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ABSTRACT
Background: Blogs are a source of grey literature which are widely
adopted by software practitioners for disseminating opinion and
experience. Analysing such articles can provide useful insights into
the state–of–practice for software engineering research. However,
there are challenges in identifying higher quality content from the
large quantity of articles available. Credibility assessment can help
in identifying quality content, though there is a lack of existing
corpora. Credibility is typically measured through a series of con-
ceptual criteria, with ’argumentation’ and ’evidence’ being two
important criteria.

Objective: We create a corpus labelled for argumentation and
evidence that can aid the credibility community. The corpus consists
of articles from the blog of a single software practitioner and is
publicly available.

Method: Three annotators label the corpus with a series of
conceptual credibility criteria, reaching an agreement of 0.82 (Fleiss’
Kappa). We present preliminary analysis of the corpus by using it
to investigate the identification of claim sentences (one of our ten
labels).

Results: We train four systems (Bert, KNN, Decision Tree and
SVM) using three feature sets (Bag of Words, Topic Modelling and
InferSent), achieving an F1 score of 0.64 using InferSent and a Linear
SVM.

Conclusions: Our preliminary results are promising, indicating
that the corpus can help future studies in detecting the credibility
of grey literature. Future research will investigate the degree to
which the sentence level annotations can infer the credibility of the
overall document.

CCS CONCEPTS
• General and reference → Cross-computing tools and tech-
niques; Empirical studies; • Human-centered computing →

Blogs; • Computing methodologies→ Supervised learning.
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1 INTRODUCTION
1.1 Context and motivation
Garousi et al. [15] argue that the wider adoption of grey literature
by research would help to bridge the gap between the state–of–art,
where research typically operates, and the state–of–practice, what
actually happens in industry. Conducting grey literature reviews
systematically is problematic, however, as we have limited visibility
into how search engines rank results, and the web is a lot larger
and more diverse than academic databases. Rainer and Williams
[30] suggest that the use of credibility assessment as an inclusion
criterion in such grey literature reviews can contribute to providing
a method for identifying the higher quality results.

Credibility is, at least in part, a subjective experience. Credi-
bility research attempts to address this subjectivity by reporting
credibility assessment concerning a specific user group e.g. the
visually impaired [1], first year students [24], pensioners [20]. How-
ever, conceptualising credibility at the level of a user group is itself
problematic because members of the user group still have unique
experiences in time and space. The subjectivity of credibility af-
fects our ability to assess the credibility of web documents, e.g., our
ability to consistently annotate web documents. We return to this
point in Section 2.3.

Credibility is assessed through measuring a series of conceptual
criteria. The specific criteria to use depends on the user group and
the context of the study being undertaken. Williams and Rainer
[43] conducted a survey in order to determine which criteria apply
to the credibility assessment of software engineering researchers.
Both reasoning and the reporting of experience were considered
as important criteria. For measuring reasoning, we can turn to the
argumentation mining community for prior research. Measuring
experience is more challenging as, according to Rainer et al. [31],
there is limited prior research on experience mining.

In this paper, we present a corpus of annotated articles from a
single software practitioner’s blog (the highly regarded ‘Joel On
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Software’ blog, written by Joel Spolsky). The articles have been
annotated at a sentence level for the presence of argumentation
and evidence. The corpus contains 19996 sentences and is publicly
available for download.We present results from our preliminary use
of the corpus, discuss how the corpus and results build on existing
credibility assessment research, contrast the annotations with the
results of an existing tool (MARGOT [22]), and consider next steps.

1.2 Contributions
The paper makes the following contributions:

• We present a new corpus of 19996 sentences, annotated
for argumentation and evidence. The corpus comprises all
sentences from 234 blog articles (the full blog roll comprises
over 1000 blog articles). The corpus is available for public
use1.

• To the best of our knowledge, the annotated corpus is the
first corpus of blog documents written by an experienced
software practitioner and annotated for arguments and evi-
dence.

• We also present our preliminary work towards credibility
assessment by identifying claim sentences within the corpus.

