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ABSTRACT
Recently, the graph neural network (GNN) has shown great power
in matrix completion by formulating a rating matrix as a bipartite
graph and then predicting the link between the corresponding user
and item nodes. The majority of GNN-based matrix completion
methods are based on Graph Autoencoder (GAE), which considers
the one-hot index as input, maps a user (or item) index to a learnable
embedding, applies a GNN to learn the node-specific representa-
tions based on these learnable embeddings and finally aggregates
the representations of the target users and its corresponding item
nodes to predict missing links. However, without node content (i.e.,
side information) for training, the user (or item) specific represen-
tation can not be learned in the inductive setting, that is, a model
trained on one group of users (or items) cannot adapt to new users
(or items). To this end, we propose an inductive matrix completion
method using GAE (IMC-GAE), which utilizes the GAE to learn
both the user-specific (or item-specific) representation for personal-
ized recommendation and local graph patterns for inductive matrix
completion. Specifically, we design two informative node features
and employ a layer-wise node dropout scheme in GAE to learn
local graph patterns which can be generalized to unseen data. The
main contribution of our paper is the capability to efficiently learn
local graph patterns in GAE, with good scalability and superior ex-
pressiveness compared to previous GNN-based matrix completion
methods. Furthermore, extensive experiments demonstrate that
our model achieves state-of-the-art performance on several matrix
completion benchmarks. Our official code is publicly available1.

∗The first two authors contribute equally to this work.
†Corresponding author.
1https://github.com/swtheing/IMC-GAE
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1 INTRODUCTION
Matrix completion (MC) [5, 11, 17] is one of the most important
problems in modern recommender systems, using past user-item
interactions to predict future user ratings or purchases. Specially,
given a partially observed user-item historical rating matrix whose
entries represent the ratings of users with items, MC is to pre-
dict the missing entries (unobserved or future potential ratings) in
the matrix based on the observed ones. The most common para-
digm of MC is to factorize the rating matrix into the product of
low-dimensional latent embeddings of rows (users) and columns
(items), and then predict the missing entries based on these la-
tent embeddings. Traditional matrix completion methods [3, 5]
have achieved great successes in the past. However, these methods
mainly learn the latent user (or item) representation yet largely
neglect an explicit encoding of the collaborative signal to reveal the
behavioral similarity between users [24]. These signals are crucial
for predicting the missing rating in the rating matrix, but hard to
be exploited, since they are hidden in user-item interactions [8].

Recently, many works [2, 18, 26, 28] have studied using a GNN
to distill collaborative signals from the user-item interaction graph.
Specially, matrix completion is formulated as link prediction, where
the rating matrix is formulated as a bipartite graph, with users (or
items) as nodes and observed ratings/interactions as links. The goal
of GNN-based matrix completion methods is to predict the potential
or missing links connecting any pair of nodes in this graph. Graph
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GAE-based models IGMC IMC-GAE (ours)

Specific ✓ × ✓
Local × ✓ ✓

Efficient ✓ × ✓
Inductive × ✓ ✓

Table 1: We compare the GNN-based matrix methods from
different aspects: 1) whether they learn node-specific rep-
resentations for personalized recommendation (denoted as
Specific), 2) whether they learn local graph patterns (de-
noted as Local), (3) whether they are efficientmatrix comple-
tion methods (denoted as Efficient), (4) whether they are in-
ductive matrix completion methods (denoted as Inductive)

Autoencoder (GAE) [12] is a popular GNN-based link prediction
method, where a GNN is first applied to the entire network to
learn node-specific representations. Then the representations of
the target nodes are aggregated to predict the target link. Many
GNN-based matrix completion methods directly apply GAE to the
rating graph to predict potential ratings such as GC-MC and NMTR
[2, 6]. By exploiting the structure of the bipartite user-item graph,
the node-specific representations learned by GAE, which represents
user-specific preferences or item attributes, are more expressive
than the patterns learned by the traditional matrix completion
methods for personalized recommendation.

Despite its effectiveness, there remain two main challenges to
apply GAE-based matrix completion to real recommender systems.
The first challenge stems from a key observation from real-world
scenarios: There are a large number of users or items in a real rec-
ommender system that have few historical ratings. This requires a
model to predict potential ratings in a sparse rating matrix. How-
ever, GAE-based models usually fail in this situation since there
are a few historical ratings in a sparse rating matrix for GAE-based
models to train node-specific representations for personalized rec-
ommendation [29]. The second challenge is applying theGAE-based
models to real recommender systems for the large-scale recommen-
dation. In real recommender systems, new users (or items) are
emerging that are not exposed to the model during training. This
requires that the model to be inductive, i.e., the model trained on a
group of users (or items) can adapt to new groups. However, pre-
vious GAE-based models are all transductive models so that the
learned node representations cannot be generalized to users (or
items) unseen during training [28].

