
APAN: Asynchronous Propagation Attention Network for
Real-time Temporal Graph Embedding

Xuhong Wang
Shanghai Jiao Tong University

Shanghai, China
Ant Group

Hangzhou, China
wang_xuhong@sjtu.edu.cn

Ding Lyu
Shanghai Jiao Tong University

Shanghai, China
dylan_lyu@sjtu.edu.cn

Mengjian Li
Yang Xia
Qi Yang

Xinwen Wang
Xinguang Wang

Ant Group
Hangzhou, China

Ping Cui
Yupu Yang

cuiping@sjtu.edu.cn
ypyang@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Bowen Sun
Zhenyu Guo∗

wenxi.sbw@antgroup.com
guozhen.gzy@antgroup.com

Ant Group
Hangzhou, China

ABSTRACT
To capture higher-order structural features, most GNN-based algo-
rithms learn node representations incorporating k-hop neighbors’
information. Due to the high time complexity of querying k-hop
neighbors, most graph algorithms cannot be deployed in a giant
dense temporal network to execute millisecond-level inference.
This problem dramatically limits the potential of applying graph
algorithms in certain areas, especially financial fraud detection.
Therefore, we propose Asynchronous Propagation Attention Net-
work, an asynchronous continuous time dynamic graph algorithm
for real-time temporal graph embedding. Traditional graph models
usually execute two serial operations: first graph querying and
then model inference. Different from previous graph algorithms,
we decouple model inference and graph computation to alleviate
the damage of the heavy graph query operation to the speed of
model inference. Extensive experiments demonstrate that the pro-
posed method can achieve competitive performance while greatly
improving the inference speed. The source code is published at a
Github repository.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Data mining; • Theory of computation→ Dy-
namic graph algorithms.

∗Zhenyu Guo is the corresponding author to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457564

KEYWORDS
graph neural networks, dynamic graph, network embedding

ACM Reference Format:
Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang,
Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. 2021.
APAN: Asynchronous Propagation Attention Network for Real-time Tempo-
ral Graph Embedding. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3448016.3457564

1 INTRODUCTION
A graph is a generic mathematical language to describe complex
networks, which can continue the various fields of network science
applications, such as economic network, communication network,
transportation network, social network, trading network, biological
network, etc. A graph 𝐺 = (𝑉 , 𝐸) consists of a set of nodes 𝑉 and
edges 𝐸. Every single node 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸 may have its
node and edge attributes, respectively. As the application of graph
data becomes more and more widespread, how to model graph
data and represent nodes as low-dimensional embedding vectors
for downstream tasks has become a critical concern problem of
researchers. Graph neural network (GNN) has a wide range of
applications and become a promising method to achieve this goal.
So far, the majority of the previous graph learning works,such as
DeepWalk [15] and SAGE [7], assume that the graph is static, which
means the graph is fixed and time-invariant.

However, most real-life graph systems are dynamic: nodes and
edges on graphs can appear or disappear over time, and even node
attributes also may be changed. For example, in social networks,
users often transfer their interest to other entities in a short time
interval due to a hot spot event; in economic networks, fraudsters
always commit a series of crimes suddenly and then withdraw the
illicit money in the shortest time. Suppose we adopt static graph
methods to model these dynamic networks, it would be simpler and
more time-saving, but we can not capture evolutionary patterns of

ar
X

iv
:2

01
1.

11
54

5v
4

 [
cs

.A
I]

 2
6

M
ar

 2
02

1

https://doi.org/10.1145/3448016.3457564
https://doi.org/10.1145/3448016.3457564

1

2
1

2

3
𝑡2

1
𝑡3 2

1 𝑡𝑛 4

Interactions

4

5

6

1

2

3

4

5

6

1

2

3

4

1

2

3

4

5

6

2

3,5

4

6,8

7

9

𝐺1 𝐺2

(a) Continuous Time Dynamic Graph

1

2
1

2

3
𝑡2

1
𝑡3 2

1 𝑡𝑛 4

Interactions

4

5

6

1

2

3

4

5

6

1

2

3

4

1

2

3

4

5

6

2

3,5

4

6,8

7

9

𝐺1 𝐺2

(b) Static Graph

1

2
1

3

4

5

6

1

2

3

4

5

6

1

2

3

4

1

2

3

4

5

2

3,5

4

6,8

7

9

𝐺1 𝐺2

1

2

3

4

5

6

𝐺3

(c) Discrete Time Dynamic Graph

Figure 1: (a) Continuous Time Dynamic Graph (CTDG) is
the graph whose edges are labelled by timestamp. In CTDG,
the interactions occur sequentially according to the order
of timestamp; two nodes could have multiple interactions
at different times. Whenever a node has interaction, we up-
date the node embedding, so nodes usually have more than
one dynamic embedding. (b) If we ignore time condition and
represent CTDG as a static graph, v4 → v1 → v2 will be
considered as a valid interaction path, but it is clearly in-
valid with respect to time. Nodes will have only one embed-
ding which can not represent temporal information well. (c)
If representing CTDG as some static snapshot graphs, aka.,
Discrete Time Dynamic Graph (DTDG), not only some valid
paths (such as v1 → v2 → v5) will not be considered due to
the snapshots partition, but also time-invalid path problem
is still there.

topology structures (see Figure 1). Moreover, when we learn node
representations on dynamic networks, we need to consider the
influence of both historical events and upcoming real-time events.
It is conceivable that the research difficulty on dynamic graphs is
much higher than on static cases.

Generally speaking, dynamic graph algorithms can be roughly
divided into two categories: Discrete-Time Dynamic Graph (DTDG)
and Continuous-Time Dynamic Graph (CTDG). DTDG algorithms,
such as EPNE[25] and E-LSTM-D[4], usually transform the whole
dynamic graph into a sequence of static subgraphs by time interval,
a.k.a. snapshots. These methods use the discrete time window to
represent the continuous-time interactions among nodes. There-
fore, the performance of DTDG model is sensitive to the choice of
window size and the time-variant information will be definitely
lost inside the snapshot.

Recently, CTDG based graph algorithms have attracted more and
more attention in the graph mining community. These paradigm of
algorithms is designed to deal with batches of temporal interactions
(v𝑖 , v𝑗 , e𝑖 𝑗 , 𝑡) between nodes, which will gain more elasticity than
snapshot based DTDG algorithms. Most CTDG algorithms, such

as TGAT [29] and TGN [18], model dynamic node states through
temporal subgraph aggregation triggered by events.

As CTDG algorithms achieve excellent performance on learning
dynamic graph embedding, they suffer from high latency during
the online inference. These models usually execute two serial oper-
ations: graph querying and model inference. When a batch of inter-
actions v𝑖 , v𝑗 , e𝑖 𝑗 , 𝑡 is coming, CTDG algorithms need to firstly visit
their k-hop temporal neighborsNv𝑖 (𝑡) andNv𝑗 (𝑡). Afterwards, the
model aggregate these neighbors’ information to generate the node
embeddings of nodes v𝑖 , v𝑗 . In real-time temporal networks, CTDG
algorithms need to be deployed online and accomplish real-time
inference, and it should be a millisecond-level process.

