
Accelerating Serverless Computing by Harvesting Idle Resources
Hanfei Yu

hyu25@lsu.edu

Louisiana State University

Baton Rouge, LA, USA

Hao Wang

haowang@lsu.edu

Louisiana State University

Baton Rouge, LA, USA

Jian Li

lij@binghamton.edu

SUNY-Binghamton University

Binghamton, NY, USA

Xu Yuan

xu.yuan@louisiana.edu

University of Louisiana at Lafayette

Lafayette, LA, USA

Seung-Jong Park

sjpark@lsu.edu

Louisiana State University

Baton Rouge, LA, USA

ABSTRACT
Serverless computing automates fine-grained resource scaling and

simplifies the development and deployment of online services with

stateless functions. However, it is still non-trivial for users to allo-

cate appropriate resources due to various function types, dependen-

cies, and input sizes. Misconfiguration of resource allocations leaves

functions either under-provisioned or over-provisioned and leads

to continuous low resource utilization. This paper presents Freyr ,
a new resource manager (RM) for serverless platforms that maxi-

mizes resource efficiency by dynamically harvesting idle resources

from over-provisioned functions to under-provisioned functions.

Freyr monitors each function’s resource utilization in real-time,

detects over-provisioning and under-provisioning, and learns to

harvest idle resources safely and accelerates functions efficiently

by applying deep reinforcement learning algorithms along with a

safeguard mechanism. We have implemented and deployed a Freyr
prototype in a 13-node Apache OpenWhisk cluster. Experimental

results show that 38.8% of function invocations have idle resources

harvested by Freyr , and 39.2% of invocations are accelerated by

the harvested resources. Freyr reduces the 99th-percentile function
response latency by 32.1% compared to the baseline RMs.

CCS CONCEPTS
•Computer systems organization→Cloud computing; •Com-
puting methodologies→ Planning and scheduling.

KEYWORDS
Serverless computing, resource harvesting, reinforcement learning

ACM Reference Format:
Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022. Ac-

celerating Serverless Computing by Harvesting Idle Resources. In Pro-
ceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022,
Virtual Event, Lyon, France. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3485447.3511979

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3511979

1 INTRODUCTION
The emergence of serverless computing has extensively simplified

the way that developers access cloud resources. Existing server-

less computing platforms, such as AWS Lambda, Google Cloud

Functions, and Azure Functions, have enabled a wide spectrum

of cloud applications, including web services [34], video process-

ing [3, 11], data analytics [19, 27], and machine learning [7, 35]

with automated resource provisioning and management. By decou-

pling traditional monolithic cloud applications into inter-linked

microservices executed by stateless functions, serverless computing

frees developers from infrastructure management and adminis-

tration with fine-grained resource provisioning, auto-scaling, and

pay-as-you-go billing [20].

Existing serverless computing platforms enforce static resource
provisioning for functions. For example, AWS Lambda allocates

function CPU cores in a fixed proportion to the memory size con-

figured by users [6], leading to either CPU over-provisioned or

under-provisioned for the function execution. Therefore, server-

less service providers are enduring poor resource utilization due

to users’ inappropriate function configuration—some functions are

assigned with more resources than they need [14]. The high concur-

rency and fine-grained resource isolation of serverless computing

further amplify such inefficient resource provisioning.

A few recent studies attempted to address the above issues. Some

researchers proposed to maximize resource utilization and reduce

the number of cold-starts by predicting the keep-alive windows of

individual serverless functions [12, 31]. Fifer [14] incorporated the

awareness of function dependencies into the design of a new re-

source manager to improve resource utilization. COSE [1] attempts

to use Bayesian Optimization to seek for the optimal configura-

tion for functions. Furthermore, several works [21, 22, 32] aimed to

accelerate functions and improve resource efficiency by adjusting

CPU core allocations for serverless functions in reaction to their

performance degradation during function executions.

However, none of the existing studies has directly tackled the

low resource efficiency issue raised by the inappropriate function

configurations. There are three critical challenges from the per-

spective of serverless service providers to address this issue. First, a
user function is secured as a black box that shares no information

about its internal code and workloads, making it hardly possible for

the serverless system to estimate the precise resource demands of

user functions. Second, decoupling monolithic cloud applications to

serverless computing architectures generates a variety of functions

ar
X

iv
:2

10
8.

12
71

7v
2

 [
cs

.D
C

]
 1

7
Fe

b
20

22

https://doi.org/10.1145/3485447.3511979
https://doi.org/10.1145/3485447.3511979
https://doi.org/10.1145/3485447.3511979

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

with diverse resource demands and dynamic input workloads. Third,
the resource provisioning for serverless functions is fine-grained

spatially (i.e., small resource volumes) and temporally (i.e., short
available time).

In this paper, we address the aforementioned challenges by pre-

senting Freyr , a new serverless resource manager (RM) that dynam-

ically harvests idle resources to accelerate functions and maximize

resource utilization. Freyr estimates the CPU and memory satura-

tion points respectively of each function and identifies whether

a function is over-provisioned or under-provisioned. For those

over-provisioned functions, Freyr harvests the wasted resources

according to their saturation points; for those under-provisioned

functions, Freyr tries to accelerate them by offering additional, and

just-in-need allocations to approach saturation points. We apply

an experience-driven algorithm to identify functions over-supplied

and under-supplied by monitoring a series of performance metrics

and resource footprints, including CPU utilization, memory utiliza-

tion, and function response latency to estimate the actual resource

demands of running functions. To deal with the highly volatile envi-

ronment of serverless computing and large numbers of concurrent

functions, we propose to apply the Proximal Policy Optimization

(PPO) algorithm [30] to learn from the realistic serverless system

and make per-invocation resource adjustments. Besides, we design

a safeguard mechanism for safely harvesting idle resources without

introducing any performance degradation to function executions

that have resource harvested.

We implement Freyr based on Apache OpenWhisk [4], a popular

open-source serverless computing platform. We develop a Deep

Reinforcement Learning (DRL) model and training algorithm using

PyTorch and enable multi-process support for concurrent function

invocations. We evaluate Freyr with the other three baselines on an

OpenWhisk cluster using realistic serverless workloads. Compared

to the default resource manager in OpenWhisk, Freyr reduces the
99th-percentile function response latency of invocations

1
by 32.1%.

Particularly, Freyr harvests idle resources from 38.8% of function

invocations while accelerating 39.2% on the OpenWhisk cluster.

Notably, Freyr only degrades a negligible percentage of function

performance under the system performance variations of the Open-

Whisk cluster.

