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ABSTRACT
Detectors with high coverage have direct and far-reaching benefits
for road users in route planning and avoiding traffic congestion,
but utilizing these data presents unique challenges including: the
dynamic temporal correlation, and the dynamic spatial correlation
caused by changes in road conditions. Although the existing work
considers the significance of modeling with spatial-temporal corre-
lation, what it has learned is still a static road network structure,
which cannot reflect the dynamic changes of roads, and eventually
loses much valuable potential information. To address these chal-
lenges, we propose DetectorNet enhanced by Transformer. Differs
from previous studies, our model contains a Multi-view Temporal
Attention module and a Dynamic Attention module, which focus
on the long-distance and short-distance temporal correlation, and
dynamic spatial correlation by dynamically updating the learned
knowledge respectively, so as to make accurate prediction. In ad-
dition, the experimental results on two public datasets and the
comparison results of four ablation experiments proves that the
performance of DetectorNet is better than the eleven advanced
baselines.

CCS CONCEPTS
• Applied computing → Transportation; • Information sys-
tems → Data mining.
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1 INTRODUCTION
In the Intelligent Transportation System (ITS), detector data gradu-
ally occupy a pivotal position. According to PEMS1, the highway
system in all major metropolitan areas of California is covered
with more than 39000 detectors. This report shows that detector
is a common data-collection equipment on the road, and has great
research value, especially for traffic prediction.

However, the traffic prediction problem based on detector net-
work is confronted with many challenges. Specifically, it could be di-
vided into the following points: (a) The dynamic spatial correlation.
(b) The dynamic temporal correlation. (c) Complex spatial-temporal
correlation. Spatial correlation and temporal correlation are insepa-
rable. In a nutshell, the traffic situation of one road may be closely
related to the historical traffic situation of the surrounding roads.

Potential research work can be used for solving the traffic pre-
diction for the detector network. In early days, the task is simple
viewed as the prediction of a multivariate time series. Therefore,
time series models (e.g. ARIMA) that capture the periodicity of
traffic data are widely used, but most of them cannot effectively
model nonlinear time series and do not consider spatial correlation.
Although grid-based methods [4] have achieved good results in
city-level traffic forecast, the road network structure is naturally
composed of Non-Euclidean data, which leads to a tough obstacle
to applying these kinds of methods. In recent years, there have been

1http://pems.dot.ca.gov/
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some research works [1] based on Graph Neural Networks (GNN)
that consider the spatial-temporal correlation, but they merely
concentrate on the modeling of road spatial relationships, while ig-
noring the dynamics of road spatial relationships. At the same time,
although some efforts[3] have been made to solve the long-distance
multi-step prediction, the effect needs to be improved.

For the sake of overcoming the aforementioned problems and
better tackling the traffic prediction problem based on the detector
network, we lay our eyes upon the following two aspects: (1) Deeply
consider the dynamics of road relations. It is not enough to consider
the distance and spatial location between roads in isolation or learn
a fixed relationship from traffic data, let alone it cannot reflect the
change of road relationship. (2) Consider the temporal dependence
of the road frommultiple perspectives. Mining temporal correlation
through historical observations of long-distance, medium-distance,
and long-distance views respectively, has proved its effectiveness.
But this is rarely considered on the monitor network. In conclusion,
considering historical traffic conditions from multiple perspectives
can better forecast future traffic conditions. On the basis of our
thoughts and motivation, we propose an effective model named
DetectorNet for graph-based traffic prediction.

Our main contributions are summarized as follows:

• We emphasized the significance of dynamic spatial and tem-
poral correlations, and proposed DetectorNet accordingly.

• We designed a multi-view temporal attention module and a
dynamic spatial graph convolutional network, which respec-
tively strengthen the learning of the temporal correlation of
different views and the spatial correlation of different traffic
conditions.

• We have proved the effectiveness of DetectorNet by compar-
ing 11 baselines on two public traffic datasets.