1.3 Structure of this paper
The remainder of this paper is structured as follows: section 2 pro-
vides an overview of previous and related work; section 3 describes
the generation of a novel annotated dataset; section 4 describes the
design of our study; section 5 presents and discusses the results of
our study; the conclusions and future work are presented in section
6.

2 RELATEDWORK
2.1 Industry–originating research fields
Grey literature that has been written by experienced software prac-
titioners often influences industry practice. In some cases, ideas
originating in industry create and mould new research directions.
For example, in 2014, Martin Fowler, a prolific software practitioner,
published a blog article on the microservices’ architecture for scal-
able web applications [19]. According to the blog article, the term
“microservices” had been discussed and agreed on by a group of
software architects to describe a common architectural style that
many of them had been recently exploring. Since the articles’ re-
lease, microservices have not only become a powerful and widely
used architectural pattern in industry (e.g. Netflix famously uses
microservices2, as well as Monzo3), but also microservices have ac-
quired a large research community (e.g. [13, 35, 44]). Microservices
are one example of practice influencing and moulding research.

2.2 The use of practitioner–generated grey
literature in research

Software engineering researchers often use practitioners as a source
of evidence in their studies. Typically, such evidence is collected

1https://github.com/serenpa/Blog-Credibility-Corpus
2https://netflixtechblog.com/tagged/microservices
3https://www.infoq.com/presentations/monzo-microservices/

through traditional evidence gathering techniques, e.g. survey, in-
terview, observation. The world wide web has brought with it a
shift in the way that software practitioners disseminate information
[36]. As a result, there is growing interest in utilising grey litera-
ture as an additional data source in evidence gathering through
Grey Literature Reviews (GLR; e.g., [2, 3, 6, 35]) and Multi–vocal
Literature Reviews (MLR; e.g., [16]).

There are however challenges in looking at grey literature. Rainer
and Williams [30] describe the challenges of looking at blog–like
content. These challenges generalise to all grey literature and are
summarised here:

• Definitions and models – there exists multiple, and some-
times conflicting definitions for ‘grey literature.’ There are
also a lack of models to describe grey literature structure
and relationships.

• Classification frameworks – as well as the definitions, there
are discrepancies in the literature over how the quality of
different grey literature sources compare. Garousi et al. [16]
present a framework for classifying grey literature which
builds on existing frameworks [2, 3]. The frameworks imply
a hierarchy of quality within different grey literature sources,
but Rainer and Williams [30] argue that the quality of grey
literature cannot be classified solely by the medium in which
it is published.

• The quantity and quality of grey literature – the universe
of grey literature is substantially larger than academic liter-
ature and its quality varies greatly. We need a reliable and
rigorous way of filtering the high quality content from the
vast quantity available.

• Ambiguity of language – grey literature is typically infor-
mal and therefore can use idiomatic structures, which may
introduce ambiguity.

2.3 Credibility assessment
Assessing the credibility of a document can help distinguish the
higher quality grey literature from the vast quantity available. Cred-
ibility assessment is subjective to the individual. The literature
handles this subjectivity by reporting and assessing conceptual
criteria for a particular user group (e.g. visually impaired, first
year students, pensioners). Williams and Rainer [43] surveyed soft-
ware engineering researchers to determine the most important
conceptual criteria when assessing blog articles. Two key criteria
identified were 1) the presence of the argumentation within the
document, and 2) the evidence and personal experience provided
to support the argumentation. Personal experience is important in
grey literature because where researchers argue based on data and
experiment, practitioners form opinions based on their personal
and professional experience [11, 29]. For identifying arguments and
experience within text, we can utilise the argumentation mining,
opinion mining [5, 33] and experience mining communities. Lippi
and Torroni [21] present a review of the state of the argumentation
mining community. Lippi and Torroni also released MARGOT [22],
a publicly available tool for assessing a document’s argumentation
and evidence. MARGOT was trained on the IBM Debater dataset,
the largest corpus available at the time. The experience mining com-
munity is not as mature as its argumentation mining counterpart.
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Rainer et al. [31] conducted a review of the literature reporting
the identification of professional experience in grey literature. The
review concluded that more primary studies are needed in order
to advance the community. One barrier to such primary studies
is a lack of corpora that has been labelled for experience. This pa-
per contributes in that it presents a new dataset which is publicly
available and is annotated for argumentation and evidence.

