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The abundant sequential documents such as online archival, social media and news feeds are streamingly

updated, where each chunk of documents is incorporated with smoothly evolving yet dependent topics. Such

digital texts have attracted extensive research on dynamic topic modeling to infer hidden evolving topics and

their temporal dependencies. However, most of the existing approaches focus on single-topic-thread evolution

and ignore the fact that a current topic may be coupled with multiple relevant prior topics. In addition, these

approaches also incur the intractable inference problem when inferring latent parameters, resulting in a high

computational cost and performance degradation. In this work, we assume that a current topic evolves from

all prior topics with corresponding coupling weights, forming the multi-topic-thread evolution. Our method

models the dependencies between evolving topics and thoroughly encodes their complex multi-couplings

across time steps. To conquer the intractable inference challenge, a new solution with a set of novel data

augmentation techniques is proposed, which successfully discomposes the multi-couplings between evolving

topics. A fully conjugate model is thus obtained to guarantee the effectiveness and efficiency of the inference

technique. A novel Gibbs sampler with a backward-forward filter algorithm efficiently learns latent time-

evolving parameters in a closed-form. In addition, the latent Indian Buffet Process (IBP) compound distribution

is exploited to automatically infer the overall topic number and customize the sparse topic proportions for

each sequential document without bias. The proposed method is evaluated on both synthetic and real-world

datasets against the competitive baselines, demonstrating its superiority over the baselines in terms of the low

per-word perplexity, high coherent topics, and better document time prediction.
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1 INTRODUCTION
The all-the-time update of abundant digital documents, such as Google News, Twitter and Flickr,

have generated large amounts of sequential temporal-tagged documents, exhibiting complex

temporal dependencies across the time steps. Such temporal-tagged digital documents have attracted

extensive studies on the time-evolving nature of topics. A successful way for such a task is to divide

the collection into a sequence of document chunks and each chunk corresponds to a time-slice

incorporated with topics in the temporal period [2, 4, 9, 21, 31, 47]. Then, the problem of topic

evolution could be addressed by studying relationships between topics crossing two adjacent time

slices.

Though fruitful results have been obtained in this area, most of the existing approaches are

contracted with the single-topic-thread assumption, i.e., a topic in the current time-slice can only

develop into a single topic in the subsequent slice [2, 9, 31, 40, 52]. Obviously, this assumption

cannot well align with the reality. Taking the news about COVID-19 as an example, the topic

of coronavirus outbreak not only develops itself with intensive reports along the time but also

triggers other topics such as the shortage of medical masks, shutdown of entertainment venues,

and flight suspension. On the other hand, a new topic (e.g., work resumption) could be coupled

with multiple prior topics (e.g., the effective control of coronavirus pandemic and market pressure).

Such multi-topic coupling relationships over time are quite common and complex in the real

world [11, 13, 27, 53], which pose significant challenges to the existing dynamic topic modeling

techniques [2, 9, 31, 40, 52]. This paper investigates this multi-topic coupling nature by assuming

the multi-topic-thread evolution, and proposes the recurrent Coupled Topic Model (rCTM) to learn

the multiple probabilistic dependencies between topics.

1.1 Limitations of the Existing Work
Two limitations of the existing work on topic evolution relevant to this paper are discussed in this

section.

1.1.1 Single-Topic-Thread Evolution. A well-known mechanism for analyzing the temporal evolu-

tion of topics is the state space model for the dynamic topic modeling [9, 52], where the temporal

dependency between evolving topics is captured by Gaussian distributions. Another widely used

mechanism exploits a Dirichlet distribution [31, 40] to encode the temporal dependency. Despite

their difference in encoding the temporal development of topics, one common limitation lies in

their single-topic-thread assumption as mentioned above. This violates the nature of many real

cases.

As noted in Fig. 1, the left side presents a topic evolutionary process following the single-topic-

thread assumption, where each topic develops itself in a single thread, and the description words

evolve in different slices. For example, the evolution of content about Algorithm depends only

on its own past state and ignores the influence of other prior topics such as Natural Language

Process (NLP) and Computer Vision (CV). This oversimplified evolution model does not reflect

the reality in the real world. In contrast, the right side in the figure corresponds to an example of

multi-thread-dependent evolutionary process, where the content on Algorithm not only develops

itself but also significantly influences NLP and CV. Further, the content on CV in the last slice

evolves not only from its past content but also being influenced by Algorithm. Such multi-thread

influence on the posterior topics is reinforced by the highlighted common words, for example, the

content on CV in the last slice shares common words from the prior topics of Algorithm and CV.

This example reinforces the fact that the development of topics is not constrained in one thread,

rather, multiple topics are interactively coupled with each other [13, 27]. Without thoroughly

encoding the complex temporal dependencies between evolving topics, the detected topic sequence
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from those conventional dynamic models might be defective. Therefore, our work aims to address

this problem and learn multiple probabilistic dependencies between topics.
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Fig. 1. An example of topic evolving process in terms of the conventional dynamic modeling (left) and the
proposed recurrent Coupled Topic Modeling (right), where the left side denotes topics evolving under the
single-topic-thread assumption, while the right side corresponds to the multi-topic-thread evolution.

1.1.2 Fixed Topic Number in Documents. With some old topics phasing out and new ones coming

in, the number of topics in each time-slice can be significantly different. Though existing studies

[2, 51] are enabled to automatically learn the overall topic number for a collection of documents,

they ignore the fact that each specific document from the collection may only involve a very small

subset of those topics. Associating all topics with each individual document may cause the topic

sparsity problem. Taking the collection of the published conference papers in a year as an example,

the overall involved topics are diverse and numerous, where each individual paper is only related

to very few of those topics, and the topics vary from paper to paper. It is clear that the traditional

practice of assigning all topics to each document is very inappropriate, resulting in noisy topics

assigned to a document and thus degrading the performance. Typically, the problem gets worse in

the task of sequential short texts [37]. The prior work [40, 60] mitigates the sparsity problem to

some extent by restricting one-topic assignment for a document, however, such a setting ignores

the case of long documents which may contain more topics. Therefore, in terms of topic settings for

both document chunks and individual documents, a unified and powerful mechanism is required

to simultaneously infer both the overall topic number for each slice and the sparse topic number

for individual documents.

1.2 Our Contributions
Motivated by the above discussion, this paper introduces a new Bayesian sequential model recurrent
Coupled Topic Modeling (rCTM) over sequential documents through the following proposals.

First, we assume that a topic 𝜙𝑘𝑡 (𝑘𝑡 ∈ {1, · · · , 𝐾𝑡 }) at slice 𝑡 evolves from all prior topics Φ𝑡−1
of slice 𝑡 − 1 with the corresponding coupling weight 𝛽𝑘𝑡−1𝑘𝑡 w.r.t. a Dirichlet distribution, and

the distinguishable weights associated with the prior topics are learned from hierarchical Gamma

distributions. The proposal induces a new and more flexible framework that topic 𝜙𝑘𝑡 jointly

depends on multiple prior topics, and a prior topic 𝜙𝑘𝑡−1 could also contribute to multiple topics

at step 𝑡 , which breaks the single-topic-thread limitation of the existing dynamic topic modelings

[2, 9, 31, 40, 52]. Hence, the complex multi-topic-thread dependencies between time-evolving topics

are thoroughly encoded by this proposal.
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0:4 Jinjin Guo, Longbing Cao, and Zhiguo Gong

Second, the above new proposal of the multi-coupling relationships between evolving topics

induces an unexplored and intractable inference problem, which significantly challenges the existing

inference techniques. To fully solve this problem, we propose a novel solution with a set of novel

data augmentation and marginalization techniques, which is the main novel contributions of this

paper. Our solution also discloses that the coupling weight between consecutive topics is indeed

indicated by their shared latent word occurrences, and accordingly a novel negative binomial

distribution is incorporated into the inference framework to obtain the latent word occurrences.

Finally, with novel data augmentation, the joint multi-dependency between topics is discomposed

into separated relationships and each coupling weight turns to be measurably independent, leading

to a fully conjugate and interpretable Bayesian model.

Third, with the update of sequential document chunk, no one knows its optimal topic setting

at each time-slice. In addition, each document only talks about a sparse number of topics, which

remains unknown and varies from document to document. To fully tackle these problems, we

leverage a nonparametric prior, a latent Indian Buffet Process (IBP) compound distribution [17, 56],

to solve the sparsity problem over the document-topic matrix. In addition to the unbound topic

number at each slice, the mechanism of IBP allows each document to contain its customized latent

topics without bias.

With the aid of novel data augmentation and marginalization techniques, a new Gibbs sampler

with a backward-forward filter algorithm is proposed to approximate latent time-evolving parame-

ters. In this algorithm, at each iteration latent word counts are propagated backward from slice 𝑇

to the initial slice, and the latent parameters are drawn forward from the initial slice to slice𝑇 with

updated word counts. To validate the significance of multi-topic coupled dependencies from the

prior topics, we design a variant model injected by a dropout technique from neural networks to

prune the couplings with the prior topics. We explore both synthetic and real-world datasets with

varying document lengths to evaluate the performance of rCTM against the competitive baselines.

The extensive experimental results confirm the superiority of rCTM in terms of the low per-word

perplexity, high topic coherence and better document time prediction.

To our best knowledge, this is the first paper to address the coupled topic modeling problem, to

which we make the following novel contributions:

• A new and general framework of encoding multi-topic-thread evolution is proposed for

sequential document analysis, where a topic in the current slice may be flexibly influenced

by multiple prior topics, and also develop into multiple threads with corresponding weights

in the subsequent slice.

• A novel solution with data augmentations is presented to solve the unexploredly intractable

problem and thoroughly decode the complex multi-dependencies between topics. rCTM thus

enjoys a full conjugacy, where not only the evolution of topics across the slices but also their

coupling relationships are efficiently captured in a closed-form.

• Without the manual setting of the topic number, a nonparametric mechanism, a latent IBP

compound distribution, is leveraged to automatically learn the whole topic number for a

document chunk as well as the sparse topic numbers for individual documents. Such a

mechanism solves the topic sparsity problem and flexibly accommodates both long and short

documents.

2 THE PROPOSED MODEL
We discretize a collection of temporally sequential documents into 𝑇 time slices {d𝑡 |1 ≤ 𝑡 ≤ 𝑇 },
where d𝑡 is the document chunk of the 𝑡-th slice with |d𝑡 | documents, and each document in the

chunk is represented by a bag-of-words with 𝑡-th timestamp. Given the sequential documents, the
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Recurrent Coupled Topic Modeling over Sequential Documents 0:5

word dictionary with 𝑉 unique words is predefined. Before introducing our multi-topic-thread

model, we define some notations and functions.

In what we present below, vectors and matrices are denoted by bold-faced lowercase and capital

letters respectively and scalar variables are written in italic. 𝐷𝑖𝑟𝑉 (), 𝐺𝑎𝑚(), 𝑀𝑢𝑙𝑡 (), 𝑃𝑜𝑖𝑠 () and
𝐵𝑒𝑟𝑛() stand for the 𝑉 -dimensional Dirichlet, Gamma, multinomial, Poisson and Bernoulli distri-

bution respectively. For a tensor 𝑋 ∈ Z𝐾1×𝐾2×𝐾3
the (𝑘1, 𝑘2, 𝑘3) entry is denoted by 𝑥𝑘1𝑘2𝑘3 . Also

𝑥𝑘1𝑘2 · =
∑𝐾3

𝑘3
𝑥𝑘1𝑘2𝑘3 and 𝑥𝑘1 · · =

∑𝐾2

𝑘2

∑𝐾3

𝑘3
𝑥𝑘1𝑘2𝑘3 .

2.1 The Multi-Topic-Thread Generative Process
The proposed recurrent Coupled Topic Modeling with multiple threads consists of two important

integrated components: (1) the topic proportion learning, which automatically determines the total

number of topics over the slice and sparsifies the affinity between topics and documents, and (2)

the multi-topic-thread evolution, which incorporates the joint multiple dependencies between

consecutive topics.

Topic proportion learning. Given a document chunk d𝑡 of slice 𝑡 , the hidden topics not only

evolve from prior slice 𝑡 − 1, but may also come as new. Hence, the topic number 𝐾𝑡 may change

from slice to slice. In the existing work, the Hierarchical Dirichlet Process (HDP) [51] is widely used

to determine the topic number. However, the HDP induces a rich-gets-richer problem, such that

the infrequent topics are always overwhelmed by the popular ones [56]. For example, an article

from the conference paper collections on Bayesian Network could be dominated by the popular

topic of Neural Network in its topic assignment. Furthermore, the HDP ignores the topic sparsity

problem for individual documents, which may bring noise topic intruding in the topic assignment.

To resolve the above mentioned problems, the latent Indian Buffet Process (IBP) Compound

Distribution is exploited in the proposed model to get rid of the rich-gets-richer harm and boost the

rare topics in the topic assignment of documents. In addition, it also enables a sparsity mechanism

for each document to select its customized topics via the Bernoulli technique.
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1 0 0 0 1

0 1 1 0 0
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o
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(a) The sparse document-topic affinity matrix 𝜃 for document

chunk d𝑡 .