2 PROBLEM DEFINITION
The urban detector network is regarded as a graph represented by
𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of detector nodes and 𝐸 is the set of
edges. The number of sensors denotes |𝑉 | = 𝑁 , and the adjacency
matrix of a detector graph refers to 𝐴𝑖 𝑗 ∈ 𝑅𝑁×𝑁 . At each time
step 𝑡 , detector graph 𝐺 has a graph signal matrix 𝑋 (𝑡 ) ∈ 𝑅𝑁×𝐷 ,
which initially represents the value recorded by each detector. Thus,
given the history 𝑃 step graph signals, traffic prediction is to learn a
function 𝑓 to predict the next 𝑄 step graph signals. It is formulated
as follows:

𝑓 (𝑋 (𝑡−𝑃+1) :(𝑡 ) ,𝐺) → 𝑋 (𝑡+1) :(𝑡+𝑄) (1)

where𝑋 (𝑡−𝑃+1) :(𝑡 ) ∈ 𝑅𝑃×𝑁×𝐷 is historical observation and𝑋 (𝑡+1) :(𝑡+𝑄)
∈ 𝑅𝑄×𝑁×𝐷 is the prediction target.

3 METHODOLOGY OF DETECOTRNET
3.1 Multi-view Temporal Attention Module
3.1.1 Data Preparation. To improve the feature expression, the
dimension of original observation is increased by 1D-Convolution
to obtain 𝑋𝑇,(1) ∈ R𝑁×𝑃×𝐶1 . For clarity, we divide the input of
the 𝑙-th layer 𝑋𝑇,(𝑙) into three view, namely short-distance view,
medium-distance view and long-distance view.

3.1.2 Multi-view Self Attention. For the observation of each per-
spective, we extract the features of dynamic temporal correlation
separately based on the self attention mechanism, which dynami-
cally adjust the attention coefficient according to the input. In each
view, the feature at each time interact in pairs. To facilitate the
specific description, we take short-distance view as an example.

First,𝑋𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

is mapped to three feature spaces: the query𝑄𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

,

the key 𝐾𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

, and the value 𝑉𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

.
We directly learn the correlation between the two time steps by:

𝐴
𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

= Softmax(
𝑄
𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

(𝐾𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

)𝑇√︁
𝑑𝑘

) (2)

where 𝑑𝑘 ∈ R𝐶𝑙+1 is used to scale the result of the dot-product for a
better training, and 𝛼𝑖 𝑗 ∈ 𝐴𝑇,(𝑙)𝑠ℎ𝑜𝑟𝑡

represents the attention of time
step 𝑖 to time step 𝑗 .

Then, we weight the temporal attention to the value, and obtain
a new feature representation of a short-distance view:

𝑀
𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

= 𝐴
𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

𝑉
𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

∈ R𝑁×𝑚×𝐶𝑙+1 (3)

Similary, we calculate new representations of medium-distance and
long-distance views:𝑀𝑇,(𝑙)

𝑚𝑒𝑑𝑖𝑢𝑚
and𝑀𝑇,(𝑙)

𝑙𝑜𝑛𝑔
.

3.1.3 Global Temporal Attention. We adopt the self-attentionmech-
anism to model the relevance of all time steps. Unlike MTA, GTA
doesn’t need to divide the data and directly maps the input 𝑋𝑇,(𝑙)
to the feature spaces of the query,the value and the key:

𝑄
𝑇,(𝑙)
𝑔𝑙𝑜𝑏𝑎𝑙

=𝑊
𝑔
𝑥𝑞𝑋

𝑇,(𝑙) , 𝐾𝑇,(𝑙)
𝑔𝑙𝑜𝑏𝑎𝑙

=𝑊
𝑔

𝑥𝑘
𝑋𝑇,(𝑙) ,𝑉𝑇,(𝑙)

𝑔𝑙𝑜𝑏𝑎𝑙
=𝑊

𝑔
𝑥𝑣𝑋

𝑇,(𝑙)

(4)

where {𝑊 𝑔
𝑥𝑞,𝑊

𝑔

𝑥𝑘
,𝑊

𝑔
𝑥𝑣} ∈ R𝐶𝑙×𝐶𝑙+1 are learnable linear mapping

matrices.
Next, we use the scaled dot-product to simulate the pairwise

interation of time steps, and obtain the global temporal attention
matrix 𝐴𝑇,(𝑙)

𝑔𝑙𝑜𝑏𝑎𝑙
. We formulate this process, which is equivalent to

Equation 2.