Then we will give a concrete use case to show the applications
of dynamic GNN methods and the problems that inspired this work.
Alipay1 is the largest online payment App in the world, on which
various transfer transactions will be carried out between users and
users. At the same time, thousands of cases of embezzlement, fraud,
money laundering, and gambling occur in this app every day. Such
criminals often form closely connected and constantly changing
graph communities (users are nodes and money transferring are
edges). Therefore, graph based algorithms are of vital importance
in these financial fraud detection task. Dynamic GNN methods
provide a promising way to utilize large-scale temporal events to
learn node representations, but the model inference time faces
the most strict timeliness challenge. If the fraud detection system
can not ban a fraudulent transaction immediately, the fraudster
may escape from the platform’s monitoring by withdrawing the
illicit money before the system responding, causing immeasurable
economic and reputation losses to the financial platform and users.

In addition to the rapid response to financial crimes, applying
CTDG algorithms in other advantageous areas also faces various
technical problems. a) When the interaction frequency suddenly
increases in a short time, such as Black Friday, the graph databases
will be overloaded and the entire platform can be unstable. b) In-
deed, CTDG algorithms have the potential to capture rapid changes
of nodes and graphs, but if we cannot deploy them in the online
platform due to efficiency limitations, this potential cannot be max-
imized.

As far as we know, no effort has done to overcome these serious
problems of CTDG algorithms. Although Sergi et al. [1] describe
various GNN software and hardware acceleration schemes, they
are still constrained by the basic GNN framework. In this work, we
redesign GNN framework to decouple model inference and graph
querying step so that the heavy graph query operations will not
damage the speed of model inference. For the convenience of expla-
nation, we call TGAT-like algorithms as synchronous CTDG and
our APAN as asynchronous CTDG. In Figure 2, we explain the dif-
ferences between synchronous and asynchronous CTDG. Putting
heavy querying and computing operations into asynchronous links
can isolate the complicated algorithm from the online business deci-
sion system, and then obtain higher system stability and scalability.
Intuitively, asynchronous CTDG can meet our requirements, but
designing an asynchronous CTDG is by no means as simple as
adjusting the order of the graph computation phase.

1https://global.alipay.com/

https://global.alipay.com/

A transaction

A transaction Graph aggregation It’s fraud!
BUT TOO LATE

It’s fraud!
Ban it! Graph propagation

(a) Offline-deployed synchronous CTDG algorithm like TGAT [29]

A transaction

A transaction Graph aggregation It’s fraud!
BUT TOO LATE

It’s fraud!
Ban it! Graph propagation

(b) Online-deployed asynchronous CTDG algorithm APAN

Figure 2: (a) Since users cannot tolerate the high latency of neighbor query in a giant graph database, deploying a synchronous
CTDG model in online payment platform is almost worthless. If we deploy it in the offline system, we might not be able to
ban the accounts before fraudsters withdraw illegal fund, causing economic and reputation losses to our platform. (b) Asyn-
chronous Propagation Attention Network (APAN) fundamentally redesigns the workflow of the CTDG algorithm. The graph
querying and computation phase is transferred to the back of model inference; TGAT utilizes graph aggregation technique to
model the temporal graph structure, whereas APAN uses graph propagation. APAN meets the real-time requirements of our
online deployment.

Asynchronous Propagation Attention Network (APAN) is our
firstly proposed model that satisfies the aforementioned asynchro-
nous CTDG algorithm framework. APAN has two links: synchro-
nous inference link and asynchronous propagation link. In the
asynchronous link, once the interaction is completed, the detailed
information of the interaction will be delivered as a "mail" to the
"mailbox" of its k-hop neighbors; in the synchronous link, when the
interaction occurs, APAN does not need to query the neighbors in
the temporal graph, but only reads out the "mailbox" of the related
nodes and generate the real-time inference instead.

APAN has been widely tested in three real-world temporal graph
datasets (including two public datasets and an industrial online pay-
ment dataset collected from Alipay. Compared with other SOTA
graph deep learning models, APAN achieves significant inference
speed improvements with competitive performance. In addition to
the high inference speed and high performance, the asynchronous
propagation mechanism also brings more interesting benefits to
APAN. a) because the detailed information of interactions is stored
in the mailbox, APAN has the potential of being a interpretable
model. (Section 3.6) b) APAN overcomes the common shortcom-
ing of traditional CTDG algorithm—its sensitivity to batch size.
(Section 4.7) c) In some tasks, improving inference speed can also
effectively improve business values. (Section 4.6)

2 RELATEDWORK
2.1 Network Embedding
Network embedding [3] approaches have achieved excellent per-
formance on learning low-dimensional representations of nodes,
edges, subgraphs, and the whole graph when preserving both net-
works’ topologic properties and semantic information. There has
been a burst of remarkable methods for embedding nodes of static
graphs into a low-dimensional vector space. DeepWalk [15] firstly
generates randomworks to sample multiplex structural information
and put node sequences into a skip-gram model [13] induced from
Word2Vec. Node2Vec [6] balances breadth-first sampling and depth-
first sampling to obtain properties of homophily and structural
equivalence. Moreover, LINE [19] and SDNE [24] build a similarity

matrix based on 1-order and even higher-order node similarity in-
stead of random walk strategy. Representations can also be induced
from Laplacians of the adjacency matrix by non-negative matrix
factorization [16, 17, 27]. However, those graph embedding method
does not deal with the graph structure directly, but transforms it
into a linear structure similar to text by serializing nodes and neigh-
borhoods. Besides, random walk based network embedding method
suffers from its transductive setting so that they are difficult to deal
with unseen nodes.

2.2 Graph Neural Networks
Graph Neural Networks (GNN) is a well-known neural graph learn-
ing framework for aggregating information from neighborhoods
and ego to update self-representations, which can directly process
graph structure by message passing and receiving among nodes
in graph. As the majority part of GNN, graph convolutional net-
work [10] (GCN) utilizes a convolutional aggregator to collect infor-
mation based on spectral methods, and SAGE [7] is a comprehensive
improvement to expand GCN into inductive learning which also
works on unknown nodes in graphs. Furthermore, graph attention
networks [23] (GAT) introduces an attention mechanism to assign
attention importance to each neighbor. Moreover, some attempts
introduce GNN into encoder-decoder neural network framework.
Graph AutoEncoder (GAE) and Variational GAE (VGAE) [9] use
GCN to construct the encoder and decoder, so that the node embed-
ding can be extracted in an unsupervised manner from the graph
structure information as well as node attributes. Furthermore, more
and more researchers try to add more skip connections into graph
neural network layers to make each node aggregate more informa-
tion from neighbors k hops away, which can capture long-range
dependencies with Non-local Neural Networks (NLNN) [28]. Since
the limitations of neighborhood aggregation schemes have been
known, the Jump Knowledge Network [30] is proposed to learn
adaptive, structure-aware representations.

2.3 Discrete-Time Dynamic Graph Learning
There have been only a few works on representation learning on
temporal networks due to complicated network evolution and dy-
namics. Most of them focus on learning node representations within
several snapshots aggregated with edges of which timestamps are
in a predefined window. This type of method is also known as
the DTDG algorithm. To develop explainable models preserving
evolutionary patterns, DynamicTriad[33] studies on the triadic
closure process to catch how open triads evolve into closed tri-
ads; SPNN[12] focuses on subgraphs’ architecture via high-order
dependencies, particularly induced subgraphs into both the input
features and the model architecture; EPNE[25] divides two channels
for periodic and non-periodic patterns and then incorporates both
structural and temporal information. There are also several stud-
ies, such as E-LSTM-D[4] and Know-Evolve[20], using an LSTM
to preserve historical information and current information when
learning representations.

2.4 Continuous-Time Dynamic Graph Learning
Besides, on continuous-time dynamic networks, CTDNE[14] sug-
gests incorporating temporal random walks within a static skip-
gram model; HTNE[34] applies a hawker process on neighborhood
formation; DynRep[21] jointly learns the topological evolution and
activities between nodes in which the representation of node 𝑣𝑖
being updated after an event involving 𝑣𝑖 .

