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ABSTRACT
Recommender Systems (RS), as an efficient tool to discover users’
interested items from a very large corpus, has attracted more and
more attention from academia and industry. As the initial stage of
RS, large-scale matching is fundamental yet challenging. A typical
recipe is to learn user and item representations with a two-tower
architecture and then calculate the similarity score between both
representation vectors, which however still struggles in how to
properly deal with negative samples. In this paper, we find that
the common practice that randomly sampling negative samples
from the entire space and treating them equally is not an optimal
choice, since the negative samples from different sub-spaces at
different stages have different importance to a matching model. To
address this issue, we propose a novel method named Unbiased
Model-Agnostic Matching Approach (UMA2). It consists of two
basic modules including 1) General Matching Model (GMM), which
is model-agnostic and can be implemented as any embedding-
based two-tower models; and 2) Negative Samples Debias Network
(NSDN), which discriminates negative samples by borrowing the
idea of Inverse Propensity Weighting (IPW) and re-weighs the loss
in GMM. UMA2 seamlessly integrates these two modules in an
end-to-end multi-task learning framework. Extensive experiments
on both real-world offline dataset and online A/B test demonstrate
its superiority over state-of-the-art methods.
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Figure 1: Illustration of the multi-stage pipeline in large-
scale recommender systems, where positive samples and
negative samples from different sub-spaces are denoted by
‘+’ and ‘-’, respectively.

1 INTRODUCTION
Recommender Systems (RS) [7, 16, 22], which aim at providing
personalized items from a very large corpus to users, is of great
practical significance in improving users’ experience and increas-
ing business revenue [21]. A large-scale industrial RS usually
responds users’ online requests through a multi-stage pipeline of
“matching→ranking→re-ranking” [3, 15], where the ranking stage
would take as input results selected from the preceding matching
stage. The selection mechanism gradually delivers items from entire
space to recall space, then to exposure space as illustrated in Figure 1.
Only items in exposure space can be displayed to users, of which the
items clicked by users are labeled as positive samples. Obviously,
constructing a superior matching model for the matching stage is
very essential since it determines the quality of candidate item set
delivered to follow-up stages, which is the goal of this study.

One straightforward strategy is following the ways of building
rankingmodels [12, 19, 24] to construct amatchingmodel. However,
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it has obvious shortcomings since they only employ observed data
in exposure space, which occupies only a very small portion of
entire space, resulting in the dramatically discrepancy between
training space and inference space. This problem is also called Sam-
ple Selection Bias (SSB) issue [1]. Though, ESMM [12], ESM2 [19],
and HM3 [18] are further proposed to alleviate the SSB issue from
the perspective of exposure space modelling to make the post-click
conversion rate (CVR) estimation, they focus on employing post-
click information that are still limited in exposure space. To go a
step forward, ESAM [2] transfers the knowledge from displayed
items in exposure space to non-displayed items in recall space for
alleviating the distribution inconsistency. But it still neglects the
remaining large number of samples in entire space, which still
biases the matching model in inference stage. As a result, the SSB
issue heavily limits the performance improvement of matching,
especially for deep matching models [3, 6, 9, 10, 20], which follow
a popular two-tower paradigm that learns vector representations
of items and users to enable fast k-nearest neighbor retrieval and
have been increasingly important in industrial systems.

To resolve the SSB issue, a practical recipe in matching models
(YouTube DNN [3], SDM [10], MIND [9], DAT [20]) is randomly
sampling negatives from the entire space to ensure the consistency
between training and inference phases. Moreover, Fei et al. [5]
proposes to mix up observed data and random negatives for sample
optimization. Those work treat all negative samples equally in the
final loss, although proving effective, this strategy is not an optimal
choice. Referring to Figure 1, negative samples in entire space can
be categorized into three disjoint spaces, 𝑖 .𝑒 ., entire but un-recalled,
recalled but unexposed, and exposed but unclicked, denoted as
Space C, B, A, respectively. Negative samples in different spaces
should be discriminated. For instance, negative samples in Space A
are not those that users particularly dislike compared with negative
samples in the remaining part of Space C and B [4, 11].