2.4 Aggregating conceptual criteria
measurements into overall credibility

The subjective nature of credibility also hinders the ability to ag-
gregate conceptual criteria measurements into a score for overall
credibility. Previous attempts at ranking using various techniques
are easily criticised due to investigators deciding on the weightings
of each criteria (e.g. [40]). One solution explored has been to mea-
sure and present conceptual criteria (e.g. reasoning and experience)
data back to the researcher in tabular format with the ability to
rank as they please (such as University ranking tables). Our fu-
ture research intends to look towards other techniques, such as
meta–knowledge [34], for ranking and comparing grey literature
documents.

3 DATASET
3.1 The subject of the corpus
The corpus consists of articles from a single practitioner’s blog, Joel
Spolsky4. His blog, ‘Joel on Software’ is widely read and highly
regarded by the practitioner community. The blogwasmainly active
from 2000 to 2012, but still publishes articles sporadically today
(the last article published at the time of writing was June 2020). The
articles within the blog are a mix of opinion pieces (on subjects
such as software and technology, management, and start–ups),
advertisements for new products and events, and short casual posts
intended for fun, or to provide brief updates to his audience on his
thoughts/recent activities. This mix of article types brings with it
additional challenges over looking at the blogs of practitioners that
maintain a more uniform structure (e.g. Martin Fowler5).

The blog was chosen due to previous research finding it to be
an exemplar of how practitioner–generated content can provide
new insights for research. Rainer [28] demonstrated the value in
analysing practitioner–generated content using a single article from
’Joel on Software,’ and Williams [39] used the blog to evaluate a set
of keywords for identifying reasoning.

3.2 Data gathering
The data was initially collected using COAST_CRAWL6, a publicly
available web crawler. We seed the crawler with the blog’s archive
page to ensure that all articles are accessible. The crawler initially
finds 1693 pages. However, after de–duplication, removing static
pages and removing non–article pages, 1023 remain. The article
text is extracted using Pattern7.

4Spolsky is the co–founder and former CEO of Stack Overflow, and the co–founder of
Fog Creek Software (the company that created Trello)
5https://martinfowler.com/
6https://github.com/serenpa/coast_crawl
7https://github.com/clips/pattern

3.3 Annotation
3.3.1 Tagset. The articles were annotated for argumentation and
evidence. These two criteria were broken down into more specific
tags. Dictionary definitions for each of the tags were developed
further throughout phase one of the annotations (Section 3.3.2).
Table 1 lists each of the tags with a summary definition for each.

3.3.2 Process. Annotators were presented with the entire docu-
ment. They were asked to read the article in its entirety before
labelling the sentences which contain argumentation and evidence.
WebAnno8 [14] was used for annotation. Annotationwas conducted
in two phases. In phase one, two annotators were employed with
an additional third annotator for resolving conflicts. This phase
consisted of four rounds of annotation with each of the three an-
notators completing all of the articles from the round. At the end
of each round, we met with the three annotators to discuss anno-
tations as a group. Annotators were encouraged to converge on
their annotations, but we allowed discrepancies between the two
main annotators which were later resolved by the third annotator.
We maintained a set of annotation guidelines which were updated
during these meetings as the annotators’ definitions evolved and
converged. In total, 36 articles were annotated during this initial
phase. At the end of the phase, agreement was calculated on the
annotations at a sentence level. We used the third annotator to
resolve the conflicts between annotators one and two. In instances
where a conflict cannot be resolved (e.g., if annotator 3 did not
agree with either label), we favour annotator one as they annotated
the most articles overall. The agreement at the end of phase one
for argumentation labels is 0.817 using Fleiss’ Kappa (Po: 0.895; Pe:
0.428), and 0.819 for evidence labels (Po: 0.959; Pe: 0.771).