The following question arises: Can we have a GAE-based model
that can not only guarantee good performance on a sparse rating
matrix but also enable inductive learning? In fact, using GAE to
simultaneously satisfy the two requirements for matrix comple-
tion is a non-trivial challenge when high-quality user (or item)
features are unavailable. The one-hot node indices (together with
learnable node-specific embeddings) in the GAE-based model give a
maximum capacity for learning distinct user preferences (or item at-
tributes) from historical ratings. On the other side, learning distinct
user preferences (or item attributes) in GAE also requires adequate
rating samples from the rating matrix. Accordingly, without ade-
quate rating samples in a sparse rating matrix, it is hard for GAE
to obtain satisfactory performance. Moreover, for unseen nodes
from a new rating matrix, GAE lacks the representations of them,

and therefore cannot predict the potential ratings in a new rating
matrix, which makes inductive learning impossible. To overcome
these two challenges, Zhang and Chen [28] propose an inductive
matrix completion based on GNN (IGMC). To predict a potential
link (i.e., rating), it first extracts a 1-hop subgraph around the target
link and then relabels the node w.r.t the distance to the target nodes.
Finally, a GNN is applied to each subgraph to learn the local graph
patterns that can be generalized to an unseen graph. By learning
local graph patterns, IGMC has a better performance on the sparse
rating matrix and enables inductive matrix completion. However,
extracting subgraphs in both training and inference processes is
time-consuming for the real recommendation. Moreover, the per-
formance degradation on the dense rating matrix in IGMC also
hinder us from applying it to real recommender systems.

In this paper, we propose an inductive matrix completion method
using GAE (IMC-GAE) that achieves efficient and inductive learning
for matrix completion, and meanwhile obtain good performance on
both sparse and dense rating matrices. As summarized in Table 1,
IMC-GAE combines the advantages of both the GAE-based models
and IGMC together, which uses GAE to learn both node-specific
representation for personalized recommendation, and local graph
patterns for inductive matrix completion. Specially, we incorporate
two informative node features into IMC-GAE to represent two types
of user-item interactions and design a layer-wise node dropout
scheme in GAE to learn local graph patterns for inductive matrix
completion.

In summary, this work makes the following main contributions:

• (Sec. 3.1) To better understand local graph patterns, we conduct
a quantitative analysis on five real datasets. Based on this quan-
titative analysis, we have multiple observations that reveal the
properties of local graph patterns in matrix completion. It moti-
vates us to design our model, IMC-GAE.

• (Sec. 3.2)We design two informative features, the identical feature
and the role-aware feature, for the model to learn the expressive
graph patterns. Moreover, these graph patterns can be easily
generalized to unseen graphs.

• (Sec. 3.5) We design a layer-wise node dropout schema that drops
out more nodes in the higher layers. With the layer-wise node
dropout, link representation in our model contains more node
information in a 1-hop local graph around the target link. Accord-
ingly, our model is able to learn local graph patterns associated
with the target link, which enhances the capability of the induc-
tive learning of our model.

• (Sec. 5) To illustrate the effectiveness of the proposed IMC-GAE,
we conduct empirical studies on five benchmark datasets. Ex-
tensive results demonstrate the state-of-the-art performance of
IMC-GAE and its effectiveness in learning both local graph pat-
terns and node-specific representations.

2 RELATEDWORKS
In this section, we will briefly review existing works on GAE-based
matrix completion methods and inductive matrix completion meth-
ods based on GNN, which are most relevant with this work. Here,
we highlight their differences to IMC-GAE, and illustrate how we
combine the advantages of them to build a more effective model
for real recommendation.



Figure 1: Model Overview. The rating matrix is formulated as a bipartite user-item graph, in which the nodes represent users
(or items) and the links represent the corresponding ratings. In addition, the input features of each node in this graph consist of
the identical feature, the role-aware feature, and the one-hot index feature. In addition, the encoder of ourmodel has multiple
layers (e.g., Layer 1) with multiple rating-subgraph (e.g., Rating 1). As stacking more layers, the node dropout probability
increases, which is referred to as layer-wise node dropout. The model aggregated the latent embedding which is learned by
one-hot index feature and structure embedding of a node which is learned by role-aware feature and identical feature in all
layers by the weighted sum operator. At last, we reconstruct the links by a bilinear decoder. In this way, the output of our
model contains the information of both latent link representation and structure representation

2.1 GAE-based matrix completion
The majority of GNN-based matrix completion methods is based on
Graph Autoencoder (GAE) [12], which applies a GNN to the entire
network to learn a representation for each node. The representa-
tions of the user and item nodes are aggregated to predict potential
ratings. For example, Monti et al. [18] propose a multi-graph CNN
model to extract user and item latent features from their nearest-
neighbor networks. Berg et al. [2] propose graph convolutional
matrix completion (GC-MC) which uses one-hot encoding of node
IDs as initial node features, learns specific node representations
by applying a GNN-encoder to the bipartite user-item graph, and
reconstructs the rating links by a GNN-decoder. To the best of
our knowledge, our method is the first inductive GAE-based ma-
trix completion method that achieves a good performance in both
sparse and dense rating matrices.

2.2 Inductive GNN-based matrix completion
methods

There are mainly two types of GNN-based matrix completion meth-
ods that are applicable to inductive settings. One is attempting
to handle inductive matrix completion without using node con-
tent, such as IGMC [28]. IGMC first extracts enclosing subgraphs
around target links, then relabels the nodes in subgraphs according
to their distances to the source and target nodes, and finally applies

a GNN to each subgraph to learn a link representation for link pre-
diction. IGMC applies GNN to those enclosing subgraphs to learn
local graph patterns, which can easily generalize to the users (or
items) unseen during training. Moreover, local graph patterns help
IGMC obtain a better performance than the GAE-based models
on the sparse rating matrices. However, applying IGMC to real
recommender systems yields two crucial challenges. First of all,
IGMC replaces nodes’ one-hot index embedding with local struc-
ture features, which does not capture diverse user preferences and
item attributes for personalized recommendation. Second, IGMC
extracts subgraphs around target links during both the training and
inference process, which is time-consuming for large-scale recom-
mendation. In contrast, IMC-GAE maintains the ability to give a
node-specific representation, which is important in personalized
recommendation for the users with historical ratings. In addition,
instead of extracting subgraphs and relabeling each node, we in-
corporate two informative features into the input features of each
node and design a layer-wise node dropout scheme in IMC-GAE to
help the GAE to learn local graph patterns. By using GAE to learn
local graph patterns, the inference process of IMC-GAE becomes
efficient and inductive.