2 BACKGROUND AND MOTIVATION
This section first introduces the status quo of resource provisioning

and allocation in serverless computing. Then, we use real-world

experiments to demonstrate that serverless functions can easily

become under-provisioned or over-provisioned, and motivate the

necessity to accelerate under-provisioned functions and optimize

resource utilization by harvesting idle resources at runtime.

2.1 Resource Provisioning and Allocation in
Serverless Computing

Existing serverless computing platforms (e.g., AWS Lambda, Google

Cloud Functions, and Apache OpenWhisk) request users to define

memory up limits for their functions and allocate CPU cores ac-

cording to a fixed proportion of the memory limits [4, 5, 13, 36].

1
In this paper, a function denotes an executable code package deployed on serverless

platforms, and a function invocation is a running instance of the code package.

EG-L EG-S Saturation

La
te

nc
y

(s
)

0

2

4

CPU cores
2 4 6 8

La
te

nc
y

(s
)

0
1
2
3

Memory (MB)
500 1000

KNN-L KNN-S Saturation

La
te

nc
y

(s
)

0

5

CPU cores
2 4 6 8

La
te

nc
y

(s
)

2

4

Memory (MB)
500 1000

Figure 1: Saturation points of EG andKNNwith small (S) and
large (L) workload sizes. EG-S (L) generates 1K (10K) emails,
and KNN-S (L) inputs 2K (20K) data samples.

Obviously, the fixed proportion between CPU and memory alloca-

tions leaves serverless functions either under-provisioned or over-

provisioned because functions’ CPU and memory demands differ

significantly.

Further it is non-trivial for users to accurately allocate appropri-

ate amounts of resource for their functions [1, 32] due to various

function types, dependencies, and input sizes. Users are prone to

oversize their resource allocation to accommodate potential peak

workloads and failures [18, 32]. Finally, users’ inappropriate re-

source allocations and providers’ fixed CPU and memory provision-

ing proportion jointly degrade the resource utilization in serverless

computing as resources allocated to functions remain idle (more

discussion in Supplementary Materials E).

2.2 Resource Saturation Points
We further demonstrate how easily a serverless function becomes

under-provisioned or over-provisioned by introducing a new no-

tion of saturation points. Given a function and an input size, there

exists a resource allocation saturation point—allocating resource

beyond this point can no longer improve the function’s perfor-

mance, but allocating resource below this point severely degrades

the performance.

We profile the saturation points of two applications: email gen-

eration (EG) and K-nearest neighbors (KNN), representing two

popular serverless application categories: web applications and ma-

chine learning, respectively. We identify the allocation saturation

points of CPUs and memory separately by measuring the response

latency of functions allocated with different number of CPU cores

and different sizes of memory. When adjusting a function’s CPU

(memory) allocation, we fix its memory (CPU) allocation to 1,024

MB (8 cores).

Figure 1 shows that saturation points vary from functions and

input sizes. It is non-trivial for users to identify the saturation points

for every function with specific input sizes in their applications.

Particularly, serverless functions are typically driven by events

with varying input sizes. Without dynamic and careful resource

allocations, functions tend to become either over-provisioned or

under-provisioned.

2.3 The Need for Harvesting Idle Resources
Resource harvesting is a common methodology in virtual envi-

ronments that increases resource utilization by reallocating idle

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Saturation User-defined Greedy

harvesting

C
PU

 c
or

es

0

2

4

6

8

Function ID
EG IR ALU KNN

(a) CPU allocation

R
es

po
ns

e
La

te
nc

y
(s

)

0

2

4

6

Function ID
EG IR ALU KNN

(b) Function response latency

Figure 2: The CPU allocation and response latency of four
real-world functions: EG, image recognition (IR), arithmetic
logic units (ALU), and KNN, where the EG generates 100K
emails, the IR classifies ten images, the ALU calculates 20M
loops, and the KNN inputs 20K data samples.

resources to under-provisioned services without degrading the per-

formance of services being harvested [2, 38, 40].

To motivate the need for dynamic resource harvesting in server-

less computing, we compare the function response latency achieved

by the default resource manager (Fixed RM) and greedy resource

manager (Greedy RM) when executing four real-world serverless

functions. The Fixed RM simply accepts and applies a fixed resource

allocation pre-defined by users, such as the RM in OpenWhisk and

AWS Lambda. The Greedy RM dynamically harvests CPU cores

from functions over-provisioned and assigns the harvested CPU

cores to functions under-provisioned in a first-come-first-serve

manner based on the estimated function saturation points learned

from functions’ recent resource utilization (details in Section 5). In

this experiment, we collect historical resource utilizations of four

functions and profile their saturation points.

Figure 2(a) shows the Greedy RM accelerates the ALU by harvest-

ing three CPU cores from the EG (i.e., the EG function invocation)

and one CPU core from the IR. Though the KNN is also under-

provisioned, the Greedy RM assigns all harvested CPU cores to the

ALU since the ALU is invoked before the KNN. As a comparison,

Figure 2 also plots the saturation points of each function invo-

cation and their response latency when allocated with saturated

resources. Figure 2(b) shows the Greedy RM can increase resource

utilization and accelerate under-provisioned functions without sac-

rificing over-provisioned functions’ performance in the motivation

scenario.

2.4 Deep Reinforcement Learning
Due to the volatility and burstiness of serverless computing, it is

non-trivial to accurately estimate the saturation points based on

functions’ recent resource utilization, and the greedy resource har-

vesting and re-assignment can hardly minimize the overall function

response latency. Thus, we propose to utilize reinforcement learn-

ing (RL) algorithms to learn the optimal resource harvesting and

re-assignment strategies.

At every timestep 𝑡 , the agent is in a specific state 𝑠𝑡 , and evolves

to state 𝑠𝑡+1 according to a Markov process with the transition

probability P(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) when action 𝑎𝑡 is taken [33]. The imme-

diate reward for the agent to take action 𝑎𝑡 in state 𝑠𝑡 is denoted as

𝑟𝑡 . The goal of the agent is to find a policy 𝜋 that makes decisions

regarding what action to take at each timestep, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡), so as

to maximize the expected cumulative rewards, E𝜋 [
∑∞
𝑡=1 𝛾

𝑡−1𝑟𝑡],
where 𝛾 ∈ (0, 1] is a discount factor.

To capture the patterns of real-world systems and address the

curse-of-dimensionality, deep reinforcement learning (DRL) has

been introduced to solve scheduling and resource provisioning prob-

lems in distributed systems [23–26], where deep neural networks

serve as the function approximators that describe the relationship
between decisions, observations, and rewards.