Phase two then consisted of the annotators working on different
articles with no double annotation taking place. In doing so, a
further 198 articles were annotated taking the total number of
articles up to 234. This leads to a final dataset size of 19996 sentences.

3.3.3 Description of the dataset. Table 2 presents frequency counts
and percentages for each of the labels. The table indicates that 34%
of the sentences have no label. The percentages total more than
100% because approximately 1200 sentences are labelled with more
than one label.

Table 3 presents a contingency table of sentences that are labelled
with more than one label. Of the 19996 sentences, 1242 sentences
have more than one label. We allowed annotators to give more than
one label per sentence at their discretion as complex sentences may
contain multiple elements to be tagged and therefore do not always
align with sentence level annotations.

3.4 Comparing the annotated dataset with an
independent system

As an exploration of the annotated dataset, we compared the labels
assigned by the annotators with labels assigned independently by
MARGOT [22], an established argumentation mining tool. (To clar-
ify: we are not evaluating the two set of labels. We view this merely
as a comparison to a related system from previous literature). We
first used MARGOT to label the sentences of all articles in the Spol-
sky dataset. MARGOT actually ‘generated’ slightly more sentences
8https://webanno.github.io/webanno/
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Table 1: The annotation tags and definitions

Tag (acronym) Definition
Argumentation
Claim (clm) A statement or assertion. This claim may be supported by some reasoning or evidence,

and may also be an opinion
Reasoning (rsn) Reasons often (but not always) appear close to the claim that the reason is supporting.

Reasoning supports a claim with logical justification/explanation
Conclusion (conc) A judgement or decision reached by reasoning
Evidence
Experience (exp) References to a personal and/or professional experience which is provided as evidence to

support a claim, or reasoning. We are interested here in actual experience (c.f. implied
experience or hypothetical experience).

Event (evnt) Events are defined as things that have happened. Operationally, we may detect events
through specific mentions to a moment in time e.g. "Last summer, while attending a
conference...". Verbs can also imply that an event has taken place without referencing a
specific time e.g. "The boy went to the shops".

Citation (cite) May be a URL hyperlink to a other web page, a formal reference in a dedicated references
section typically at the end of an article (as in research), a footnote, an in–text citation
(without a dedicated references section).

Code Snippet (code) Authorsmay evidence their claims through the use of code examples. These code examples
may be in–text, in a separate block, in an image, or in a table.

Reference to table or image
(ref)

Authors may evidence their claims through the use of tables of data and/or images.

Data/statistic (data) Authors may evidence their claims through providing statistics or presenting analysis or
other forms of raw/processed data.

Other (othr) There may be other forms of evidence which has not been specified in the guidelines.
This tag allows for annotators to flag other forms of evidence they may think is relevant
for discussion.

Table 2: Frequency counts and percentages for the annotation labels

Label Frequency Percentage
Claim 9202 62
Reasoning 1586 11
Conclusion 331 2
Citation 778 5
Code Snippet 61 0
Events 261 2
Experience 2590 17
Reference to Table or Image 29 0
Statistics or Data 22 0
Other 29 0
Total labelled 14889
No label 5107 34
# documents annotated 234 -
# sentences with multiple labels 1242 -

Table 3: Contingency table (n=1242). The values of zero (0) in the table are included for completeness.

Label Rsn Conc Cite Code Evnt Exp Ref Data Othr
Claim 643 61 168 44 57 119 2 3 19
Reasoning 109 19 9 9 53 0 0 2
Conclusion 3 1 0 3 0 0 0
Citation 2 8 88 0 0 3
Code Snippet 2 2 0 1 0
Events 20 0 1 0
Experience 0 2 5
Reference to Table / Image 0 0
Statistics / Data 0
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(20022 compared to the 19996 sentences of the annotation dataset).
We then selected the 234 articles that had been annotated by both
the annotators and MARGOT. We matched similar sentences using
Jaccard similarity: two sentences were treated as sufficiently similar
if the Jaccard similarity score was >= 0.5. Our matching identified
approximately 20000 matched pairs of sentences. For the matched
sentences, we compared the labels assigned by the annotators with
the labels assigned by MARGOT.