Another previous inductive GNN-based matrix completion meth-
ods are content-based models; such as PinSage [25], which uses
node content as initial node features. Although being inductive
and successful in real recommender systems, content-based models



Table 2: Quantitative Analysis on multiple datasets.

Dataset density AUR AIR MCR SCF

YahooMusic < 0.0001 0.1915 0.0745 0.3585 0.4713
Flixster 0.0029 0.4705 0.1289 0.4362 0.5008
Douban 0.0152 0.3672 0.5033 0.4537 0.4735
ML-1M 0.0447 0.3771 0.4812 0.4151 0.5659
ML-100K 0.0630 0.3826 0.4177 0.3815 0.5006

rely heavily on the rich content of each node, which is not easily
accessible in most real recommender systems. In comparison, our
model is inductive and does not rely on any node content.

3 METHOD
As aforementioned, matrix completion has been formulated as the
link prediction problem on a bipartite user-item graph in recent
GNN-based matrix completion methods. Specially, we consider
a matrix completion that deals with a rating matrix 𝑀 of shape
𝑁𝑢 × 𝑁𝑣 , where 𝑁𝑢 is the number of users and 𝑁𝑣 is the number
of items. Some entries in this matrix exist and other entries are
missing. Existing entry 𝑀𝑖 𝑗 is a historical rating from a user 𝑖 to
an item 𝑗 . The task of matrix completion is to predict the value of
missing entries. GNN-based matrix completion views the matrix
as a bipartite graph and predicts the missing links in this graph. In
this section, we first present some findings on multiple real-world
datasets, which reveal the properties of local graph patterns in
both sparse and dense rating matrices. Based on these observations,
we then elaborate on how the proposed learning algorithm, IMC-
GAE, integrates the GAE-based model and IGMC to obtain a more
effective model for real recommender systems. Then, we show an
overview of IMC-GAE in Figure 1. Specially, IMC-GAE is a GAE-
based model consisting of three major components: 1) embedding
layer whose input features consist of the one-hot index of nodes,
the identical feature and the role-aware feature, 2) relational GCN
encoder, 3) a bilinear decoder that combines the representations of
target nodes to reconstruct links representation.

3.1 Understanding local graph patterns
In the previous works, some handcrafted heuristics in a local graph
around the target link (i.e., local graph patterns) are designed
for link prediction on graphs [13]. IGMC first adopts the labeling
trick in GNN-based matrix completion that automatically learns
suitable graph patterns from the local graph. These local graph
patterns can be easily generalized to new local graphs or unseen
links. To develop a better understanding of local graph patterns in
matrix completion, we do a quantitative data exploration on five
real-world datasets, the density of which ranges from less than
0.0001 to 0.063. In particular, we examine the Pearson’s correlation
coefficient (PCC) between the true ratings and four heuristic scores
[13, 27]: average user rating (AUR), average item rating (AIR), most
common rating between source nodes and target nodes (MCR) and
a simple collaborative signal (SCF) in five datasets. Specially, we
find a user node that has the most common neighbors with the
source node as guider in SCF. The link prediction in SCF is based

on the rating that guider rates the target item node. From Table 2,
we can extract multiple findings,

• The PCCs between the true ratings and four heuristic scores in
five datasets are all positive, which indicates that the true ratings
are correlated with these four heuristic scores in each dataset.
Furthermore, it suggests that local graph patterns are effective
to predict the missing ratings in matrix completion.

• The PCCs between the true ratings and four heuristic scores are
all smaller than 6.0, which indicates that a single local graph pat-
tern is not enough to predict the missing ratings. It suggests that
the model needs to learn more complex local graph patterns from
rating matrix or specific node representations for personalized
recommendation to obtain better performance.

• Among the four heuristic scores, AUR and AIR are simple statis-
tics that only depend on one type of user-item interaction (i.e.,
the interactions with the target user or the interactions with the
target item), while MCR is a statistic depending on these two
types of interactions. We find that the performance of MCR is
more stable across different datasets than that of AUR (or AIR) .
It suggests that MCR is effective in both sparse and dense rating
matrices. Moreover, stable local graph patterns like MCR are
effective across different datasets, which makes inductive matrix
completion possible. Furthermore, SCF considers all the inter-
actions with the target nodes and their neighbors within 1-hop,
which outperforms MCR on all datasets. It suggests that local
graph patterns which consider more user-item interactions may
be more powerful.

3.2 Input features
Motivated by our earlier findings, we now introduce two input fea-
tures, identical feature and role-aware feature for the GAE-based
model to learn local graph patterns. The identical feature is an iden-
tical index, which helps GNN model aggregate one-hop user-item
interactions (user-to-item interaction or item-to-user interaction)
by message passing function. It aims to represent some simple local
heuristics scores such as AIR or AUR, which have been demon-
strated to be effective to predict potential ratings in the above
quantitative analysis. To model two-hop user-item interactions,
we design the second structure feature, the role-aware feature, us-
ing two extra indexes to distinguish user and item in the input
space of the model. It helps the model distinguish user nodes with
item nodes, and therefore distinguish the interactions from user
to item with the interactions from item to user. Furthermore, after
the user-item interactions around the target link are aggregated
by the message passing function, the model can distinguish the
user-item interactions from the 1-hop neighbors with the user-item
interactions from 2-hop neighbors. By distinguishing these two
types of user-item interactions, the model is capable of learning
more complicated and powerful local graph patterns such as the
aforementioned MCR or SCF.