𝜂0

𝛼

ҧ𝜃𝑑

𝜃𝑑

𝜋

𝑘

𝐾𝑡

|𝑑𝑡|
|𝑥𝑑|

(b) Graphical representation of topic propor-

tions at slice 𝑡 .

Fig. 2. The construction of topic proportions at slice 𝑡 . In Fig.(a), each document in d𝑡 contains its customized
topics marked with 1 in the shaded color, and those topics excluded are left as 0 in blank, which are determined
via the IBP mechanism. Fig.(b) presents the graphical representation of topic proportion construction, where
the circles with dash lines indicate the specified hyper-parameters, and the rest denote latent variables.

In detail, as shown in Fig. 2 (a) the sparsification of document-topic affinity is specified by a

|d𝑡 | × 𝐾𝑡 matrix 𝜃 , entries of which are stochastic variables that entry=1 indicates the affinity is
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true, otherwise false. Hence, not only the overall topic number 𝐾𝑡 but also the affinity matrix 𝜃 are

stochastic variables which need to be inferred simultaneously in the learning process.

The generative process of topic proportion follows the procedure below:

𝜋 ∼ 𝐼𝐵𝑃 (𝜂0), 𝜃𝑑𝑘𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜋),

𝜃𝑑 ∼ 𝐷𝑖𝑟𝐾 (𝜃𝑑 ⊙ 𝛼), 𝑘𝑡 ∼ 𝑀𝑢𝑙𝑡 (𝜃𝑑 ), (1)

where ⊙ is the element-wise Hadamard product and IBP is the Indian Buffet Process [17, 19], and

other notations are presented in Table 1. The process first generates a probability matrix 𝜋 via

the IBP mechanism (the principles will be introduced below); next, taking 𝜋 as the prior, a sparse

document-topic affinity matrix 𝜃 is produced via the Bernoulli distribution, indicating document 𝑑

selects topic 𝑘𝑡 if 𝜃𝑑𝑘𝑡 = 1, otherwise they have no affinity; then, drawing the topic distribution 𝜃𝑑

for document 𝑑 via the Dirichlet distribution by taking 𝜃𝑑 as the prior; after that, drawing topic

𝑘𝑡 for document 𝑑 via the multinomial distribution; finally drawing words via the multinomial

distribution with the word distribution 𝜙𝑘𝑡 , which is introduced in the following component.

Now, we introduce in detail the first step of how to obtain the probability 𝜋 via the IBP. Assume

there are 𝑁 customers in the restaurant, and each customer encounters a buffet consisting of

infinitely many dishes arranged in a line. The first customer starts at the left of the buffet and takes

a serving from each dish, stopping after 𝑃𝑜𝑖𝑠 (𝜂0) number of dishes as his plate is full. The 𝑖-th

customer moves along the buffet and samples dishes with proportion to their popularity
𝑚𝑘
𝑖
, where

𝑚𝑘 is the number of previous customers who have taken the 𝑘-th dish. At the end of all previously

sampled dishes, the 𝑖-th customer tries 𝑃𝑜𝑖𝑠 ( 𝜂0
𝑖
) number of new dishes.

By analogy to the IBP, the sparse document-topic affinity matrix 𝜃 with |d𝑡 | documents corre-

sponds to the 𝑁 customers’ specific choices over infinite dishes by taking the limit 𝐾𝑡 → ∞. The

probability matrix 𝜋 generating 𝜃 corresponds to the probabilities of all customers’ selection of

dishes. Based on 𝜋 , each document is thus allowed to sequentially select its customized topics via

the Bernoulli distribution. Topic proportions 𝜃𝑑 are generated by the Hadamard product between 𝜃𝑑

and hyper-parameter 𝛼 via a Dirichlet distribution. That means only those selected topics (𝜃𝑑𝑘𝑡 = 1)
are endowed with weight 𝛼 to constitute the topic proportion for document 𝑑 (i.e. sparsified the

document-topic affinity matrix). The graphical representation of topic proportion construction is

presented in Fig. 2 (b).

Multi-Topic-Thread evolution. The other important component of the generative process is how

to encode multiple topic dependencies crossing slices. Fig. 3 presents a simple scenario of coupled

topic evolution crossing three consecutive slices.

At the initial slice 𝑡 = 1, without any prior dependency, the topic 𝜙𝑘1 (𝑘1 ∈ {1, · · · , 𝐾1})
is sampled from the Dirichlet distribution parameterized by 𝜂. At slice 𝑡 , the topic 𝜙𝑘𝑡 (𝑘𝑡 ∈
{1, · · · , 𝐾𝑡 }) is assumed to evolve from the prior topics with the corresponding coupling weights

𝛽𝑘𝑡−1𝑘𝑡 via the Dirichlet distribution, where 𝛽𝑘𝑡−1𝑘𝑡 is drawn from a Gamma distribution to measure

the evolutionary closeness to the topic in the prior slice. At the final slice 𝑡 = 𝑇 , topic 𝜙𝑘𝑇 (𝑘𝑇 ∈
{1, · · · , 𝐾𝑇 }) evolves depending on the prior topics at 𝑇 − 1. Given the defined recurrent topics,

words w from the document chunk d𝑡 are accordingly generated via the multinomial distributions

at each slice.

ACM Trans. Knowl. Discov. Data., Vol. 0, No. 0, Article 0. Publication date: 2021.
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𝑡

𝑤 𝑤 𝑤
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𝑡 − 1 𝑡 + 1

𝜙𝑘𝑡−1 𝜙𝑘𝑡 𝜙𝑘𝑡+1

𝜙𝐾𝑡−1 𝜙𝐾𝑡 𝜙𝐾𝑡+1

𝜙1 𝜙1 𝜙1

𝐾𝑡−1 𝐾𝑡 𝐾𝑡+1

𝛽𝑘𝑡−1𝑘𝑡 𝛽𝑘𝑡𝑘𝑡+1

Fig. 3. Graphical representation of recurrent coupled topic evolution crossing three consecutive slices from
𝑡 − 1 to 𝑡 + 1, where 𝜙𝑘𝑡 (𝑘𝑡 ∈ {1, 2, · · · , 𝐾𝑡 }) represents the hidden topic 𝑘 at time 𝑡 denoted by blue circles,
the coupling relationships {𝛽𝑘𝑡−1𝑘𝑡 } between consecutive topics marked by the blue arrows denote their
temporal dependencies, and w in green color represents the observed words from document chunk d𝑡 .

The recurrent coupled topic sequences smoothly evolve across the 𝑇 slices according to the

following generative process,

(𝑥 ·𝑤𝑘1 )𝑉𝑤=1 ∼ 𝑀𝑢𝑙𝑡 (𝜙𝑘1 ), 𝜙𝑘1 ∼ 𝐷𝑖𝑟𝑉 (𝜂),
· · ·

(𝑥 ·𝑤𝑘𝑡 )𝑉𝑤=1 ∼ 𝑀𝑢𝑙𝑡 (𝜙𝑘𝑡 ), 𝜙𝑘𝑡 ∼ 𝐷𝑖𝑟𝑉 (
𝐾𝑡−1∑︁
𝑘𝑡−1=1

𝛽𝑘𝑡−1𝑘𝑡𝜙𝑘𝑡−1 ), 𝛽𝑘𝑡−1𝑘𝑡 ∼ 𝐺𝑎𝑚(𝑟𝑘𝑡−1 , 1/𝑐𝑡 ),

· · ·

(𝑥 ·𝑤𝑘𝑇 )𝑉𝑤=1 ∼ 𝑀𝑢𝑙𝑡 (𝜙𝑘𝑇 ), 𝜙𝑘𝑇 ∼ 𝐷𝑖𝑟𝑉 (
𝐾𝑇−1∑︁
𝑘𝑇−1=1

𝛽𝑘𝑇−1𝑘𝑇𝜙𝑘𝑇−1 ), 𝛽𝑘𝑇−1𝑘𝑇 ∼ 𝐺𝑎𝑚(𝑟𝑘𝑇−1 , 1/𝑐𝑇 ),

(2)

where Gam(-,-) is the Gamma distribution with shape and scale parameters. We further impose

Gamma priors on the following variables: 𝑟𝑘𝑡−1 ∼ 𝐺𝑎𝑚(𝑟0/𝐾𝑡−1, 1/𝑐0), 𝑐𝑡 ∼ 𝐺𝑎𝑚(𝑒0, 1/𝑑0) and
𝑐0 ∼ 𝐺𝑎𝑚(𝑎0, 1/𝑏0), where 𝑎0, 𝑏0, 𝑑0, 𝑒0 and 𝑟0 are specified hyper-parameters.

The idea of our recurrent modeling of multiple coupled topic sequences is summarized as follows:

– From a forward-backward view, the proposed model resembles the stochastic feedforward

network [50], where the input is a topic set {𝜙𝑘1 }
𝐾1

𝑘1=1
at slice 1, the output is topics {𝜙𝑘𝑇 }

𝐾𝑇
𝑘𝑇 =1

,

the weight matrices are {𝛽𝑘𝑡−1𝑘𝑡 }
𝐾𝑡−1,𝐾𝑡
𝑘𝑡−1,𝑘𝑡

and the activation functions are Dirichlet distributions.

– When learning theword distribution of topic𝑘𝑡 (𝑡 > 1), themixture of prior topics {𝜙𝑘𝑡−1 }
𝐾𝑡−1
𝑘𝑡−1=1

serves as the prior knowledge to initialize topic𝑘𝑡 via a Dirichlet distribution, and the coupling

weights {𝛽𝑘𝑡−1𝑘𝑡 }
𝐾𝑡−1
𝑘𝑡−1

identify the different contributions of prior topics to topic 𝑘𝑡 .
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Table 1. Summary of notations.

Symbol Description
𝜂0 the hyper-parameter of the Indian Buffet Process (IBP)

𝛼 the hyper-parameter of Dirichlet distribution

𝜋 the parameter of the Bernoulli distribution

𝜃𝑑 the vector of sparse topic affinity with document 𝑑

𝜃𝑑 topic proportions for document 𝑑

𝜙𝑘𝑡 word distribution of topic 𝑘𝑡 at slice 𝑡

𝛽𝑘𝑡−1𝑘𝑡 evolutionary coupling weight between topic 𝑘𝑡−1 and 𝑘𝑡
Φ𝑡 topic set at slice 𝑡

B𝑡−1,𝑡 coupling matrix for topics between slice 𝑡 − 1 and 𝑡

𝜂 hyper-parameter of Dirichlet distribution at slice 1
𝐾𝑡 the inferred total topic number at slice 𝑡

𝑥𝑑𝑤 the observed word𝑤 ’s occurrence in the document 𝑑

𝑥𝑑𝑤𝑘𝑡 the word𝑤 ’s occurrence in the document 𝑑 assigned to the topic 𝑘𝑡
x𝑘𝑡 the vector representation of word occurrence assigned to topic 𝑘𝑡
𝑦𝑤𝑘𝑡 the auxiliary latent word𝑤 ’s occurrence assigned topic 𝑘𝑡 via 𝐶𝑅𝑇

𝑦𝑤𝑘𝑡𝑘𝑡−1 the propagated word𝑤 ’s occurrence from topic 𝑘𝑡 to 𝑘𝑡−1
z𝑘𝑡 the vector representation of propagated word occurrence from 𝑡 + 1 slice

𝑦 ·𝑘𝑡𝑘𝑡−1 the sum of propagate word counts from topic 𝑘𝑡 to 𝑘𝑡−1
𝜉𝑘𝑡 auxiliary variable from the beta distribution

𝑟𝑘𝑡 shape parameter of the Gamma distribution

𝑐𝑡 , 𝑐0 rate parameter of the Gamma distributions

𝑎0, 𝑏0, 𝑒0, 𝑑0, 𝑟0 hyper-parameters of the Gamma distributions

– According to the expectation of a Dirichlet distribution, topic 𝜙𝑘𝑡 is expected to be the

weighted arithmetic mean of prior topics at slice 𝑡 − 1, 𝐸 (𝜙𝑘𝑡 ) =
∑𝐾𝑡
𝑘𝑡−1=1

𝛽𝑘𝑡−1𝑘𝑡 𝜙𝑘𝑡−1∑𝐾𝑡
𝑘𝑡−1=1

𝛽𝑘𝑡−1𝑘𝑡
, implying

that the evolution of topic 𝜙𝑘𝑡 jointly depends on multiple prior topics with the corresponding

weights rather than on a single past topic, and the prior topic 𝜙𝑘𝑡−1 (𝑘𝑡−1 ∈ {1, · · · , 𝐾𝑡−1})
also contributes to multiple topics at slice 𝑡 . The coupling weight 𝛽𝑘𝑡−1𝑘𝑡 is noted to play

an important role in measuring the evolutionary distance between two word distributions

of topic 𝑘𝑡−1 and 𝑘𝑡 . In addition, this expectation indicates coupling weights {𝛽𝑘𝑡−1𝑘𝑡 }
𝐾𝑡−1
𝑘𝑡−1=1

associated with topic 𝑘𝑡 are not shared with other parallel topics, which allows topics at slice

𝑡 to evolve differently with flexible dependency on the common priors.