Table 4 presents confusion matrices for three sets of labels. In
Table 4(a) we compare MARGOT’s labelling of a claim (TRUE or
FALSE) with the annotators’ labelling of either a claim, a reason or
a conclusion (cf. Table 1). In Table 4(b) we compare MARGOT’s
labelling of a claim with the annotators’ labelling only of a claim.
In Table 4(c) we compare MARGOT’s labelling of a claim with the
annotators’ labelling only of either a reason or a conclusion.

Table 4 shows considerable disagreement between the annota-
tors’ labels and MARGOT. We hypothesise that this disagreement
can at least partly be explained by definitions and by the nature of
the dataset.

For definitions, we hypothesise that our definition of claim (cf.
Table 1) is different to the definition applied during the labelling
of the IBM Debater dataset that was subsequently used to train
MARGOT. For the IBM Debater dataset, Aharoni et al. [4] defined a
claim as: “Context Dependent Claim – a general concise statement
that directly supports or contests the topic”. This contrasts with
our definition of a claim as, “A statement or assertion. This claim
may be supported by some reasoning or evidence, and may also be
an opinion.” (see Table 1).

For the nature of the dataset, we hypothesise that the content of
the Spolsky dataset is different to that of the IBM Debater dataset.
Lippi and Torroni [22] explain that the IBM Debater dataset con-
sisted of 547 Wikipedia articles that had been organized into 58
topics, and annotated with 2294 claims and 4690 evidence facts.
By contrast, we have 234 web articles written by one software
practitioner on an unknown number of topics. It is likely that the
Wikipedia articles will have progressed through more review and
revision than the web articles, and will also likely be written in a
more formal style. We therefore hypothesise that the annotators’ la-
bels in Table 4(c) are most likely to be comparable to the MARGOT
claims, however the respective data is too imbalanced to explore
this hypothesis further at this stage.

4 PRELIMINARY EXPERIMENT
Our experiments focus on the detection of claims in our dataset.
This is only one use of the dataset and the detection of other cate-
gories is left to future work (however, preliminary results for our
other labels are presented in Table 6). The detection of claims is an
interesting problem in itself as it is a broadly defined concept and
many types of sentences can be considered a claim. In our corpus,
62% of sentences are annotated as claims. We use 4 approaches as
detailed below:

BERT: The BERT masked language model [12], built on the
transformer architecture [37] is now prevalent at the fore-
front of NLP research. We used the keras-bert implementa-
tion 9 with the Bert-Large pretrained model (L=24, H=1024,

9https://github.com/CyberZHG/keras-bert

A=16) and configured it with one fully connected hidden
layer of 16 units with a ReLU activation function and an out-
put layer of 2 hidden units with a softmax activation function.
We used the rectified Adam optimiser [23] during training.
We report on the model with and without the hidden layer
to demonstrate its effect.

K-Nearest Neighbour (KNN): We used the SciKit Learn [26]
implementation of the KNN [17], with K set to 3.

Decision Tree (DT): We used the SciKit Learn implementa-
tion of the decision tree [8], with a maximum depth of 5.

Support Vector Machine (SVM): We used the SciKit Learn
implementation of the SVM [9, 27] with a linear kernel and
regularisation parameter C = 0.25.

We split the data into train (80%), validation (10%) and test (10%)
partitions, which were stratified according to the claim label and
shared across all algorithms. We removed any sentences with mul-
tiple labels, leaving a total of 8539 Claim sentences and 9612 sen-
tences with no label (split evenly across the three partitions). The
validation partition was used to measure the loss whilst training
BERT and to select appropriate algorithms from Sci-kit learn. The
final results are reported on the test partition. We trained Bert for
one epoch in each case and did not further tune the hyperparam-
eters of BERT or the other algorithms. Although this can lead to
a perceived improvement in results, it also often leads to model
overfitting, which we sought to avoid.

We created three feature sets that were used as input to our
machine learning algorithms (excluding BERT, which does not
require external features). These are described as follows:

Bag of Words: In this approach we first computed the mutual
information [25] between each word and the class label.
We selected the top 100 words as binary features, which
indicated the presence of a word that distinguished the class.