3 OVERVIEW
3.1 Design Challenges
Unlike long-running VMs with substantial historical traces for de-

mand prediction and flexible time windows for resource harvesting,

function executions in serverless computing are highly concur-

rent, event-driven, and short-lived with bursty input workloads [9],

making it hardly practical to reuse the existing VM resource harvest-

ing methods. To enable efficient and safe resource harvesting and

performance acceleration in serverless computing, Freyr’s design
tackles three key challenges:

Volatile and bursty serverless environments. The hetero-

geneity of serverless functions, the high concurrency of invocation

events, and the burstiness of input workloads jointly make it non-

trivial to accurately determine whether a function execution has

idle resources to be harvested. Besides, serverless functions are

sensitive to the latency introduced by resource harvesting and

re-assignment due to their short lifetime and event-driven nature.

Huge space of harvesting and re-assignment decisions.Un-
like the default resource managers that enforce a fixed proportion

between the CPU and memory allocations, we decouple the re-

source provisioning for CPU and memory for more accurate re-

source harvesting and re-assignment, leading to a two-dimensional

resource pool for Freyr to seek for the optimal resource allocation.

This is an immense action space for the DRL agent. For example,

AWS Lambda allows any memory sizes between 128 MB and 10,240

MB and up to 6 CPU cores—60,672 choices in total. Such a huge

action space complicates the DRL algorithm design and extensively

increases the computation complexity to train the DRL agent.

Potential performance degradation.While Freyr harvests re-
sources from functions deemed as over-provisioned and improves

the entire workload, one necessary requirement is to prevent the

performance of those functions from degrading. It is vital to guaran-

tee Service Level Objectives (SLOs) of each individual function, i.e.,
harvested functions have no significant performance degradation.

3.2 Freyr’s Architecture
Freyr is a resource manager in serverless platforms that dynami-

cally harvests idle resources from over-provisioned function invo-

cations and reassign the harvested resources to accelerate under-

provisioned function invocations. It is located with the controller of

a serverless computing framework and interacts with the container

system (e.g., Docker [10]) that executes function invocations.

Figure 3 shows an overview of Freyr’s architecture. First, con-
current function requests arrive at the frontend to invoke specific

functions with user-defined resource allocations. The controller

admits the function requests, registers their configurations, and

schedules them to the invokers. Before the execution of functions,

Freyr inputs observations from serverless platform database and

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU

Mem

Waiting Queue

Container

λ λ λ

λ

Database

allocation

Controller

Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Figure 3: Freyr’s architecture.

makes resource harvesting and re-assignment decisions. The con-

troller instructs invokers to enforce the decisions when executing

function invocations.

To handle the volatile and bursty serverless environments,
Freyr is designed to be event-driven with multi-process support

that the arrival of a function request triggers Freyr to make resource

harvesting decisions. To shrink the huge decision space, Freyr
trains a score network to justify each allocation option of function

invocations, converting the action space of all potential allocation

options to a score for individual allocation option. Freyr evaluates
the score of each allocation option using this score network and

enforces the allocation option with the highest score. To avoid

potential performance degradation of functions with resources

harvested, Freyr applies a safeguard mechanism to prevent those

potentially dangerous allocation options and guarantees the SLOs

of every function invocation within a workload. The safeguard

examines whether the allocation decision made by the DRL agent

is below a function’s historical resource usage peak. Besides, the

safeguard monitors the function’s runtime resource utilization and

returns all harvested resources by calling a safeguard invocation
when its resources appear to be fully utilized.

4 DESIGN
4.1 Problem Formulation
We consider a serverless platform that handles a workload𝑊 with

multiple concurrent function invocations. Let 𝑓 denote a function

invocation in𝑊 . We assume the response latency 𝑒 of 𝑓 is dom-

inated by CPU and memory. Each function invocation 𝑓 has a

resource allocation 𝑝 = (𝑝𝑐 , 𝑝𝑚), where 𝑝𝑐 and 𝑝𝑚 denote a set

of CPU and memory resources, respectively. We assume 𝑝 is non-

preemptive and fixed when the platform is executing 𝑓 , i.e., 𝑝 is

consistently provisioned to 𝑓 until the execution completes. Thus,

we define the relationship between the response latency and the

resource allocation as: 𝑒 = 𝐵(𝑝). Section 2.2 demonstrates that a

function invocation has a pair of saturation points for CPU and

memory denoted by 𝑝Ξ = (𝑝Ξ𝑐 , 𝑝Ξ𝑚), respectively.
The platform determines whether it can harvest or accelerate

a function invocation 𝑓 by comparing 𝑝 with 𝑝Ξ: if 𝑝Ξ𝑐 < 𝑝𝑐

(𝑝Ξ𝑚 < 𝑝𝑚), 𝑓 has idle CPU (memory), the platform can harvest

at most 𝑝𝑐 − 𝑝Ξ𝑐 resources without increasing response latency 𝑒;

if 𝑝Ξ𝑐 > 𝑝𝑐 (𝑝Ξ𝑚 > 𝑝𝑚), the allocation of 𝑓 hasn’t saturated, the

platform can provide 𝑓 with at most 𝑝Ξ𝑐 − 𝑝𝑐 resources to improve

the performance of 𝑓 , i.e., reduce response latency 𝑒 . Thus for CPU
or memory, function invocations in a workload𝑊 can be classified

into three groups of invocations:𝑊 = 𝑊ℎ +𝑊𝑎 +𝑊𝑑 , where𝑊ℎ

denotes the set of invocations that can be harvested,𝑊𝑎 denotes

the set of invocations that can be accelerated, and𝑊𝑑 denotes the

set of invocations which have descent user configurations (𝑝Ξ = 𝑝).

We define a slowdown value as the performance metric to avoid

prioritizing long invocations while keeping short invocations starv-

ing. Recall that 𝑊 denotes the workload, 𝑓 denotes a function

invocation in𝑊 . Function invocations arrive at the platform in a

sequential order. At the first invocation of a function, the platform

captures the response latency 𝑒𝑏 with resources (𝑝𝑏𝑐 , 𝑝𝑏𝑚) configured
by the user and employs it as a baseline denoted by 𝑏. When 𝑖-th

invocation completes execution, the platform captures the response

latency 𝑒𝑖 of it. The slowdown of the 𝑖-th invocation is calculated

as

slowdown :=
𝑒𝑖

𝑒𝑏
. (1)

