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ABSTRACT
This paper focuses on camouflaged object detection (COD), which
is a task to detect objects hidden in the background. Most of the cur-
rent COD models aim to highlight the target object directly while
outputting ambiguous camouflaged boundaries. On the other hand,
the performance of the models considering edge information is not
yet satisfactory. To this end, we propose a new framework that
makes full use of multiple visual cues, i.e., saliency as well as edges,
to refine the predicted camouflaged map. This framework consists
of three key components, i.e., a pseudo-edge generator, a pseudo-
map generator, and an uncertainty-aware refinement module. In
particular, the pseudo-edge generator estimates the boundary that
outputs the pseudo-edge label, and the conventional COD method
serves as the pseudo-map generator that outputs the pseudo-map
label. Then, we propose an uncertainty-based module to reduce the
uncertainty and noise of such two pseudo labels, which takes both
pseudo labels as input and outputs an edge-accurate camouflaged
map. Experiments on various COD datasets demonstrate the effec-
tiveness of our method with superior performance to the existing
state-of-the-art methods.

KEYWORDS
Uncertainty, camouflaged object detection, pseudo-edge/map syn-
thesis, CVAE, camouflaged map refinement

1 INTRODUCTION
Camouflage is a way for creatures in nature to blend into the sur-
roundings to make it harder for preys and predators to notice
themselves [4]. Camouflaged Object Detection (COD) is a task of
detecting objects from images containing such camouflaged ob-
jects [9], as shown in the first column of Figure 1. COD is expected
to have a wide range of applications, including ecological protec-
tion, medicine, surveillance systems, search and rescue systems for
disaster, military applications, anomaly detection [9]. In addition,
it is expected that improving the accuracy of COD would improve
the accuracy of generic object detection.

COD is a more challenging task compared to generic object de-
tection [22]. This is because the foreground has a similar texture
to the background, which is not easy for a human to notice the
camouflaged object [38]. In existing COD methods [8, 9], due to
the boundaries of camouflaged objects are not clear enough, they
often result in blurred and ambiguous boundaries of the output
camouflaged map. Inspired by [5, 30], making good use of edge
information is helpful for performance improvement. However, the
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performance of recent models [39, 44], that consider edge infor-
mation, achieve lower performance than regular COD models like
[8]. Therefore, we aim to integrate the edge information into the
process of COD, which is to refine the predicted camouflaged maps
by referring to the separately predicted edges.

In this paper, we propose a new framework, called Uncertainty
Reduction COD (UR-COD), that explicitly considers the edge in-
formation of the camouflaged object, which is to enhance the cur-
rent COD model by introducing a camouflaged edge detection
module and to output camouflaged map with clear defined bound-
ary (as shown in Figure 1). The proposed framework can extract
powerful features that identify more details of camouflaged objects
than models that do not or implicitly consider the boundaries of
camouflaged objects. In particular, we first introduce a camouflaged
edge detection module, in which output edge is used as a pseudo-
edge label. Second, we use a conventional COD model to generate
the coarse camouflaged map that can be seen as a pseudo-map label.
Consequently, our goal is to generate an accurate camouflaged map
by given the pseudo-edge label and pseudo-map label. However,
these pseudo labels are noisy and contain uncertainty compared to
ground-truth labels. To this end, we use the Conditional Variational
Auto-encoder (CVAE) [35] to build an uncertainty-aware map re-
finement module, which can output a camouflaged map even in the
presence of noisy pseudo label inputs. It is worth noting that our
framework can use any existing COD models as the pseudo-map
generator, and our proposed uncertainty-enhanced model consis-
tently improves the performance of the original model. The whole
framework of our proposed model is shown in Figure 2.

To verify the usefulness of our method, quantitative evaluation
is conducted on the CAMO dataset [20], CHAMELEON dataset [34],
COD10K dataset [9], and NC4K dataset [27]. The results demon-
strate that our framework outperforms the corresponding conven-
tional COD methods in almost all of the four widely-used evalu-
ation metrics, which are S-measure [6], E-measure [7], weighted
F-measure [28], and MAE. Furthermore, it is shown that the best
performing COD model exceeded the performance of the state-of-
the-art model when used as a pseudo-map generator.