JODIE [11] uses an RNN model to update the node memory of
related nodes, whereas TigeCMN [32] adopts a key-value memory
network [5] to update the memory. Similarly, both these two works
introduce an attention architecture to read out the node memory
and generate node embedding vector. However, neither JODIE nor
TigeCMN learn the topology structure of the graph explicitly, be-
cause they only update the related two nodes on an edge, which
means they can not visit the 2-hop neighbors directly. TGAT [29]
leverages a time embedding kernel to a customized GAT model,
gaining the capability of temporal graph encoding. Combining the
advantages of JODIE and TGAT, TGN [18] introduces the node-wise
memory into the temporal aggregate phase of TGAT.

3 METHOD
3.1 Definitions
Node embedding in static graphs. A static graph G = (V, E),
where V = {v𝑖 ,∀𝑖 ∈ 1, . . . , 𝑁 } is the set of 𝑁 = |V| nodes, E ⊆
V×V is the set of𝑀 = |E | edges between nodes, where e𝑖 𝑗 ,∀𝑖, 𝑗 ∈
1, . . . , 𝑁 represents an edge between node 𝑖 and 𝑗 . A typical Graph
Neural Network (GNN) layer learns the representation ℎ𝑖 of node 𝑖
by aggregating neighborhood information:

h𝑙𝑖 ← 𝜎 · W𝑙 ·
(
h𝑙−1𝑖 | |h

𝑙

N𝑘
𝑖

)
,

h𝑙N𝑘
𝑖

← AGGREGATE
({
h𝑙−1𝑗 ,∀𝑗 ∈ N𝑘𝑖

})
,

(1)

where the parameters ofW𝑙 as well as AGGREGATE are learnable,
𝜎 is a nonlinear activation function, andN𝑘

𝑖
represents the selected

k-hop neighbors of node v𝑖 .

Dynamic Graph. Dynamic graphs can be classified into two
categories: Discrete-time dynamic graphs (DTDG) and Continuous-
time dynamic graphs (CTDG). DTDG is formed by a sequence of
static graph snapshots split by time interval: G = {G1,G2, . . . ,G𝑇 },
where 𝑇 is the discrete time when the snapshot is taken. CTDG is
more flexible and general, which is constructed based on plenty of
temporal events 𝛿 (𝑡) = (v𝑖 , v𝑗 , e𝑖 𝑗 , 𝑡) order by timestamp, which
means node v𝑖 interacts with node v𝑗 at time 𝑡 . The interaction
feature matrix e𝑖 𝑗 ∈ R𝑀×𝑑 consists of all temporal events in a
CTDG, where 𝑀 is the number of events and 𝑑 is the dimension
of the edge feature. Correspondingly, a CTDG can be represented
as G = {𝛿 (𝑡1) , 𝛿 (𝑡2) , . . .}. Generally, a CTDG is a multigraph,
which means there might be several events at different timestamps
between two nodes.

Node embedding in CTDG. Given a CTDG represented as a
sequence of interaction events 𝛿 (𝑡) = (v𝑖 , v𝑗 , e𝑖 𝑗 , 𝑡), our goal is to
learn a function 𝑓 : 𝛿 (𝑡) → z𝑣𝑖 (𝑡), z𝑣𝑗 (𝑡), where z𝑣𝑖 (𝑡), z𝑣𝑗 (𝑡) ∈ R𝑑
respectively represent temporal embeddings of node 𝑣𝑖 and 𝑣 𝑗 .

3.2 Overall Framework
Figure 3 provides an overview of our proposed APAN, which is the
first Asynchronous CTDG algorithm for real-time temporal graph
embedding. The frame of APAN is organized with an attention
based encoder, an Multi-Layer Perceptron (MLP) based decoder and
an asynchronous mail propagator module.

Synchronous Part. When an interaction occurs, the encoder
updates node embeddings according to the detail of the event, the
historical embedding, and the mailbox data. Note that if a node
involves in several interactions in a batch, the embedding will be
generated only once. Even so, on the whole, temporal embeddings
of all nodes involved in new events need to be real-time updated,
which promotes the model to capture graph dynamics. Afterward,
the MLP decoder will utilize these updated node embeddings to
achieve downstream tasks, such as link prediction, node classifica-
tion, edge classification, and node cluster. Since the encoder and
the decoder are all feed-forward neural networks and we do not
need to query graph neighbors in the graph database, completing
these two-phase will be very fast.

Asynchronous Part. After the temporal embeddings are gener-
ated, the mail propagator first creates an mail and then propagate
it to the k-hop neighbors’ mailbox along the temporal edges. The
mail covers interactions associated with the sending node. Since the
mail propagator is in the asynchronous link and will not harm the
user experience, we can process some more complex computation
in this module, such as aggregating neighbors from multiple layers
or computing the subgraph statistic values.

3.3 Attention Based Encoder
Figure 4 provides the detail of the attention based encoder in APAN.
This encoder introduces a classical attention architecture to cre-
ate the current node embedding incorporating the last embedding
𝑧 (𝑡−) ∈ R𝑑 and mailboxM(𝑡) ∈ R𝑚×𝑑 . 𝑧 (𝑡−) indicates the node
state at the last time when it participated in an interaction. Mailbox
records the detailed information that the past interactions involved
by neighbors, including k-hop neighbors. In this way, the encoder

1 2
𝑡1

2 3
𝑡2

1
𝑡3 2

1 𝑡𝑛 4

Attention
Encoder

𝑧1 𝑧2
MLP

Decoder

𝑝23(𝑡2)
𝑝12(𝑡1)

𝑝12(𝑡3)

𝑝14(𝑡𝑛)

𝑧2
𝑧2𝑧1

𝑧1

𝑧3

𝑧4

Multi-head
Attention

Q

K

V

𝑧𝑖(𝑡−)

𝑧𝑖(𝑡)

Interactions Temporal Embeddings

Edge Probabilities

Mailbox

Embedding

Mail
Propagator

(Asynchronous)

t

Dropped Mail

New Mail

Mail 𝑧𝑖 𝑧𝑗𝑒𝑖𝑗+ +

Aggr Mail 𝑧1 𝑧2𝑒12+ +

Aggregate from subgraph Aggregate from subgraph

+ TS

MLP

𝑧𝑖

𝑒𝑖𝑗

𝑧𝑗 Link Prediction

Edge Classification

Node Classification

Interactive Nodes

Positional
Encoding

MLP

Layer Norm
Figure 3: The overall framework of the proposed Asynchronous Propagation Attention Network (APAN). APAN can bemainly
divided into three parts: Encoder, Decoder and Propagator. Note that Encoder and Decoder are in the synchronous link, and
they do not need to query neighbors’ information from graph database. Therefore, the time latency from the interaction
occurring to the model inferring will be very short, and user will get a very smooth experience. After model inferring, the
mail propagator will generate amail according to the interaction and then propagate it to the k-hop neighbors’mailbox along
the temporal edges.