We normalize the response latency of each invocation with base-

line latency of user configuration. Intuitively, the slowdown indi-

cates how a function invocation performs regardless of its duration

length. A function invocation may be accelerated while being har-

vested at the same time (e.g., 𝑝Ξ𝑐 < 𝑝𝑐 while 𝑝Ξ𝑚 > 𝑝𝑚). In this

case, the slowdown is a mixed result. For individual invocations,

we only focus on the performance regardless of details of resource

allocation, i.e., the invocation is good as long as it yields low slow-

down. We use average slowdown to measure how well a workload

is handled by the platform with harvesting and acceleration. Hence,

the goal is to find a set of resource allocation 𝑝 = (𝑝1, 𝑝2, ..., 𝑝 |𝑊 |)
which minimizes the average slowdown of a workload, defined as

𝑎𝑣𝑔_𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 :=
1

|𝑊 |
∑︁
𝑓 ∈𝑊

𝑒𝑖

𝑒𝑏
=

1

|𝑊 |
∑︁
𝑓 ∈𝑊

𝐵(𝑝𝑖)
𝐵(𝑝𝑏)

(2)

However, as introduced in Section 2.2, estimating varying satu-

ration points of sequential function invocations posts a challenging

sequential decision problem. The complex mapping from set of 𝑝

to objective average slowdown can hardly be solved by existing

deterministic algorithms. Hence, we opt for DRL and propose Freyr ,
which learns to optimize the problem by replaying experiences

through training. Freyr observes information from platform level

and function level in real time. Figure 4 depicts how Freyr estimates

CPU/memory saturation points. Given a function invocation, we

encode every possible CPU and memory option into a scalar value

representing the choice.

4.2 Information Collection and Embedding
When allocating resources for a function invocation, Freyr col-

lects information from two levels: platform level and function

level, as summarized in Table 1. Specifically, for the platform, Freyr
captures the number of invocations remaining in the system (i.e.,
inflight_request_num), available CPU cores, and available mem-

ory. For the incoming function, Freyr queries invocation history

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

C
on

ca
te

na
te

Alloc
option 1

Platform

Inflight invocations

Available CPU

Available Memory

Function

Avg CPU peak

Avg memory peak

Baseline exec time
…

…

…

Actor network

…

…

Critic network

Score network

So
ftm

ax… …
Best Alloc

Option

Safeguard

SelectionScoringEmbedding

State vector
<latexit sha1_base64="b0Zg0oKODwx5iBCr99W9Nvdm8nA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GSyCqzJTirosuHElFewD2rFkMpk2NJMMSaZQhv6JGxeKuPVP3Pk3ZtpZaOuBkMM595KTEySMKu2631ZpY3Nre6e8W9nbPzg8so9POkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB5Db3u1MiFRX8Uc8S4sdoxGlEMdJGGtr2IBAsVLPYXJmaP90P7apbcxdw1olXkCoUaA3tr0EocBoTrjFDSvU9N9F+hqSmmJF5ZZAqkiA8QSPSN5SjmCg/WySfOxdGCZ1ISHO4dhbq740MxSoPZyZjpMdq1cvF/7x+qqMbP6M8STXhePlQlDJHCyevwQmpJFizmSEIS2qyOniMJMLalFUxJXirX14nnXrNu6rVHxrVZqOoowxncA6X4ME1NOEOWtAGDFN4hld4szLrxXq3PpajJavYOYU/sD5/ABzBk+4=</latexit>

sN

State vector
<latexit sha1_base64="cE2URrL8ycYa26UWbQu3Cd4WODw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjOlqMuCG5cV7APasWQyaRuaSYYkUyhD/8SNC0Xc+ifu/Bsz7Sy09UDI4Zx7yckJE8608bxvZ2Nza3tnt7RX3j84PDp2T07bWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+HkLvc7U6o0k+LRzBIaxHgk2JARbKw0cN1+KHmkZ7G9Mj1/8gduxat6C6B14hekAgWaA/erH0mSxlQYwrHWPd9LTJBhZRjhdF7up5ommEzwiPYsFTimOsgWyefo0ioRGkpljzBoof7eyHCs83B2MsZmrFe9XPzP66VmeBtkTCSpoYIsHxqmHBmJ8hpQxBQlhs8swUQxmxWRMVaYGFtW2Zbgr355nbRrVf+6WnuoVxr1oo4SnMMFXIEPN9CAe2hCCwhM4Rle4c3JnBfn3flYjm44xc4Z/IHz+QPwvpPR</latexit>

s1

…… …

<latexit sha1_base64="G/33BeKgAB2rDHxdmZ+PEojSKc8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxilEcCK5kdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+64lrI2J1j+OE+xEdKBEKRtFKd48PXq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFduq6VaNYsjDydwCufgwSXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz/9ho2R</latexit>

q1

<latexit sha1_base64="KR2nMYDnT2svv59723j6Blo5pgE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAiyeJaB6QrGF20psMmZ1dZ2aFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGV1O/+YRK81jem1GCfkT7koecUWOlu8eHm26h6JbcGcgy8TJShAy1buGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5tlKsVrI4cnAMJ3AGHlxAFa6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHKYmNrg==</latexit>

qN

M
ea

n…

<latexit sha1_base64="db8O+O3QOth+qkcVAK+fcPUuFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWNF+wFtLJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuLaiFg94CThfkSHSoSCUbTSffDo9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVO9q5Xotj6MAp3AGF+DBFdThFhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwDmrI2C</latexit>

b1

<latexit sha1_base64="ficGjazwQbPMzRATQlTjhSdk+Bw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJRPOAZA2zk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXc/81hMqzWP5YMYJ+hEdSB5yRo2V7oPH216x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9i3LlrlqqVbM48nACp3AOHlxCDW6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDEq+Nnw==</latexit>

bN

<latexit sha1_base64="KXZ8tkiq9BAWix0xeTT81HfGYv8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVuoOA6iyYD8sVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOydXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxe9kJDRnKGeWUKaFvZWwCdWUoU2oZEPw1l/eJJ1a1WtUaw/1SrOex1GEC7iEa/DgBppwDy1oA4MpPMMrvDmJ8+K8Ox+r1oKTz5zDHzifP4Cej6Q=</latexit>

b̄

<latexit sha1_base64="wq2j3T4SEPVSmG/YS0lK5d4oC5M=">AAACAnicbVDLSsNAFJ34rPUVdSVuBotQNyUpRV0W3LisYB/QhDKZTtqhkwczN2IJwY2/4saFIm79Cnf+jZM2C209cOFwzr3ce48XC67Asr6NldW19Y3N0lZ5e2d3b988OOyoKJGUtWkkItnziGKCh6wNHATrxZKRwBOs602uc797z6TiUXgH05i5ARmF3OeUgJYG5rETEBh7XtrKqg6wB0ijOHey84FZsWrWDHiZ2AWpoAKtgfnlDCOaBCwEKohSfduKwU2JBE4Fy8pOolhM6ISMWF/TkARMuenshQyfaWWI/UjqCgHP1N8TKQmUmgae7swPVoteLv7n9RPwr9yUh3ECLKTzRX4iMEQ4zwMPuWQUxFQTQiXXt2I6JpJQ0KmVdQj24svLpFOv2Re1+m2j0mwUcZTQCTpFVWSjS9REN6iF2oiiR/SMXtGb8WS8GO/Gx7x1xShmjtAfGJ8/4FSXsw==</latexit>

P(option)

…

C
on

ca
te

na
te

Alloc
option N

Function Function info…

Platform info…Platform

Figure 4: The workflow of Freyr.

of the function which records average CPU peak, average mem-

ory peak, average inter-arrival time (IAT), average execution time,

and baseline execution time (i.e., baseline) with user-requested

resources.