Furthermore, the model needs more expressive patterns for per-
sonalized recommendation. Accordingly, we incorporate the one-
hot index into the input space of IMC-GAE, which is same as pre-
vious GAE-based models that learns specific node representations
for personalized recommendation. Altogether, we adopt two in-
formative features and one-hot index feature in IMC-GAE, which



aims to help GAE learn structure link representation and latent link
representation, respectively. The structure link representation rep-
resents local graph patterns around the target link, and the latent
link representation represents the user-specific preference to the
item.

3.3 GNN encoder on heterogeneous graph
In our paper, matrix completion is formulated as the link prediction
problem on a heterogeneous graph. In the heterogeneous graph,
rating edges of the same type are collected into a rating subgraph
(e.g., if the graph consists of four types of ratings, there are four
rating subgraphs). Correspondingly, each rating subgraph contains
a copy of all the nodes. Then IMC-GAE applies a node-level GNN
encoder to these subgraphs that learn a distinct representation for
each node in each subgraph. There are three components in our
GNN encoder: 1) embedding layer, 2) message passing layer, and 3)
accumulation layer.

3.3.1 Embedding layer. In each rating subgraph, the representation
of each node consists of three different embeddings (identical node
embedding 𝑢𝑡 , role-aware embedding 𝑟𝑡 , and rating embedding 𝑙𝑡 ).
We assume that there are 𝑇 rating types in the rating matrix so
that we have𝑇 rating subgraphs in our model. With three different
embeddings in each rating subgraphs, each node has 3 ×𝑇 embed-
dings in IMC-GAE. In order to reduce the number of parameters
while allowing for more robust pattern learning, we use the same
identical node embedding and role-aware embedding in each rating
subgraph. Therefore, there are 𝑇 + 2 embeddings to represent a
node in 𝑇 rating subgraphs. Moreover, we concentrate (denoted
by 𝐶𝑜𝑛𝑐𝑎𝑡 (¤)) these three embeddings (denoted by 𝑈𝑡 , 𝑅𝑡 , 𝐿𝑡 ) in
embedding layer, which is the output of the embedding layer,

𝑥0𝑡 [𝑖] = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑢𝑡 [𝑖], 𝑟𝑡 [𝑖], 𝑙𝑡 [𝑖]), (1)

where 𝑥0𝑡 [𝑖] denotes node 𝑖’s embedding vector in 𝑡-th rating sub-
graph. The node embedding vectors are the input of message pass-
ing layer.

3.3.2 Message passing layer. In IMC-GAE, we adopt a traditional
GCN message passing layer to do local graph convolution, which
has the following form:

𝑥𝑙+1𝑡 [𝑖] =
∑︁

𝑗 ∈N𝑡 (𝑖)

1√︁
|N𝑡 (𝑖) | · |N𝑡 ( 𝑗) |

𝑥𝑙𝑡 [ 𝑗] (2)

where 𝑥𝑙+1𝑡 [𝑖] denotes node 𝑖’s feature vector at layer 𝑙+1 in the 𝑡-th
rating subgraph. In addition, we chose symmetric normalization
as the degree normalization factor in our message passing layer,
where the |N𝑡 (𝑖) | represents the number of neighbors of node 𝑖 in
the 𝑡-th rating subgraph.

3.3.3 Accumulation layer. In each 𝑡-th rating subgraph, we stack
𝐿 message passage layer with ReLU activations [1] between two
layers. Following [8], node 𝑖’s feature vectors from different layers
are weighted sum as its final representation ℎ𝑡 [𝑖] in the 𝑡-th rating
subgraph,

ℎ𝑡 [𝑖] =
∑︁

0≤𝑙≤𝐿

1
𝑙 + 1

𝑥1𝑡 [𝑖] (3)

Then we accumulate all node 𝑖’s final representation ℎ𝑡 [𝑖] from
all 𝑇 rating subgraphs into a single vector representation by sum

Figure 2: Layer-wise Node Dropout. In this subgraph ex-
tracted in ML-100k, red nodes indicates target nodes; blue
nodes indicates the 1-hop neighbors of target nodes; white
nodes indicates the 2-hop neighbors of target nodes.

operator,
ℎ[𝑖] =

∑︁
𝑡 ∈𝑇

ℎ𝑡 [𝑖] (4)

To obtain the final representation of user or item node, we transform
the intermediate output ℎ[𝑖] by a linear operator,

𝑛[𝑖] = 𝑡𝑎𝑛ℎ(𝑊ℎ[𝑖]) (5)

The parameter matrix𝑊 of user nodes is the same as that of item
nodes, which because the model is trained without side information
of the nodes.

3.4 Bilinear decoder
In IMC-GAE, following [2], we use a bilinear decoder to reconstruct
links in the user-item graph and treat each rating level as a separate
class. Given the final representation 𝑛[𝑖] of user 𝑖 and 𝑛[ 𝑗] of item
𝑗 , we use billinear operator to produce the final link representation
𝑒𝑡 [𝑖, 𝑗] in the 𝑡-th rating subgraph,

𝑒𝑡 [𝑖, 𝑗] = 𝑛[𝑖]𝑇𝑊𝑡𝑛[ 𝑗], (6)

where𝑊𝑡 is a learnable parameter matrix. Thus, we can estimate
the final rating score as,

𝑟 [𝑖, 𝑗] =
∑︁
𝑡 ∈𝑇

𝑡𝑆𝑡 (e(i, j)), (7)

where e(i, j) is the vector that concentrate the final link representa-
tions of user 𝑖 and item 𝑗 on all𝑇 rating subgraph, and the 𝑆𝑡 is the
softmax probability on 𝑡-th dimension of e(i, j) vector.