Our main contributions are summarized as follows:

• We explicitly consider uncertain camouflaged edge and cam-
ouflaged map information and improve the conventional
COD methods.

• Experiments on various COD datasets confirm that the per-
formance of our method outperforms that of the conven-
tional state-of-the-art methods.
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2 RELATEDWORK
2.1 Camouflaged Object Detection
Previous COD methods can be categorized into either low-level-
features-based methods or deep-features-based methods. Low-level-
features-based methods are methods for detecting camouflaged
objects based on low-level features, such as color, shape, and bright-
ness of the image. There are many methods for this research [11,
16, 19, 25, 31–33, 36], but their performance is not yet satisfactory.
This is because a well-performed camouflage is good at deceiving
low-level features, so it is difficult to detect camouflaged objects
using low-level features. To solve this problem, deep-features-based
methods have been attracting attention in recent years.

Deep feature-based methods use deep neural networks to cor-
rectly output the camouflaged maps from an input image during
training, and predict the camouflaged maps of the objects during
testing. Le et al. [20] proposed ANet that addressed both classifi-
cation and segmentation tasks. Fan et al. [8, 9] introduced SINet
and SINet-v2 that first roughly searched for camouflaged objects
and then identified their segments. Yan et al. [43] proposed Mirror-
Net that focused on instance segmentation and adversarial attack.
Sun et al. [39] proposed C2FNet, which integrated the cross-level
features with the consideration of rich global context information.
Mei et al. [29] proposed PFNet via the distraction mining strategy.
Lyu et al. [27] introduced camouflaged object discriminative region
localization and camouflaged object ranking. Zhang et al. [46] in-
troduced RGB-D COD with a monocular depth estimation network.
According to the current leaderboard1, SINet-v2 has shown partic-
ularly high performance that directly segments objects, while the
boundaries of the output camouflaged map are often ambiguous.

On the other hand, some methods focus on edge information
of camouflaged objects. Wang et al. [40] used edge information
to improve the performance of salient object detection. Zhu et
al. [51] proposed TINet, which interactively refined multi-level
texture including contour edge and Canny edge [2]. Zhai et al. [44]
introduced a graph-based joint learning framework for detecting
camouflaged objects and edges.

Though these deep-features-based methods show considerably
higher performance than low-level-features-based methods, meth-
ods that segment objects directly have the problem of edge clarity,
while methods that consider edges have the problem of accuracy.
Therefore, to overcome these problems, we aim to combine the
best of both methods and propose to refine the directly predicted
camouflaged maps by referring to the separately predicted edges.
Moreover, to solve the problem of the low performance of edge-
based methods, our method takes into account the uncertainty of
the predicted edges.

2.2 Edge detection
With the development of deep learning, many high-performance
edge detection methods have been proposed [1, 24, 37, 42]. How-
ever, most of the objects in the datasets handled by these methods
are general salient objects, and they do not provide sufficient per-
formance for camouflaged objects. Gu et al. [13] proposed CENet
that uses a UNet-based model for improving the medical image

1http://dpfan.net/Camouflage/

(a) Image (b) GT (c) P-Edge (d) P-Map (e) Ours

Figure 1: Illustration of the proposed method. "P-" rep-
resents a pseudo label, and our method outputs edge-
accurate camouflaged maps based on the uncertain pseudo-
map labels and pseudo-edge labels. Note that any conven-
tional COD method can be used as the pseudo-map genera-
tor (PMG), and state-of-the-art SINet-v2 [8] is used here.

segmentation. This method extracts semantic information of the
context and generates a high-level feature map by using dense
atrous convolution (DAC) blocks [13] and residual multi-kernel
pooling (RMP) blocks [13]. Therefore, compared to other methods
that do not consider semantic information, this method is likely to
be applicable even when the detection target is not salient.

2.3 Uncertainty-aware object detection
Existing methods for object detection treat saliency map predic-
tion as a point estimation problem by learning the correspondence
between input images and ground-truth maps, which deterministi-
cally generate a single saliency map. However, since ground-truth
map labels are based on human annotations, especially in the field
of salient object detection, the recognition of the most salient ob-
jects differs among annotation generators, and the ground-truth
labels themselves contain uncertainty. Zhang et al. [45] solved this
problem of label uncertainty by using a Conditional Variational
Auto-encoder (CVAE) [35], that is called UCNet. UCNet introduces
CVAE to model uncertainty of human annotation, and accurate
object detection is achieved. In our proposed method, we generate
pseudo labels for camouflaged maps and edges to obtain accurate
COD. Since the pseudo labels are generated by a learning-based
method, there is some uncertainty in the pseudo labels. To address
this problem, it is necessary to consider the uncertainty.