1 2
𝑡1

2 3
𝑡2

1
𝑡3 2

1 𝑡𝑛 4

Attention
Encoder

𝑧1 𝑧2
MLP

Decoder

𝑝23(𝑡2)
𝑝12(𝑡1)

𝑝12(𝑡3)

𝑝14(𝑡𝑛)

𝑧2
𝑧2𝑧1

𝑧1

𝑧3

𝑧4

Multi-head
Attention

Q

K

V

𝑧𝑖(𝑡−)

𝑧𝑖(𝑡)

Interactions Temporal Embeddings

Edge Probabilities

Mailbox

Embedding

Message
Propagator

①

③ (Asynchronous)

②

t

Dropped Mail

New Mail

Lazy Mail 𝑧1 𝑧2𝑒12+ +

Aggr Mail 𝑧1 𝑧2𝑒12+ +

Aggregate from subgraph Aggregate from subgraph

+ timestamp

+ TSMLP

𝑧𝑖

𝑒𝑖𝑗

𝑧𝑗 Link Prediction

Edge Classification

Node Classification

Activate Nodes

Positional
Encoding

MLP

Layer Norm

Figure 4: The encoder network of APAN is a multi-head at-
tention module. This attention module will calculate the
current node embedding 𝑧 (𝑡) ∈ R𝑑 according to the relativ-
ity between last updated embedding 𝑧 (𝑡−) ∈ R𝑑 andmailbox
M(𝑡) ∈ R𝑚×𝑑 , where𝑚 is the maximum number of mails in
mailboxes. ⊕ means shortcut addition.

indirectly realizes the aggregation of temporal neighbors’ infor-
mation to update its node embedding. To achieve this goal, the
encoder is designed by three main parts, which are positional en-
coding, multi-head attention, and layer normalization.

Positional Encoding. Considering the arrival order of received
mails, we need to attempt positional encoding for every single
mail. Because we already set the maximum number of mails in
the mailbox, we can transfer the position information to the one-
hot format and then feed them into the embedding look-up layer.
The outputs of the embedding look-up layer are dense vectors
that represent their stationary properties and are more suitable for
learning by a neural network.

For the entity mailboxM(𝑡) = (𝑚𝑎𝑖𝑙1,𝑚𝑎𝑖𝑙2, . . . ,𝑚𝑎𝑖𝑙𝑚), the
positional encoding layer combines the position information to the
original mailbox matrix by

M̂(𝑡) =M(𝑡) + P(𝑡) = [𝑚𝑎𝑖𝑙1 + 𝑝1, . . . ,𝑚𝑎𝑖𝑙𝑚 + 𝑝𝑚]⊤ (2)

where M̂(𝑡),M(𝑡),P(𝑡) ∈ R𝑚×𝑑 , where𝑚 is the maximum length
of mailbox and 𝑑 is the dimension of mails. The mail dimension
defaults to be the dimension of the edge feature, which we will
explain in section 3.5.

Multi-head Attention. The scaled dot-product attention [22] is
used as the attentionmodule of our encoder. The hiddenmechanism
of an attention layer can be defined as:

Attn(Q,K,V) = softmax

(
QK⊤
√
𝑑

)
V,

Q = 𝑧 (𝑡−)W𝑄 ,

K = M̂(𝑡)W𝐾 ,V = M̂(𝑡)W𝑉

(3)

where Q denotes the ‘queries’, K denotes the ‘keys’, and V de-
notes the ‘values’. The dot-product attention takes a weighted
sum of the entity V where the weights are given by the inter-
actions of entity ‘Q-K’ pairs. The larger dot product between ’Q-
K’ pairs reflects the greater contribution of V to the final output.
W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑×𝑑ℎ (𝑑ℎ is the dimension of the attention out-
put) are the projection weight matrices that are employed to learn
the suitable ‘Q-K-V’ to create the expressive attention output. By
using this dot-product attention, APAN model can capture the rela-
tionship between the last embedding 𝑧 (𝑡−) and the mailboxM(𝑡),
which means the attention module can determine how to update
node embedding according to the received mails from node’s tem-
poral neighbors.

In practice, attention models always adopt multiple attention
heads to form multiple subspace and force model learning different
aspects of information. To build the multi-head attention module,
we construct multiple attentions and concatenate them. Take four
attention heads as an example:

head 𝑖 = Attn (𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖) , 𝑖 = 1, . . . , 4,

MultiHead(𝑄,𝐾,𝑉) = Concat (head1, . . . , head4)𝑊𝑂 ,
(4)

where𝑊𝑂 ∈ 𝑅𝑑×𝑑 , ℎ𝑒𝑎𝑑𝑖 ∈ 𝑅
𝑑
4 .

Layer Normalization. Since the attention outputs of different
nodes are various, we need a normalization scheme to limit the
mean and variance of the outputs. Layer normalization [2] is the
most common choice in attention models, because complex atten-
tion mechanism may disrupt the statistical distribution within a
batch. If we alternatively use batch normalization, it may lead to

1 2
𝑡1

2 3
𝑡2

1
𝑡3 2

1 𝑡𝑛 4

Attention
Encoder

𝑧1 𝑧2
MLP

Decoder

𝑝23(𝑡2)
𝑝12(𝑡1)

𝑝12(𝑡3)

𝑝14(𝑡𝑛)

𝑧2
𝑧2𝑧1

𝑧1

𝑧3

𝑧4

Multi-head
Attention

Q

K

V

𝑧𝑖(𝑡−)

𝑧𝑖(𝑡)

Interactions Temporal Embeddings

Edge Probabilities

Mailbox

Embedding

Mail
Propagator

(Asynchronous)

t

Dropped Mail

New Mail

Aggr Mail 𝑧1 𝑧2𝑒12+ +

Aggregate from subgraph Aggregate from subgraph

+ TS

MLP

𝑧𝑖

𝑒𝑖𝑗

𝑧𝑗 Link Prediction

Edge Classification

Node Classification

Interactive Nodes

Positional
Encoding

MLP

Layer Norm PropagationInteraction

Figure 5: Theworkflow of the propagator of proposedAPAN
model. After the attention encoder generates the temporal
embedding, the mail propagator first creates an interaction
mail and then propagate it to the k-hop (k=2) neighbors’
mailbox along the temporal edges. Through the mail propa-
gation, a node can obtain the historical interaction informa-
tion of its neighbors by visiting its mailbox.

suboptimal results. Layer normalization achieves this goal by com-
puting the mean and variance used for normalization from all of
the summed inputs to the neurons in a layer:

𝑎 = MultiHead(𝑄,𝐾,𝑉) + 𝑧 (𝑡−)

𝜇 =
1

𝑑

𝑑∑︁
𝑖=1

𝑎𝑖 , 𝜎 =

√√√
1

𝑑

𝑑∑︁
𝑖=1

(𝑎𝑖 − 𝜇)2

𝑎 = 𝑓

(
g
√
𝜎2
⊙ (𝑎 − 𝜇) + b

) (5)

𝑑 denotes the dimension of the inputs of layer normalization, 𝜇 and
𝜎 de the mean and variance, which are shared by all the hidden
units in a layer. ⊙ is the element-wise multiplication between two
vectors. Learnable parameters b and g are defined as the bias and
the gain to ensure that the normalization operation has no effect
on the original information.

After that, the outputs of layer normalization will be delivered
into an MLP network to generate new temporal embeddings of
nodes.

3.4 MLP Decoder
APAN can be widely used in a variety of downstream tasks. The
attention encoder and mail propagator can be used directly without
any architecture change, while the MLP decoder needs a fine-tune
to adapt to different tasks. The task of the MLP decoder is to uti-
lize the temporal node embedding to generate edge prediction for
downstream tasks. For example, if we need to predict whether there
will be an interaction between two nodes, the two temporal em-
beddings should be concatenated as (𝑧𝑖 (𝑡) | |𝑧 𝑗 (𝑡)) and delivered
to the decoder; if we need to judge whether an edge is a fraud
transaction, the two temporal embeddings and the edge feature
should be concatenated as (𝑧𝑖 (𝑡) | |𝑒𝑖 𝑗 (𝑡) | |𝑧 𝑗 (𝑡)).