𝑒𝑇,(𝑙) =
𝑄
𝑆,(𝑙)
𝑠ℎ𝑜𝑟𝑡

(𝐾𝑇,(𝑙)
𝑠ℎ𝑜𝑟𝑡

)𝑇√︁
𝑑𝑘

∈ R𝑃×𝑃

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝑒𝑇,(𝑙)

𝑖, 𝑗
)∑𝑃

𝑘=1 𝑒𝑥𝑝 (𝑒
𝑇,(𝑙)
𝑖,𝑘

)
, 𝛼𝑖 𝑗 ∈ 𝐴𝑇,(𝑙)𝑔𝑙𝑜𝑏𝑎𝑙

(5)

Naturally, 𝐴𝑇,(𝑙)
𝑔𝑙𝑜𝑏𝑎𝑙

and 𝑉𝑇,(𝑙)
𝑔𝑙𝑜𝑏𝑎𝑙

are multipiled to get the global

temporal features𝑀𝑇,(𝑙)
𝑔𝑙𝑜𝑏𝑎𝑙

.

3.1.4 Fusion. In this part, we merge multiple views and global
temporal features. MTA gives the temporal information of three
views (e.g. short-distance view). Through the concatenate operation,
we get the following results:

𝑀
𝑇,(𝑙)
𝑀𝑢𝑙𝑡𝑖−𝑣𝑖𝑒𝑤 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑀𝑇,(𝑙)

𝑠ℎ𝑜𝑟𝑡
+𝑀𝑇,(𝑙)

𝑚𝑒𝑑𝑖𝑢𝑚
+𝑀𝑇,(𝑙)

𝑠ℎ𝑜𝑟𝑡
) (6)

where 𝑀𝑇,(𝑙)
𝑀𝑢𝑙𝑡𝑖−𝑣𝑖𝑒𝑤 ∈ R𝑁×𝑃×𝐶𝑙+1 represent the result of multiple

views.
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We combine the residual connection and propose the fusion
method as follow:

𝑋̃𝑇,(𝑙+1) = 𝑀𝑇,(𝑙)
𝑀𝑢𝑙𝑡𝑖−𝑣𝑖𝑒𝑤 + 𝛽𝑀𝑇,(𝑙)

𝑔𝑙𝑜𝑏𝑎𝑙
+ 𝛾𝑊𝑟𝑒𝑠𝑋𝑇,(𝑙) (7)

where 𝛽 and 𝛾 are the weight coefficient, which can be learnable or
set manually.

Thus, we get the output of the 𝑙-th MTAM:

𝑋𝑇,(𝑙+1) = 𝑓 (𝑅𝑒𝐿𝑈 (𝑊2𝑅𝑒𝐿𝑈 (𝑊1𝑋̃
𝑇,(𝑙+1) )) + 𝑋̃𝑇,(𝑙+1) ) (8)

where 𝑓 (𝑥) represents the layer normalization operation, and {𝑊1,𝑊2}
are the parameters of FCs.

3.2 Dynamic Spatial Graph Convolution
Network

3.2.1 Dynamic Spatial Structure. We model the dynamic spatial
relationship to reflect the dynamic change relationship of the road.

Therefore, we need to learn useful information from the input
data to capture this feature. For the input 𝑋𝑆,(𝑙) with temporal
characteristics, we map it into query and key spaces in parallel,
and get the interaction relationship between two roads through
scaled dot-product. Next, using the dynamics of attention adjacency
matrix and the structural features learned from adaptive matrix
to obtain the dynamic spatial structure between roads (namely
dynamic adjacency matrix) as follow:

𝐴𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑎𝑡𝑡 ⊙ 𝐴𝑎𝑡𝑡 +𝑊𝑎𝑑𝑝 ⊙ 𝐴𝑎𝑑𝑝 ) (9)

where ⊙ represents the Hadamard product, and {𝑊𝑎𝑡𝑡 ,𝑊𝑎𝑑𝑝 } are
the learnable weighted parameters.