– The coupling weight 𝛽𝑘𝑡−1𝑘𝑡 is drawn from a hierarchical Gamma prior (its shape parameter

𝑟𝑘𝑡 is also drawn from a Gamma). Such a hierarchical design leads to more distinguishable

and sparse coupling weights associated with topic 𝜙𝑘𝑡 [64].

2.2 A Dropout Technique
In the context of topic evolution with multiple threads, one question is naturally raised about how

to validate the significance of multi-dependencies between evolving topic sequences, since each

topic evolves from all prior topics. Further, one may argue that the salient coupling connections of

one topic during evolving process are a small set and sparsely distributed in practice, e.g., in light of

diverse and enormous topics inferred from the computer science articles last year, the topic about

Bayesian network only connects with a small number of relevant topics by the salient coupling
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weight, while the weights with most unrelated topics are small. Thus, could the proposed model

distinguish the salient coupled topics from the less related ones by the weights? To answer this

question, we develop a variant of the proposed model named rCTM-D as a comparison to rCTM.

In this approach, we borrow the dropout mechanism from the neural network and inject it into

our Bayesian framework. Dropout [49] is one of the most popular and successful regularizers

for deep neural network. It randomly drops out each neuron with a predefined probability at

each iteration of stochastic gradient descent, to avoid the overfitting problem and reinforce the

performance. In our solution, at each iteration of inference process, the topic node 𝜙𝑘𝑡 is attached

with a probability 𝜌 to drop out coupling connection with prior topics Φ𝑡−1, which is denoted as:

𝜙𝑘𝑡 ∼ 𝐷𝑖𝑟𝑉 (𝜓𝑘𝑡 ), 𝜓𝑘𝑡 =

𝐾𝑡−1∑︁
𝑘𝑡−1=1

(𝛽𝑘𝑡−1𝑘𝑡 (1 −𝑚𝑘𝑡−1 ))𝜙𝑘𝑡−1 , 𝑚𝑘𝑡−1 ∼ 𝐵𝑒𝑟𝑛(𝜌), (3)

where 𝑚𝑘𝑡−1 is the dropout indicator drawn from a Bernoulli distribution with parameter 𝜌 . If

𝑚𝑘𝑡−1 = 0, the coupling connection from prior topic 𝑘𝑡−1 is preserved with its original weight;

otherwise, the connection is dropped out and this prior topic would not participate in the inference

to posterior topics.

Let’s consider the dropout probability in two extreme cases. (1) If we set the dropout probability

𝜌 = 0, then𝑚𝑘𝑡−1 = 0 (𝑘𝑡−1 ∈ {1, · · · , 𝐾𝑡−1}), it means all coupling connections are preserved and

rCTM-D is recovered to rCTM. (2) If 𝜌 = 1, then𝑚𝑘𝑡−1 = 1 (𝑘𝑡−1 ∈ {1, · · · , 𝐾𝑡−1}), rCTM-D is thus

degraded to 𝑇 separated topic modelings at each time-slice without any connections. Hence, we

would give the dropout probability 𝜌 within the range (0, 1) in the rCTM-D, to see its performance

with different ratios of coupling connection dropped out.

3 THE POSTERIOR INFERENCE
Since we induce multi-topic-thread evolution, the main challenge for the proposed rCTM is to solve

the intractable problem and obtain a closed-form inference to recurrent topics Φ𝑡 as well as their
coupling matrix B𝑡−1,𝑡 at each time slice. Such a task has never been explored before. To tackle

this problem, a set of auxiliary variables and data augmentation techniques are introduced. In this

section, we propose a novel Gibbs sampler with a backward-forward filter algorithm to implement

its inference process.

Sampling 𝜃 : the sparse document-topic affinity matrix 𝜃 could be sampled by marginalizing out

𝜃 and 𝜋𝑘 . First, we note that if the word count 𝑥𝑑𝑤𝑘𝑡 > 0, then 𝜃𝑑𝑘𝑡 must be 1 because it implies

there exists at least one word assigned to topic 𝑘𝑡 . Let vector 𝜃𝑑 (0) represent the 𝑑-th row vector

of 𝜃 with entries of 0, and vector 𝜃𝑘 (0) denote the 𝑘-th column vector of 𝜃 with entries of 0. If

𝑥𝑑 ·𝑘𝑡 = 0, the probability 𝜃𝑑𝑘𝑡 = 1 is marginalized as,

𝑃 (𝜃𝑑𝑘𝑡 = 1|𝛼, 𝜂0) =
𝐵(𝛼 |𝜃𝑑 (0) | + |𝜃𝑑 (0) |, 𝛼) ( |𝜃𝑘 (0) | + 𝜂0)
𝐵(𝛼 |𝜃𝑑 (0) |, 𝛼) ( |d𝑡 | − |𝜃𝑘 (0) | + 𝜂0)

, (4)

where 𝐵(−,−) denotes a beta distribution, |d𝑡 | records the document number at slice 𝑡 , |𝜃𝑑 (0) |,
|𝜃𝑘 (0) | record the number of 0 entries in the 𝑑-th row vector and 𝑘-th column vector of matrix 𝜃

respectively, and 𝜂0, 𝛼 are specified hyper-parameters.

Sampling 𝜃 : as we obtain the sparse document-topic affinity matrix 𝜃 , the topic proportion 𝜃𝑑
for document 𝑑 is sampled from its conditional posterior distribution as,

𝜃𝑑 ∼ 𝐷𝑖𝑟𝐾 (𝜃𝑑 ⊙ (𝛼 + 𝑥𝑑 ·𝑘𝑡 )), (5)

where 𝑥𝑑 ·𝑘𝑡 records the number of words in the document 𝑑 assigned to the topic 𝑘𝑡 .
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Sampling 𝑥𝑑𝑤𝑘𝑡 : the observed word𝑤 ’s occurrence in document 𝑑 is denoted as 𝑥𝑑𝑤 , and we

augment it as 𝑥𝑑𝑤 = 𝑥𝑑𝑤 · =
∑
𝑘𝑡
𝑥𝑑𝑤𝑘𝑡 , indicating the number of word𝑤 in the document 𝑑 assigned

to topic 𝑘𝑡 , which is sampled as,

𝑥𝑑𝑤𝑘𝑡 ∼ 𝑀𝑢𝑙𝑡
(
𝑥𝑑𝑤 ·, (

𝜃𝑑𝑘𝑡𝜙𝑘𝑡𝑤∑𝐾𝑡
𝑘𝑡
𝜃𝑑𝑘𝑡𝜙𝑘𝑡𝑤

)𝐾𝑡
𝑘𝑡=1

)
. (6)

The vector x𝑘𝑡 is defined as x𝑘𝑡 = [𝑥 ·1𝑘𝑡 , 𝑥 ·2𝑘𝑡 , · · · , 𝑥 ·𝑉𝑘𝑡 ], indicating the vector of all word

occurrences from document chunk d𝑡 assigned to the topic 𝑘𝑡 , which is illustrated in Fig. 4 (b).

𝑡 𝑡 + 1

apple, steven, 

jobs, tech, 

computer, pc,  

company, ios

apple, ios, price, 

tech, iphone, ipod, 

itune, mac, itouch, 

computer, product

apple, pay, mobile, 

store, online, tech, 

shopping, billing

Topic 1
Topic 1′

Topic 1′′

Word apple ios tech computer Prior

Topic 𝟏′ 18 10 15 12 no

6 3 3 5 -

Topic 𝟏′ 20 19 17 12 yes

Table. The difference of word occurrences (red) 

in the topic 1′ between prior and no prior.

(a) A motivating example to decode the coupling

relationship between consecutive topics.

𝑡

𝑤 𝑤 𝑤

|𝑑𝑡−1| |𝑑𝑡| |𝑑𝑡+1|

𝑡 − 1 𝑡 + 1

𝑦∙𝑘𝑡𝑘𝑡−1 𝑦∙𝑘𝑡+1𝑘𝑡

𝜙𝑘𝑡−1 𝜙𝑘𝑡 𝜙𝑘𝑡+1

𝜙𝐾𝑡−1 𝜙𝐾𝑡 𝜙𝐾𝑡+1

𝜙1 𝜙1 𝜙1

𝒙𝑘𝑡 𝒙𝑘𝑡+1

𝐾𝑡−1 𝐾𝑡 𝐾𝑡+1

𝒙𝑘𝑡−1

(b) The inference process with backward propagation.

Fig. 4. In Fig. (a), each topic is represented by a set of description words, their occurrences with and without
prior are respectively listed in black font, and the shared common word occurrences are denoted in red in the
table. In Fig. (b), arrows between consecutive topics denote their shared latent word counts in the backward
filter, which are annotated by {𝑦 ·𝑘𝑡𝑘𝑡−1 } in blue, and x𝑘𝑡 summarizes the inferred vector of word counts
assigned to topic 𝑘𝑡 in black.

Challenges of Inference.We proceed to infer the latent parameters in the component of coupled

topic evolution, which is the core part of the solution. There remain two demanding challenges to

be solved for a tractable inference, which significantly challenge the existing inference approaches.

• To obtain an independent inference to coupling weight 𝛽𝑘𝑡−1𝑘𝑡 , it is vital to decompose the

joint multiple dependencies into individual relationships associated with each prior topic.

• The essence of non-negative weight 𝛽𝑘𝑡−1𝑘𝑡 connecting topic 𝑘𝑡−1 to 𝑘𝑡 remains unknown.

To solve these challenges, we induce a motivating example to illustrate it. As shown in Fig. 4

(a), Topic 1 naturally evolves into two different threads from slice 𝑡 to 𝑡 + 1 via the proposed

generative process, and their contents are represented by a set of frequent words. Though their

word representations differ, it is found that the shared common words, such as ‘apple’, ‘tech’ and

‘computer’, naturally chain the prior Topic 1 and its thread Topic 1′ together. Indicated by the Table

in Fig. 4 (a), the occurrences of these common words in Topic 1′ with the prior influence of Topic 1
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are distinguished from Topic 1′ without such prior dependency. An insightful fact is found that

occurrences of common words in Topic 1′ with the prior could be decoded into two parts. One

part of these occurrences is directly from the documents at time 𝑡 + 1, and the other is implicitly

contributed from the prior Topic 1, denoted by the numbers in red from the Table. Without such

implicit word-level sharing, the dependency relationship between Topic 1 and its thread would not

exist. Hence, it is concluded that coupling weight 𝛽𝑘𝑡−1𝑘𝑡 connecting topic 𝑘𝑡−1 and its subsequent

thread 𝑘𝑡 is essentially summarized by their shared latent word occurrences.

Based on the above insightful observations, it’s of significance to derive the shared latent word

counts between consecutive topics. Since topics at slice 𝑡 (1 < 𝑡 < 𝑇 ) are recursively chained and

inter-dependent on prior topics at 𝑡 − 1, the conventional inference techniques [20, 40], which
are implemented as independent at each slice, ignore such recursive dependency between slices

and they are inapplicable for such an inference task. Therefore, we design a novel back-forward

filter to fully solve it and achieve the tractable inference. In the backward filter, the smart data

augmentation techniques unfreeze the limitation of recursive dependency, and derive the shared

latent word counts between consecutive slices. Then the time-evolving parameters are naturally

inferred in a closed-form in the forward filter.

Backward propagating the latent counts. We start from time slice 𝑇 since no more latent

variables depend on it. By integrating out 𝜙𝑘𝑇 , we obtain the likelihood of latent word counts

(𝑥 ·𝑤𝑘𝑇 )𝑉𝑤=1 according to the conjugacy between the Dirichlet and multinomial distributions.

L(𝑥 ·𝑤𝑘𝑇 )𝑉𝑤=1 ∼ 𝐷𝑖𝑟𝑀𝑢𝑙𝑡 (𝜓𝑘𝑇 ), 𝜓𝑘𝑇 =

𝐾𝑇−1∑︁
𝑘𝑇−1=1

𝛽𝑘𝑇−1𝑘𝑇𝜙𝑘𝑇−1 , (7)

where the multi-dependency𝜓𝑘𝑇 associated with all prior topics always appears in the sum form

as the parameter of Dirichlet. Since we could not directly obtain the individual dependency 𝛽𝑘𝑡−1𝑘𝑡
associated with each prior topic, we introduce an auxiliary variable 𝜉𝑘𝑇 ∼ 𝐵(𝑥 · ·𝑘𝑇 ,𝜓 ·𝑘𝑇 ), and further
augment 𝐷𝑖𝑟𝑀𝑢𝑙𝑡 . The joint likelihood of (𝑥 ·𝑤𝑘𝑇 , 𝜉𝑘𝑇 ) takes the following form [1],

L((𝑥 ·𝑤𝑘𝑇 )𝑉𝑤=1, 𝜉𝑘𝑇 ) = L(𝑥 ·𝑤𝑘𝑇 )𝑉𝑤=1 × 𝐵(𝜉𝑘𝑇 |𝑥 · ·𝑘𝑇 ,𝜓 ·𝑘𝑇 )

∝
𝑉∏
𝑤=1

𝑁𝐵(𝑥 ·𝑤𝑘𝑇 |𝜓𝑣𝑘𝑇 , 𝜉𝑘𝑇 ),
(8)

where 𝑁𝐵(−,−) is the negative binomial distribution, and 𝐵(−,−) is the beta distribution. With the

auxiliary variable introduced, the variable 𝑥 ·𝑤𝑘𝑇 now follows the negative binomial distribution,

which plays a critical role in bridging the Dirichlet and Poisson distributions. Hence, Lemma 3.1 is

defined in the following, which presents the transformation relationship from a negative binomial

to a Poisson distribution. The property of the Poisson distribution is thus able to be enjoyed when

disentangling the joint dependency relationship after the transformation.