3.5 Asynchronous Mail Propagator
In Figure 5, we demonstrate our mail propagator in the simplest
way. The yellow node and the blue node have an interaction with
the edge feature 𝑒𝑖 𝑗 (𝑡) at time 𝑡 , then the interaction can be charac-
terized as a tuple (𝑧𝑖 (𝑡), 𝑒𝑖 𝑗 (𝑡), 𝑧 𝑗 (𝑡)), where (𝑧𝑖 (𝑡) and 𝑧 𝑗 (𝑡)) are

created by the attention encoder. The process of mail propagation
in APAN can be described by two mathematical formulas below:

𝑀𝑎𝑖𝑙 :𝑚𝑎𝑖𝑙 (𝑡) = 𝜙
(
𝑧𝑖 (𝑡), 𝑒𝑖 𝑗 (𝑡), 𝑧 𝑗 (𝑡)

)
,

𝑀𝑎𝑖𝑙𝑏𝑜𝑥 :M(𝑡) = 𝜓
(
M(𝑡−), 𝜌

(
{𝑓 (𝑚𝑎𝑖𝑙 (𝑡))}N𝑘

𝑖 𝑗

))
,

(6)

where 𝜙 (·) is a mail-generating function to summarize the interac-
tion details.N𝑘

𝑖 𝑗
represents the subgraph induced on the interactive

nodes 𝑖 and 𝑗 . 𝑓 (·) is a mail-passing function that defines how a
message attenuates in propagation. 𝜌 (·) is a dimension-reducing
function to aggregate multiple incoming mails into one single mail.
𝜓 is an update function to update the mailbox according to the mail.

Mail Generation (𝜙). Once a node has involved in an interac-
tion, APAN aims at generating a mail to record what happens to this
node in that interaction. A simple form of mail is just the sum of the
current embeddings of the two interactive nodes and the edge fea-
ture of the current interaction, aka. (𝑚𝑎𝑖𝑙 (𝑡) = 𝑧𝑖 (𝑡)+𝑒𝑖 𝑗 (𝑡)+𝑧 𝑗 (𝑡)).
Note that the mail is also labeled by timestamp. The reason why we
use summation instead of concatenation is that summation can save
the memory capacity occupied by the mailbox. The disadvantage
is that summation limits the dimension of node embeddings, and
might obtain sub-optimal solutions in some cases.

Temporal Neighbors Sampling (N𝑘
𝑖 𝑗
). Once a mail has been

generated, we should deliver it to other nodes in order to let them
know what happens to their neighbors. However, delivering one’s
mail to its all neighbors is inefficient. In most GNN algorithms,
the node message is propagated on the sampled subgraph. The
difference is that some algorithms use uniform sampling [7], some
algorithms use weighted sampling [31], and other algorithms use
adaptive neighbor sampling [8]. In this paper, we adapt the most-
recent neighbor sampling strategy to our APAN, because CTDG
methods aim at modeling the rapid change trend and updating
the node embedding. Therefore, most-recent sampling is easier to
restore the time-variant information, and similar experiments and
conclusions can be found in that research [18].

Mail Passing (𝑓). After determining the propagation boundary,
a.k.a, after neighbor sampling, we need a function that is used to
find a reasonable attenuation or mapping mode of mails. In APAN,
the mail passing function is simply set as an identification function.
Note that this mail passing path is strictly obeyed the structure of
interaction links between seed nodes and their neighbors. Therefore,
even identification function can capture the characteristic of graph
structure induced by historical interaction data.

Mail Reducing (𝜌). In practice, a node usually receives multiple
mails during mail propagation. Active (high-degree) nodes usually
receive more mails than inactive (low-degree) nodes. To avoid this
imbalance, we use a reduction function of ‘mean’ operations to
transform multiple mails into one. In this way, each node will
receive only one mail in each single batch. This mechanism ensures
that it is easy to design the next mailbox updating module.

Mailbox Updating (𝜓). Once a node receives a mail, its mailbox
should be updated to summarize the historical state of the node’s
neighbors. To be as concise as possible, we adopt a first-in-first-out
queue data structure to update the mailbox. Through this queue
structure, the mailbox will retain the latest information and discard
old mails.

3.6 Asynchronous CTDG framework
Conceptually, the asynchronous CTDG framework we first pro-
posed aims to solve the problem that GNN-based methods are very
hard to be deployed in the millisecond-level online platform. APAN
is just one of the simplest models that conform to this framework.
Almost every module in the attention encoder and the mail prop-
agator still have a very large room for improvement. Compared
with these simple module we proposed, other more tricky modules
may have more potential of improving the asynchronous CTDG
framework:

Mailbox Mechanism. We introduce the additional benefits of
introducing mailboxes. Mailbox mechanism is necessary for tem-
poral GNN models that are deployed online. In streaming systems
(especially distributed streaming systems), we cannot guarantee
that events will arrive in timestamp order. Therefore, it will bring
instability to some machine learning models that rely on RNN dy-
namic updating, such as TGN and JODIE. Mailbox mechanism fixes
this serious problem because the events and messages stored in the
mailbox will be sorted by their timestamp when reading out.

Mailbox Updating. The key-value memory network [5] frame-
work provided a possible direction for enhancing the mailbox up-
dating module.

Positional Encoding. The time embedding kernel proposed by
Xu et. al. [29] can be leveraged to encode timestamps to replace the
position encoding module in our APAN.

Interpretability. Suppose an interaction occurs at time 𝑡 , a mail
stores the detailed information which includes the node embedding
𝑧𝑖 (𝑡), 𝑧 𝑗 (𝑡) and the edge feature 𝑒𝑖 𝑗 (𝑡). Then we can use the atten-
tion weight to calculate which mail has the greatest impact on the
final node embedding. This kind of interpretability is something
that other models do not have because they do not store 𝑧𝑖 (𝑡) and
𝑧 𝑗 (𝑡) but only edge features 𝑒𝑖 𝑗 (𝑡).

However, a) introducing too many tricks would interfere with
readers’ trust in the overall architecture of our asynchronous CTDG.
b) we have indeed completed the development of some related
extensions, but we only tested them on the experimented datasets
and did not deploy them in the actual environment. Therefore, we
will put these improvements in future work. We also look forward
to the researchers from the graph machine learning community to
propose better asynchronous CTDG models.

4 EXPERIMENTS
We test the performance of the proposed method against a variety
of strong baselines (adapted for temporal settings when possible)
and competing approaches, for link prediction, node classification
and edge classification tasks on two benchmarks and one large-
scale industrial dataset collected from Alipay platform. The source
code of our models is implemented using PyTorch and Deep Graph
Library [26] and published at a Github repository2.

4.1 Datasets
In this paper, we use three real-world temporal graph datasets,
including two public datasets and an industrial dataset, to widely
evaluate APAN’s performance. Table 1 shows the statistics of the
datasets used in our experiments.
2https://github.com/WangXuhongCN/APAN

Wikipedia [11] dataset is a bipartite temporal graph with ~9,300
nodes and ~160,000 temporal edges during one-month, where its
nodes are users and wiki pages and interaction edges represent
a user editing a page. Dynamic labels indicating whether a user
is banned from posting. Note that there are a large number of
unseen nodes (1752, 19%) laying outside of the training dataset of
Wikipedia, so Wikipedia dataset can verify the algorithms’ ability
in inductive learning task.