3.2.2 Graph Convolutional Network. We use the learned dynamic
spatial structure to improve the process based on the Diffusion GCN,
so as to capture dynamic spatial relations. This novel module is
also named Dynamic Spatial GCN (DSGCN). Our modeling method
is as follows:

𝑍
(𝑙)
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

=

𝐾∑︁
𝑘=0

𝑃𝑘
𝑓
𝑋𝑆,(𝑙)𝑊𝑘1 + 𝑃𝑘𝑏𝑋

𝑆,(𝑙)𝑊𝑘2 +𝐴𝑘𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑋
𝑆,(𝑙)𝑊𝑘3

(10)
We eventually utilize FFN as a way to enhance the expression

ability of Dynamic GCN. The specific formula is as follows:

𝑋𝑆,(𝑙+1) = 𝑓 (𝑅𝑒𝐿𝑈 (𝑊2𝑅𝑒𝐿𝑈 (𝑊1𝑍
(𝑙)
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

)) + 𝑍 (𝑙)
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

) (11)

where 𝑓 (𝑥) represents the layer normalization operation, and {𝑊1,𝑊2}
are the parameters of FNN.

3.3 Predictor and Loss
In order to effectively utilize the extracted spatial and temporal
features, we employ convolution as our predictor. In addition, for
the sake of alleviating the loss of information, we use 2-layer con-
volution to fuse features step by step. The output of the last layer
𝑋𝑆,(𝐿+1) is deformed and rewritten as 𝑋𝑆,𝑇 ∈ R𝑁×𝑄×𝐶𝑆𝑇 ,where
𝐶𝑆𝑇 × 𝑄 is equal to 𝑐𝐿+1 × 𝑃 . Generally, we set 𝑃 = 𝑄 . So, the
multi-steps prediction is

X(𝑡+1) :(𝑡+𝑄) = 𝐶𝑜𝑛𝑣 (𝐶𝑜𝑛𝑣 (𝑋𝑆,𝑇𝐿 )) ∈ R𝑁×𝑄×𝑐𝑝 (12)

Where 𝐿 represents the number of layers of DetectorNet, and 𝑐𝑝
is the length of the traffic volume to be predicted. Finally, we use
MAE as the loss function to update parameters.

4 EXPERIMENT
4.1 Datasets
We conduct a lot of experiments on two public traffic datasets
namely PEMS-BAY and METR-LA. Table 1 shows a more concise
introduction and statistical data of these two datasets.

4.2 Experimental Setup
Experimental Settings. We utilize PyTorch to implement our model,
DetectorNet. In our experiments, we set the number of DetectorNet
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Table 1: Statistical specifics from METR-LA and PEMS-BAY.
For instance, "Edges" represents the roads constructed by the
connection of detectors.

Dataset Nodes Edges Time Samples Sample Rate Input Len. Output Len.

METR-LA 207 1515 34272 5min 12 12
PEMS-BAY 325 2369 52116 5min 12 12

Table 2: This table clearly shows the comparison between
DetectorNet and the existing methods. From the statistical
data, we can intuitively find that DetectorNet performs out-
standing in comparison with other baselines.

Data Model 30min 60min

MAE RMSE MAPE MAE RMSE MAPE

M
ET

R-
LA

HA 4.16 7.80 13.00% 4.16 7.80 13.00%
ARIMA 5.15 10.45 12.70% 6.9 13.23 17.40%
FC-LSTM 3.77 7.23 10.90% 4.37 8.69 13.20%
WaveNet 3.59 7.28 10.25% 4.45 8.93 13.62%
DCRNN 3.15 6.45 8.80% 3.6 7.6 10.50%

ST-MetaNet 3.10 6.28 8.57% 3.59 7.52 10.63%
STGCN 3.47 7.24 9.57% 4.59 9.4 12.70%

MRA-BGCN[1] 3.06 6.17 8.30% 3.49 7.30 10.00%
GraphWaveNet[3] 3.07 6.22 8.37% 3.53 7.37 10.01%