Once collecting such information, Freyr encapsulates them with

a potential resource allocation option. More precisely, we embed

information and the potential configuration option together into

a flat state vector as input to Freyr agent, with the information

embedding process illustrated in Figure 4.

4.3 Score Network
Freyr uses a score network to calculate the priority of selecting po-

tential resource allocation options. Figure 4 visualizes the policy

network of Freyr agent, and illustrates the workflow of how the

agent selects the best allocation option based on states. At time 𝑡 ,

a function invocation arrives at the platform which has in total 𝑁

potential resource configuration options. After embedding proce-

dure, Freyr collects a batch of state vectors 𝒔𝑡 = (𝒔1𝑡 , . . . , 𝒔𝑛𝑡 , . . . , 𝒔𝑁𝑡),
where 𝒔𝑛𝑡 maps the state to the 𝑛-th option. Freyr inputs 𝑠𝑡 to the

score network. We implement the score network using two neural

networks, an actor network and a critic network. The actor network
computes a score 𝑞𝑛𝑡 , which is a scalar value mapped from the

state vector 𝒔𝑛𝑡 representing the priority to select configuration

option 𝑛. Then Freyr applies a Softmax operation to the scores

(𝑞1𝑡 , . . . , 𝑞𝑛𝑡 , . . . , 𝑞𝑁𝑡) to compute the probability of selecting option

𝑛 based on the priority scores, given by

P𝑡 (option = 𝑛) =
exp(𝑞𝑛𝑡)∑𝑁

𝑛=1 exp(𝑞𝑛𝑡)
,

at time 𝑡 . The critic network outputs a baseline value 𝑏𝑛𝑡 for option

𝑛, the average baseline value 𝑏𝑡 is calculated as

𝑏𝑡 =
1

𝑁

𝑁∑︁
𝑛=1

𝑏𝑛𝑡 , (3)

which is used to reduce variance when training Freyr . The whole
operation of policy network is end-to-end differentiable.

The score network itself contains no manual feature engineering.

Freyr agent automatically learns to compute accurate priority score

of allocation options through training. More importantly, Freyr
uses the same score network for all function invocations and all

Table 1: The observation state space of the DRL agent.

Platform
State

avail_cpu, avail_mem
inflight_request_num

Function
State

avg_cpu_peak, avg_mem_peak,
avg_interval, avg_execution_time,
baseline

potential resource allocation options. By embedding options into

state vectors, Freyr can distinguish between different options and

use the score network to select the best option. Reusing the score

network reduces the size of networks and limits the action space

of Freyr agent significantly.

4.4 Safeguard
We design Freyr to improve both over-provisioned and under-

provisioned functions. However, when harvesting resources from

functions deemed as over-provisioned, it is possible that Freyr
under-predicts their resource demands. The performance of func-

tions degrades when being over-harvested. We devise a safeguard

mechanism atop Freyr to regulate decisions by avoiding decisions

that may harm performance and returning harvested resources

immediately when detecting a usage spike. We use this safeguard

mechanism to mitigate obvious performance degradation of indi-

vidual functions.

Algorithm 1 summarizes the safeguard mechanism built atop

Freyr . We refer safeguard invocation as invoking the function with

user-defined resources. When there are no previous invocations,

Freyr triggers the safeguard to obtain resource usage and calibrate

the baseline mentioned in Equation 1 (lines 5–7). For further invo-

cations, Freyr queries the history of function and polls the usage

peak, allocation of the last invocation, and the highest peak since

last baseline calibration (lines 10–12). Freyr first checks current
status of the function, i.e., over-provisioned or under-provisioned

(line 13). We assume functions with resource usage below 80%

of user-requested level is over-provisioned. For over-provisioned

(harvested) functions, Freyr then checks the usage peak of last invo-

cation (line 14). If the usage peak approaches 80% of allocation, we

suspect there may be a load spike, which could use more resources

than current allocation. This triggers the safeguard invocation and

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Algorithm 1: Safeguard mechanism atop Freyr .

1 while request_queue.notEmpty do
2 function_id← request_queue.dequeue()

3 calibrate_baseline← False

4 last_request← QueryRequestHistory(function_id)

5 if last_request == None then
/* Trigger safeguard */

6 range← [user_defined]

7 calibrate_baseline← True

8 else
9 threshold← 0.8

10 last_alloc← last_request.alloc

11 last_peak← last_request.peak

12 recent_peak← GetRecentPeak(function_id)

13 if last_peak < user_defined then
/* Over-provisioned */

14 if last_peak / last_alloc ≥ threshold then
/* Trigger safeguard */

15 range← [user_defined]

16 calibrate_baseline← True

17 else
18 range← [recent_peak + 1, user_defined]

19 end
20 else

/* Under-provisioned */

21 range← [recent_peak + 1, max_per_function]

22 end
23 end
24 alloc_option← Freyr(function_id, range)

25 Invoke(function_id, alloc_option, calibrate_baseline)

26 end

baseline re-calibration, Freyr immediately returns harvested re-

source to the function at the next invocation (lines 15–16). If there

is no usage spike, Freyr is allowed to select an allocation option

from recent peak plus one unit to a user-requested level (line 18).

For under-provisioned functions, Freyr is allowed to select from

recent peak plus one unit to the maximum available level (line 21).

After an allocation option is selected, Freyr invokes the function
and forwards the invocation to invoker servers for execution.

Supplementary Materials D presents a sensitivity analysis of

safeguard thresholds and shows that the safeguard mechanism

effectively regulates decisions made by Freyr and protects SLOs of

functions that have resources harvested.

4.5 Training the DRL Agent
Freyr training proceeds in episodes. In each episode, a series of func-

tion invocations arrive at the serverless platform, and each requires

a two-dimensional action to configure CPU and memory resources.