Considering the shortcomings of existing work, we believe
it is essential to develop an universal debiasing deep matching
model, which can properly utilize entire space samples. To go a
step forward, we propose a novel method named Unbiased Model-
Agnostic Matching Approach (UMA2). It is built upon the Multi-
Task Learning (MTL) framework and consists of two key modules
including a General Matching Model (GMM) and a Negative
Samples Debias Network (NSDN). GMM that aims to learn user and
item representations is model-agnostic and can be implemented
with any embedding-based two-tower model. NSDN discriminates
negative samples from the three disjoint spaces by using Inverse
Propensity Weighting (IPW) [14, 23]. Specifically, it employs two
auxiliary tasks namely “Entire→Recall” and “Recall→Exposure”,
where the probability from the entire space to the recall space as
well as the probability from the recall space to the exposure space
are predicted, to implement IPW and reweigh the loss in GMM. The
contributions of this paper is three-fold:

• We propose a novel method named Unbiased Model-
Agnostic Matching Approach (UMA2) for the matching stage
in RS, which is compatible and can be seamlessly integrated
with a variety of two-tower models for learning user and
item representations in an end-to-end manner.
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Figure 2: The architecture of our proposed UMA2.

• Our proposed method can effectively mitigate the SSB issue
by discriminating negative samples in entire space from the
perspective of IPW, which can be implemented efficiently in
a multi-task learning framework.

• We conduct extensive experiments on real-world offline
dataset and online A/B test. Both results demonstrate the
superiority of the proposed UMA2 over representative meth-
ods. Now, UMA2 serves millions of users on our platform,
achieving 3.35% CTR improvement.

2 RELATEDWORK
Bias and Debias Recommendation: Sample Selection Bias (SSB)
is a widely-recognized issue due to the dramatically discrepancy
between training space and inference space. For example, when
training a conversion rate (CVR) model, traditional methods [8, 17]
always employs clicked samples as training set while making
predictions on all exposure samples. To alleviate the issue, ESMM
[12], ESM2 [19] and HM3 [18] are from the perspective of exposure
space modelling to make the CVR prediction. Another way is
resorting to the Inverse PropensityWeighting (IPW) method, which
is theoretically unbiased [14, 23]. In this paper, we also employ the
idea of IPW to discriminate negative samples in entire space.

Two-Tower Matching Models: Recently, deep neural net-
works with two-tower architecture have become the mainstream
trend to efficiently retrieve candidates in industry, which firstly
learn user and item representations, followed by calculating the
similarity score between both representations, 𝑒.𝑔., DSSM [6],
YouTube DNN [3] and DAT [20]. However, all the methods neglect
the side effect of equally treating negative samples. Our work also
contributes to the line of research while employing the idea of IPW
to discriminate negative samples. Moreover, it is a model-agnostic
approach and is compatible with a variety of two-tower models,
𝑒.𝑔., YouTube DNN [3], DAT [20], and other related methods [2].

3 THE PROPOSED APPROACH
In this paper, we propose a novel method named Unbiased Model-
Agnostic Matching Approach (UMA2), depicted in Figure 2. It
consists of two basic modules namely General Matching Model
(GMM) and Negative Samples Debias Network (NSDN).



GivenU = {𝑢1, 𝑢2, ..., 𝑢𝑁 }, I = {𝑖1, 𝑖2, ..., 𝑖𝑀 }, R = U × I be a
set of users, items, user-item feedback matrix, respectively, where
𝑁 ,𝑀 represents the number of users, items, respectively. 𝑅𝑢,𝑖 = 1
denotes user 𝑢 has given a positive feedback to item 𝑖 , 𝑒.𝑔., 𝑢 has
clicked 𝑖 , otherwise 𝑅𝑢,𝑖 = 0. Each element from U or I can be
regarded as the concatenation of various types of low dimensional
dense representation by transforming original one-hot vector with
corresponding embedding matrix. Our learning goal is to deliver
a matching model to efficiently retrieve possibly users’ interested
items from a large-scale item corpus, given a certain user.

3.1 General Matching Model
The General Matching Model (GMM) module is model-agnostic
and can be implemented with any embedding-based two-tower
model. In this paper, we resort to the architecture of YouTube
DNN [3] as the baseline implementation. As illustrated in Figure 2,
the GMM module consists of user tower and item tower, where
the inputs 𝑓𝑢 (resp. 𝑓𝑖 ) of user tower (resp. item tower) contains
various types of features from user field (resp. item field), 𝑒.𝑔., users’
profiles and users’ historical behaviors for user field, item id and
item’s accumulated CTR for item field. The goal of the two-tower
model is mapping 𝑓𝑢 (resp. 𝑓𝑖 ) into user representation (resp. item
representation) via corresponding mapping function 𝐹𝑢 (.) (resp.
𝐹𝑖 (.)), denoted as 𝑉𝑢 = 𝐹𝑢 (𝑓𝑢 ), 𝑉𝑖 = 𝐹𝑖 (𝑓𝑖 ), respectively. 𝐹𝑢 (.)
or 𝐹𝑖 (.) is usually implemented as multi-layer perceptron (MLP)
with Relu as the activation function. Given 𝑉𝑢 and 𝑉𝑖 , a scoring
function 𝑆𝑐𝑜𝑟𝑒 (, ), 𝑒.𝑔., inner-product, is employed to calculate the
similarity score between both representation vectors, denoted as
𝑠𝑢,𝑖 = 𝑆𝑐𝑜𝑟𝑒 (𝑉𝑢 ,𝑉𝑖 ). Now, for supervising the learning of 𝑠𝑢,𝑖 as
well as maintaining the consistency of training space and inference
space, a practical recipe is regarding clicked samples in exposure
space as positive samples. Meanwhile, for each positive sample,
corresponding negative samples are constructed via a random
sampling strategy with respective to the entire space.