3.5 Layer-wise node dropout
The layer-wise node dropout is inspired by node dropout from [2],
aiming to help model grasp patterns in local graphs which can
be better generalized to unobserved ratings. In previous works,
GAE-based models always adopt a node dropout scheme which
randomly drops out all outgoing messages of a particular node with
a probability 𝑝 . However, our method adopts different node dropout
probabilities in different layers, which we call it layer-wise node
dropout. Specially, layer-wise node dropout is 𝑝𝑙 = 𝑝0 − 𝑙𝜃 , where
𝑝𝑙 is the node dropout probability in the 𝑙-th layser, 𝑝0 is the initial
node dropout probability, and 𝜃 is the hyperparameter.

In our paper, layer-wise node dropout facilitates node represen-
tation learning due to the following two reasons. The first reason is



the same as [2], which we adopt to overcome the over-smoothing
problem in GNN representation and improve the generalization
ability of our model. The second reason is to help the model learn
local graph patterns which consider more user-item interactions
in a 1-hop subgraph around the target link. As shown in Figure 2,
the target nodes are node 0 and node 1. In the previous GAE-based
models, the representations of node 0 and node 1 in the 2-th layer
aggregate too much node information beyond the 1-hop subgraph
around them (e.g., node 4, node 5, node 8 and node 9 in the exam-
ple), which prevents the model learning graph patterns from the
user-item interactions around target nodes.

3.6 Model training
3.6.1 Loss function. We minimize the cross entropy loss (denoted
by 𝐶𝐸) between the predictions and the ground truth ratings,

L =
1

| (𝑖, 𝑗) |Ω𝑖, 𝑗 = 1|
∑︁

(𝑖, 𝑗) :Ω𝑖,𝑗=1
𝐶𝐸 (𝑟 [𝑖, 𝑗], 𝑟 [𝑖, 𝑗]), (8)

where we use 𝑟 [𝑖, 𝑗] and 𝑟 [𝑖, 𝑗] to denote the true rating and the
predicted rating of (𝑖, 𝑗), respectively, and the 0/1 matrix Ω serves
as a mask for unobserved ratings in rating matrix𝑀 .

3.6.2 Node representation regularization. It is inspired by adjacent
rating regularization in [28]. Since each two rating types are com-
parable in matrix completion (e.g., ratings 5 is bigger than ratings 4
and ratings 4 is bigger than 3), we need to consider the magnitude
of ratings. Accordingly, we propose node representation regular-
ization to encourages the representation of each node in rating
subgraph that adjacent to each other to have similar representa-
tions. Specially, we assume that the representation of the 𝑖-th node
in the 𝑡-th rating subgraph is ℎ𝑡 [𝑖], where 0 ≤ 𝑡 ≤ 𝑇 . Then, the
NRR regularizer is,

L𝑁𝑅𝑅 = −
∑︁

0≤𝑡<𝑇

∑︁
0≤𝑖≤𝑁

𝐶𝑜𝑠 (ℎ𝑡 [𝑖], ℎ𝑡+1 [𝑖]), (9)

where 𝐶𝑜𝑠 is cosine similarity between two vectors, and 𝑁 is the
total number of users and items in the matrix. Finally, we combine
these two loss functions to the final loss function,

L𝑓 = L + 𝜆L𝑁𝑅𝑅, (10)

where 𝜆 is a hyperparameter that trade-off two losses.

3.7 Inductive learning
In IMC-GAE, the inductive link representation for unseen nodes has
two parts, inductive structure representation which is learned from
the identical feature and the role-aware feature, and inductive latent
representation which is learned from one-hot index of the node. For
the inductive structure representation, we just leverage message
passing, propagating learned structure representation from neigh-
bors to target nodes. For the inductive latent representation, we
also first accumulates the latent presentation of the neighbors of the
target nodes. However, there may exist some unseen nodes during
training in their neighbors, which lacks the latent representation. In
our method, we use the average latent representation of the other
nodes to represent the unseen nodes in each rating subgraph,

𝑙𝑡 [𝑖] =
∑︁
𝑗 ∈I

1
|I | 𝑙𝑡 [ 𝑗], (11)

where 𝑙𝑡 [𝑖] is the initial latent representation of the 𝑖-th node in
𝑡-th rating subgraph (in equation 1) and I is a set of nodes which
we have seen during training. It is a simple but effective method,
which is demonstrated in the following experiments.

4 DISCUSSING LOCAL GRAPH PATTERNS
To shed more light on local graph patterns learning in GNN-based
models, we provide a comparison with GAE-based matrix comple-
tion, IGMC, and IMC-GAE through a typical example in Figure 3.
Here, we assume the ratings in our example are within {1, -1} (like,
denoted by bold black line, and dislike, denoted by bold coffee line).
The solid lines are observed ratings for training and dash lines are
test ratings. In a train case, user 1 and 2 all like item 3, while they all
dislike item 4. It indicates that user 1 may have a similar taste with
user 2, which is a common local graph pattern in matrix completion.
Furthermore, since user 2 dislikes item 5, we inference that user 1
may dislike item 5 based on the "similar taste" pattern.