Topic Modelling: We first created a document-token matrix
indicating the frequency of each token in each sentence. We
then used the gensim [32] implementation of LDA [7] to
reduce the dimensionality of the matrix and to create topic
vectors for each document in a technique commonly known
as topic modelling. This technique forces words which occur
in similar contexts to be in the same topic. We limited the
vector size to 100 topics.

InferSent: We used the Facebook library InferSent [10], which
provides a 4096 dimensional embedding for a given sentence.
InferSent uses FastText vectors [18] to get the embedding
for each token and then passes these through a pre–trained
model which identifies the importance and weighting of each
embedding before recombination. Each dimension of the
resulting embedding was used as a feature to the algorithm,
giving 4096 distinct features.

We ran each algorithm with each feature set and report the
results in Table 5. We attempted to combine feature sets, but this
did not lead to any improvement in the overall scores and so these
results are omitted.

5 RESULTS & DISCUSSION
Our results are shown in Table 5. We tried using Bert as it is has
been shown to achieve state–of–the–art performance with little fine
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Table 4: Confusion matrices comparing the annotators’ labels with MARGOT’s [22] labels

(a) Contrasting MARGOT’s label of a claim with annotators’ labels of a claim, reason or conclusion.

MARGOT
Annotators TRUE FALSE Total
TRUE 952 9344 10296
FALSE 297 9429 9726
Total 1249 18773 20022

(b) Contrasting MARGOT’s label of a claim only with annotators’ label of a claim

MARGOT
Annotators TRUE FALSE Total
TRUE 825 8327 9152
FALSE 424 10446 10870
Total 1249 18773 20022

(c) Contrasting MARGOT’s label of a claim only with annotators’ label of a reason or conclusion

MARGOT
Annotators TRUE FALSE Total
TRUE 255 1542 1796
FALSE 994 17220 18214
Total 1249 18773 20022

Classifier Features Precision Recall F1

BERT No Hidden Layer 0.54 0.48 0.51
Hidden Layer 0.75 0.48 0.58

BOW 0.88 0.12 0.20
KNN Topic Modelling 0.52 0.45 0.48

InferSent 0.57 0.58 0.58
BOW 0.82 0.02 0.04

DT Topic Modelling 0.56 0.31 0.40
InferSent 0.57 0.66 0.61
BOW 0.85 0.01 0.02

SVM Topic Modelling 0.00 0.00 0.00
InferSent 0.62 0.65 0.64

Table 5: The results of detecting claim sentences

tuning for other NLP tasks. The results however, were somewhat
disappointing. Even the addition of a hidden layer did not greatly
improve the scores. Although we could have spent time further
modifying the network structure and training for many epochs, we
instead decided to use classic machine learning algorithms from
sci–kit learn.

We used 2 traditional feature generation techniques (Bag of
Words and Topic Modelling) and one state of the art method of
generating sentence embeddings (InferSent). The InferSent features
outperformed Bag of Words and Topic Modelling with every classi-
fier. This is surprising as Bag of Words and Topic Modelling have
100 features each, compared to 4096 features for InferSent. Typically,
the performance of classical machine learning algorithms decreases
when presented with many features. We hypothesise that many of
the dimensions in the InferSent embeddings were not being used as
part of the classification strategy. Our best performing system used

the InferSent embeddings and a Linear SVM and received an F1
score of 0.64, with precision at 0.62 and recall at 0.65. This indicates
that the claim vs. non-claim sentences are separable and that a
model can be built to distinguish between them. InferSent provides
an embedding for a sentence and it would be interesting to analyse
which parts of a sentence are being used in the classification of
claims vs. non–claims.

In one instance, our model was not able to produce a reliable
model for the Claim sub–dataset (see SVM + Topic Modelling).
We used a linear SVM and this implies that no linear boundary
could be found in the topic space to separate our classes. Note that
the KNN and Decision Tree, both of which can create complex
boundaries in feature space, were able to produce models using the
topic model features. It may be the case that using a kernel–based
SVM would yield a more reliable model for the Topic–Modelling
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features, however we avoided non–linear SVM as the time taken to
train is too great with our high–dimensional InferSent embeddings.