3 METHOD
The purpose of this study is to predict camouflaged maps with
well-defined boundaries from an input image containing camou-
flaged objects. In conventional COD methods, there lacks a model
that takes the edge information into account while the camou-
flaged map output is often wrong or the boundary is ambiguous
and blurred. Therefore, we introduce a camouflage edge detection
module that explicitly estimates the boundary while accounting for
the uncertainty, and we call this new framework as uncertainty-
reduction COD (UR-COD). As shown in Figure 2, our framework
consists of three modules: pseudo-map generator (PMG) (in Sec.3.1),
pseudo-edge generator (PEG) (in Sec.3.2), and uncertainty-aware
map refinement (UAMR) module (in Sec.3.3). The details of each
module are described below.
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Figure 2: Overview of our framework. The obscure boundaries of pseudo-map labels generated by the pseudo-map genera-
tor (PMG) are refined by the uncertainty-aware map refinement (UAMR) module using pseudo-edge labels generated by the
pseudo-edge generator (PEG).

3.1 Pseudo-Map Generator (PMG)
The output camouflaged map generated by the conventional COD
methods often has unclear boundaries. In this method, a coarse
camouflaged map is generated from the RGB image 𝐼 using the
conventional COD method, and it is treated as a pseudo-map label
𝑀pseudo. In other words, PMG is a module that outputs a pseudo-
map label𝑀pseudo from an RGB image 𝐼 . In this paper, we chose five
methods as baselines for the COD models: SINet [9], SINet-v2 [8],
PraNet [10], C2FNet [39], and MGL [44], whose implementations
are publicly available. In PMG, any conventional method can be
incorporated as a COD model, and the performance of our method
is to improve the COD model to become a more powerful one.

3.2 Pseudo-Edge Generator (PEG)
PEG is a module that outputs a pseudo-edge label 𝐸pseudo from
an RGB image 𝐼 . To achieve this, we need to train some kind of
edge detection model suitable for the camouflaged object datasets.
However, most of the objects in the datasets handled by existing
edge detection models are salient objects, and they cannot perform
well on camouflaged objects. To deal with this problem and per-
form camouflaged edge detection, we follow CENet [13], which
extracts the context of the input image via DAC blocks [13] and
RMP blocks [13]. This is based on the hypothesis that, medical
image analysis and COD are two very close tasks, in which the
object in a medical image is also not salient [10]. Therefore, it is

intuitive to apply CENet to the case where the object is concealed,
which fully considers semantic information of images.

The DAC block contains four cascading branches that gradually
increase the number of atrous convolutions, formulated as:

𝑦 [𝑖] =
∑︁
𝑘

𝑥 [𝑖 + 𝑟𝑘]𝑤 [𝑘], (1)

where the convolution of the input feature map 𝑥 and a filter 𝑤
yields the output 𝑦, and the atrous rate 𝑟 corresponds to the stride
at which the input signal is sampled. Therefore, the DAC block
can extract features from different scales. In the RMP block, after
gathering context information with four different sizes of pooling
kernels, features are fed into 1×1 convolution and combined with
the original features. Using these blocks, the semantic information
of the context is extracted and we can achieve a high-level feature
map. We use binary cross-entropy (BCE) loss to train the PEG. How-
ever, according to our observation through experiment, directly
using the classical BCE loss will face the problem of overfitting. To
mitigate this, we introduce a new edge loss with Flooding [18] that
is calculated as:

Ledge =| Lbce (𝐸pseudo, 𝐸GT) − 𝑏 | +𝑏, (2)

where 𝑏 is the flooding level, which sets the target value of loss to
a small constant.
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3.3 Uncertainty-Aware Map Refinement
Module (UAMR)