Reddit [11] dataset is also a bipartite temporal graph that col-
lects one month user interaction data, which has ~11,000 nodes and
~700,000 temporal edges. An interaction in Reddit dataset means
a user interacting with subreddits by a post. The dynamic binary
labels indicate if a user is banned from posting under a subreddit.

Alipay dataset is a financial transaction dataset collected from
Alipay platform, which consists of ~760,000 nodes and ~2,770,000
temporal edges. Each edge has a label that indicates that whether
an interaction is fraud. The APAN model has been subjected to
extreme and comprehensive tests for speed, memory and accuracy
in the actual business platform. Due to the privacy policy, more
information and the actual business indicators cannot be disclosed.
Instead, we report common indicators on the Alipay dataset to
characterize the business effect of the APAN algorithm.

For Wikipedia and Reddit datasets3, the top popular items and
the most active users are considered to construct the graph; user
edits consist of the textual features and are converted into 172-
dimensional linguistic inquiry and word count (LIWC) feature vec-
tors. The datasets are split with 70%-15%-15% according to the
interaction timestamps, where 10days-2days-2days split is used in
Alipay dataset.

Similar to paper [18, 29], since CTDG algorithms focus on the
modeling the events of node and edge creation, node features are
not present in any of these datasets, and we therefore assign the
same zero feature vector to all nodes.

4.2 Downstream Tasks
In different downstream tasks, we need to choose different loss func-
tions and metrics to evaluate the performance of various models.
For example, in link prediction tasks, we use accuracy and average
precision (AP) as the metrics. To train with the cross-entropy loss
function, we design a time-various negative sampling strategy to
construct the pairs of positive and negative samples:

ℓ =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑒𝑖 𝑗 ,𝑡)∈G
− log

(
𝜎
(
−z𝑖 (𝑡)⊤ z𝑗 (𝑡)

))
− E𝑣𝑛∼𝑃𝑛 (𝑣) log

(
𝜎
(
z𝑖 (𝑡)⊤ z𝑛 (𝑡)

))
,

(7)

where the summation is over the training interactions between
node 𝑖 and 𝑗 at time 𝑡 , 𝜎 is a sigmoid function and 𝑃𝑛 (𝑣) is the
negative sampling distribution. Note that the negative sample pool
of dynamic graphs is also constantly changing dynamically. First,
nodes that have never interacted cannot be sampled as negative data.
Second, as the interaction continues, a historical pair of positive
and negative samples may no longer valid.

In node and edge classification tasks, due to the skew of label
distribution, we employ the area under the ROC curve (AUC) as
the metric.
3Wikipedia and Reddit datasets are published at http://snap.stanford.edu/jodie

https://github.com/WangXuhongCN/APAN
http://snap.stanford.edu/jodie

Wikipedia Reddit Alipay
Edges 157474 672447 2776009
Nodes 9227 10984 761750
Edge feature dim 172 172 101
Nodes in train. 7475 10844 760289
Old nodes in val. and test. 3131 10181 379368
Unseen nodes in val. and test. 1752 140 1461
Timespan 30days 30days 14days
Data Spilt 70%-15%-15% 70%-15%-15% 10d-2d-2d
Interactions with labels 217 366 11632
Label type editing ban posting ban transaction ban

Table 1: Statistics of the datasets used in our experiments.

4.3 Baselines
As a CTDGmethod, themain competitors of APAN are five dynamic
graph embedding methods: CTDNE[14], DynRep[21], JODIE [11],
TGAT [29] and TGN [18]. In addition, we also include six static
graph embedding methods to show the priority of the dynamic
graph algorithms: DeepWalk [15], Node2Vec [6], SAGE [7], GAT [23],
GAE and VGAE [9]. We have already introduced these baselines in
section 2. Note that our experiment setup closely follows TGAT [29]
and TGN [18]. In Wikipedia and Reddit datasets, the results of all
baselines are strictly inherited from their original papers. To be fair,
we use the same data processing and splitting methods as the origi-
nal paper. For the Alipay dataset, we implement our own version
according to the baseline setup described in those two papers, to
explore the performance of these graph algorithms on large-scale
industrial datasets.

4.4 Configuration
For all datasets, we use Adam optimizer with a learning rate of
0.0001, a batch size of 200 for both training, validation and testing,
a dropout rate of 0.1 and early stopping with patience of 5. The
number of attention heads is set as 2 and the message passing
layer is 2. For the MLP net in the encoder and decoder, we employ
two-layer feedforward neural network with a hidden size of 80.
Note that these parameters mentioned above are all taken from
original papers of TGAT and TGN, and we did not employ complex
hyper-parameter tuning to improve APAN results.

The node embedding dimension of APAN is fixed as the original
edge feature dimension, so it is not a hyper-parameter. The num-
bers of mailbox slots and sampled neighbors are all set as 10 for
all three datasets. In subsequent experiments, we will prove that
APAN method is not sensitive to hyper-parameters. As long as the
parameters are set within a reasonable range, APAN will hardly
result in catastrophic performance.

4.5 Results
Table 2 shows the link prediction experiment results of our APAN
and eleven SOTA baselines. It is obvious that almost all methods
based on dynamic graphs outperform the static graph methods. Un-
supervised graph embedding approaches, such as GAE, DeepWalk,

Wikipedia Reddit
Accuracy AP Accuracy AP

GAE 72.85 (0.7) 91.44 (0.1) 74.31 (0.5) 93.23 (0.3)
VAGE 78.01 (0.3) 91.34 (0.3) 74.19 (0.4) 92.92 (0.2)

DeepWalk 76.67 (0.5) 90.71 (0.6) 71.43 (0.6) 83.10 (0.5)
Node2vec 78.09 (0.4) 91.48 (0.3) 72.53 (0.4) 84.58 (0.5)

GAT 87.34 (0.3) 94.73 (0.2) 92.14 (0.2) 97.33 (0.2)
SAGE 85.93 (0.3) 93.56 (0.3) 92.31 (0.2) 97.65 (0.2)
CTDNE 79.42 (0.4) 92.17 (0.5) 73.76 (0.5) 91.41 (0.3)
DyRep 87.77 (0.2) 94.59 (0.2) 92.11 (0.2) 97.98 (0.1)
JODIE 87.04 (0.4) 94.62 (0.5) 90.91 (0.3) 97.11 (0.3)
TGAT 88.14 (0,2) 95.34 (0.1) 92.92 (0.3) 98.12 (0.2)
TGN 89.51 (0.4) 98.46 (0.1) 92.56 (0.2) 98.70 (0.1)
APAN 90.74 (0.1) 98.12 (0.2) 94.34 (0.1) 99.22 (0.2)

Table 2: In link prediction task,we show the averageAPs and
accuracies in % with StdDevs (over 10 random seeds). Note
that the best results are typeset in bold and the second bests
are highlighted with underline.

Node classification Edge classification
Wikipedia Reddit Alipay

GAE 74.85 (0.6) 58.39 (0.5) \
VGAE 73.67 (0.8) 57.98 (0.6) \
GAT 82.34 (0.8) 64.52 (0.5) 69.47 (0.4)
SAGE 82.42 (0.7) 61.24 (0.6) 67.91 (0.5)
CTDNE 75.89 (0.5) 59.43 (0.6) \
DyRep 84.59 (2.2) 62.91 (2.4) 65.09 (1.0)
JODIE 83.17 (0.5) 59.90 (2.1) 81.89 (0.7)
TGAT 83.69 (0.7) 65.56 (0.7) 77.84 (0.9)
TGN 88.56 (0.3) 68.63 (0.7) 84.01 (0.9)
APAN 89.86 (0.3) 65.34 (0.4) 83.37 (0.7)

Table 3: In dynamic edge/node classification task, we show
the average AUCs in % with StdDevs (over 10 random seeds).