GMAN[5] 3.07 6.34 8.35% 3.40 7.21 9.72%
MTGNN[2] 3.05 6.17 8.19% 3.49 7.23 9.87%
DetectorNet 3.06 6.08 8.12% 3.40 6.98 9.60%

DetecorNet w/o MTA 3.10 6.23 8.33% 3.48 7.15 9.85%
DetecorNet w/o GTA 3.08 6.14 8.48% 3.46 7.00 9.87%
DetecorNet w/o DA 3.07 6.13 8.29% 3.45 7.07 9.78%
DetecorNet w/o SA 3.13 6.32 8.37% 3.52 7.24 10.09%

PE
M
S-
BA

Y

HA 2.88 5.59 6.80% 2.88 5.59 6.80%
ARIMA 2.33 4.76 5.40% 3.38 6.5 8.30%
FC-LSTM 2.2 4.55 5.20% 2.37 4.96 5.70%
WaveNet 1.83 4.21 4.16% 2.35 5.43 5.87%
DCRNN 1.74 3.97 3.90% 2.07 4.74 4.90%

ST-MetaNet 1.76 4.02 4.00% 2.20 5.06 5.45%
STGCN 1.81 4.27 4.17% 2.49 5.69 5.79%

MRA-BGCN[1] 1.61 3.67 3.80% 1.91 4.46 4.60%
GraphWaveNet[3] 1.63 3.7 3.67% 1.95 4.52 4.62%

GMAN[5] 1.62 3.72 3.63% 1.86 4.32 4.31%
MTGNN[2] 1.65 3.74 3.69% 1.94 4.49 4.53%
DetectorNet 1.57 3.54 3.56% 1.80 4.26 4.19%

DetecorNet w/o MTA 1.59 3.59 3.59% 1.84 4.31 4.39%
DetecorNet w/o GTA 1.61 3.63 3.65% 1.86 4.35 4.41%
DetecorNet w/o DA 1.61 3.58 3.50% 1.83 4.23 4.15%
DetecorNet w/o SA 1.61 3.57 3.65% 1.84 4.20 4.28%

to 2 with a 32-dimension hidden layer, 𝛽 and 𝛾 are set to 1, and use
graph convolution layer with a diffusion step = 2. Furthermore, the
Adam optimizer is utilized to train our mode with a batch size of
64, and the initial learning rate is set to 0.001, with a decay rate of
0.5 per 100 epochs. Besides, delay weight (i.e. L2 loss norm) is set
to 1𝑒−5. To alleviate overfitting, we set dropout to 0.3. Finally, we
use three metrics (i.e. MAE, MAPE, RMSE) to evaluate the results.

4.3 Performance Comparison
We validate DetectorNet on two datasets, and the result is reported
in Table 2. Furthermore, we have the following findings:

The method based on Graph Neural Network (GNN) is suitable
for the spatial-temporal prediction of the detector network. From
the view of the experimental results, the GNN based method (e.g.
GraphWaveNet, DetectorNet) performs obviously better than the
traditional time series based method (e.g. WaveNet). We firmly be-
lieve the reason is that the traditional models ignore the importance
of spatial correlation and treat the temporal information of each
node in isolation.

Self-Attention mechanism can effectively model long-distance
sequences. Obviously, DetectorNet based on Self-Attention mecha-
nism has a significant advantage in remote multi-step prediction,
which is far superior to RNN based and Temporal Convolution
Networck (TCN) based methods. Indeed, it must be acknowledged
that DetectorNet still has room for improvement in short-term
prediction.

5 CONCLUSION
In this paper, a novel model named DetectorNet is proposed to
achieve a better addressing of spatial-temporal graph-based traffic
prediction. By utilizing a Multi-view Temporal Attention modules
and other modules, DetectorNet has the ability to not only consider
the original static informaton, but also capture the dynamically
varying correlation of the road structure, eventually make accurate
prediction on traffic flow. Experimental results conducted on two
open datasets verify the superiority of DetectorNet when compared
to other eleven baselines.
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