3.2 Negative Samples Debias Network
To view all the negative samples in entire space at a finer granularity,
they can be further categorized into three disjoint spaces, 𝑖 .𝑒 ., entire
but un-recalled, recalled but unexposed, and exposed but unclicked,
denoted as Space C, B, A in Figure 1, respectively. Negative samples
in different spaces should be discriminated. For instance, negatives
in Space A are not those that users particularly dislike compared
with negatives in Space C or B [4, 11]. Therefore, we borrow the
idea of Inverse Propensity Weighting (IPW) [14, 23] from the causal
inference area to handle the problem. Specifically, we propose the
Negative Samples Debias Network (NSDN) as the embodiment
of the IPW method. It consists of two auxiliary tasks namely
“Entire→Recall” and “Recall→Exposure”, which aim to predict the
probability from the entire space to the recall space as well as the
probability from the recall space to the exposure space, respectively.

Moreover, the IPW method is theoretically unbiased by re-
weighing the loss of observed samples [14, 23]. Taking how to
debias negative samples in Space B with respect to entire space as
an example, we detail the process. First, we define the loss 𝐿𝑜𝑠𝑠𝐺𝑀𝑀

of GMM as follows:

𝐿𝑜𝑠𝑠𝐺𝑀𝑀 =
1

|D|
∑︁

(𝑢,𝑖) ∈D

𝑜𝑢,𝑖𝑒 (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 )
𝑝𝑢,𝑖

=
1

|O|
∑︁

(𝑢,𝑖) ∈O

𝑒 (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 )
𝑝𝑢,𝑖

,

(1)
where 𝑒 (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖 ) is the cross-entropy loss between real 𝑦𝑢,𝑖 and
predicted 𝑦𝑢,𝑖 in GMM. D refers to the entire space including all
the (𝑢, 𝑖) pairs. 𝑜𝑢,𝑖 = 1 denotes that item 𝑖 is recalled for user𝑢, 𝑖 .𝑒 .,
observed data, otherwise 𝑜𝑢,𝑖 = 0. Collecting all the observed data
from space D forms the recall space O. Intuitively, the easier item
𝑖 recalled for user 𝑢, the smaller sample weight the corresponding
user-item pair should has. Here, we define 𝑝𝑢,𝑖 (𝑖 .𝑒 ., 𝑝1), as the
probability of the item 𝑖 being recalled for user𝑢. It can be predicted
from an auxiliary task “Entire→Recall”, where recalled items are
positive samples while the items randomly sampled from the Space
C are negative ones.

In this way, negative samples in Space B are re-weighed by
multiplying corresponding weight 1/𝑝1 in the final loss in GMM.
In the same way, we can debias negative samples in Space A with
respect to recall space by multiplying sample weight 1/𝑝2, where
𝑝2 can be predicted from an auxiliary task “Recall→Exposure”.
Furthermore, negatives in Space A can be debiased with respect
to entire space by multiplying weight 1/𝑝1𝑝2 in the final loss in
GMM.

3.3 Model Training
We treat the matching problem as a binary classification problem,
and the final loss defined as :

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠++𝜆1𝑙𝑜𝑠𝑠A+𝜆2𝑙𝑜𝑠𝑠B+𝜆3𝑙𝑜𝑠𝑠C+𝜆4𝑙𝑜𝑠𝑠𝐸𝑅+𝜆5𝑙𝑜𝑠𝑠𝑅𝐸 , (2)

where 𝑙𝑜𝑠𝑠+ represents the cross-entropy loss of positive samples,
𝑙𝑜𝑠𝑠A and 𝑙𝑜𝑠𝑠B denote the cross-entropy loss of negative samples
in Space A and Space B with the sample weight 1/𝑝1𝑝2 and 1/𝑝1,
respectively. 𝑙𝑜𝑠𝑠C indicates the cross-entropy loss of negative
samples in Space C with an equal weight for each sample. 𝑙𝑜𝑠𝑠𝐸𝑅
and 𝑙𝑜𝑠𝑠𝑅𝐸 represent the cross-entropy loss for the auxiliary task
“Entire→Recall” and “Recall→Exposure”, respectively. Meanwhile,
we make Space B and Space C by sampling a certain amount of items
from online real recalled item set with respect to each exposure
sample, as well as sampling a certain amount of items from entire
space with respect to each recalled item, respectively. 𝜆1, 𝜆2, 𝜆3,
𝜆4, and 𝜆5 are hyper-parameters to balance the losses.