Lemma 3.1. If𝑚 ∼ 𝑁𝐵(𝑟, 𝑝) represents that𝑚 follows a negative binomial distribution, then the
conditional posterior of 𝑙 given𝑚 and 𝑟 is denoted as (𝑙 |𝑚, 𝑟 ) ∼ 𝐶𝑅𝑇 (𝑚, 𝑟 ), a Chinese restaurant table
(𝐶𝑅𝑇 ) count random variable, which can be generated via 𝑙 =

∑𝑚
𝑛=1 𝑧𝑛 , 𝑧𝑛 ∼ 𝐵𝑒𝑟𝑛(𝑟/(𝑛 − 1 + 𝑟 )).

It can also be augmented under a compound Poisson representation as𝑚 =
∑𝑙
𝑡=1 𝑢𝑡 , 𝑢𝑡 ∼ 𝐿𝑜𝑔(𝑝),

𝑙 ∼ 𝑃𝑜𝑖𝑠 (−𝑟𝑙𝑜𝑔(1 − 𝑝)) [2, 47].

According to Lemma 3.1, a new variable 𝑦𝑤𝑘𝑇 ∼ 𝐶𝑅𝑇 (𝑥 ·𝑤𝑘𝑇 ,𝜓𝑤𝑘𝑇 ) is obtained based on 𝑥 ·𝑤𝑘𝑇
and𝜓𝑤𝑘𝑇 . With further data augmentation applied, an equivalent representation of 𝑦𝑤𝑘𝑇 under a

compound Poisson form is expressed as,

𝑦𝑤𝑘𝑇 ∼ 𝑃𝑜𝑖𝑠 (−𝜓𝑤𝑘𝑇 𝑙𝑛(1 − 𝜉𝑘𝑇 ). (9)
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Since𝜓𝑤𝑘𝑇 =
∑𝐾𝑇−1
𝑘𝑇−1=1

𝛽𝑘𝑇−1𝑘𝑇𝜙𝑣𝑘𝑇−1 as defined by Eq. (7), we feed it into the above equation, which

is extended as

𝑦𝑤𝑘𝑇 ∼ 𝑃𝑜𝑖𝑠 (−
𝐾𝑇−1∑︁
𝑘𝑇−1=1

𝛽𝑘𝑇−1𝑘𝑇𝜙𝑣𝑘𝑇−1𝑙𝑛(1 − 𝜉𝑘𝑇 )). (10)

We now introduce another auxiliary variable 𝑦𝑤𝑘𝑇𝑘𝑇−1 which is augmented from 𝑦𝑤𝑘𝑇 = 𝑦𝑤𝑘𝑇 · =∑𝐾𝑇−1
𝑘𝑇−1=1

𝑦𝑤𝑘𝑇𝑘𝑇−1 , and the above Eq. 10 is thus represented as follows according to the property of

Poisson distribution,

𝑦𝑤𝑘𝑇𝑘𝑇−1 ∼ 𝑃𝑜𝑖𝑠 (−𝛽𝑘𝑇−1𝑘𝑇𝜙𝑤𝑘𝑇−1𝑙𝑛(1 − 𝜉𝑘𝑇 )), (11)

where the joint coupling dependency is successfully decomposed into separated relationships

thanks to the merit of data augmentation technique and the property of Poisson distribution. Since

the auxiliary variable 𝑦𝑤𝑘𝑇𝑘𝑇−1 is augmented from the variable 𝑦𝑤𝑘𝑇 , now we define Lemma 3.2 in

the following to present the relationship between Poisson and multinomial distributions.

Lemma 3.2. If 𝑦. =
∑𝑁
𝑛=1 𝑦𝑛 , where 𝑦𝑛 ∼ 𝑃𝑜𝑖𝑠 (𝜃 ) are independent Poisson-distributed random

variables, then (𝑦1, ..., 𝑦𝑁 ) ∼ 𝑀𝑢𝑙𝑡 (𝑦., ( 𝜃1∑𝑁
𝑛=1 𝜃𝑛

, ...,
𝜃𝑁∑𝑁
𝑛=1 𝜃𝑛

)) [65].

Thus, 𝑦𝑤𝑘𝑇𝑘𝑇−1 is distributed as𝑀𝑢𝑙𝑡 via Lemma 3.2, which is expressed as,

𝑦𝑤𝑘𝑇𝑘𝑇−1 ∼ 𝑀𝑢𝑙𝑡
(
𝑦𝑤𝑘𝑇 , (

𝛽𝑘𝑇−1𝑘𝑇𝜙𝑤𝑘𝑇−1∑𝐾𝑇−1
𝑘𝑇−1=1

𝛽𝑘𝑇−1𝑘𝑇𝜙𝑤𝑘𝑇−1

)𝐾𝑇−1
𝑘𝑇−1=1

)
, (12)

where 𝑦𝑤𝑘𝑇𝑘𝑇−1 is successfully obtained to denote the shared latent word𝑤 ’ occurrence between

topic 𝑘𝑇 and 𝐾𝑇−1 , which indicates the numbers to be inferred denoted in red from the Table of

Fig. 4 (a).

We now induce the auxiliary variable 𝑧𝑤𝑘𝑇−1 , which is defined as 𝑧𝑤𝑘𝑇−1 =
∑𝐾𝑇
𝑘𝑇 =1

𝑦𝑤𝑘𝑇𝑘𝑇−1 . It

is viewed as latent word counts propagated from topic set at slice 𝑇 . Thus the vector z𝑘𝑇−1 is

defined as z𝑘𝑇−1 = [𝑧1𝑘𝑇−1 , 𝑧2𝑘𝑇−1 , · · · , 𝑧𝑉𝑘𝑇−1 ]. Another highlighted variable is 𝑦 ·𝑘𝑇𝑘𝑇−1 obtained via
𝑦 ·𝑘𝑇𝑘𝑇−1 =

∑𝑉
𝑤=1 𝑦𝑤𝑘𝑇𝑘𝑇−1 to summarize the sum of shared latent word counts between topic 𝑘𝑇

and 𝑘𝑇−1, which is computed in advance and cached to be used in the forward filter.

As we continue propagating backward from 𝑡 = 𝑇 − 1, · · · , 2, the latent word count vectors

z𝑘𝑇−2 , · · · , z1 are sequentially obtained. It’s worth noting that since no more document chunks after

slice 𝑇 , there is no propagated word count at slice 𝑇 such that z𝑘𝑇 = 0.
In conclusion, the propagating process between consecutive evolving topics from slice 𝑡 + 1

to 𝑡 is summarized as: (1) the latent word count 𝑦𝑤𝑘𝑡+1 is firstly derived from 𝑥𝑤𝑘𝑡+1 via the 𝐶𝑅𝑇

distribution, (2) then we distribute 𝑦𝑤𝑘𝑡+1 according to the𝑀𝑢𝑙𝑡 distribution to obtain the latent

count 𝑦𝑤𝑘𝑡𝑘𝑡+1 , and (3) finally 𝑦𝑤𝑘𝑡𝑘𝑡+1 is aggregated to form the latent counts 𝑧𝑤𝑘𝑡 at slice 𝑡 . This

process is illustrated in Fig. 4 (b).

Forward sampling the latent variables.Conditioned on the propagated auxiliary values {z𝑘𝑡 }𝑇−1𝑡=1 ,

{𝑦 ·𝑘2𝑘1,, · · · , 𝑦 ·𝑘𝑇𝑘𝑇−1 } and {𝜉𝑘2 , · · · , 𝜉𝑘𝑇 } obtained via the backward propagating filter. We start

sampling the latent variables by performing a forward sampling pass from 𝑡 = 1, · · · ,𝑇 .
Sampling Φ: based on the conjugacy between the Dirichlet and multinomial distributions, the

topics 𝜙𝑘1 (𝑘1 ∈ {1, · · · , 𝐾1}) at slice 𝑡 = 1 is marginalized from its conditional posterior,

𝜙𝑘1 ∼ 𝐷𝑖𝑟𝑉 (𝜂 + x𝑘1 + z𝑘1 ), (13)

where x𝑘1 = [𝑥 ·1𝑘1 , 𝑥 ·2𝑘1 , · · · , 𝑥 ·𝑉𝑘1 ] is the word occurrence vector inferred from document chunk

d1 at slice 1 via Eq. 6, and z𝑘1 = [𝑧1𝑘1 , 𝑧2𝑘1 , · · · , 𝑧𝑉𝑘1 ] denotes the propagated word count vector

from slice 2 to slice 1.
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At time 1 < 𝑡 ≤ 𝑇 , 𝜙𝑘𝑡 (𝑘𝑡 ∈ {1, · · · , 𝐾𝑡 }) is sampled as,

𝜙𝑘𝑡 ∼ 𝐷𝑖𝑟𝑉 (
𝐾𝑡−1∑︁
𝑘𝑡−1=1

𝛽𝑘𝑡−1𝑘𝑡𝜙𝑘𝑡−1 + x𝑘𝑡 + z𝑘𝑡 ), (14)

where x𝑘𝑡 is the word count vector inferred from d𝑡 at slice 𝑡 , and z𝑘𝑡 denotes the propagated word

count vector from slice 𝑡 + 1 to 𝑡 . It is noted z𝑘𝑇 = 0 at time slice 𝑇 .

SamplingB: indicated by Eq. (11), 𝛽𝑘𝑇−1𝑘𝑇 still entwines with 𝜙𝑤𝑘𝑇−1 in the parameter of Poisson

distribution. However, via

∑𝑉
𝑤=1 𝜙𝑤𝑘𝑡 = 1, it is marginalized as,

𝑦 ·𝑘𝑇𝑘𝑇−1 ∼ 𝑃𝑜𝑖𝑠 (−𝛽𝑘𝑇−1𝑘𝑇 𝑙𝑛(1 − 𝜉𝑘𝑇 )) . (15)

Recall the prior distribution of 𝛽𝑘𝑡−1𝑘𝑡 , which is defined as 𝛽𝑘𝑡−1𝑘𝑡 ∼ 𝐺𝑎𝑚(𝑟𝑘𝑡−1 , 1/𝑐𝑡 ) in Eq. (2),

thus it is marginalized via the conjugacy between the Poisson and Gamma distributions,

𝛽𝑘𝑡−1𝑘𝑡 ∼ 𝐺𝑎𝑚(𝑦 ·𝑘𝑡𝑘𝑡−1 + 𝑟𝑘𝑡−1 , 1/(𝑐𝑡 − 𝑙𝑛(1 − 𝜉𝑘𝑡 ))), (16)

where 𝑦 ·𝑘𝑡𝑘𝑡−1 is the sum of propagated word counts and cached in the backward filter via 𝑦 ·𝑘𝑡𝑘𝑡−1 =∑𝑉
𝑤=1 𝑦𝑤𝑘𝑡𝑘𝑡−1 , and the auxiliary variable 𝜉𝑘𝑡 is also induced in the backward filter.

Through a series of novel data augmentation techniques, the inference of recurrent topic 𝜙𝑘𝑡 and

its coupling strength {𝛽𝑘𝑡−1𝑘𝑡 }
𝐾𝑡−1
𝑘𝑡−1

are finally tractable at each slice. According to the expectation

of Gamma distribution, it is derived that 𝛽𝑘𝑡−1𝑘𝑡 ≈ (𝑦 ·𝑘𝑡𝑘𝑡−1 + 𝑟𝑘𝑡−1 )/(𝑐𝑡 − 𝑙𝑛(1 − 𝜉𝑘𝑡 )), implying

that the sum of propagated common word counts between consecutive topics 𝑘𝑡 and 𝑘𝑡−1 is an
important indicator to the coupling weight 𝛽𝑘𝑡−1𝑘𝑡 .

Sampling 𝑟𝑘𝑡−1 : recall 𝑟𝑘𝑡−1 is drawn from its prior distribution via 𝑟𝑘𝑡−1 ∼ 𝐺𝑎𝑚(𝑟0/𝐾𝑡−1, 1/𝑐0)
(cf. the subsection 2.1), and its likelihood distribution is defined as 𝛽𝑘𝑡−1𝑘𝑡 ∼ 𝐺𝑎𝑚(𝑟𝑘𝑡−1 , 1/𝑐𝑡 ) in
Eq. (2), the inference of 𝑟𝑘𝑡−1 incurs the non-conjugate problem between the Gamma and Gamma

distributions, hence, we induce Lemma 3.3 in the following to help solve it.