When trained with the existing rating between user 2 and item
4, IGMC first extracts the 1-hop local graph around user 2 and item
4, and relabels user 1, user 2, item 3, item 4 and item 5 as index 2,
0, 3, 1 and 3, respectively. Finally, the model applies a GNN to the
local graph, where the new node labels are the input features of the
model. Without introducing the user-item interactions beyond the
1-hop local graph around target nodes, the "similar taste" pattern is
easily learned by the model. However, previous GAE-based models
apply the GNN to the entire graph for learning graph patterns.
Accordingly, when trained with the existing rating between user 2
and item 4, the representations of user 2 and item 4 are aggregated
with many node embeddings beyond 1-hop local graph around user
2 and item 4, which makes the model hardly focus on the interac-
tions in this local graph, and fails to learn "similar taste" pattern. To
solve this problem, IMC-GAE designs the layer-wise node dropout
scheme for the GAE-based model to avoid aggregating too many
embeddings of the nodes beyond the 1-hop local graph into the
target nodes representation. Although the target node representa-
tions are still aggregated a few node representations beyond the
local graph, the model is capable of learning the "similar taste"
pattern between user 1 and 2. Furthermore, if given a new graph in
Figure 3 which has the same graph structure as the original graph,
previous GAE-based models need to be retrained to inference the
missing rating between user 8 and item 9. However, with labeling
trick in IGMC and inductive structure representation in IMC-GAE,
the models learn the "similar taste" pattern into structural link
representation, which can be generalized to the new graph.

Despite the effectiveness of local graph patterns learning in
IGMC, the labeling trick introduces extra computational complexity.
The reason is that for every rating (𝑢 𝑗 , 𝑖𝑘 ) to predict, IGMC needs
to relabel the graph according to (𝑢 𝑗 , 𝑖𝑘 ). The same node 𝑢 𝑗 will be
labeled differently depending on the target link and will be given
a different node representation by the GNN when it appears in
different links’ labeled graphs. This is different from previous GAE-
based models and IMC-GAE, where we do not relabel the graph
and each node only has a single embedding vector. For a graph with
𝑛 nodes and𝑚 ratings to predict, the GAE-based model needs to
apply the GNN O(𝑛) times to compute an embedding for each node,
while IGMC needs to apply the GNN O(𝑚) times for all ratings.



Figure 3: We compare local graph patterns learning in IMC-GAE with that in GAE and IGMC in two cases. In the first case,
the model is to infer the link between node 1 and node 5 in original graph. In the second case, the model is to infer the link
between node 6 and node 0 in a new graph.

When𝑚 ≫ 𝑛, IGMC has worse time complexity than GAE-based
models, which is not suitable for real recommendation.

5 EXPERIMENTS
We perform experiments on five datasets to evaluate our proposed
method. We aim to answer the following research questions:

• RQ1: How does IMC-GAE perform compared with state-of-the-
art matrix completion methods when facing both sparse and
dense rating matrices?

• RQ2: How does the different hyper-parameter settings (e.g.,
depth of layer, weighted layer combination, and node represen-
tation regularization (NRR)) affect IMC-GAE?

• RQ3: How does the local graph patterns learning in IMC-GAE
benefit from two informative features and layer-wise node dropout
scheme respectively?

• RQ4: How does the IMC-GAE perform on few-shot or even
unseen users (or items) as compared with GAE-based models and
IGMC?

5.1 Datasets description
To evaluate the effectiveness of IMC-GAE, we conduct experi-
ments on five common matrix completion datasets, Flixster [10],
Douban datasets [14], YahooMusic [4], MovieLens-100K [15] and
MovieLens-1M [15], which are publicly accessible and vary in terms
of domain, size, and sparsity. Moreover, Flixster, Douban, and Ya-
hooMusic are preprocessed subsets of the original datasets provided
by [19]. These datasets contain sub rating matrix of only 3000 users
and 3000 items, which we consider as sparse rating matrices in
real recommendation. The MovieLens-100K and MovieLens-1M
are widely used datasets for evaluating many recommender tasks,
which we consider as dense rating matrices in real recommendation.
For ML-100k, we train and evaluate on canonical u1.base/u1.test
train/test split. For ML-1M, we randomly split into 90% and 10%
train/test sets. For the Flixster, Douban, and YahooMusic, we use
the splits provided by [19].

5.2 Experimental Settings
5.2.1 Baselines. To demonstrate the effectiveness, we compare our
proposed IMC-GAE with the following methods:

• Traditional methods. matrix completion (MC) [3], inductive
matrix completion (IMC) [9], geometric matrix completion (GMC)

Table 3: RMSE of different algorithms on Flixster, Douban
and YahooMusic.

Model Flixster Douban YahooMusic

IGC-MC 0.999 0.990 21.3
F-EAE 0.908 0.738 20.0
PinSage 0.954 0.739 22.9
IGMC 0.872 0.721 19.1

GRALS 1.245 0.883 38.0
sRGCNN 0.926 0.801 22.4
GC-MC 0.917 0.734 20.5
IMC-GAE (ours) 0.884 0.721 18.7

Table 4: RMSE test results on MovieLens-100K (left) and
MovieLens-1M (right).

Model ML-100K Model ML-1M

F-EAE 0.920 F-EAE 0.860
PinSage 0.951 PinSage 0.906
IGMC 0.905 IGMC 0.857

MC 0.973 PMF 0.883
IMC 1.653 I-RBM 0.854
GMC 0.996 NNMF 0.843
GRALS 0.945 I-AutoRec 0.831
sRGCNN 0.929 CF-NADE 0.829
GC-MC 0.905 GC-MC 0.832
NMTR 0.911 NMTR 0.834
IMC-GAE (ours) 0.897 IMC-GAE(ours) 0.829

[11], PMF [16], I-RBM [21], NNMF [5], I-AutoRec [22] and CF-
NADE [30] are traditional matrix competion methods, which use
the user-item ratings (or interactions) only as the target value of
their objective function.