4 EXPERIMENTS
4.1 Experiment settings
4.1.1 Dataset preparation. To the extent of our knowledge, there
are no public datasets suited for the proposed model since they lack
real online recalled items with respect to each exposure sample. To
fill this gap, we make the offline dataset by collecting users’ real
traffic logs from our platform in 30 days, 𝑖 .𝑒 ., from 2021-12-11 to
2022-01-09. The offline dataset are divided into the disjoint training
set and testing set, where the training set is from 2021-12-11 to
2022-01-08, while the left is the testing set, as summarized in Table 2.

4.1.2 Competitors. We compare the proposed method UMA2 with
following methods:



Table 1: Model performance with different negative sampling strategies.

Sampling Strategy Competitors HitRate Precision Recall
@100 @200 @100 @200 @100 @200

Main results

SS-A YouTube DNN 0.35567 0.39642 0.00385 0.00213 0.33902 0.37977
DAT 0.37644 0.41831 0.00412 0.00227 0.36068 0.40255

SS-AB

ESAM_YTB 0.38040 0.43422 0.00413 0.00234 0.36355 0.41736
ESAM_DAT 0.40928 0.47505 0.00443 0.00254 0.38977 0.45554
UMA2_YTB 0.57014 0.60759 0.00630 0.00334 0.54986 0.58731
UMA2_DAT 0.58481 0.62066 0.00647 0.00342 0.56513 0.60098

SS-ABC(random)

FM 0.58640 0.69417 0.00816 0.00513 0.49372 0.60717
YouTube DNN 0.73796 0.79481 0.00817 0.00437 0.72038 0.77723

MIND 0.75550 0.80771 0.00838 0.00445 0.73897 0.79119
DAT 0.76318 0.81378 0.00846 0.00448 0.74629 0.79690

SS-ABC(fixed) UMA2_YTB 0.74693 0.80140 0.00827 0.00441 0.72931 0.78379
UMA2_DAT 0.76679 0.81654 0.00850 0.00450 0.74994 0.79969

Ablation Study 1 SS-ABC(fixed) YouTube DNN 0.64448 0.70377 0.00714 0.00386 0.62559 0.68488
DAT 0.65382 0.71174 0.00724 0.00391 0.63476 0.69268

Ablation Study 2 SS-ABC(fixed) UMA2_SOS_YTB 0.64737 0.71090 0.00714 0.00389 0.62791 0.69144
UMA2_SOS_DAT 0.66201 0.72552 0.00731 0.00397 0.64239 0.70590

Table 2: Statistics of the offline dataset.

Description Training Set Testing Set
#users 1,629,473 93,473
#items 282,728 261,914

#samples 24,547,397 1,033,742
#positive samples 948,560 39,779

• FM [13]: It can model interactions between users’ and items’
variables using factorized parameters.

• YouTube DNN [3]: It is one of the most successful two-
tower separate architecture used for matching stage.

• MIND [9]: It captures users’ diverse interests with multiple
representation vectors.

• DAT [20]: It customizes an augmented vector for each user-
item pair to mitigate the lack of information interaction
between both towers.

• UMA2_DAT (resp.UMA2_YTB): It employs DAT [20] (resp.
YouTube DNN [3]) as the implementation of GMM in UMA2.

• ESAM_DAT (resp. ESAM_YTB): It employs DAT [20] (resp.
YouTube DNN [3]) as the implementation of the model for
source domain in ESAM [2].

• UMA2_SOS_YTB (resp. UMA2_SOS_DAT): It replaces
NSDN by the Sample Optimization Strategy (SOS) proposed
in [5], where YouTube DNN [3] (resp. DAT [20]) is employed
as the implementation of GMM.

4.1.3 Evaluation Metrics. To evaluate the effectiveness of all the
competitors, we employ widely used metrics [10, 20] for matching
evaluation, 𝑖 .𝑒 ., HitRate@K, Precision@K and Recall@K, where K
is set as a relatively large number, 𝑒.𝑔., 100 or 200, since the goal of
matching is required to deliver a proper subset to follow-up phases.

