eq 16 together, thus we

have:

𝑐𝑜𝑛𝑠𝑡 =H0 ×1 𝐴
𝑡+1 ×2 𝑈

𝑡+1 ×3𝑊
𝑡+1

−
(
H(𝑡) ×1 ln𝐴 + H (𝑡) ×2 ln𝑈 + H (𝑡) ×3 ln𝑊

)
. (17)

By letting 𝑡 → −1 mathematically, we can easily get 𝑐𝑜𝑛𝑠𝑡 = H0.

So the corollary is proved. □

In practice, we can approximate the logarithm operation with

its first order of Taylor expansion, i.e. ln𝑀 ≈ 𝑀 − 𝐼 . As a result, a

simpler form is obtained,

dH(𝑡)
d𝑡

= H(𝑡) ×1 (𝐴− 𝐼 ) +H (𝑡) ×2 (𝑈 − 𝐼 ) +H (𝑡) ×3 (𝑊 − 𝐼 ) +H0

(18)

(a) ODE Solver (b) TCN

Figure 5: (a) is the illustration of a ODE solver, which shows
that the derivation of the hidden states is a function of cur-
rent states and initial states. (b) represents the structure of
TCN, which consists of a dilated convolution and a residual
connection.



The above ODE we deduced can be analytically solved as the

following corollary.

Corollary 2. The analytic solution of the Eq 18 is given by

H(𝑡) =H0 ×1 𝑒
(𝐴̂−𝐼 )𝑡 ×2 𝑒

(𝑈−𝐼 )𝑡 ×3 𝑒
(𝑊 −𝐼 )𝑡

+
∫ 𝑡

0

H0 ×1 𝑒
(𝐴̂−𝐼 ) (𝑡−𝑠) ×2 𝑒

(𝑈−𝐼 ) (𝑡−𝑠) ×3 𝑒
(𝑊 −𝐼 ) (𝑡−𝑠)

d𝑠

(19)

Proof. Suppose

H∗ (𝑡) = H(𝑡) ×1 𝑒
(𝐴̂−𝐼 )𝑡 ×2 𝑒

(𝑈−𝐼 )𝑡 ×3 𝑒
(𝑊 −𝐼 )𝑡 , (20)

then we have

dH∗ (𝑡)
d𝑡

=H0 ×1 𝑒
(𝐴̂−𝐼 )𝑡 ×2 𝑒

(𝑈−𝐼 )𝑡 ×3 𝑒
(𝑊 −𝐼 )𝑡 , (21)

and this is derived from Eq 18. Integrate Eq 21 on both sides, and

we can get the following result,

H∗ (𝑡) = H∗
0
+

∫ 𝑡

0

H0 ×1 𝑒
(𝐴̂−𝐼 )𝜏 ×2 𝑒

(𝑈−𝐼 )𝜏 ×3 𝑒
(𝑊 −𝐼 )𝜏

d𝜏, (22)

and hence H(𝑡) can be formulated as

H(𝑡) =H0 ×1 𝑒
(𝐴̂−𝐼 )𝑡 ×2 𝑒

(𝑈−𝐼 )𝑡 ×3 𝑒
(𝑊 −𝐼 )𝑡

+
∫ 𝑡

0

H0 ×1 𝑒
(𝐴̂−𝐼 ) (𝑡−𝜏) ×2 𝑒

(𝑈−𝐼 ) (𝑡−𝜏) ×3 𝑒
(𝑊 −𝐼 ) (𝑡−𝜏)

d𝜏

(23)

□

In fact, the last integration can be solved further, but limited by

space, we put it in the supplementary. Notice that the eigenvalues

of 𝐴 − 𝐼 is in the interval [−1, 0), as a result, 𝑒 (𝐴̂−𝐼 )𝑡 will go to

zero when t goes to∞. However, unrestricted𝑈 and𝑊 will lead to

divergent integrations as t goes to∞. To enforce𝑈 and𝑊 to be a

diagonalizable matrix with all the eigenvalues less than 1, we follow

previous work [7] to parameterise 𝑈 and𝑊 as 𝑈 = 𝑃𝑑𝑖𝑎𝑔(𝜆)𝑃𝑇
and𝑊 = 𝑄𝑑𝑖𝑎𝑔(𝜇)𝑄𝑇

respectively, where 𝑃 and 𝑄 are learnable

orthogonal matrices, 𝜆 and 𝜇 are learnable vectors whose elements

will be clamped to the interval (0, 1).
So far, we have proved a continuous form of tensor-based hidden

representation theoretically. Motivated by Neural ODE [5], we

propose an STGODE learning framework,

H(𝑡) = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒

(
dH(𝑡)
d𝑡

,H0, 𝑡

)
, (24)

where

dH(𝑡)
d𝑡

= H(𝑡) ×1 (𝐴− 𝐼 ) +H (𝑡) ×2 (𝑈 − 𝐼 ) +H (𝑡) ×3 (𝑊 − 𝐼 ) +H0,

H0 denotes the initial value, which comes from the upstream net-

work and the ODESolver is chosen as the Euler solver in our model.