Lemma 3.3. if 𝑥𝑖 ∼ 𝑃𝑜𝑖𝑠 (𝑚𝑖𝑟2), 𝑟2 ∼ 𝐺𝑎𝑚(𝑟1, 1/𝑐0), 𝑟1 ∼ 𝐺𝑎𝑚(𝑎0, 1/𝑏0), then (𝑟1 |−) ∼ 𝐺𝑎𝑚(𝑎0+
𝑙, 1/(𝑏0 − 𝑙𝑜𝑔(1 − 𝑝))), where (𝑙 |𝑥, 𝑟1) ∼ 𝐶𝑅𝑇 (

∑
𝑖 𝑥𝑖 , 𝑟1) and 𝑝 =

∑
𝑖𝑚𝑖

𝑐0+
∑
𝑖𝑚𝑖

[1, 2].

Based on Eq. (15) and the above prior and its likelihood distribution, 𝑟𝑘𝑡−1 is sampled via Lemma

3.3,

𝑟𝑘𝑡−1 ∼ 𝐺𝑎𝑚(𝑟0/𝐾𝑡−1 + 𝑙𝑘𝑡−1 , 1/(𝑐0 − 𝑙𝑜𝑔(1 − 𝑝))),

𝑙𝑘𝑡−1 ∼ 𝐶𝑅𝑇 (
𝐾𝑡∑︁
𝑘𝑡=1

𝑦 ·𝑘𝑡𝑘𝑡−1 , 𝑟𝑘𝑡−1 ), 𝑝 =

𝐾𝑡∑︁
𝑘𝑡=1

𝑚𝑘𝑡 /(
𝐾𝑡∑︁
𝑘𝑡=1

𝑚𝑘𝑡 + 𝑐0),
(17)

where𝑚𝑘𝑡 = −𝑙𝑛(1 − 𝜉𝑘𝑡 ).
Sampling 𝑐𝑡 , 𝑐0: given the conjugacy between the Poisson and Gamma distributions, 𝑐𝑡 and 𝑐0

are sampled respectively as,

𝑐𝑡 ∼ 𝐺𝑎𝑚(𝑒0 +
𝐾𝑡−1∑︁
𝑘𝑡−1

𝑟𝑘𝑡−1 , 1/(
𝐾𝑇−1∑︁
𝑘𝑡−1

𝛽𝑘𝑡−1𝑘𝑡 + 𝑑0)),

𝑐0 ∼ 𝐺𝑎𝑚(𝑒0 + 𝑟0/𝐾𝑡−1, 1/(𝑟𝑘𝑡−1 + 𝑑0)),
(18)

where 𝐾𝑡−1 is inferred topic number from a topic proportion process via the latent IBP compound

distribution, 𝑟𝑘𝑡−1 and 𝛽𝑘𝑡−1𝑘𝑡 are sampled from the prior steps, and the rest variables 𝑒0, 𝑑0, 𝑟0 are

specified hyper-parameters.

The whole Gibbs sampling with a backward-forward filter is presented in Algorithm 1. At each

iteration, x𝑘𝑡 is firstly sampled via the 𝑀𝑢𝑙𝑡 distribution from the document chunk d𝑡 at each
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slice. During the backward filter, the auxiliary variable 𝜉𝑘𝑡 and 𝑦𝑤𝑘𝑡 are induced, and the sequence

of propagated word counts z𝑘𝑡 is obtained sequentially from slice 𝑇 to slice 2 via repeated data

augmentation and marginalization techniques. Conditioned on latent counts from the above filter

procedure, the recurrent topics Φ𝑡 and their coupling matrix B𝑡−1,𝑡 are updated in a closed-form

at each slice. These steps are repeated 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 times until the joint posterior distribution

converges. The latent parameters are thus estimated based on the stable samples.

By far, we have introduced our novel recurrent multi-topic modeling and the corresponding novel

and effective inference method. In the backward filter, the adoption of novel 𝑁𝐵 augmentation into

the dynamic Dirichlet chain is non-trivial, which bridges the gap between the Dirichlet and Poisson

distributions. Such an infusion plays an important role in unfreezing the limitation of recursive
dependency and deriving the shared latent word counts between consecutive topics, leading to an

efficient and tractable inference for recurrent topics and their multi-dependencies. Note that none

of the existing work on the temporal topic modeling proposes such assumptions that naturally fit

the complex sequential data, facilitates the interpretability of latent states, and yields a closed-form

and straight-forward update in the inference.

ALGORITHM 1: Gibbs Sampling with the backward-forward filter

Initializing topic assignments randomly for all documents in {d𝑡 }𝑇𝑡=1 ;
Initializing variables B𝑡−1,𝑡 , (𝑟𝑘𝑡 )

𝐾𝑡
𝑘𝑡=1

, 𝑐𝑡 and 𝑐0 at each slice;

for 𝑖𝑡𝑒𝑟 ∈ 1, 2, · · · , 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
for 𝑑 ∈ {d𝑡 }𝑇𝑡=1 do

Sampling the document-specific 𝜃𝑑 , 𝜃𝑑 by Eq. (4) and Eq. (5) ;

for𝑤 ∈ {𝑤1, ...,𝑤 |𝑥𝑑 |} do
Sampling the latent word count 𝑥𝑑𝑤𝑘𝑡 by Eq. (6) ;

end
end
Backward propagating: initialize 𝑡 = 𝑇 ;

while 𝑡 > 0 do
Sampling the auxiliary variable 𝜉𝑘𝑡 from beta distribution ;

Sampling the latent count 𝑦𝑤𝑘𝑇 via 𝐶𝑅𝑇 ;

Sampling the latent count 𝑦𝑤𝑘𝑇𝑘𝑇−1 by Eq. (12) ;

Caching the auxiliary variable 𝑦 ·𝑘𝑡𝑘𝑡−1 to use in the forward pass ;

𝑡 = 𝑡 − 1 ;

end
Forward sampling: initialize 𝑡 = 1 ;

while 𝑡 ≤ 𝑇 do
Sampling 𝜙𝑘𝑡 by Eq. (13) or Eq. (14) ;

Sampling 𝛽𝑘𝑡−1𝑘𝑡 by Eq. (16) ;

Sampling 𝑟𝑘𝑡 by Eq. (17) ;

Sampling 𝑐𝑡 , 𝑐0 by Eq. (18) ;

𝑡 = 𝑡 + 1 ;

end
end
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4 EXPERIMENTS
4.1 Experiments with Synthetic Data
To verify whether rCTM is capable to capture the multi-thread coupling weights between recurrent

topics, we manually create a synthetic dataset with predefined coupling relationships over three

slices.

Referring to the emprical study [2], three 1000 × 1000 document-word matrices with 1000
documents over the vocabulary size of 1000 are created sequentially at each slice according to the

following steps. At slice 𝑡 = 1, we initialize ten topics {0, 1, · · · , 9} via the Dirichlet distributions,
and randomly use them to generate the first 1000 documents. Given the specified coupling weight

matrix in Fig.5 (a), topics {0′, 1′, · · · , 9′} at slice 𝑡 = 2 are produced according to the proposed

evolutionary process, and randomly to generate the second 1000 documents. Similarly, topics

{0′′, 1′′, · · · , 9′′} at slice 𝑡 = 3 and the corresponding document chunk are also created.
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Fig. 5. The comparison of the true and estimated coupling weights between consecutive topics.

Based on three synthetic document-word matrices, we utilize the proposed rCTM to recover

the recurrent topics and their coupling weights to see whether the proposed model is able to

decode the intricate dependency relationship between topics. Due to the space limit, only the

comparison between the true coupling weights and the estimated weights by the rCTM is indicated

by Fig. 5. Noted from Fig. 5 (a) and (b), the estimated 10 × 10 coupling weights between topics

{0, 1, · · · , 9} at slice 𝑡 = 1 and topics {0′, 1′, · · · , 9′} at slice 𝑡 = 2 precisely match with the true

matrix. Similarly, the estimated coupling weights between topics {0′, 1′, · · · , 9′} at slice 𝑡 = 2 and

topics {0′′, 1′′, · · · , 9′′} at slice 𝑡 = 3 also highly resemble the true weights denoted by Fig. 5 (c)

and (d). Furthermore, not only strong coupling but also weak dependency relationships between

consecutive topics are successfully discriminated by rCTM. As the coupling weights between

consecutive topics are precisely captured, the discovery of precise topics are naturally followed.

This comparison highlights rCTM is capable to decode the intrinsic multi-thread dependency

between evolving topics.

4.2 Experimental Setup with Real-world Data
We use five real-world datasets from different domains to evaluate all algorithms. The statistics of

datasets are summarized in the Table 2.

• NIPS corpus [26]. This benchmark dataset consists of the abstracts of papers appearing in

the NIPS conference from the year 1987 to 2017. After the standard pre-processing and the

removal of the most frequent and the least words, the size of corpus is reduced to 6,753

documents and 4,434 unique vocabularies, and the average document length is about 50.
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Table 2. The statistics of five real-wold datasets.

Dataset #document #vocabulary time span #average document length

NIPS 6,753 4,434 1987-2017 50

Flickr 2,1435 1,887 Jun 1,2010 – Aug 22, 2010 10

News 29,247 12,204 April 17, 2014 - May 25, 2018 20

ACL 974 9,494 2016-2018 87

SOTU 227 6,570 1790 - 2016 1,152

• Flickr dataset. We collect the Flickr images within the city of Paris from June 1, 2010 to

August 22, 2010. Since each image is annotated by a set of tags denoted by users, we assume

those tags associated with an image make up a document. After the pre-processing, we obtain

21,435 documents with 1,887 vocabularies. Each document averagely contains 10 words.

• News [43] dataset. In this dataset, only the news labeled politics is used. There are 29,247

documents with 12,204 unique vocabularies from April 17, 2014 to May 25, 2018 after the

standard pre-processing. Each document averagely contains 20 words.

• ACL dataset. It consists of the accepted papers from ACL Anthology in the three consecutive

years. After the preprocessing, there are 974 documents with the dictionary size of 9,494.

Each document averagely contains 87 words.

• SOTU dataset. It contains the text of annual speech transcripts delivered by the President

of United States from 1790 to 2016. After the preprocessing, we obtain 227 documents with

6,570 vocabularies. Each document is averagely composed of 1,152 words.

In addition, the temporal densities of documents from NIPS, Flickr and News datasets are presented

in Fig. 6. On the ACL Anthology dataset, there are 265 papers in 2016, 324 papers in 2017 and 550

papers in 2018 respectively, and SOTU dataset is composed of the annual transcripts. The various

densities of document arrivals in these datasets as well as the time spans thus form a good testing

environment for the proposed rCTM and the other baselines.
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Fig. 6. The temporal densities of the real-world datasets.

We compare the proposed model with the following state-of-the-art algorithms.

– DTM, short for the dynamial topic modeling [9], is the seminal dynamic model for topic

evolution discovery, where the dynamics of both topic proportions and word distributions

are captured via the state space models.
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– DCT, short for the Dynamic Clustering Topic model [40], is one of the existing models which

dynamically learns the topic evolution along the time slices, where both topic popularity and

word evolution is captured by Dirichlet chains.

– rCRP, a recurrent Chinese Restaurant Process [4], is regarded as one of the benchmark

algorithms in modeling dynamics topics where evolving topics are chained by using a

recurrent Chinese Restaurant Process.

– ST-LDA, short for Streaming LDA [6], originally learns the dynamic topic evolution between

consecutive individual documents via a Dirichlet distribution. We extend it to capture the

topic dependencies between the consecutive document chunks. In this approach, the topic

evolution is chained by the Dirichlet distribution with a balanced scale parameter.

– DP-density [23], explores the density of document arrivals to detect the dynamic topics

based on the social media data streams, where a Dirichlet Process is used to infer the topic

number and density estimation technique is exploited to learn the dynamics of topics.

– MStream, a model-based text stream clustering algorithm [60], deals with the concept drift

problem for the short text streams. To accommodate the topic drift in the long text, we revise

its assumption of one-topic proportion to multi-topic proportions for each document.

– DM-DTM is short for the Dual Markov Dynamic Topic Model [2] that exploits two Markov

chains to capture both topic popularity and topic evolution. In this approach, the topic

popularity is captured by the Gamma Markov chain, and topic evolution is modeled by the

Dirichlet chain.

– RNN-RSM is an abbreviation for Recurrent Neural Network-Replicated Softmax Model [25],

where the topic discovery and sequential documents are jointly modeled in the undirected

raplicated softmax (RSM)[29] and the recurrent neural network (RNN) conveys the temporal

information for the bias parameters of RSM.

Besides these competitive baselines, the following are our proposed model and its variations.

– rCTM is the proposed recurrent Coupling Topic Model, where a new proposal of the multi-

topic-thread is induced to describe the topic evolution, and the IBP compound distribution is

exploited to infer the topic number as well as sparse topic proportions for each document.

– rCTM-D refers to the variant model with the dropout technique. In this approach, the dropout

is facilitated over the coupling connections of topics to randomly drop out connections with

the given probability, which is used to validate the significance of multi-dependency between

evolving topics.