When the platform completes all function invocations, the current

episode ends. Let 𝑇 denote the total number of invocations in an

episode, and 𝑡𝑖 denote the arrival time of the 𝑖-th invocation. We

continuously feed Freyr with a reward 𝑟 after it takes an action to

L
o
s
s

103

104

105

Episode

0 500 1000

(a) Cumulative average loss

R
e
w
a
rd
s

-102

-103

-104

Episode

0 500 1000

(b) Cumulative rewards

Figure 5: The trends of cumulative average loss (left) and cu-
mulative rewards (right) of Freyr’s 1,000-episode training on
the OpenWhisk testbed.

handle an invocation. Concretely, we penalize Freyr with

𝑟𝑖 = −
∑︁

𝑓 ∈𝑆 |𝑡𝑖𝑡𝑖−1

𝑒𝑖

𝑒𝑏
+ 𝑅 (slowdown<1) − 𝑅 (slowdown>1) ,

after taking action on the 𝑖-th invocation, where𝑊 is the set of invo-

cations that finish during the interval [𝑡𝑖−1, 𝑡𝑖), 𝑒
𝑖

𝑒𝑏
is the slowdown

of an invocation 𝑓 introduced in Section 4.1, and two constant sum-

maries for awarding good and penalizing bad actions (𝑅 (slowdown<1)
and 𝑅 (slowdown>1)). The goal of the algorithm is to maximize the

expected cumulative rewards given by

E

[
𝑇∑︁
𝑖=1

𝛾𝑡−1
(
−

∑︁
𝑓 ∈𝑆 |𝑡𝑖𝑡𝑖−1

𝑒𝑖

𝑒𝑏
+ 𝑅 (slowdown<1) − 𝑅 (slowdown>1)

)]
. (4)

Similar to [24], we set the discount factor 𝛾 in Equation 4 to be 1.

Hence, Freyr learns to minimize the overall slowdown of the given

workload.

We use the algorithm 2 to train Freyr with 4 epochs per sur-

rogate optimization and a 0.2 clip threshold [30]. We update the

policy network parameters using the AdamW optimizer [17] with a

learning rate of 0.001. We train Freyr with 1,000 episodes. The total

training time is about 120 hours. Figure 5 shows the learning curve

and cumulative rewards of Freyr training on OpenWhisk testbed.

In Figure 5(a), the descending loss trendline indicates that Freyr
gradually learns to make good resource management decisions.

In Figure 5(b), the ascending trendline shows that Freyr seeks to
maximize the cumulative rewards through training. Supplementary

Material A and B introduces the details of Freyr’s training algorithm
and implementation.

5 EVALUATION
We implement Freyr with 6K lines of Scala code in Apache Open-

Whisk [4] and deploy it to a realistic OpenWhisk cluster. We train

and evaluate Freyr using realistic workloads from public serverless

benchmarks and invocation traces sampled from Azure Functions

traces [31] (implementation details in Supplementary Materials B).

5.1 Methodology

Baselines.We compare Freyr with three baseline RMs: 1) Fixed RM :

the default RM of most existing serverless platforms that allocates

CPU cores in a fixed proportion to user-defined memory sizes.

2) Greedy RM detects a function’s saturation points based on its

historical resource usage by gradually decreasing (increasing) the

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

1

Default
Harvest

Accelerate
Safeguard

S
lo

w
d

o
w

n

CPU cores

−5 0 5

0.9

1.0

1.1

S
lo

w
d

o
w

n

Memory (MB)

−1.0 −0.5 0 0.5 1.0

1

S
lo

w
d

o
w

n

CPU cores

−5 0 5

1

2

S
lo

w
d

o
w

n

Memory (MB)

−500 0 500

2

4

S
lo

w
d

o
w

n

CPU cores

−5 0

2

4

S
lo

w
d

o
w

n

Memory (MB)

−1.0 −0.5 0 0.5 1.0

0.5

1.0

S
lo

w
d

o
w

n

CPU cores

−5 0 5

0.5

1.0

S
lo

w
d

o
w

n

Memory (MB)

−500 0 500

(a) Fixed RM (b) Greedy RM (c) ENSURE (d) Freyr

Figure 6: Performance of individual invocations processed by Fixed RM, Greedy RM, ENSURE, and Freyr in OpenWhisk eval-
uation. Default (•): invocations with user-requested allocation. Accelerate (+): invocations accelerated by supplementary allo-
cation. Harvest (−): invocations with resource harvested. Safeguard (×): invocations protected by the safeguard.

allocation for an over-provisioned (under-provisioned) function

in a fine-tuned and fixed step. Our implementation sets the detect

step size one core and 64 MBs for CPU and memory, respectively.

Besides, Greedy RM allocates resources to functions in a first-come-

first-serve manner. 3) ENSURE [32] allocates memory resources

as users request and adjusts the CPU cores for each function at

runtime when detecting performance degradation.

Evaluation metrics. We use the slowdown value defined in Sec-

tion 4.1 to measure the performance of a function invocation. Func-

tion invocationswith lower slowdowns have lower response latency.

For resource harvesting, Freyr aims to maximize the amount of har-

vested resources while having minimal impact on the performance

of victim functions. For resource re-assignment, Freyr treats in-
vocations with different lengths of response latency as the same

by reducing slowdowns, which improves the overall performance

of the workload. We also report the details of SLO violation and

99th-percentile (P99) function response latency of the workload.

Testbed:We deploy and evaluate Freyr on an OpenWhisk cluster

with 13 physical servers. Two of the servers host the OpenWhisk

components, such as the frontend, the controller, the messaging

queue, and database services. One deploys the Freyr agent. The
remaining ten servers serve as the invokers for executing functions.

The server hosting Freyr agent has 16 Intel Xeon Skylake CPU cores

and 64 GB memory, and each of the other 12 servers has eight Intel

Xeon Skylake CPU cores and 32 GB memory. Each function can

be configured with eight CPU cores and 1,024 MB of RAM at most.

Considering the serverless functions’ short lifecycle, we monitor

their CPU and memory usage per 0.1 second and keep the historical

resource usage in the Redis (i.e., KV store in Figure 3).

Workloads:We randomly sampled two function invocation sets

for OpenWhisk evaluation. Table 2 depicts the two invocation sets

(OW-train and OW-test) used in the OpenWhisk evaluation. We use

a scaled-down version of the invocation traces, i.e., we assume the

invocation trace is based on seconds rather than minutes. This re-

scaling increases the intensity of workloads while speeding up Freyr

OpenWhisk training by reducing the total workload duration. We

employ ten real-world functions from three serverless benchmark

suites: SeBS [8], ServerlessBench [39], and ENSURE-workloads [32]

(details of the ten functions in Supplementary Materials C). For DH,

EG, IP, KNN, ALU, MS and GD, each is initially configured with

four CPU cores and 512 MB memory; for VP, IR and DV, each is

initially configured with eight cores and 1,024 MB. We set the initial

resource configuration of each function according to the default

settings from the suites.