4.3 Temporal Convolutional Blocks
Besides spatial correlations among different nodes, the long-term

temporal correlations of the nodes themselves alsomatter. Although

RNN-based models, like LSTM and GRU, are widely applied in time-

series analysis, recurrent networks still suffer from some intrinsic

drawbacks like time-consuming iterations, unstable gradients, and

delayed responses to dynamic changes.

To enhance the performance of extracting long term temporal

dependencies, a 1-D dilated temporal convolutional network along

the time axis is adopted here.

𝐻 𝑙
𝑡𝑐𝑛 =

{
𝑋 , 𝑙 = 0

𝜎 (𝑊 𝑙 ∗𝑑𝑙 𝐻
𝑙−1
𝑡𝑐𝑛 ) , 𝑙 = 1, 2, · · · , 𝐿

(25)

where 𝑋 ∈ R𝑁×𝑇×𝐹
is the input of TCN, 𝐻 𝑙

𝑡𝑐𝑛 ∈ R𝑁×𝑇×𝐹
is the

output of the 𝑙-th layer of TCN, and𝑊 𝑙
denotes the 𝑙-th convo-

lution kernel. To expand the receptive field , an exponential di-

lation rate 𝑑𝑙 = 2
𝑙−1

is adopted in temporal convolution. In the

process, zero-padding strategy is utilized to keep time sequence

length unchanged. What’s more, a residual structure [12] is added

to strengthen convolution performance as shown in Fig 5(b).

4.4 STGODE Layer
In this part, the overall STGODE layer is presented in detail. As

illustrated in Fig 3(b), the "sandwich" structure is adopted which

consist of two TCN blocks and a STGODE solver. Such structure en-

ables flexible and sensible spatial-temporal information flows, and

all-convolution structures have the superiority of fast training and

parallelization. Stacked "sandwiches" further extend the model’s

ability to discover complex correlations.

In the construction of themodel, we deploy two kinds of STGODE

blocks, which accept different adjacency matrices, i.e. the spatial

adjacency matrix and the semantic adjacency matrix. Two kinds

of adjacency matrices are utilized to combine local dynamics and

semantical relationships altogether, which greatly enhance the rep-

resentation ability. Multiple blocks are deployed in parallel so that

more complicated and multi-level correlations can be captured.

4.5 Others
After the STGODE layers, a max-pooling operation is carried out

to aggregate information from different blocks selectively. Finally,

a two-layer MLP is designed as the output layer to transform the

output of the max-pooling layer to the final prediction.

Huber loss is selected as the loss function since it is less sensitive

to outliers than the squared error loss [13],

𝐿(𝑌,𝑌 ) =


1

2

(𝑌 − 𝑌 )2 , |𝑌 − 𝑌 | ≤ 𝛿

𝛿 |𝑌 − 𝑌 | − 1

2

𝛿2 , otherwise

(26)

where 𝛿 is a hyperparameter which controls the sensitivity to out-

liers.

5 EXPERIMENTS
5.1 Datasets
We verify the performance of STGODE on six real-world traffic

datasets, PeMSD7(M), PeMSD7(L), PeMS03, PeMS04, PeMS07, and

PeMS08, which are collected by the Caltrans Performance Measure-

ment System(PeMS) in real time every 30 seconds[4]. The traffic

data are aggregated into 5-minutes intervals, which means there

are 288 time steps in the traffic flow for one day. The system has

more than 39,000 detectors deployed on the highway in the major

metropolitan areas in California. There are three kinds of traffic



measurements contained in the raw data, including traffic flow,

average speed, and average occupancy.

Specifically, PeMSD3 has 358 sensors, and the time span of it is

from September to November in 2018, including 91 days in total.

PeMSD7(M) and PeMSD7(L) are two datasets selected from District

7 of California, which contains 288 and 1,026 sensors respectively.

The time range of PeMSD7 is in the weekdays of May and June of

2012. And PeMSD8 is collected from July to August in 2016, which

contains 170 sensors. The detail of datasets is listed in Table 1. Z-

score normalization is applied to the input data, i.e. removing the

mean and scaling to unit variance.