– rCTM-F is another variant of rCTM, where the topic number is specified by a fixed number

without resorting to the latent IBP compound distribution, and a customized topic proportion

of each document is replaced by the fixed common topics at each slice.

In the experiment, we divide a dataset into a sequence of equidistant time slices chronologically,

and each document chunk corresponds to a slice. NIPS, Flickr, News and ACL dataset are divided

per three years, per fortnight, per month and per year respectively, and SOTU dataset is divided

into 5 slices and each slice spans 45 years. At slice 𝑡 = 1, topics are directly learned from the

document chunk d1 without prior dependency. When time 𝑡 > 1, the evolution of topics depends

on their prior states and their coupling relationships. The experimental settings for all models

are as follows. (1) In each dataset, the time division is the same for those document chunk-based

models including DTM, DCT, rCRP, ST-LDA, DM-DTM, RNN-RSM, the proposed rCTM and its

two variants, and document stream-based models DP-density and MStream do not require this

setting. (2) Regarding the topic number setting, the nonparametric models including rCTM, rCTM-

D, DM-DTM, DP-density and rCRP are able to automatically learn topic number without such a

setting, while DTM, DCT, ST-LDA, MStream, RNN-RSM and rCTM-F are specified with the same
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Table 3. Perplexity results of the increasing training data with varying ratios 𝑝 ∈ {0.6, 0.7, 0.8, 0.9} on
the NIPS, Flickr and News datasets (The best performance is highlighted in boldface, the second best is
emphasized with ∗ and the third best is denoted in underlined).

Models NIPS Flickr News

𝑝 = 0.6 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.9 𝑝 = 0.6 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.9 𝑝 = 0.6 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.9

DTM 1658 1632 1619 1597 522 496 487 469 2880 2854 2821 2785

DCT 1718 1669 1592 1534 430 412 398 390 2682 2609 2571 2555

rCRP 1516 1457 1395 1360 413 398 388 381 2692 2588 2559 2499

MStream 1328 1324 1303 1297 419 395 380 375 2749 2677 2637 2578

DP-density 1488 1457 1450 1446 347 344 342 340 2622 2570 2522 2490

ST-LDA 1207 1203 1198 1195 249 245 240 237 2864 2724 2625 2549

DM-DTM 1400 1364 1333 1309 427 382 354 330 2401 2365 2323 2300

rCTM 1057 1045 1015 1013 179 163 152 140 1824 1773 1749 1630

rCTM-F 1090* 1075* 1040* 1036* 192* 178* 166* 160* 2099* 2002* 1931* 1859*

topic number as those nonparametric models in each dataset. (3) In terms of the document length,

the one-topic assumption from DCT, MStream and DP-density is retained on the NIPS, Flickr and

News datasets, and the assumption is extended to a multi-topic assignment to adapt to the long

text of ACL and SOTU dataset. (4) In rCTM, the hyper-parameter is given as 𝜂0 = 0.1, 𝛼 = 0.1 in
the component of topic proportion construction, while the rest are tuned as 𝜂 = 0.1, 𝑎0 = 𝑏0 = 1,
𝑒0 = 1, 𝑑0 = 10, 𝑟0 = 1 by grid search based on the metric of perplexity during the topic evolution

process. We run 1, 000 Gibbs samplings to implement the inference process. The parameter settings

in other baselines firstly refer to their original papers if available, otherwise we set them at their

optimal performance.

4.3 Quantitative Results
Traditionally, perplexity [10] is defined tomeasure the goodness-of-fit of topicmodeling by randomly

splitting the dataset into training set and testing set, and it is popularly used in the recent topic

modeling work [2, 21, 30, 64]. In addition, several new metrics of topic coherence evaluation have

been proposed for a comparative review. Among all the competing metrics, the topic coherence

[36, 45] matches human judgement most closely, so we adopt it in this work. We also report

perplexity, primarily as a way of evaluating the generativeness of different approaches.

4.3.1 Perplexity over Held-out Set. Following the setting in [25], we randomly hold out 𝑝 fraction

of the dataset (𝑝 ∈ {0.6, 0.7, 0.8, 0.9}) at each time slice, and train a model with the rest and predict

on the sum of held-out sets. A lower perplexity indicates a better generation of the model. For

comparing multiple modelings with different assumptions as well as different inference mechanisms,

the per-word perplexity on the sum of held-out sets is formally defined as

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑒𝑥𝑝 (
−∑𝑇

𝑡=1

∑ |d𝑡 |
𝑑=1

∑𝑉
𝑤=1 𝑙𝑜𝑔 𝑃 (

∑𝐾𝑡
𝑘𝑡=1

𝜃𝑑𝑘𝑡𝜙𝑘𝑡𝑤)∑𝑇
𝑡=1

∑ |d𝑡 |
𝑑=1

∑𝑉
𝑤=1 𝑥𝑡𝑑𝑤

),

where |d𝑡 | records the number of documents at slice 𝑡 , 𝑥𝑡𝑑𝑤 indicates the observed occurrence

number of word 𝑤 in the document 𝑑 at slice 𝑡 , while 𝜃𝑑 and 𝜙𝑘𝑡 are estimated in the inference

procedure.
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Fig. 7. Perplexity comparison between rCTM and its variant rCTM-D with different dropout probabilities
𝜌 ∈ [0, 1) on the NIPS, Flickr and News datasets. Both models are measured over the training data with the
split ratio 𝑝 = 0.9.

Table 3 reports the perplexity performance over varying ratios of held-out sets on the short-text

datasets including NIPS, Flickr and News dataset. By examining the performance result on each

dataset, we have the following remarks.

Document chunk-based models. (1) Though the density of document arrivals as well as time

span on three datasets are very different, the proposed rCTM and its variant rCTM-F consistently

outperform the other baselines with a significant decrease in the perplexity at varying ratios of held-

out sets, which confirms the superiority of the proposal of multiple dependencies between evolving

topic sequences. Moreover, though rCTM-F is specified with the same topic number learned from

rCTM, the perplexity difference between them validates the advantage of the latent IBP compound

process in the task of inferring topic number and sparse topic proportion construction. (2) Except

for the rCTM and its variant, ST-LDA achieves the best performance on the varying ratios on

the NIPS and Flickr datasets, while DM-DTM wins at high ratios on the News dataset, which

may be explained that the Gamma Markov Chain in DM-DTM is more fit for the topic weight

evolution than others on the News dataset. Among the rest document chunk-based models, the

nonparametric model rCRP consistently performs better than DCT and DTM at varying ratios on

the three datasets.

Document stream-based models. It is noted that the performance of MStream and DP-density

is different on the three datasets, though both models target at the document streams. DP-density

achieves a better result than MStream on the Flickr and News dataset while its performance

decreases on the NIPS dataset. That’s because DP-density incorporates the arriving density of

document streams to determine the dynamics of topics while MStream does not, thus DP-density

is more suitable for the social media data with dense arrivals of documents. Such a comparison

also implies the proposed generic rCTM is robust to the datasets with different temporal densities.

Dropout-based model. The comparison between rCTM and the variant rCTM-D with varying

dropout probabilities on the three datasets is shown in Fig. 7. Both proposed models are measured

with training data ratio 𝑝 = 0.9. In rCTM-D, the dropout indicator𝑚 is drawn from the Bernoulli

distribution with 𝜌 . If𝑚 = 0, the coupling connection is preserved, otherwise it is pruned. On

the NIPS dataset, it is observed that perplexity results dramatically increase when the dropout

probability 𝜌 ≥ 0.3. The large dropout probability would drop out the most coupling connections,

and topics thus evolve with little dependency from their prior states, leading to the corrupted

evolving topic sequences. The comparison results imply the significance of multiple couplings

between topic chains. On the NIPS dataset, when the dropout probability 𝜌 ≤ 0.3, it implies most

of the multi-coupling connections are maintained, and the perplexity results are stable and nearly

approach the optimal performance. On the Flickr dataset, rCTM-D achieves the best performance
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Table 4. Perplexity performance of the increasing training data with varying ratios 𝑝 ∈ {0.6, 0.7, 0.8, 0.9} on
the ACL and SOTU datasets (The best performance is highlighted in boldface, the second best is emphasized
with ∗ and the third best is denoted in underlined).

Models ACL SOTU

𝑝 = 0.6 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.9 𝑝 = 0.6 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.9

DTM 2599 2581 2567 2555 4060 4181 4312 4479

DCT 3340 3295 3263 3175 4211 3910 3774 3477

rCRP 3314 3271 3233 3140 4089 3826 3701 3416

MStream 3109 3065 3025 2800 3461 3400 3350 3317

DP-density 3105 3049 2980 2803 3480 3445 3415 3389

ST-LDA 2612 2549 2512 2488 3256 3214 3181* 3160*

DM-DTM 2766 2704 2648 2591 3502 3467 3430 3399

rCTM 2426 2388 2371 2355 3336* 3239* 3165 3144

rCTM-F 2479* 2445* 2416* 2401* 3472 3304 3206 3166

0 0.2 0.4 0.6 0.8 1.0
Dropout probability ρ

2200

2700

3200

3700

4200

Pe
rp
le
xi
ty

rCTM
rCTM-D

(a) ACL dataset

0 0.2 0.4 0.6 0.8 1.0
Dropout probability ρ

2700

2850

3000

3150

Pe
rp

le
xi

ty

rCTM
rCTM-D

(b) SOTU dataset

Fig. 8. Perplexity comparison between rCTM and the variant rCTM-D with different dropout probabilities
𝜌 ∈ [0, 1) on the ACL and SOTU datasets. Both models are measured over the training data with the split
ratio 𝑝 = 0.9.

when the dropout probability 𝜌 ≤ 0.2, and it is more evident that rCTM-D on the News dataset

obtains its best performance only when the dropout probability 𝜌 = 0, which means all coupling

relationships are preserved. The results from rCTM-D on the three datasets further confirms the

proposal of multi-coupling relationships between evolving topics.

Indicated in the Table 4 and Fig. 8, the perplexity analysis of all competitors on the two long-text

datasets including ACL and SOTU dataset, is in the following.

Document chunk-based model. On the ACL dataset, (1) both rCTM and rCTM-F achieve the

best performance with an evident decrease in the perplexity at different ratios, followed by the

ST-LDA and DTM. Such a comparison once again validates the proposal of multi-topic-thread

evolution. With the same topic number setting, the distinct difference between rCTM and rCTM-F

in the perplexity is credited to the latent IBP compound process in the construction of sparsely

customized topic proportions for documents. (2) Among the rest document chunk-based models,

DM-DTM performs better than rCRP, followed by the performance of DCT.
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On the SOTU dataset, (1) the competitor of ST-LDA and the proposed rCTM achieve comparable

results at varying ratios, while the former performs better at ratio 𝑝 = 0.6 and 𝑝 = 0.7 and the

latter stands out at 𝑝 = 0.8 and 𝑝 = 0.9. However, both strong methods are defeated by the

variant of rCTM-D, which earns a much lower perplexity result when the dropout probability 𝜌 ∈
{0.4, 0.5, 0.6, 0.7, 0.8}, indicated by Fig.8 (b). Specifically, rCTM-D reaches its optimal performance

at the dropout probability 𝜌 = 0.6. Such results imply that the performance of rCTM improves when

a large portion of topic couplings between evolving topics are dropped out. After carefully checking

the word distributions of topics as well as their coupling weights, we find this phenomenon is

caused by the characteristics of the long-term dataset. In this case, the SOTU dataset is divided

into 5 slices, and each slice is allocated with 45 documents spanning 45 years. A portion of topics

crossing two slices are actually weakly coupled during the 90-year time, even though some topics

seem similar by sharing common frequent words (e.g., power, president, and right). Hence, some of

their dependency connections could be dropped out. This phenomenon remains at different time

divisions. And not coincidentally, it also occurs in other baselines, whose performance degrades

on this dataset. However, rCTM-D survives by dropping out some topic coupling connections

between evolving topics on the dataset. (2) Among the rest document chunk-based models, their

performance is ranked as DM-DTM > rCRP > DCT > DTM.

Document stream-based model. On the ACL dataset, the difference between DP-density and

MStream is slight at varying ratios in terms of a 3-year timespan, while MStream performs better

than DP-density on the SOTU dataset. It’s because the annual transcripts from the SOTU dataset may

not be a good clue to the density estimation in DP-density and its performance is thus compromised.

Dropout-based model. Indicated by Fig. 8 (a), only when the dropout probability 𝜌 = 0, rCTM-D

obtains its best performance on the ACL dataset when all coupling relationships are preserved,

which confirms the significance of multi-coupling relationships between topic chains. Distinct

from the aforementioned datasets, SOTU dataset contains the long-range annual transcripts from

1790 to 2016, which results in the weak connection between topics in consecutive slices. Therefore,

rCTM-D reaches the lowest perplexity by dropping out some topics coupling connections between

topics.