• GAE-basedmethods. sRGCNN [18], NMTR [6], GC-MC [2] are
GAE-based matrix completion methods, which use one-hot index
as the initial feature of each node.

• IGMC. IGMC [28] is an inductive matrix completion method,
which learns local graph patterns to generalize to new local
graphs for inductive learning.



• Content-based GNN methods. Content-based matrix comple-
tion methods are inductive GNN-based methods adopting side
information as initial features of each node, which includes Pin-
Sage [25] and IGC-MC [2]. PinSage is originally used to predict
related pins and is adapted to predicting ratings here. IGC-MC is
a content-based GC-MC method, which uses the content features
instead of the one-hot encoding of node IDs as its input features.

• Other GNNmethods.GRALS [20] is a graph regularized matrix
completion algorithm and F-EAE [7] uses exchangeable matrix
layers to perform inductive matrix completion without using
content.

In addition, given different datasets, we compare IMC-GAE with
different baseline methods under RMSE in Table 3. The RMSE is
a common evaluation metric in matrix completion [2, 28]. The
baseline results are taken from [28].

5.2.2 Hyperparameter Settings. We implement our model based on
DGL [23] and use the Adam optimizer. We apply a grid search for
hyperparameters, the number of layers is searched in {1, 2, ..., 5},
the 𝜆 in equation 10 is searched in {4𝑒−5, 4𝑒−4, 4𝑒−3, 4𝑒−2}, the em-
bedding size of each vector in embedding layer is chosen from
{90, 120, ..., 1800} and the embedding size of each vector in bilin-
ear decoder is searched in {30, 40, ..., 80}. Besides, the initial node
dropout probability is tuned in {0.1, 0.2, 0.3} and the decay ratio 𝜃
is tuned in {0.05, 0.1, 0.2}. All implementation codes can be found
at https://github.com/swtheing/IMC-GAE.

5.3 Performance comparison (RQ1)
We start by comparing our proposed IMC-GAE with baselines on
five benchmark datasets and then explore how the combination of
the local graph patterns learning and specific node representations
improves the performance in matrix completion.

For Flixster, Douban, and Yahoomusic, we compare our proposed
model with GRALS, sRGCNN, GC-MC, F-EAE, PinSage, IGC-MC
and IGMC. We show the result in Table 3. Our model achieves
the smallest RMSEs on Douban and YahooMusic datasets, but
slightly worse than IGMC on the Flixster dataset. Furthermore,
as a GAE-based model, our method outperforms significantly all
the GAE-based baselines (sRGCNN and GC-MC), which highlights
the successful designs (two informative features, layer-wise dropout
scheme) of our model.

For ML-100k, we compare IMC-GAE with MC, IMC, as well as
GRALS, sRGCNN, GC-MC, F-EAE, PinSage, NMTR and IGMC. For
ML-1M, besides the baselines GC-MC, F-EAE, PinSage, NMTR and
IGMC, we further include PMF, I-RBM, NNMF, I-AutoRec, and CF-
NADE. Our model achieves the smallest RMSEs on these datasets
without using any content, significantly outperforming all the com-
pared baselines, regardless of whether they are GAE-based models.

Altogether, our model outperforms all GAE-based models on all
datasets. It demonstrates that the local graph patterns learned in
our model truly help model inference the missing ratings in both
sparse and dense rating matrices.

5.4 Study of IMC-GAE (RQ2)
As the GNN encoder plays a pivotal role in IMC-GAE, we investigate
its impact on the performance.We start by exploring the influence of

Table 5: Effect of layer numbers in GNN encoder

Douban YahooMusic ML-100k

IMC-GAE-1 0.728 18.803 0.900
IMC-GAE-2 0.725 18.793 0.897
IMC-GAE-3 0.722 18.702 0.897
IMC-GAE-4 0.723 20.343 0.901
IMC-GAE-5 0.721 18.785 0.897

Table 6: Effect of weighted layer combination and NRR

Douban YahooMusic ML-100k

IMC-GAE(Original) 0.721 18.7 0.897
IMC-GAE(no NRR) 0.722 18.8 0.900
IMC-GAE(Sum) 0.727 19.2 0.905
IMC-GAE(Concat) 0.723 18.9 0.903

layer numbers. We then study how the weighted layer combination
and NRR affect the performance.

5.4.1 Effect of Layer Numbers. To investigate whether IMC-GAE
can benefit from multiple layers in the GNN encoder, we vary
the model depth. In particular, we search the layer numbers in
the range of {1, 2, 3, 4, 5}. Table 5 summarizes the experimental
results, wherein IMC-GAE-𝑖 indicates the model with 𝑖 embedding
propagation layers, and similar notations for others. By analyzing
Table 5, we have the following observations:
• Increasing the depth of IMC-GAE substantially enhances the per-
formance of the model. Clearly, IMC-GAE-2 achieves consistent
improvement over IMC-GAE-1 across all the board, which con-
siders the 1-hop neighbors only. We attribute the improvement to
the effective modeling of local graph structure: structure features
and layer-wise node dropout help model grasp effective patterns
from local graph around target nodes.