Node2Vec and CTDNE, have a bad performance, because embed-
ding learned by those methods is task agnostic, which has a limited

0 20 40 60 80 100 120
Inference time (ms) per batch

86

88

90

92

94

96

98

Av
er

ag
e

AP
 (%

)

TGAT-1layer
TGAT-2layers
TGN-1layer
TGN-2layers
APAN-1layer
APAN-2layers
DyRep
JODIE

Figure 6: The AP (%) metric and inference speed (ms) per
batch in Wikipedia dataset, in link prediction task. Each
batch has 200 interactions. The closer to the upper left cor-
ner, the better the performance of the model. APAN is 8.7×
faster than TGN and has almost the same testing result.

and indirect contribution to downstream tasks. Our APAN achieves
competitive performance comparing to other SOTA methods. Es-
pecially in the Reddit dataset, APAN demonstrates an amazing
performance than other methods.

The asynchronous CTDG algorithms like APAN have their own
advantages that the traditional algorithm does not have. Synchro-
nous CTDG methods usually use an update function to create the
node once the node interacts, whereas, in asynchronous CTDG, the
nodes‘ mailboxes are updated as long as their neighbors partici-
pate in an interaction. In other words, the node update frequency
in the asynchronous CTDG algorithm is higher than that in the
synchronous CTDG. It is this difference that makes APAN have
the more powerful capability in dynamic graph embedding. We
can also draw similar conclusions from the results of node or edge
classification tasks in Table 3.

Note that the structure and hyperparameters used in this study
proved to be sufficient for our applications, although they can still
be improved. The main improvement of APAN is that it greatly
improves the inference speed, and APAN’s algorithm architecture is
particularly suitable for online deployment on the Internet platform.

4.6 Efficiency
In this section, we compare the Efficiency of APAN with other base-
lines. The speed of APAN in the inference and training phase are
shown in Figure 6 and Figure 7, respectively. The experiments run
on a Linux PC with an Intel Core i7-7820X CPU (8 cores, 3.60GHz)
and a 12 GBNVIDIA TITANX (Pascal) GPU. The implement version
of these models is coming from two public repositories45.

In the real-world online Internet platform, the online inference
time of a model is more important than training time. Take the
Alipay anti-fraud system as an example, a transaction can only be
executed if it passes the anti-fraud system. Long inference time will
take up too much computing resource and cause the instability of
4https://github.com/twitter-research/tgn
5https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-
temporal-graphs

0 50 100 150 200 250 300
Training time (s) per epoch

86

88

90

92

94

96

98

Av
er

ag
e

AP
 (%

)

TGAT-1layer
TGAT-2layers
TGN-1layer
TGN-2layers
APAN-1layer
APAN-2layers
DyRep
JODIE

Figure 7: The AP (%) metric and training speed (s) per epoch
in Wikipedia dataset, in link prediction task. Each batch
has 200 interactions. The closer to the upper left corner, the
better the performance of the model. In the training phase,
APAN has almost the same testing result and speed as TGN.

the online inference engine, but APbAN overcomes this problem by
putting most of the calculations on the asynchronous link. More-
over, if the inference time is too long, it will greatly damage the
user experience. Therefore, a model with low inference delay will
greatly increase the return on investment and increase the model’s
business value.

We conducted runtime experiments to simulate the average wait-
ing time required for a batch of interactions to pass CTDG algo-
rithms. Note that we only calculate the time from the interaction
occurring to the model inference, not including the time on APAN’s
asynchronous link.

In the inference phase, APAN is 8.7× faster than TGN and has
almost the same testing result. JODIE and DyRep are limited by the
expressive ability, so their performance lags behind APAN. With
the increase in the number of layers, the performance of TGN and
TGAT is improved, but the inference speed is also greatly reduced;
APAN’s inference speed will not change with the layers, because
of its asynchronous mail propagation mechanism. It means that we
can apply more complex network computation in APAN to further
enhance the performance under the limit of real-time inference.

Note that in a real system, the speed increase of APAN is much
greater than 8.7 times. Because in our implementation, the whole
graph is stored in the single PC memory, whereas it is stored in
a distributed graph database in a real platform. The reading effi-
ciency of large-scale distributed databases will be the bottleneck of
the entire system, while it is not when using the single-machine
memory.

In the training phase, APAN has almost the same testing result
and speed as the current fastest algorithm TGN. The reason is
that, in the training phase, APAN is very similar to other CTDG
algorithms. APAN just exchanged the calculation order without
introducing additional calculations. Besides, in our implementation,
the underlying efficient information dissemination mechanism is
adopted, so increasing the number of layers will not result in a
significant increase in training time.

https://github.com/twitter-research/tgn
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

93

94

95

96

97

98

99

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

A
V

ER
A

G
E

A
P

 (
%

)

BATCH SIZE

TGAT TGN APAN

Figure 8: The relationship between batch size and the per-
formance in Wikipedia dataset, in link prediction task. In
the real world, platforms may need to handle thousands of
events each batch. Thanks to the asynchronous propagation,
APAN is not sensitive to the training batch size. However,
the performances of TGAT and TGN decrease as the batch
size increases.

4.7 Robustness
Batch size.

In addition to the high inference speed, the asynchronous prop-
agation mechanism also brings more interesting benefits to APAN:
robustness to batch size. The common drawback of the CTDG algo-
rithms is their sensitivity to batch size. From Figure 8, we conclude
that the larger the batch size, the worse the algorithm performance.

The most desirable condition of the CTDG algorithms is to up-
date the node triggered by a single event, that is, the batch size is
equal to 1. Suppose a batch starts at 𝑡0 and interaction happens
at time 𝑡 , the most latest interactions between 𝑡0 and 𝑡 are lost
because CTDG models assume that the events in a batch arrive
simultaneously. For this reason, the larger the batch size, the more
information is lost, and the worse the performance of CTDGmodels.

To ensure good performance, TGAT and TGN adopted a batch
size as small as 200 in the 700-thousand-level Reddit dataset. How-
ever, in real-world cases, Internet platforms may need to judge
thousands of events each batch to adapt to business needs. We need
a CTDG algorithm that is not sensitive to batch size.

Fortunately, asynchronous CTDG does not need to view the
latest interactions. Synchronous CTDG models query the latest
temporal subgraph when the interaction happens, whereas APAN
first outputs the embedding and then queries the subgraph. As
a result, APAN loses the latest interactive information of nodes.
Let’s use time series forecasting to give a vivid example. Given a
time series 𝑥 (1), . . . , 𝑥 (𝑡 − 2), 𝑥 (𝑡 − 1), 𝑥 (𝑡), synchronous CTDG
models capture the relationship 𝑥 (𝑡 − 1) → 𝑥 (𝑡), while APAN
maps 𝑥 (𝑡 − 2) → 𝑥 (𝑡). As long as the change trend of the node is
continuous, it is feasible to use 𝑥 (𝑡 − 2) to predict 𝑥 (𝑡).

Therefore, APAN is forced to learn how to create inference with-
out using the latest subgraph. Asynchronous propagation mech-
anism effectively avoids the impact of batch size on performance.
Besides, APAN is more tolerant of system delay, because the latest
information will not arrive on time in this case.

Number of sampled neighbors and mailbox slots.