4.3.2 Topic Coherence. We proceed to evaluate the interpretability of detected topics based on

the important measure of topic coherence normalized 𝑃𝑀𝐼 (Pointwise Mutual Information) [36],

which is formally defined as based on the top-𝑘 terms within a topic,

𝐶 =
2

𝑘 (𝑘 − 1)∑𝑘−1
𝑖=1

∑𝑘
𝑗=𝑖+1 𝑛𝑃𝑀𝐼 (𝑤𝑖 ,𝑤 𝑗 )

, 𝑛𝑃𝑀𝐼 (𝑤𝑖 ,𝑤 𝑗 ) =
𝑙𝑜𝑔

𝑃 (𝑤𝑖 ,𝑤𝑗 )+𝜖
𝑃 (𝑤𝑖 )𝑃 (𝑤𝑗 )

−𝑙𝑜𝑔(𝑃 (𝑤𝑖 ,𝑤 𝑗 ) + 𝜖)
,

where 𝑃 (𝑤𝑖 ,𝑤 𝑗 ) denotes the probability of co-occurrence of𝑤𝑖 and𝑤 𝑗 in one document and 𝑃 (𝑤𝑖 )
is the probability of𝑤𝑖 appearing in the document. A higher 𝑃𝑀𝐼 value indicates the terms within

the topics are more consistent and interpretable. To obtain an unbiased result, we resort to the

large-scale external Wikipedia data [45] to measure the top-10 coherence values for all competitor

models. The average topic coherence results based on all topics from each slice are presented in

Fig. 9, and the analysis of all competitor models is in the following.

On the NIPS and Flickr dataset, the topic coherence results are presented in Fig. 9 (a) and (b). The

dropout probability of rCTM-D is set as 𝜌 = 0.2 on both datasets, at which rCTM-D obtains the

lowest perplexity. It is observed rCTM and its variants achieve the highest coherence scores among

all competitors, and rCTM is superior to its variants with a higher coherence score, indicating more

interpretable and coherent topical terms therein. The superiority of rCTM-based models over the

other baselines with the single-topic-thread evolution assumption vouches for the significance
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Fig. 9. Average term coherence results from all competitor models on the five datasets, where the proposed
rCTM, rCTM-F and rCTM-D are emphisized by the rightmost three bars. (For the purpose to align with their
coherence bars, RNN refers to RNN-RSM, MS corresponds to MStream, DP is short for DP-density here).

of multi-thread couplings between evolving topics. In addition, DP-density is noted to retain

its advantage over other baselines with a higher coherence score, while ST-LDA degrades and

RNN-RSM, MStream, and DM-DTM improve their performance by a large margin on the Flickr

dataset.

On the News dataset, the dropout probability in rCTM-D is set as 𝜌 = 0.1. The coherence results
from all competitors are presented in Fig. 9 (c). It’s noted that rCTM still outperforms others with

the highest coherence score, and baselines including RNN-RSM, DP-density, ST-LDA, DM-DTM

and rCTM-F offer the competitive coherence scores. Among them, DM-DTM is tied with rCTM-F

for second place and performs better than ST-LDA and rCTM-D. Besides, RNN-RSM consistently

outperforms DTM by a large margin, and rCRP also performs better than DCT with a higher

coherence score. In contrast, the performance of MStream degrades, implying its disadvantage on a

dataset with dense arrivals.

On the ACL and SOTU dataset, the dropout probability of rCTM-D in these two long-text datasets

is given as 𝜌 = 0.1 and 𝜌 = 0.6 respectively. The coherence results are presented in Fig. 9 (d) and (e).

On the ACL dataset, the proposed rCTM is superior to its variants, and ST-LDA is followed among

the rest competitors. In constrast, on the SOTU dataset, rCTM-D with 𝜌 = 0.6 is the winner with
the highest coherence value and rCTM is the runner-up compared with other baselines. Besides the

proposed model, the performance of rCRP, DCT, DP-density and ST-LDA is close in the coherence

measure, while the performance of DTM, RNN-RSM decreases in these two long-text documents.

In a nutshell, the proposed rCTM and its variants exhibit superiority to other baselines in terms

of the coherence metric on different datasets. Such performance is roughly consistent with the

perplexity results, which once again confirms the significance of modeling multiple couplings

between evolving topics as well as the sparse customization of topic proportions in rCTM. Besides,
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Table 5. Document time stamp prediction accuracy results over the five datasets (The best performance is
highlighted in boldface).

DTM RNN-RSM DCT rCRP ST-LDA DM-DTM rCTM rCTM-F rCTM-D

NIPS 0.50 0.52 0.45 0.50 0.45 0.53 0.55 0.53 0.54

Flickr 0.46 0.48 0.45 0.46 0.53 0.50 0.54 0.52 0.54

News 0.53 0.53 0.49 0.50 0.54 0.52 0.55 0.54 0.54

ACL 0.60 0.62 0.63 0.64 0.67 0.62 0.68 0.67 0.66

SOTU 0.40 0.43 0.45 0.45 0.47 0.44 0.48 0.48 0.51

DP-density, ST-LDA, DCT and rCRP are robust on different datasets without a drastic change in

the coherence values. However, RNN-RSM and DTM are advantageous on the short-text datasets,

while DM-DTM more fits the datasets with densely irregular document arrivals. The performance

of MStream is not satisfactory on the NIPS, News, ACL and SOTU datasets.

4.3.3 Document Time Stamp Prediction. To further evaluate these recurrent modelings, referring

to the empirical study [25] we split the sequential documents at each time slice when the ratio

𝑝 = 0.9, and predict the time stamp of a document on the held-out dataset by finding the most

likely location based on the topics with maximum likelihood over the timeline. The document

stream-based methods are excluded due to the different settings and the results of document time

stamp prediction accuracy from the rest competitors are presented in the Table. 5.

It’s noted that the proposed rCTM as well as its variants rCTM-F and rCTM-D outperform the

other baselines with the higher prediction accuracy over five datasets, implying the higher semantic

match between the held-out documents and recognized topics along the timeframe. Among the

rest of competitors, ST-LDA outperforms the other baselines on the Flickr, News, ACL and SOTU

dataset. DM-DTM and RNN-RSM gain comparable results over the five datasets while enjoying

the advantage in the short-text datasets, which is true of DTM. In addition, rCRP obtains a better

prediction accuracy than DCT over the five different datasets.

4.3.4 Effects of Varying 𝜂. Since topics at slice 𝑡 = 1 are directly learned via 𝜙𝑘1 ∼ 𝐷𝑖𝑟𝑉 (𝜂)
(𝑘1 ∈ {1, 2, · · · , 𝐾1}) without prior dependency. Then they serve as the input to the recurrent

coupled topic sequences, and the posterior topics as well as their coupling relationships at slice

𝑡 > 1 are sequentially learned. Hence, the results of topics at slice 𝑡 = 1 are important for the whole

topic evolutionary process, which is also true for other dynamic topic models. To see the effects of

varying 𝜂 on the overall performance, topics at slice 𝑡 = 1 are initialized with varying 𝜂 in these

competitors following the prior work [2, 40], and the overall performance on the five datasets is

presented in Fig. 10.

The results of the document stream-based approaches as well as DTM and RNN-RSM are excluded

due to the different settings. The perplexity performance is measured on the held-out set when

𝑝 = 0.9 on the five datasets, and the dropout probability in rCTM-D is set 𝜌 = 0.2 on the NIPS,

𝜌 = 0.2 on the Flickr, 𝜌 = 0.1 on the News, 𝜌 = 0.1 on the ACL and 𝜌 = 0.6 on the SOTU

datasets. We observe that, in addition to the lowest perplexity results, the proposed rCTM and its

two variants acquire a slower increase than other baselines with 𝜂 growing, which demonstrates

the merit of rCTM and its variants that they are robust and less sensitive to the growing 𝜂 with

the multi-topic-thread evolution assumption. On the other hand, the increasing perplexity from

all competitors indicates that varying 𝜂 affects their performance in the task of evolving topic
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Fig. 10. Performance comparison with varying the parameter 𝜂 ∈ (0, 1) on the five datasets.

sequences, and a small value 𝜂 to initialize topics at slice 𝑡 = 1 is preferred by these document-chunk

based topic modelings.

4.4 Qualitative Results
4.4.1 Topic Evolving Sequence with Coupled Dependencies. To have an intuitive understanding of

evolving topics as well as their multi-dependency relationships, we present two representative

examples to exhibit the evolutionary process.

Fig. 11 (a) presents the recurrent topics on the NIPS dataset, which is divided into four equidistant

time-slices, and topics in the last three slices are exhibited considering the space limit. Fig. 11 (b)

provides the corresponding weights between consecutive topics, which summarizes the sharing

of latent word counts between them. Our observations are in the following. (1) Topics in each
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(a) Recurrent topic sequences.

Topic 3.1 Topic 3.2 Topic 3.3 Topic 3.4

Topic 2.1 9.3 1.3 4.4 1.5

Topic 2.2 0.4 485 1.1 2.5

Topic 2.3 1.5 1.6 1079 3.8

Topic 2.4 38 127 54 154

Topic 2.1 Topic 2.2 Topic 2.3 Topic 2.4

Topic 1.1 6.2 339 8.4 10.7

Topic 1.2 115 9.1 8.9 1.4

Topic 1.3 1.3 4 400 3.1

(b) Corresponding coupling weights between topics in two consecutive slices.

Fig. 11. The example of topic evolving sequence discovered on the NIPS dataset. In Fig. (a), topics are annotated
by their time-slice and index, each of them is represented by the top-8 words within the rectangular, common
words between consecutive topics are highlighted by different colors and the thickness of arrows between
consecutive topics indicates their coupling strengths. Fig. (b) summarizes the exact coupling weights between
consecutive topics.

column are semantically meaningful by the most probable words, and similar topics are closely

coupled with the highlighted common words across the slices. For example, the topic sequence

about Bayesian Method evolves from topic 1.1 -> topic 2.2 -> topic 3.2 across three slices with strong

coupling weights indicated in Fig. 11 (b), and the highlighted common words in their contents,

such as ‘bayesian’, ‘distribution’ and ‘estimate’, are shared crossing the slices. In addition, the topic

sequence about Reinforcement Learning develops from topic 1.3 -> topic 2.3 -> topic 3.3 with strong

coupling dependencies across the slices. (2) Besides long-term topic sequences, topic 1.2 about SVM

Classification in the first column evolves to the subsequent topic 2.1, which weakly connects with

the posterior topics in the last slice. In comparison, the general topic of topic 2.4 contributes to all

posterior topics with different coupling weights. (3) Coupling weights indicate that new topic 3.1

about Neural Network weakly connects with the priors and no common words are shared, which

fits the fact that the topic of the neural network gets its popularity in recent years.
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fnac, live, music,

concert, festival, 

indetendance, ville, 

show

cmentarz, lachaise, 

pere, tomb, statue, 

Julie, sad, nuit

glaz’art, plage, show, 

live, rock, concert, 

music

sport, parc, europa, 

saint, des, germain, 

prince, soccer

tokyo, dynasty, 

contemporary, 

exhibition, show, 

hipstamtic, art

prick, concert, wood, 

karen, drifter, lonely, 

nada, surfconcert, live, show, 

fnac, indetendance, 

festival, rock, ville

challenge, bibendum, 

road, transportation, 

michelin, durable, race,

security, sport

sport, race, tour, road, 

roadtrip, bibblepro, 

bike, bibble

fnac, indetendance,

concert, live,

festival, show, ete, 

summer

Independence festival

Cemetery

Music Show

Art show

Soccer game

Concert

Independence festival

Bike race

Challenge bibendum

Independence festival1.1

1.2

1.3

2.1

2.2

2.3

2.4

3.1

3.2

3.3

(a) Recurrent topic sequences.

Topic 2.1 Topic 2.2 Topic 2.3 Topic 2.4

Topic 1.1 2.2 0 5.3 0.1

Topic 1.2 0.2 1.2 0 0.2

Topic 1.3 0 1.1 0 0

Topic 3.1 Topic 3.2 Topic 3.3

Topic 2.1 0.8 0 0.6

Topic 2.2 0 0.1 0

Topic 2.3 7.9 0.2 1.2

Topic 2.4 0.2 0.3 0.2

(b) Corresponding coupling weights between topics in two consecutive slices.

Fig. 12. The example of topic evolving sequence discovered on the Flickr dataset. In Fig. (a), topics are
annotated by their time-slice and index, each of them is represented by the top-8words within the rectangular,
common words between consecutive topics are highlighted by different colors and the thickness of arrows
between topics indicates their coupling strengths. The arrows with coupling weight 0 are not plotted. Fig. (b)
summarizes the exact coupling weights between consecutive topics.