• When further stacking propagation layer on the top of IMC-GAE-
2, we find that IMC-GAE-3 leads to performance degradation
on ML-100k, but performance improvement on Douban and Ya-
hooMusic. This might be caused by the deeper layer with a higher
node dropout probability might introduce noise in latent link
representation. More specifically, the deeper layers (e.g., the third
layer in IMC-GAE-3) lose the original graph connectivity, which
makes the model fail to learn the latent link representation from
the neighbors. Moreover, the marginal improvements on the
other two datasets verify that the local graph patterns beyond
1-hop neighbors still improve the performance of the model in
the sparse rating matrix.

5.4.2 Effect of weighted layer combination and NRR. Different from
prior works [2, 28], we adopt the weighted sum operator for layer
combination instead of sum or concentration operator and NRR to
encourages node representation in rating subgraph that adjacent
to each other to have similar parameter matrice. Table 6 shows
the result of the ablation experiments. From the ablation experi-
ments, we have the following observations. First, the weighted sum
combination shows a performance improvement over the sum or

https://github.com/swtheing/IMC-GAE


Table 7: Ablation study on three datasets, where IMC-GAE-R
indicates the IMC-GAE-R trained with only role-aware fea-
ture; IMC-GAE-I indicates IMC-GAE trained with only iden-
tical feature; IMC-GAE-OD indicates IMC-GAE trained with
original node dropout scheme.

Model Douban ML-100K ML-1M

IMC-GAE 0.721 0.897 0.829
IMC-GAE-R 0.734 0.912 0.868
IMC-GAE-I 0.738 0.924 0.912
IMC-GAE-OD 0.727 0.905 0.834

Table 8: Inference time (s) of IMC-GAE, IGMC andGCMCon
Douban, MovieLens-100K, and MovieLens-1M.

Model Douban ML-100K ML-1M

IGMC 9.255 33.041 122.042
GC-MC 0.011 0.011 0.025
IMC-GAE(ours) 0.060 0.0382 0.067

concentration operator in both sparse and dense rating matrices.
This might be because that sum or concentration operator does
not assign lower importance to the node representations in deeper
layers, which introduces more noise into the representation of the
nodes. Second, we can see that disabling NRR results in the perfor-
mance drop on all three datasets. It demonstrates that NRR is an
effective way to regularize the model.

5.5 Study of the local graph patterns learning
(RQ3)

5.5.1 Performance Comparison. In this section, we attempt to un-
derstand how the identical feature, the role-aware feature, and the
layer-wise node dropout scheme affect local graph patterns learn-
ing in IMC-GAE, and how local graph patterns learning affects the
performance of IMC-GAE in both sparse and dense rating matrices.
Towards this end, we compare the performance of original IMC-
GAE with IMC-GAE trained with only identical feature, IMC-GAE
trained with only role-aware feature, IMC-GAE with normal node
dropout on the three datasets. From the result shown in Table 7,
we conclude the following findings:
• With only role-aware feature or only identical feature for training,
IMC-GAE obtains a competitive performance with IMC-GAE. It
demonstrates that local graph patterns learning in IMC-GAE is
effective in both sparse and dense rating matrices.

• The IMC-GAE outperforms the other three baselines in all datasets,
which demonstrates that each design in IMC-GAE for local graph
patterns learning (i.e., role-aware feature, identical feature, and
layer-wise node dropout scheme) is essential, which helps GAE
learn a series of effective local graph patterns.

5.5.2 Inference Time Comparison. We compare the inference time
of IMC-GAE with IGMC and GC-MC (a typical GAE-based model)
on three datasets. Specially, we infer the 20% samples in each dataset
and conduct the experiment on GN7 on Tencent Cloud, which is

Figure 4: ML-1M results under different sparsity ratios.

equipped with 4*Tesla T4. We repeat this experiment five times and
report the average inference time of each model in Table 8. The
results show that the inference time of IMC-GAE is slightly longer
than that of GAE but significantly shorter than that of IGMC.

5.6 Study of IMC-GAE on sparse data (RQ4)
To investigate the model performance on few-shot or even unseen
users (or items), we test the model on dataset under different spar-
sity levels of the rating matrix [2, 28]. Here we construct several
sparse datasets by using 100%, 20%, 10%, 5%, 1% and 0.1% train-
ing ratings in Movielens-1M, and then compare the test RMSEs of
our method with GC-MC and IGMC, a typical GAE-based model
and an inductive GNN model. As shown in Figure 4, we have two
observations,
• As the dataset becomes sparser, the performance of all the models
suffer from a drop, but the drop rate of our model is much smaller
compared with GC-MC.

• The performance of our model in the datasets with 100%, 20%,
and 10% training ratings is better than IGMC, but worse in other
datasets.
From the observations, we find that the way we adopt GAE to

learn local graph patterns that truly improves its inductive learning
ability. However, the performance of IMC-GAE on three sparer
datasets is worse than that of IGMC. It suggests that local graph
patterns learned in IMC-GAE is not as good as those learned in
IGMCwhich can be generalized to sparser datasets containing more
few-shot or unseen users (or items).

6 CONCLUSION
In this paper, we propose Inductive Matrix Completion using Graph
Autoencoder (IMC-GAE), which uses GAE to learn both graph pat-
terns for inductive matrix completion and specific node representa-
tions for personalized recommendation. Extensive experiments on
real-world datasets demonstrate the rationality and effectiveness of
the way IMC-GAE learns local graph patterns by GAE. This work
represents an initial attempt to exploit local structural knowledge in
GAE-based matrix completion, which is more suitable to be applied
to real recommender systems.
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