4.1.4 Implementation details. To make the offline evaluation fair,
confident, and comparable, all the competitors employ same number
of positive and negative samples, share same input features of
users and items, and are implemented by distributed Tensorflow

1.4, where learning rate, mini-batch, optimizer, set as 0.001, 512,
Adam, respectively. In addition, the dimension of the final user
and item’s representation vectors are both set to 32, the number
of MLP layers in each tower are 4, with dimensions 512, 256,
128 and 32, respectively. Moreover, we implement four kinds of
sampling strategies including: 1) SS-A: random negative samples
from Space A; 2) SS-AB: mixing up negative samples in Space A
and random negative samples from Space B; 3) SS-ABC(random):
random negative samples from entire space; 4) SS-ABC(fixed):
random negative samples from Space A, B and C at a ratio of 1:4:20.

4.2 Main results
4.2.1 Model Comparison. Based on the results summarized in
Table 1, we have following observations:

1) Comparedwith the implementationmethods in SS-A strategy
such as YouTube DNN or DAT, competitors implemented
in other strategies consistently achieve extremely signifi-
cant improvements, 𝑒.𝑔., the proposed UMA2_YTB in SS-
ABC(fixed) obtains the lift of HitRate@200, Precision@200,
Recall@200 by 91.58%, 94.06%, 94.70%, respectively, over
YouTube DNN, which demonstrates the SSB issue caused
by the SS-A strategy indeed seriously degenerates the
performance of a matching model.

2) The improvement obtained by the competitors in SS-AB
strategy over competitors in SS-A strategy highlights the
advantage of exploring negative samples in larger space,
𝑒.𝑔., Space B. Meanwhile, we observe that UMA2_YTB (resp.
UMA2_DAT) has a superior performance over ESAM_YTB
(resp. ESAM_DAT), which verifies the effectiveness of debi-
asing negative samples using the proposed method.

3) For the competitors implemented in SS-ABC(random) strat-
egy, they all achieve better performance than methods
implemented in SS-A or SS-AB strategy, which once again
demonstrates the superiority of exploring negative samples
from larger space, 𝑒.𝑔., Space C. Meanwhile, the improvement
obtained by YouTube DNN compared with FM highlights



the effectiveness of embodying valuable side information
from users or items into a deep neural network to learn
user and item representations. Considering that users have
multiple interests, MIND performs better than YouTube
DNN. As for DAT, it can exploit the information interaction
between user tower and item tower while being neglected by
MIND. Consequently, it achieves an improvement of 0.75%
HitRate@200, 0.72% Precision@200, 0.72% Recall@200 over
MIND, respectively.

4) To go a step forward, we implement two methods namely
UMA2_YTB and UMA2_DAT in SS-ABC(fixed) strategy. We
find that compared with YouTube DNN in SS-ABC(random)
strategy, UMA2_YTB obtains 0.83% HitRate@200, 0.92%
Precision@200, 0.84%, Recall@200 improvement, respec-
tively; and compared with DAT in SS-ABC(random) sampling
strategy, UMA2_DAT obtains 0.34% HitRate@200, 0.38%
Precision@200, 0.35% Recall@200 improvement, respec-
tively, which also demonstrate the effectiveness of debiaing
negative samples using the proposed method.

4.2.2 Ablation Studies. 1) Fixing the number of negative samples
in three disjoint spaces, we implement YouTube and DAT. We
observe that UMA2_DAT (resp. UMA2_YTB) consistently achieves
a superior performance over DAT (resp. YouTube DNN); and 2) We
regard sample optimization strategy in [5] as another debiasing
method. Unsurprisingly, our method achieves a better performance.
In a nutshell, both results from different perspectives demonstrate
the effectiveness of debiaing negative samples using our method.

4.2.3 Online A/B Test. We also deploy UMA2_YTB on our platform
for A/B test, where baseline model is YouTube DNN. The proposed
UMA2_YTB achieves average 3.35% CTR gain over the baseline
model in successive fifteen days, which is consistent with the offline
evaluation results, indicating a significant business value.

5 CONCLUSION
In this paper, we propose a novel matching method named UMA2

to discriminate negative samples effectively, which consists of a
GMM and a NSDN. GMM is model-agnostic and can employ any
two-tower model to learn user and item representations. NSDN
reweighs negative samples by exploring the idea of IPW for re-
weighing the loss in GMM. Experiments on offline datasets and
online A/B test demonstrate its superiority.
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