5.2 Results
We summarize the slowdown and resource allocation of function

invocations of the testing workload in Figure 6. In each subgraph,

each point (i.e., •, +, −, and ×) indicates a function invocation. The

y-axis indicates the slowdown values of function invocations, and

the x-axis shows the CPU and memory allocation of function in-

vocations relative to their user configurations. The negative CPU

and memory values indicates that RMs harvest corresponding re-

sources from those invocations, and the positive means that those

invocations are provided with additional resources.

Overall performance. Freyr outperforms other baseline RMs with

the best overall performance. For processing the same testing work-

load, Freyr achieves a lowest average slowdown of 0.82, whereas

Fixed RM, Greedy RM, ENSURE are 1.0, 1.12, and 1.78, respectively.

Recall in Section 4.1, a lower slowdown indicates a faster function

Table 2: Characterization of training and testing work-
load sets in the OpenWhisk evaluation. Metrics include: to-
tal number of unique traces, total number of invocations
(Calls), average inter-arrival time (IAT), and requests per sec-
ond.

Set Traces Calls Avg IAT (s) Reqs/sec

OW-train 1,000 26,705 2.21 0.44

OW-test 10 268 2.20 0.45

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Fixed

Greedy

ENSURE

Freyr

C
D

F
 (

%
)

0

50

100

Response Latency (s)

10 20 30

(a) CDF of response latency
C

D
F

 (
%

)

0

50

100

Slowdown

1 2 3

(b) CDF of slowdown

Figure 7: The CDF of function response latency (left) and
slowdown (right) in OpenWhisk experiment respectively.

response. Compared to the default RM in OpenWhisk, Freyr pro-
vides an average of 18% faster function executions and 32.1% lower

P99 response latency for the testing workload. Freyr harvests idle
resources from 38.8% of function invocations and accelerates 39.2%

of invocations.

Harvesting and acceleration. Figure 6 shows the performance

of 268 individual invocations processed by four RMs. Fixed RM has

no resource adjustment during its workload processing. Greedy

harvests an average of 1.7 cores and 168 MB from victim invoca-

tions and accelerates under-provisioned functions with an average

of 3 cores and 392 MB. ENSURE’s policy also harvests and acceler-

ates invocations with CPU cores but makes no changes to memory

resources. ENSURE harvests an average of 3.4 cores from victims

and accelerates under-provisioned functions with an average of

1.9 cores. Freyr harvests an average of 1.5 cores and 380 MB from

victims and accelerates under-provisioned functions with an aver-

age of 3.6 cores and 164 MB. Freyr re-assign harvested resources

to accelerate under-provisioned invocations, which speeds up for

under-provisioned function invocations up to 92%.

SLO violation. Figure 6 shows that both Greedy RM and ENSURE

severely violate function SLOs since there are some function invo-

cations with slowdown values much larger than 1. Fixed RM has

no violation as it performs no harvesting or acceleration. Greedy

RM degrades the performance of some victim invocations over

60%. ENSURE violates SLOs of some victim invocations over 500%

when harvesting CPU cores. Compared to Greedy RM and ENSURE,

Freyr rationally harvests idle resources from under-provisioned in-

vocations, as the performance degradation of victim invocations

is limited within 6%. When harvesting idle resources, Freyr calls
safeguard for 21.8% of invocations to avoid potential performance

degradation due to usage spike.

P99 latency. Figure 7(a) shows the CDF of function response la-

tency of the testing workload. Freyr has a P99 function response

latency in less than 19 seconds, whereas Fixed RM, Greedy RM and

ENSURE are 28, 25, and 38 seconds, respectively. Figure 7(b) shows

the CDF of the slowdown of the testing workload. Freyr maintains

P99 slowdowns below 1.06 for all invocations, whereas Greedy RM

and ENSURE are 1.58 and 4.5, respectively. As Fixed RM adjusts no

resources, the slowdown stays 1.0 for all percentile.

6 RELATEDWORK

Resource harvesting. Research has been conducted on VM re-

sourcemanagement in traditional clouds for years. SmartHarvest [38]

proposes a VM resource harvesting algorithm using online learn-

ing. Unlike Freyr , which uses harvested resources to accelerate

function executions, SmartHarvest offers a new low-priority VM

service using harvested resources. Directly replacing Freyr with
SmartHarvest is not feasible as SmartHarvest is not designed for

serverless computing. Zhang et al. [40] proposed to harvest VMs

for serverless computing, while Freyr harvests idle resources of

serverless functions directly.

Resource provisioning. Spock [15] proposes a serverless-based

VM scaling system to improve SLOs and reduce costs. For resource

management in serverless, [22] and [32] both aim to automatically

adjust CPU resource when detecting performance degradation dur-

ing function executions, which help mitigate the issue of resource

over-provisioning. Unlike [22] and [32] that only focus on CPU,

Freyr manages CPU and memory resources independently. Kaffes et
al. [21] propose a centralized scheduler for serverless platforms that

assigns each CPU core of worker servers to CPU cores of scheduler

servers for fine-grained core-to-core management. Freyr focuses
on resource allocation rather than scheduling or scaling. Fifer [14]

tackles the resource under-utilization in serverless computing by

packing requests to fewer containers for function chains. Instead of

improving packing efficiency, Freyr directly harvests idle resources

from under-utilized functions.

Reinforcement learning. Siren [35] adopts DRL techniques to

dynamically invoke functions for distributed machine learning

with a serverless architecture. Our work Freyr leverages DRL to

improve the platform itself rather than serverless applications. Dec-

ima [25] leverages DRL to schedule DAG jobs for data processing

clusters. Metis [37] proposes a scheduler to schedule long-running

applications in large container clusters. TVW-RL [26] proposes a

DRL-based scheduler for time-varying workloads. George [23] uses

DRL to place long-running containers in large computing clusters.

Differ from the above works, Freyr learns resource management in

serverless computing using DRL.

7 CONCLUSION
This paper proposed a new resource manager, Freyr , which har-

vests idle resources from over-provisioned functions and acceler-

ates under-provisioned functions with supplementary resources.

Given realistic serverless workloads, Freyr improved most function

invocations while safely harvesting idle resources using reinforce-

ment learning and a safeguard mechanism. Experimental results on

the OpenWhisk cluster demonstrate that Freyr outperforms other

baseline RMs. Freyr harvests idle resources from 38.8% of func-

tion invocations and accelerates 39.2% of invocations. Compared to

the default RM in OpenWhisk, Freyr reduces the 99th-percentile
function response latency by 32.1% for the same testing workload.