Datasets #Sensors #Edges Time Steps

PeMSD7(M) 228 1132 12672

PeMSD7(L) 1026 10150 12672

PeMS03 358 547 26208

PeMS04 307 340 16992

PeMS07 883 866 28224

PeMS08 170 295 17856

Table 1: Datasets description

5.2 Baselines
We compare STODE with following baseline models:

• ARIMA [2]: Auto-Regressive Integrated Moving Average

model, which is a well-known statistical model of time series

analysis.

• STGCN [32]: Spatio-Temporal Graph Convolution Network,

which utilizes graph convolution and 1D convolution to

capture spatial dependencies and temporal correlations re-

spectively.

• DCRNN [18]: Diffusion Convolution Recurrent Neural Net-

work, which integrates graph convolution into an encoder-

decoder gated recurrent unit.

• GraphWaveNet [30]: GraphWaveNet, which combines adap-

tive graph convolution with dilated casual convolution to

capture spatial-temporal dependencies.

• ASTGCN(r) [10]: Attention based Spatial Temporal Graph

Convolutional Networks, which utilize spatial and temporal

attention mechanisms to model spatial-temporal dynamics

respectively. In order to keep the fairness of comparison,

only recent components of modeling periodicity are taken.

• STSGCN [27]: Spatial-Temporal Graph Synchronous Graph

Convolutional Networks, which utilize multiple localized

spatial-temporal subgraph modules to synchronously cap-

ture the localized spatial-temporal correlations directly.

5.3 Experimental Settings
We split all datasets with a ratio 6: 2: 2 into training sets, validation

sets, and test sets. One hour of historical data is used to predict

traffic conditions in the next 60 minutes.

All experiments are conducted on a Linux server(CPU: Intel(R)

Xeon(R) CPU E5-2682 v4 @ 2.50GHz, GPU: NVIDIA TESLA V100

16GB). The hidden dimensions of TCN blocks are set to 64, 32, 64,

and 3 STGODE blocks are contained in each layer. The regularized

hyperparameter 𝛼 is set to 0.8, the thresholds 𝜎 and 𝜖 of the spatial

adjacencymatrix are set to 10 and 0.5 respectively, and the threshold

𝜖 of the semantic adjacency matrix is set to 0.6.

We train our model using Adam optimizer with a learning rate of

0.01. The batch size is 32 and the training epoch is 200. Three kinds

of evaluation metrics are adopted, including root mean squared

errors(RMSE), mean absolute errors(MAE), and mean absolute per-

centage errors(MAPE).

5.4 Experimental Results and Analysis
Table 2 shows the results of our and competitive models for traf-

fic flow forecasting. Our STGODE model is obviously superior to

the baselines. Specifically, deep learning methods achieve better

results than traditional statistical methods, as traditional methods

like ARIMA only take temporal correlations into consideration and

ignore spatial dependencies, whereas deep learning models can

take advantage of spatial-temporal information. Among the deep

learning baselines, all except STSGCN utilize two modules to model

spatial dependencies and temporal correlations respectively, which

overlook complex interactions between spatial information and

temporal information, and STSGCN hence surpasses other mod-

els. But STSGCN only concentrates on localized spatial-temporal

correlations, and turns turtle in global dependencies.

Our model yields the best performance regarding all the metrics

for all datasets, which suggests the effectiveness of our spatial-

temporal dependency modeling. The result can be attributed to

three aspects:

(1) We utilize a tensor-based ODE framework to extract longer-

range spatial-temporal dependencies;

(2) The semantical neighbors are introduced to establish global

and comprehensive spatial relationships;

(3) Temporal dilated convolution networks with residual con-

nections help to capture long term temporal dependencies.

5.5 Case Study
Here we select two nodes from the road network to carry out a

case study. As Fig 6 shows, the prediction results of STGODE are

remarkably closer to the ground truth than STGCN [32]. In normal

circumstances, the model generates a smooth prediction ignoring

small oscillations to fight against noise. But when an abrupt change

arises, our model enables a rapid response to it. This is because

STGODE is able to utilize feature information from longer range

geographical neighbors and semantic neighbors, which helps to

accurately capture real-time dynamics and filter invalid information,

while STGCN as a shallow network, is susceptible to few nearby

neighbors and thus performs unstably.

5.6 Model Analysis
5.6.1 Ablation Experiments. To verify the effectiveness of differ-

ent modules of STGODE, we conduct the following ablation ex-

periments on PeMS04 dataset, and four variants of STGODE are

designed.

• STGCN*: The ODE solver is replaced with a graph convolu-

tion layer to verify the effectiveness of ODE structures for

extracting long-range dependencies.