To obtain the clear boundaries, we introduce a refinement mod-
ule to refine the obscure boundaries of pseudo-map labels𝑀pseudo
generated from PMG together using pseudo-edge labels 𝐸pseudo
generated from PEG. However, these pseudo labels are predicted by
the learning-based model, and thus contain uncertainty. Inspired
by UCNet [45], we propose a UAMR module that can absorb un-
certainty. Similar to [45], we assume that pseudo-map labels and
pseudo-edge labels have similar properties as depth labels in that
they provide clues for object detection. By extending UCNet to sup-
port pseudo-map labels and pseudo-edge labels, we construct the
UAMR module that considers uncertainty. Therefore, the input to
the UAMR module is an RGB image 𝐼 , a pseudo-map label𝑀pseudo,
and a pseudo-edge label 𝐸pseudo, which are used to predict an edge-
accurate camouflaged map𝑀pred. As shown in Figure 2, the UAMR
module consists of PriorNet, PosteriorNet, and RefinementNet.

PriorNet takes the RGB image 𝐼 , the pseudo-map label𝑀pseudo,
and the pseudo-edge label 𝐸pseudo as input and maps them to a low-
dimensional latent variable 𝑧prior. On the other hand, PosteriorNet
takes all the input from PriorNet together with the ground-truth
map label𝑀GT as input and maps them to a low-dimensional latent
variable 𝑧post. Note that PriorNet and PosteriorNet form CVAE,
and each latent variable 𝑧prior, 𝑧post is sampled from the Gauss-
ian distribution consisting of the parameters of the output mean
𝜇prior, 𝜇post and variance 𝜎prior, 𝜎post. As for the CVAE loss, let 𝑋
denotes (𝐼 , 𝑀pseudo, 𝐸pseudo), let 𝑌 denotes the ground-truth map
𝑀GT. The PriorNet is defined as 𝑃𝜃 (𝑧prior | 𝑋 ) and the Posterior-
Net is defined as 𝑄𝜙 (𝑧post | 𝑋,𝑌 ), where 𝜃 is the parameter set of
PriorNet and 𝜙 is that of PosteriorNet. The CVAE loss is defined as:

LCVAE = 𝐸𝑧∼𝑄𝜙 (𝑧post |𝑋,𝑌 ) [− log 𝑃𝜔 (𝑌 | 𝑋, 𝑧post)]

+ 𝐷KL (𝑄𝜙 (𝑧post | 𝑋,𝑌 ) ∥ 𝑃𝜃 (𝑧prior | 𝑋 )), (3)

where 𝑃𝜔 (𝑌 | 𝑋, 𝑧post) is the likelihood of 𝑃 (𝑌 ) given latent vari-
able 𝑧post and conditioning variable 𝑋 , and 𝐷KL is Kullback-Leibler
Divergence.

RefinementNet takes the RGB image 𝐼 , the pseudo-map label
𝑀pseudo, the pseudo-edge label 𝐸pseudo, and each latent variable
𝑧prior, 𝑧post as input, which is trained to estimate the camouflaged
map𝑀pred, the corrected pseudo-edge label 𝐸ref , and the corrected
pseudo-map label 𝑀ref . Therefore, using the latent variables in
CVAE, we can consider the uncertainty of the pseudo-map labels
and pseudo-edge labels by learning to make the reconstructed
pseudo-map label 𝑀ref closer to the ground-truth 𝑀GT and the
reconstructed pseudo-edge label 𝐸ref closer to the ground-truth
edge label 𝐸GT. As for the loss for RefinementNet, MSE loss Lmse,
smoothness loss [12] Lsmooth, and structure loss [26] Lstruct are
used. Smoothness loss is used to enhance the structure information
in the image, while structure loss is used to enforce spatial coher-
ence of the prediction and using both the local and global features

in the optimization. Thus, the refinement loss is defined as:

Lref = 𝜆
prior
mse Lmse (𝑃priorref , 𝑃

prior
GT ) + 𝜆

post
mseLmse (𝑃postref , 𝑃

post
GT )

+ 𝜆
prior
smoothLsmooth (𝑀

prior
pred , 𝑀GT) + 𝜆

post
smoothLsmooth (𝑀

post
pred, 𝑀GT)