Distinct from scientific topic sequences on the NIPS dataset, the Flickr dataset records real social

activities in the world and its topic sequences together with their coupling weights are presented in

Fig. 12. We report the recurrent topics in the last month and each slice lasts for ten days. We observe

that (1) the coupling weights between consecutive social activities on the Flickr dataset are small

compared with scientific examples on the NIPS dataset, and some coupling weights are 0. That is
because each Flickr document contains fewer words and the discovered topics from Flickr are real

and different activities. The coupling weights between them are thus small. (2) Relevant topics are

coupled while their coupling weights and shared common words are distinguishable, for example,

even though the topic sequence about Concert evolves as (topic 1.1) -> (topic 2.1, topic 2.3) -> (topic

3.1, topic 3.3) in multiple threads across three slices. Indicated by the coupling weights in Fig. 12 (b),

topic 2.1 couples the posterior topics with the small weights, and topic 3.3 also weakly couples its

prior topics. Though both of them talk about Music, they are distinguished from the other strong
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coupled topic sequences on Independence Festival, which shares more common frequent words,

e.g., ‘fnac’ and ‘indetendance’, highlighted in green color. In addition, the topics about Sport (topic

1.2, topic 1.3) -> (topic 2.2) are naturally chained, and the small weights between them indicate

each topic records a different sports event, which is reinforced that no more common words are

shared between them except for ‘sport’ and ‘race’. (3) Unrelated topics are naturally identified by

the small coupling weights. For example, topic 2.2 is about Soccer Game, whose connections with

the posterior topics are denoted by the small weights, and it is also true for topic 2.4, which is

unrelated to the posterior topics.

Two intuitive examples from the NIPS and Flickr datasets further prove the effectiveness of multi-

dependencies associated with prior topics. And the flexible weights learned via the hierarchical

Gamma distribution successfully identify the evolutionary closeness between consecutive topics.

5 RELATEDWORK
Most of the dynamic topic models are built under the single-topic-thread assumption that the

current state of one topic solely depends on its own historical states without referring to other

topics. We summarize the related dynamic models in three aspects. The first two modelings are

inherited from temporal topic modeling, and the third one is founded on Poisson factor analysis.

Last but not the least, we briefly compare language models with recurrent neural networks.

State space modeling. One of the benchmark models learning the evolution of topics is the state

space model, in which the V -dimensional topic 𝜙𝑡 at step 𝑡 evolves via 𝜙𝑘𝑡 ∼ N(𝜙𝑘𝑡−1 , Σ) [9] or the
linear form 𝜙𝑘𝑡 ∼ N(𝛽𝜙𝑘𝑡−1 , Σ) [47]. The seminal work dynamic topic model (DTM) [9] captures

the evolution of topics by the state space models over the sequence of discrete time-slices, where

Kalman filter [34] infers temporal update of the state space parameters. Comparing with the classic

DTM, our model significantly differs in three aspects. Firstly, instead of fixed topic number setting in

DTM, our model is capable to automatically learn the topic number at each slice as well as the sparse

topic proportions of each document and thus accommodate new topics along the time. Second, the

topic evolves in a single thread in DTM and it fails to identify the influences from other related

topics. However, our model breaks such a limitation and supposes topic evolves in multiple threads

with corresponding dependencies on the previous. Furthermore, our model induces a tractable

and efficient inference method with data augmentation techniques, and such an inference problem

cannot be solved by DTM. The later continuous time dynamic topic model (cDTM) [52] replaces

the discrete state space model and detects the evolution of topics over continuous documents

using Brownian motion, where variational Kalman filtering is exploited to infer the parameter in

the continuous time setting. To relieve the manual setting of the topic number, the work [3–5]

facilitates the nonparametric prior of a Dirichlet process to automatically derive the topic number

for the sequential documents. Among them, topics (storylines) in [3, 4] are chained via a recurrent

Chinese Restaurant Process (rCRP), which allows topics to evolve with genesis and death. While the

base measure of topics in [5] is tied via the rCRP, documents are generated from an epoch-specific

hierarchical Dirichlet process. In these scenarios, the number of topics or themes are flexibly learned

rather than predefined and their topic transitions are chained by Gaussian state space models.

Successful as state space modelings are, one of the main deficiencies is that these models suffer

from a heavy computational cost due to the non-conjugate problem, and their scalability would be

prohibitive in the high dimensional data. To this end, a line of research work is thus developed to

mitigate the problem. The work [41] employs the Pólya-Gamma augmentation trick to provide

a conditionally conjugate scheme for Gaussian priors. To mitigate the scalability limit from the

state space modeling, the work [33] presents a generalized class of tractable priors and scalable

approximate inference to explore both long-term and short-term evolving topics, while the work
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[7] proposes a parallelizable inference using Gibbs sampling with Stochastic Gradient Langevin

Dynamics to scale up the dynamic topic modeling in both single and distributed environments.

Besides the scalability, the work [12, 32, 44] focuses on the evolving topics with various time-scales

of the resolution, which allows topics to evolve in the different scales.

Even though significant progress has been made in state space-based models in the task of topic

evolution, such models restrict the evolving topics under the single-topic-thread assumption and

fail to capture the potential multiple dependencies between evolving topics. Without thoroughly

encoding the complex temporal relationships between time-evolving topics, the learned evolution

of topics might be defective.

Dynamicmodelingwith theDirichlet chain. Extensive studies exploit the Dirichlet distribution
to chain the dynamics of topics over the sequence of discrete slices, in which the tractable inference

of sampling topics becomes the advantage over the state space models due to benefit of the

Dirichlet distribution. The topic tracking model (TTM) [31] and dynamic clustering topic model

(DCT) [40] harness a Dirichlet distribution to chain the consecutive evolving topics over the text

stream, where the evolution of topic popularity and word distributions depend on their prior

states via two Dirichlet Markov chains. In comparison, the dual Markov dynamic topic model

(DM-DTM) [2] employs two different Markov chains to detect the topic evolution in the count data,

where the topic popularity is modeled by the Gamma Markov chain, and the evolution of topics

is also captured by the Dirichlet distribution. The work [39] turns the problem of user interest

drifting to be the evolution of topics, where the dynamics of topics over time is also captured via a

Dirichlet chain. Despite the wide application of the Dirichlet chain, little attention is paid to the

inference of evolutionary weight between consecutive topics, which is still intractable and incurs

heavy computation. Furthermore, approaches with a Dirichlet chain ignore multi-dependency

relationships between time-evolving topics. In contrast, though the proposed rCTM also exploits a

Dirichlet distribution to chain evolving topics, it breaks the limitation of the single-topic-thread

evolution and proposes a new framework where the current topic evolves from all prior topics with

the corresponding coupling weights. To avoid the confusion with correlated topic modeling (CTM)

[8, 28], we clarify the major difference in two aspects. First, the correlation between topics in CTM

indicates the existence of correlation in their proportions via the logistic normal distribution. In

comparison, the couplings between evolving topics are defined as the coupling closeness between

their word distributions via the hierarchical Gamma distributions. Second, our proposed model aims

at encoding the complex temporal correlations between evolving topics in the dynamic context

while CTM is limited to a static text dataset.

Besides the above dynamic modelings in the context of discrete slices, a line of studies captures

the dynamics of topics from the continuous document streams. The work [18] combines Dirichlet

and Hawkes processes to capture the dynamics of topics from sequential documents, in which the

Hawkes process learns temporal density of topics with multiple predefined Gaussian kernels. The

work in [23] further mitigates the restriction from the predefined kernels and exploits the density

estimation technique to incrementally learn the dynamics of topics with the sliding window. In

addition, the Temporal LDA [55] aims at predicting the transition of topic weight in the future

documents while ignoring the transition of its word distribution. In comparison, the work in [6]

puts forward a Bayesian model named streamLDA to learn the transition of topic weight as well

as its word transition between consecutive documents. In addition, a large number of researches

focus on continuous streaming short texts from social media to reveal the topic drift. The work

in [60, 61] makes an effort to incrementally cluster the short text streams from social media and

uncover the dynamic clusters (topics) by assigning one topic to each short text. A joint model in

[57] handles the Chinese streaming short text by integrating the prior of rCRP and biterm topic
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model [58] to detect the dynamic topics. Given the meta features of social media data, the work in

[62, 63] incrementally groups the continuous tweets into different varying topic sets according to

the combination of textual contents, spatial and temporal features.

Dynamic Poisson factor analysis. Targeting at the count data, it is a matrix factorization method

for the discrete sequential count data under the Poisson factor analysis (PFA) [1]. Though some

applications of PFA are not the focus of this paper, for the sake of completeness, we discuss some

representative work to introduce how the latent variables evolve over the count data. The work

[47] proposes a Poisson-Gamma dynamic system (PGDS) for sequentially count data, where the

latent states of topic proportions are chained via the Gamma shape parameter. Its later deep variant,

[22], extends the Poisson-Gamma dynamic system by constructing a hierarchical latent structure

for the topic proportions, which allows both first-order and long-range temporal dependencies. We

credit the data augmentation technique in the proposed model to these approaches. The recent

work in [46] closely relates with PGDS and presents the Poisson-randomized Gamma dynamic

system for the sequential biased data with sparsity or burstiness. In addition, the work in [16]

models the evolution of latent factors in terms of user preferences and item features in the context

of recommender system via the Gamma scale parameters. Some studies based on the dynamic

relational data [38, 59] learn the evolution of node membership by leveraging data augmentation

technique under the framework of Poisson factor analysis.

Comparison with the RNN-based language models. In addition to the Bayesian approaches,

a line of studies [15, 21, 35, 54] integrates topic models and language models and inherits merits

from both sides. Among them, the work in [15] develops the model TopicRNN, where the global

semantics is captured by the topic modeling while the local dependency between words within

a sentence is detected by a recurrent neural network (RNN). The work in [35] integrates two

components to jointly learn topics and word sequence, where a word sequence is predicted via

the RNN. The work in [54] simultaneously learns the global semantics of a document via a neural

topic model and uses the learned topics to build a mixture-of-experts language modeling based on

RNN. The model of RNN-RSM in [25] also aims at recurrent topic discovery, and it leverages the

Restricted Boltzmann Machines (RBMs) to define the interaction between topics and words and the

RNN is used to convey the temporal information and update the bias parameters of RBMs. In this

solution, consecutive topics are not directly connected, which is a marked contrast to the stochastic

multi-topic-thread assumption between topics in our model. Additionally, it adopts the contrastive

divergence algorithm to estimate the parameters, which also differs from the Gibbs sampling in

our Bayesian network. The most recent paper [21] uses a recurrent deep topic model to guide a

stacked RNN for language modeling, and thus the words from a document are jointly predicted

by the learned topics via the topic modeling and its preceding words via the RNN. It is noted that

most of the RNN-based language models are typically applied at the word level and learn the local

temporal dependency between the words. Such a task is quite different from ours. First, the topics

(word distributions) capture the global semantics of the corpus by word occurrences across the

documents. Such long-range dependency and global semantics may not be captured well by the

RNN-based language models [15, 21, 35, 54]. In addition, our proposed work aims at encoding the

temporal dependency between two sets of latent topics across the time steps, which is distinct from

the syntactic dependency between words in the RNN-based models. Though the task of encoding

dependency is quite different in dynamic topic modelings and RNN-based language models, they

could work together to cooperatively capture both global semantics and local dependency for

language generation.
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6 CONCLUSION AND FUTUREWORK
We introduce a novel nonparametric Bayesian model, a recurrent Coupled Topic Modeling (rCTM)

over sequentially observed documents. The multi-fold contributions are summarized in the follow-

ing. (1) This model breaks the limitation of single-topic-thread evolution from most of the existing

work and induces a new and flexible proposal of the multi-topic-thread evolution. Accordingly, the

current topics evolve from all prior topics with the corresponding topic coupling weights. Such

a flexible proposal naturally adapts to the sequential documents with complex relationships. (2)

To tackle the unexplored and intractable inference challenge, we present a novel solution with

data augmentation and marginalization techniques to decompose the joint multi-dependencies

between topics into separated relationships. A novel Gibbs sampler with a backward-forward filter

algorithm is exploited to efficiently infer the fully conjugate model in a closed-form. (3) Without

tuning the topic number in sequential documents, we leverage the latent IBP compound distribu-

tion to automatically infer the overall topic number and customize the sparse topic proportions

for each document, where both short text and long documents are flexibly adapted. To further

validate the significance of topic couplings, we borrow the dropout technique from deep learning

and incorporate it into the proposed rCTM as a counterpart. Evaluation on both synthetic and

real-world datasets demonstrates that rCTM infers a highly interpretable dynamic structure, and

the multi-coupling relationships learned between time-evolving topics are significant to infer the

topical structure in future. Further, the experimental results also indicate rCTM is superior over

the competitive baselines in terms of low per-word perplexity, high topic coherence and high time

prediction accuracy.

Although the analytic posterior of rCTM results in an efficient Gibbs sampling, rCTM is limited

by two main disadvantages: 1) Gibbs sampling is a time-consuming batch method when inferring

high-dimensional latent parameters compared with the gradient-based optimization methods in the

neural networks. 2) It is not easy to plug the valuable side information into the Bayesian network

with a predefined structure, e.g. document labels or promising word embeddings [14, 24, 42],

otherwise, the structure of Bayesian network has to been reformulated. Therefore, one future

attempt is to marry rCTM with neural networks and incorporate the variational Autoencoder

[48] into the proposed model, where the pretrained word embeddings are possibly incorporated.

Another promising direction is to extend the evolving topics into the hierarchically recurrent

coupled topics, where not only the coupled topic evolution but also the hierarchical topics from

general to specific could be captured.
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