It may well be possible to improve our scores by tuning the
algorithms used or using a more powerful Transformer based archi-
tecture, however we have focused our results on building a model
for claims as a benchmark for our dataset. We expect to further
improve on the scores we have reported as well as identify other
elements in our corpus in future work.

More generally, credibility assessment is a difficult task as it is
subjective, multi–disciplinary, and lacking in formal definitions.
The credibility literature acknowledges that argumentation and the
reporting of evidence are important criteria. However, when we try
to apply them to this particular application, we find a relatively low
amount of reasoning and evidence within the dataset. Furthermore,
most studies within the argumentation mining community focus
on well–structured text such as legal texts, persuasive essays and
debate corpora. When applying technologies such as MARGOT, to
web documents, the classification task becomes more difficult as the
writing style is more casual, less structured and at least sometimes
more ambiguous than one might expect of better structured texts.

Finally, the credibility assessment community recognises a need
for formal definitions for both the conceptual criteria analysed
and the term ‘credibility’ itself [41]. We see similar issues when
contrasting our work with the argumentation mining community.
For example, the IBM Debater dataset uses the term ‘claim’ as
its measure of argumentation. In this paper, we define claim as
synonymous with assertion and opinion, distinguishing it from
reasoning and conclusion.

6 CONCLUSIONS & FUTURE RESEARCH
6.1 Threats to Validity
There are multiple threats to this research, with each threat also
providing an opportunity for future work:

(1) The metrics used for assessing credibility are based on the
findings of a previous literature review and survey [43]. The
literature review was not conducted systematically and only
thirteen papers were selected for analysis. A broader, system-
atic review may yield new important metrics for credibility
assessment. In addition, although the response rate of the
survey was good, the overall number of responses in compar-
ison to the community of software engineering researchers
is relatively low. Further research is needed to ensure that
the credibility metrics do not only apply to this subset of
researchers.

(2) There are threats with the way in which we have conducted
our annotations. Our student annotators may have different
definitions for our credibility metrics than software engi-
neering researchers (our target demographic). This may in
turn lead to different annotations. Future research will look
at the quality of our annotations.

(3) In looking at only one source of grey literature, a single prac-
titioners blog, it is unclear how well our models, and models
trained using our dataset, generalise to other sources. Future
research will investigate the degree to which our metrics
and models work over other data sources (e.g. Twitter, Stack
Overflow, GitHub).

6.2 Future research
There are many avenues open for future research. This paper
presents preliminary analysis of one label within the dataset, fur-
ther analysis across all labels is a natural next step. The analysis
could then be aggregated and ranked to form an overall credibility
rating for each individual article. The credibility ratings and quality
could then be compared against one another.

We also plan to benchmark against other tools and to look at
particular subsets of the dataset. For example, we plan to look more
closely at sentences whereMARGOT and the annotators agree. This
is challenging as the result would be a small, imbalanced dataset,
however it could provide further insight into identifying quality
content.

Finally, the dataset presented in this paper can also aid further
work in each sub–community (e.g. argumentation, experience, opin-
ion mining). For example, previous work [38, 42] has investigated
the degree to which practitioners cite research in their blog articles.
The dataset allows for further, more in–depth analysis of citations.
Similarly, another area for future research is the dataset’s potential
to be used as a source in future experience mining primary studies.

6.3 Conclusions
In this paper we have presented a new dataset annotated for ele-
ments of argumentation and evidence. The dataset comprises 19996
labelled sentences from 234 complete blog articles, with all articles
written by an experienced software practitioner. Our intention is
that the dataset can help future studies in automating credibility
assessment and the comparison of documents for ranking based on
credibility and quality. The dataset is publicly available10.

In addition to the dataset generation, we present preliminary
analysis toward automating the identification of claim sentences,
one of our ten labels. An SVM trained using the InferSent feature
set provides a F1 score of 0.64.
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