+ 𝜆
prior
structLstruct (𝑀prior

pred , 𝑀GT) + 𝜆
post
structLstruct (𝑀post

pred, 𝑀GT), (4)

where 𝑃 denotes (𝑀, 𝐸), and 𝜆 denotes the weight for each loss.
Finally, combing the above three modules together, we get the

overall loss for our model:

L = 𝜆edgeLedge + 𝜆CVAELCVAE + 𝜆refLref , (5)

where 𝜆 denotes the weight for each loss. In testing, the output
camouflaged map 𝑀

prior
pred of RefinementNet is treated as the final

output of our framework.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Implementation Details. We implement our model using Py-
Torch, and initialized the encoder of RefinementNet with ResNet-
50 [15] parameters pre-trained on ImageNet and the encoder of
PEGwith the parameters of ResNet-34 [15]. We resize all the images
to 352×352 for both training and testing. The scale of latent space
is set to 3, and the maximum epoch is 100. We optimize the overall
parameters using the Adam algorithm, where the initial learning
rate is 5e-5 and after 80 epochs, the learning rate is reduced by 10%
for each epoch. The whole training takes 8.5 hours with batch size
10 on an NVIDIA Tesla V100 GPU. Besides, our approach has a low
computational cost during the inference.

4.1.2 Datasets. To train our framework, we used a standard train-
ing dataset for COD which contains 3,040 images from the COD10K
dataset [9] and 1,000 images from CAMO dataset [20]. During train-
ing, we generated the ground-truth edge labels from the ground-
truth map labels. To evaluate our framework, we used the CAMO
dataset consisting of 250 images with camouflaged objects, the
CHAMELEON dataset [34] consisting of 76 images, the COD10K
dataset consisting of 2,026 images, and the NC4K dataset [27] con-
sisting of 4,121 images.

4.1.3 Evaluation Metrics. Four quantitative evaluation metrics are
widely used to evaluate the performance of CODs: Mean Abso-
lute Error (MAE), S-measure [6], E-measure [7], and weighted F-
measure [28] denoted asM, 𝑆𝛼 , 𝐸𝜙 , and 𝐹𝑤

𝛽
, respectively.

M is defined as per-pixel-wise difference between the predicted
map𝑀pred and the ground-truth map𝑀GT as:M = 1

𝐻×𝑊 | 𝑀pred−
𝑀GT |, where𝐻 and𝑊 are the height and width of𝑀pred. The MAE
directly evaluates the conformity between the estimated map and
the ground-truth map. S-measure 𝑆𝛼 is a structure-based metric
that combines region-aware structural similarity 𝑆𝑟 and object-
aware structural similarity 𝑆𝑜 as: 𝑆𝛼 = 𝛼𝑆𝑜 + (1 − 𝛼)𝑆𝑟 , and the
balance parameter 𝛼 is set to 0.5 as default. E-measure 𝐸𝜙 simultane-
ously evaluates the local pixel-level matching information and the
image-level statistics. Weighted F-measure 𝐹𝑤

𝛽
defines a weighted

precision that can provide more reliable evaluation results than
F-measure, which is a comprehensive measure of both precision
and recall of the predicted camouflaged map.
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Table 1: Quantitative results on four standard COD datasets. ↑ indicates the higher the score the better, and vice versa.

Methods CHAMELEON CAMO-Test COD10K-Test NC4K
𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓

FPN [21] 0.794 0.783 0.590 0.075 0.684 0.677 0.483 0.131 0.697 0.691 0.411 0.075 - - - -
MaskRCNN [14] 0.643 0.778 0.518 0.099 0.574 0.715 0.430 0.151 0.613 0.748 0.402 0.080 - - - -
PSPNet [47] 0.773 0.758 0.555 0.085 0.663 0.659 0.455 0.139 0.678 0.680 0.377 0.080 - - - -
UNet++ [50] 0.695 0.762 0.501 0.094 0.599 0.653 0.392 0.149 0.623 0.672 0.350 0.086 - - - -
PiCANet [23] 0.769 0.749 0.536 0.085 0.609 0.584 0.356 0.156 0.649 0.643 0.322 0.090 - - - -
MSRCNN [17] 0.637 0.686 0.443 0.091 0.617 0.669 0.454 0.133 0.641 0.706 0.419 0.073 - - - -
PFANet [49] 0.679 0.648 0.378 0.144 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128 - - - -
CPD [41] 0.853 0.866 0.706 0.052 0.726 0.729 0.550 0.115 0.747 0.770 0.508 0.059 - - - -
HTC [3] 0.517 0.489 0.204 0.129 0.476 0.442 0.174 0.172 0.548 0.520 0.221 0.088 - - - -
ANet-SRM [20] - - - - 0.682 0.685 0.484 0.126 - - - - - - - -
EGNet [48] 0.848 0.870 0.702 0.050 0.732 0.768 0.583 0.104 0.737 0.779 0.509 0.056 - - - -
MirrorNet [43] - - - - 0.741 0.804 0.652 0.100 - - - - - - - -
TIGNet [51] 0.874 0.916 0.783 0.038 0.781 0.847 0.678 0.087 0.793 0.848 0.635 0.043 - - - -
PFNet [29] 0.882 - 0.810 0.033 0.782 - 0.695 0.085 0.800 - 0.660 0.040 - - - -
LSR [27] 0.893 0.938 - 0.033 0.793 0.826 - 0.085 0.793 0.868 - 0.041 0.839 0.883 - 0.053
SINet [9] 0.872 0.936 0.806 0.034 0.745 0.804 0.644 0.092 0.776 0.864 0.631 0.043 0.808 0.871 0.723 0.058
UR-SINet (Ours) 0.876 0.942 0.824 0.031 0.741 0.804 0.649 0.091 0.775 0.869 0.643 0.041 0.806 0.873 0.731 0.057
PraNet [10] 0.860 0.907 0.763 0.044 0.769 0.824 0.663 0.094 0.789 0.861 0.629 0.045 0.822 0.876 0.724 0.059
UR-PraNet (Ours) 0.884 0.936 0.835 0.032 0.762 0.831 0.679 0.089 0.790 0.877 0.661 0.039 0.820 0.885 0.747 0.054
C2FNet [39] 0.888 0.935 0.828 0.032 0.796 0.854 0.719 0.080 0.813 0.890 0.686 0.036 0.839 0.897 0.766 0.049
UR-C2FNet (Ours) 0.889 0.940 0.844 0.029 0.791 0.856 0.725 0.079 0.811 0.897 0.700 0.034 0.836 0.900 0.775 0.047
MGL [44] 0.892 0.913 0.802 0.032 0.772 0.807 0.664 0.089 0.811 0.844 0.654 0.037 0.829 0.863 0.730 0.055
UR-MGL (Ours) 0.891 0.942 0.844 0.026 0.763 0.824 0.682 0.086 0.803 0.879 0.685 0.034 0.821 0.882 0.752 0.051
SINet-v2 [8] 0.888 0.942 0.816 0.030 0.820 0.882 0.743 0.070 0.815 0.887 0.680 0.037 0.847 0.903 0.770 0.048
UR-SINet-v2 (Ours) 0.901 0.960 0.862 0.023 0.814 0.891 0.758 0.067 0.816 0.903 0.708 0.033 0.844 0.910 0.787 0.045

Table 2: Ablation experiments of the proposed model.

Methods CHAMELEON CAMO-Test COD10K-Test NC4K
𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝑤

𝛽
↑ M ↓

SINet-v2 [8] 0.888 0.942 0.816 0.030 0.820 0.882 0.743 0.070 0.815 0.887 0.680 0.037 0.847 0.903 0.770 0.048
UR-SINet-v2 w/o PEG 0.898 0.957 0.857 0.024 0.813 0.890 0.756 0.068 0.814 0.902 0.704 0.034 0.842 0.909 0.784 0.046
UR-SINet-v2 w/o PMG 0.873 0.919 0.814 0.038 0.705 0.737 0.571 0.105 0.742 0.805 0.573 0.047 0.786 0.841 0.687 0.063
UR-SINet-v2 (Ours) 0.901 0.960 0.862 0.023 0.814 0.891 0.758 0.067 0.816 0.903 0.708 0.033 0.844 0.910 0.787 0.045

4.2 Comparison with State-of-the-arts
We compare our method against 20 state-of-the-art baselines: object
detection method FPN [21]; semantic segmentation method PSP-
Net [47]; instance segmentation methods MaskRCNN [14], HTC [3],
andMSRCNN [17]; medical image segmentationmethods UNet++ [50]
and PraNet [10]; salient object detection methods PiCANet [23],
CPD [41], PFANet [49], EGNet [48]; and CODmethodsANet-SRM [20],
SINet [9], MirrorNet [43], C2FNet [39], TIGNet [51], PFNet [29],
MGL [44], LSR [27], SINet-v2 [8]. For a fair comparison, the results
of the non-COD methods are taken from [8], and the results of
the COD methods are taken from the respective papers, some of
which are obtained by output camouflaged maps provided on public
websites or running models retrained with open source code.