5 10 15 20
Number of mailbox slot

20
15

10
5Nu

m
be

r o
f s

am
pl

ed
 n

ei
gh

bo
rs

97.97 97.9 97.78 97.75

98.29 97.89 97.91 97.81

98.51 98.12 97.87 98.07

98.42 98.04 98.42 98.11

Average AP (%) in Wikipedia

97.8

97.9

98.0

98.1

98.2

98.3

98.4

98.5

Figure 9: The average AP (%) metrics (over 10 runs), in link
prediction task, with different numbers of sampled neigh-
bors and mailbox slots in Wikipedia dataset. In the grid
search experiment on these twoparameters, APAN shows its
strong robustness. Its best and worst results fluctuate only
0.6%.

In Figure 9, we show the APAN’s robustness to the two impor-
tant hyper-parameters: number of sampled neighbors and mailbox
slots. In these 16 results, the best and worst results fluctuate only
0.6%. Although APAN is not sensitive to these two parameters, we
still analyze the reasons for the performance difference. a) Number
of mailbox slots. We can conclude that a small number of slots
is enough, because the CTDG model only needs to refer to the
short-term interactions to make inference in link prediction task
(a similar conclusion is presented in TGAT [29]). A mailbox with
large slots number will store redundant information and make the
model difficult to learn. b) Number of sampled neighbors is the
most common parameter in GNN model. If too many neighbors
are aggregated, the model may not be able to distinguish the rep-
resentation after aggregation; if too few neighbors are sampled,
important neighbors may be missed.

Besides, we also explain the concerns that readers may have
about the extra memory usage of the mailbox. a) Experiments in
Figure 9 have proved that a very small number of mailbox slots can
achieve competitive results. b) The memory usage is only related to
the number of nodes, which is limited in most scenarios, whereas
the number of interactive edges is unlimited (e.g., Reddit dataset has
10k nodes and 680k edges). Since the GNN models need to store a
large amount of historical interactive edge information, the mailbox
mechanism is not a memory bottleneck of the entire system.

In summary, APAN is a very robust model because it is not sen-
sitive to the major hyperparameters, people can spend less energy
to deploy APAN model on their own tasks.

5 CONCLUSION
In this paper, we proposed Asynchronous Propagation Attention
Network (APAN), an asynchronous CTDG algorithm framework for
real-time temporal graph embedding. APAN aims at transforming
traditional CTDG algorithms to adapt to online deployment and
real-time inference on Internet platforms. Our results from exten-
sive experiments demonstrate that the proposed APAN can achieve

competitive performance with 8× inference speed improvement.
In the future, we will explore more opportunities for the proposed
asynchronous CTDG framework.

6 BROADER IMPACT
This paper presents a new dynamic graph neural networks approach
for super fast inference. As far as we know, APAN is the first GNN
algorithm that can achieve millisecond-level and could help achieve
super large-scale inference within the online distributed graph
database. It may enhance the industry’s future design solutions
of how to adapt GNN models in recommender systems, financial
systems, social networks and so on.

ACKNOWLEDGMENTS
This work was supported by Ant Group through Ant Research
Intern Program. This research is also supported by National Natural
Science Foundation of China (No. 51777122).

In order to comply with the company’s data privacy policy, the
industrial dataset we used in this article follows the following state-
ment.
1) The Alipay dataset does not contain any Personal Identifiable
Information (PII).
2) The Alipay dataset is desensitized and encrypted.
3) Adequate data protection was carried out during the experiment
to prevent the risk of data copy leakage, and the dataset was de-
stroyed after the experiment.
4) The Alipay dataset is only used for academic research, it does
not represent any real business situation.

REFERENCES
[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard

Alarcón. 2020. Computing Graph Neural Networks: A Survey from Algorithms
to Accelerators. CoRR abs/2010.00130 (2020).

[2] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. CoRR abs/1607.06450 (2016).

[3] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[4] Jinyin Chen, Jian Zhang, Xuanheng Xu, Chenbo Fu, Dan Zhang, Qingpeng Zhang,
and Qi Xuan. 2019. E-lstm-d: A deep learning framework for dynamic network
link prediction. IEEE Transactions on Systems, Man, and Cybernetics: Systems
(2019).

[5] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential Recommendation with User Memory Networks.
In WSDM. ACM, 108–116.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[7] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS. 1024–1034.

[8] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
Sampling Towards Fast Graph Representation Learning. In NeurIPS. 4563–4572.

[9] Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. CoRR
abs/1611.07308 (2016).

[10] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR (Poster). OpenReview.net.

[11] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-
bedding Trajectory in Temporal Interaction Networks. In KDD. ACM, 1269–1278.

[12] Changping Meng, S Chandra Mouli, Bruno Ribeiro, and Jennifer Neville. 2018.
Subgraph Pattern Neural Networks for High-Order Graph Evolution Prediction..
In AAAI. 3778–3787.

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NIPS. 3111–3119.

[14] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion Proceedings of the The Web Conference 2018. 969–976.

[15] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In KDD. ACM, 701–710.

[16] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie
Tang. 2019. Netsmf: Large-scale network embedding as sparse matrix factoriza-
tion. In The World Wide Web Conference. 1509–1520.

[17] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. 459–467.

[18] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael M. Bronstein. 2020. Temporal Graph Networks for Deep
Learning on Dynamic Graphs. CoRR abs/2006.10637 (2020).

[19] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In WWW. ACM,
1067–1077.

[20] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-Evolve:
Deep Temporal Reasoning for Dynamic Knowledge Graphs. In ICML (Proceedings
of Machine Learning Research, Vol. 70). PMLR, 3462–3471.

[21] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. Dyrep: Learning representations over dynamic graphs. In International
Conference on Learning Representations.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[23] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR (Poster).
OpenReview.net.

[24] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In KDD. ACM, 1225–1234.

[25] Junshan Wang, Yilun Jin, Guojie Song, and Xiaojun Ma. 2020. EPNE: Evolu-
tionary Pattern Preserving Network Embedding. In ECAI (Frontiers in Artificial
Intelligence and Applications, Vol. 325). IOS Press, 1603–1610.

[26] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019).

[27] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community preserving network embedding.. In AAAI, Vol. 17. 203–209.

[28] Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-
Local Neural Networks. In CVPR. IEEE Computer Society, 7794–7803.

[29] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. In ICLR. OpenRe-
view.net.

[30] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML (Proceedings of Machine Learning
Research, Vol. 80). PMLR, 5449–5458.

[31] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In KDD. ACM, 974–983.

[32] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhao Li, and
Can Wang. 2020. Learning Temporal Interaction Graph Embedding via Coupled
Memory Networks. In WWW. ACM / IW3C2, 3049–3055.

[33] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network Embedding by Modeling Triadic Closure Process.. In AAAI. 571–578.

[34] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In KDD. ACM,
2857–2866.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Network Embedding
	2.2 Graph Neural Networks
	2.3 Discrete-Time Dynamic Graph Learning
	2.4 Continuous-Time Dynamic Graph Learning

	3 Method
	3.1 Definitions
	3.2 Overall Framework
	3.3 Attention Based Encoder
	3.4 MLP Decoder
	3.5 Asynchronous Mail Propagator
	3.6 Asynchronous CTDG framework

	4 Experiments
	4.1 Datasets
	4.2 Downstream Tasks
	4.3 Baselines
	4.4 Configuration
	4.5 Results
	4.6 Efficiency
	4.7 Robustness

	5 Conclusion
	6 Broader Impact
	Acknowledgments
	References