Dataset Metric ARIMA STGCN DCRNN ASTGCN(r) GraphWaveNet STSGCN STODE

RMSE 13.20 7.55 7.18 6.87 6.24 5.93 5.66
PeMSD7(M) MAE 7.27 4.01 3.83 3.61 3.19 3.01 2.97

MAPE 10.38 9.67 9.81 8.84 8.02 7.55 7.36

RMSE 12.39 8.28 8.33 7.64 7.09 6.88 5.98
PeMSD7(L) MAE 7.51 4.84 4.33 4.09 3.75 3.61 3.22

MAPE 15.83 11.76 11.41 10.25 9.41 9.13 7.94

RMSE 47.59 30.42 30.31 29.56 32.77 29.21 27.84
PeMS03 MAE 35.41 17.55 17.99 17.34 19.12 17.48 16.50

MAPE 33.78 17.43 18.34 17.21 18.89 16.78 16.69

RMSE 48.80 36.01 37.65 35.22 39.66 33.65 32.82
PeMS04 MAE 33.73 22.66 24.63 22.94 24.89 21.19 20.84

MAPE 24.18 14.34 17.01 16.43 17.29 13.90 13.77

RMSE 59.27 39.34 38.61 37.87 41.50 39.03 37.54
PeMS07 MAE 38.17 25.33 25.22 24.01 26.39 24.26 22.99

MAPE 19.46 11.21 11.82 10.73 11.97 10.21 10.14

RMSE 44.32 27.88 27.83 26.22 30.04 26.80 25.97
PeMS08 MAE 31.09 18.11 17.46 16.64 18.28 17.13 16.81

MAPE 22.73 11.34 11.39 10.6 12.15 10.96 10.62

Table 2: Performance comparison of baseline models and STGODE on PeMS datasets.
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Figure 6: The comparison of prediction results between our
model and STGCN.

• STGODE only spatial: This model does not consider semantic

neighbors to verify the necessity of introducing a semantic

adjacency matrix.

• STGODE-no-h0: The initial state is removed in the derivation

of hidden states (Eq 14).

• STGODE-matrix-based: Reformulate the tensor-based ODE

(Eq 14) to a matrix-based version as following,

d𝐻 (𝑡)
d𝑡

= ln𝐴𝐻 (𝑡) + 𝐻 (𝑡) ln𝑊 + 𝐻0 (27)

which means that the input tensor will be viewed as multiple

matrices separately without considering temporal feature

transform in ODE blocks.

The results are presented in Fig 7. Here we put STGCN and

our STGCN* together on account of their similar sandwich struc-

tures and the same way of convolution. The result shows that our

STGCN* performs much better than previous STGCN, which is con-

tributed to our novel temporal convolution and the introduction of
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Figure 7: Ablation experiments of STGODE

semantical neighbors, and the poor result of STGODE with only

spatial neighbors reinforces the latter point. The performance of the

matrix-based version is also inferior to the tensor-based one, as it is

incapable to consider spatial-temporal dependency simultaneously.

And the result of STGODE without H0 shows the importance of

connecting the initial state.

5.6.2 Parameter Analysis. One major advantage of our STGODE

model over other existing methods is that is robust to the over-

smoothing problem and thus capable to construct deeper network

structures. Here in Fig 8, we represent the performance of STGODE

and STGCN* under different depths, i.e. the input time length of

STGODE solver and the number of convolution layers in STGCN*. It

is easy to see that, as the network depth increases, the performance

of STGCN* drops dramatically while the performance of our model

is stable, which clearly shows the strong robustness of our model

to extract longer-range dependencies.
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Figure 8: The performance of STGODE and STGCNwhen the
network depth increasing.

6 CONCLUSION
A tremendous number of works have been proposed to tackle the

complex spatial-temporal problems, but few of them focus on how

to extract long-range dependencies without being affected by the

over-smoothing problem. In this paper, we present a novel tensor-

based spatial-temporal forecasting model named STGODE. To the

best of our knowledge, this is the first attempt to bridge continuous

differential equations to the node representations of road networks

in the area of traffic, which enables to construct deeper networks

and leverage wider-range dependencies. Furthermore, the participa-

tion of semantic neighbors largely enhances the performance of the

model. Extensive experiments prove the effectiveness of STGODE

over many existing methods.
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7 APPENDIX
7.1 The calculation of the integration in Eq 19