4.3 Quantitative Evaluation
Table 1 shows the metric scores of the proposed method and 20
state-of-the-art baselines on the four benchmark datasets. We can
see that our method of "UR-SINet-v2 (Ours)" outperforms almost all

the other methods on four standard metrics: S-measure, E-measure,
weighted F-measure, and MAE, which achieves average improve-
ments of 0.13%, 3.5%, 1.4%, and 11.2%, respectively, when com-
pared to the SINet-v2. Moreover, although the performance of the
S-measure is slightly lower, the overall scores of the other metrics
are significantly improved compared to the original COD meth-
ods without our framework, due to considering the uncertainty of
pseudo-edge labels and pseudo-map labels. The reason why the
score of S-measure is slightly low is that the output camouflaged
maps of our method have clear boundaries, and the penalty for
failing to predict the true camouflaged maps is much larger for
S-measure, which measures structural similarity, than for the case
where the boundaries are ambiguous.

4.4 Visualization
Figure 3 shows the visual examples that are generated by our
method and compared methods. We can see that the camouflaged
map is refined by appropriately combining the information of the
pseudo-map label and the pseudo-edge label. In particular, details
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(a) Image (b) Pseudo-edge (c) GT (d) Ours (e) SINet-v2 [8] (f) MGL [44] (g) C2FNet [39] (h) SINet [9]

Figure 3: Visual comparison of the proposed model with state-of-the-art methods. "UR-SINet-v2" model is adopted as our
model (d), and (e) is also used as a pseudo-map label for training our model. Our model outputs camouflaged maps with
accurate boundaries based on the uncertain pseudo-map labels and pseudo-edge labels.

such as tactile sensation and limbs of camouflaged objects, which
tend to be difficult to detect by conventional methods, can be esti-
mated accurately by the proposed method.

4.5 Ablation Study
4.5.1 Effectiveness of Pseudo-Edge Labels. In the baseline setting,
we generate pseudo-edge labels from PEG and pseudo-map labels
from PMG, then input both pseudo-edge and pseudo-map labels
into the UAMR module and obtain the output camouflaged maps.
Table 2 shows the result of not inputting the pseudo-edge labels
into the UAMR module, and the performance gets slightly lower.
In our framework, the edge information helps to correct the edges
of the camouflaged maps and make the details of the edges better.
However, the metric scores focus on analyzing the scores of the
overall effects. So, the visualization is better but the increase in
scores is not obvious.

4.5.2 Effectiveness of Pseudo-Map Labels. In contrast, table 2 also
shows the result of not inputting the pseudo-map labels into the
UAMR module, and the performance is considerably lower. This is
because pseudo-edge labels alone may not capture all the edges of
camouflaged objects, and they contain a relatively large amount of
uncertainty.

5 CONCLUSIONS
In this study, we dealt with camouflaged object detection, which
is a challenging task to detect objects hidden in the environment.
Previous COD models, that directly segment objects, often result
in blurred and ambiguous boundaries of the output camouflaged

map, while models that consider edge information have slightly
lower performance. To handle these problems, we aim to combine
the best of both methods and propose to refine the pseudo-map
labels generated from conventional COD methods by referring to
the pseudo-edge labels generated from a camouflaged edge detec-
tion module. To solve the problem that pseudo-map labels and
pseudo-edge labels are noisy and contain uncertainty, we proposed
an uncertainty-aware map refinement module that outputs edge-
accurate camouflaged maps. We conducted a quantitative evalua-
tion on the standard four COD datasets and found that the proposed
method outperformed the state-of-the-art methods in almost all of
the four evaluation metrics.
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