Proof. Suppose 𝐴 − 𝐼 ,𝑈 − 𝐼 ,𝑊 − 𝐼 have eigenvalue decomposi-

tions 𝑃1Λ1𝑃
−1
1
, 𝑃2Λ2𝑃

−1
2
, 𝑃3Λ3𝑃

−1
3

respectively, then we have∫ 𝑡

0

H0 ×1 𝑒
(𝐴̂−𝐼 ) (𝑡−𝜏) ×2 𝑒

(𝑈−𝐼 ) (𝑡−𝜏) ×3 𝑒
(𝑊 −𝐼 ) (𝑡−𝜏)

d𝜏

=

∫ 𝑡

0

H0 ×1 𝑃1𝑒
Λ1 (𝑡−𝜏)𝑃−1

1
×2 𝑃2𝑒

Λ2 (𝑡−𝜏)𝑃−1
2

×3 𝑃3𝑒
Λ3 (𝑡−𝜏)𝑃−1

3
d𝜏

=

∫ 𝑡

0

H0 ×1 𝑃1 ×2 𝑃2 ×3 𝑃3 ×1 𝑒
Λ1 (𝑡−𝜏) ×2 𝑒

Λ2 (𝑡−𝜏)

×3 𝑃3𝑒
Λ3 (𝑡−𝜏) ×1 𝑃

−1
1

×2 𝑃
−1
2

×3 𝑃
−1
3

d𝜏,

denote
˜H0 = H0 ×1 𝑃1 ×2 𝑃2 ×3 𝑃3,∫ 𝑡

0

H0 ×1 𝑒
(𝐴̂−𝐼 ) (𝑡−𝜏) ×2 𝑒

(𝑈−𝐼 ) (𝑡−𝜏) ×3 𝑒
(𝑊 −𝐼 ) (𝑡−𝜏)

d𝜏

=

∫ 𝑡

0

˜H0 ×1 𝑒
Λ1 (𝑡−𝜏) ×2 𝑒

Λ2 (𝑡−𝜏) ×3 𝑒
Λ3 (𝑡−𝜏)

d𝜏 ×1 𝑃
−1
1

×2 𝑃
−1
2

×3 𝑃
−1
3
,

consider the integral element-wise, then we have,(∫ 𝑡

0

˜H0 ×1 𝑒
Λ1 (𝑡−𝜏) ×2 𝑒

Λ2 (𝑡−𝜏) ×3 𝑒
Λ3 (𝑡−𝜏)

d𝜏

)
𝑖 𝑗𝑘

=

∫ 𝑡

0

˜H
0𝑖 𝑗𝑘 ×1 𝑒

Λ1𝑖𝑖 (𝑡−𝜏) ×2 𝑒
Λ2𝑗 𝑗 (𝑡−𝜏) ×3 𝑒

Λ3𝑘𝑘 (𝑡−𝜏)
d𝜏

= − 1

Λ1𝑖𝑖 + Λ2𝑗 𝑗 + Λ
3𝑘𝑘

˜H
0𝑖 𝑗𝑘 ×1 𝑒

Λ1𝑖𝑖 (𝑡−𝜏) ×2 𝑒
Λ2𝑗 𝑗 (𝑡−𝜏) ×3 𝑒

Λ3𝑘𝑘 (𝑡−𝜏)
����𝑡
0

=

˜H
0𝑖 𝑗𝑘

Λ1𝑖𝑖 + Λ2𝑗 𝑗 + Λ
3𝑘𝑘

×1 𝑒
Λ1𝑖𝑖𝑡 ×2 𝑒

Λ2𝑗 𝑗 𝑡 ×3 𝑒
Λ3𝑘𝑘𝑡 −

˜H
0𝑖 𝑗𝑘

Λ1𝑖𝑖 + Λ2𝑗 𝑗 + Λ
3𝑘𝑘

thus, the result of the integration is as the following,∫ 𝑡

0

H0 ×1 𝑒
(𝐴̂−𝐼 ) (𝑡−𝜏) ×2 𝑒

(𝑈−𝐼 ) (𝑡−𝜏) ×3 𝑒
(𝑊 −𝐼 ) (𝑡−𝜏)

d𝜏

=

(
˜H
0𝑖 𝑗𝑘

Λ1𝑖𝑖 + Λ2𝑗 𝑗 + Λ
3𝑘𝑘

×1 𝑒
Λ1𝑖𝑖𝑡 ×2 𝑒

Λ2𝑗 𝑗 𝑡 ×3 𝑒
Λ3𝑘𝑘𝑡 −

˜H
0𝑖 𝑗𝑘

Λ1𝑖𝑖 + Λ2𝑗 𝑗 + Λ
3𝑘𝑘

)
×1 𝑃

−1
1

×2 𝑃
−1
2

×3 𝑃
−1
3

.
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