8 ACKNOWLEDGEMENTS
This work is supported in part by the US National Science Founda-

tion under grant number OIA-1946231, CRII-CNS-2104880, CRII-

SaTC-1948374, and the Louisiana Board of Regents for the Louisiana

Materials Design Alliance (LAMDA). Any opinion and findings ex-

pressed in the paper are those of the authors and do not necessarily

reflect the view of the funding agency.

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. COSE:

Configuring Serverless Functions using Statistical Learning. In Proc. of IEEE
INFOCOM.

[2] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,

Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, et al. 2020.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms. In Proc. of
USENIX OSDI.

[3] Lixiang Ao, Liz Izhikevich, GeoffreyMVoelker, and George Porter. 2018. Sprocket:

A Serverless Video Processing Framework. In Proc. of ACM SoCC.
[4] Apache. 2018. Apache OpenWhisk Official Website. https://openwhisk.apache.

org. [Online; accessed 1-May-2018].

[5] AWS. 2018. AWS Lambda: Serverless Compute. https://aws.amazon.com/lambda/.

[Online; accessed 1-May-2018].

[6] AWS. 2021. AWS Lambda Limits. https://docs.aws.amazon.com/lambda/latest/

dg/limits.html. [Online; accessed 1-May-2021].

[7] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.

2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In Proc. of
ACM SoCC.

[8] Marcin Copik et al. 2020. SeBS: A Serverless Benchmark Suite for Function-as-a-

Service Computing. arXiv preprint arXiv:2012.14132 (2020).
[9] DataDog. 2020. The State of Serverless. https://www.datadoghq.com/state-of-

serverless-2020/. [Online; accessed 1-July-2021].

[10] Docker. 2021. Docker: Empowering App Development for Developers. https:

//www.docker.com. [Online; accessed 1-May-2021].

[11] Sadjad Fouladi, Riad SWahby, Brennan Shacklett, Karthikeyan Balasubramaniam,

William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith

Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using

Thousands of Tiny Threads. In Proc. of USENIX NSDI.
[12] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping Serverless

Computing Alive with Greedy-Dual Caching. In Proc. of ACM ASPLOS.
[13] Google Cloud. 2018. Google Cloud Function:Event-Driven Serverless Compute

Platform. https://cloud.google.com/functions. [Online; accessed 1-May-2018].

[14] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidambaram,

Mahmut T Kandemir, and Chita R Das. 2020. Fifer: Tackling Underutilization in

the Serverless Era. In Proc. of ACM Middleware.
[15] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan Kandemir,

Bhuvan Urgaonkar, George Kesidis, and Chita Das. 2019. Spock: Exploiting

Serverless Functions for SLO and Cost Aware Resource Procurement in Public

Cloud. In Proc. of IEEE CLOUD.
[16] IBM. 2021. IBM Cloud Functions. https://www.ibm.com/cloud/functions.

[17] Loshchilov Ilya and Hutter Frank. 2019. Decoupled Weight Decay Regularization.

In Proc. of ICLR.
[18] Călin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala,

Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang,

et al. 2018. PerfIso: Performance Isolation for Commercial Latency-Sensitive

Services. In Proc. of USENIX ATC.
[19] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.

2017. Occupy the Cloud: Distributed Computing for the 99%. In Proc. of ACM
SoCC.

[20] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-

wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.

2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.

arXiv:1902.03383 [cs.OS]

[21] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019. Centralized

Core-Granular Scheduling for Serverless Functions. In Proc. of ACM SoCC.
[22] Y. K. Kim, M. R. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya. 2020. Auto-

mated Fine-Grained CPU Cap Control in Serverless Computing Platform. IEEE
Transactions on Parallel and Distributed Systems (2020).

[23] Suyi Li, Luping Wang, Wei Wang, Yinghao Yu, and Bo Li. 2021. George: Learning

to Place Long-Lived Containers in Large Clusters with Operation Constraints. In

Proc. of ACM SoCC.
[24] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.

Resource Management with Deep Reinforcement Learning. In Proc. of ACM
HotNets.

[25] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data Pro-

cessing Clusters. In Proc. of ACM SIGCOMM.

[26] Shanka Subhra Mondal, Nikhil Sheoran, and Subrata Mitra. 2021. Scheduling of

Time-Varying Workloads Using Reinforcement Learning. In Proc. of AAAI.
[27] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive

Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proc. of
ACM SIGMOD.

[28] PyTorch. 2018. PyTorch: Tensors and Dynamic Neural Networks in Python with

Strong GPU Acceleration. https://pytorch.org. [Online; accessed 1-May-2018].

[29] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter

Abbeel. 2017. Trust Region Policy Optimization. arXiv:1502.05477 [cs.LG]

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

[31] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,

Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the

Serverless Workload at a Large Cloud Provider. In Proc. of USENIX ATC.
[32] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veeren-

dra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. 2020. ENSURE:

Efficient Scheduling and Autonomous Resource Management in Serverless Envi-

ronments. In Proc. of ACSOS.
[33] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-

duction. MIT press Cambridge.

[34] Mayur Tanna and Harmeet Singh. 2018. Serverless Web Applications with React
and Firebase: Develop real-time applications for web and mobile platforms. Packt
Publishing Ltd.

[35] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning with a

Serverless Architecture. In Proc. of IEEE INFOCOM.

[36] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael

Swift. 2018. Peeking behind the Curtains of Serverless Platforms. In Proc. of
USENIX ATC.

[37] Luping Wang, Qizhen Weng, Wei Wang, Chen Chen, and Bo Li. 2020. Metis:

Learning to Schedule Long-Running Applications in Shared Container Clusters

at Scale. In Proc. of ACM SC.
[38] YawenWang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari, Neer-

aja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis, and Ricardo

Bianchini. 2021. SmartHarvest: Harvesting Idle CPUs Safely and Efficiently in

the Cloud. In Proc. of ACM EuroSys.
[39] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao

Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing Serverless Platforms

with ServerlessBench. In Proc. of ACM SoCC.
[40] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-

nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper

Serverless Computing on Harvested Resources. In Proc. of ACM SOSP.

https://openwhisk.apache.org
https://openwhisk.apache.org
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.docker.com
https://www.docker.com
https://cloud.google.com/functions
https://www.ibm.com/cloud/functions
https://arxiv.org/abs/1902.03383
https://pytorch.org
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

A THE TRAINING ALGORITHM
Freyr uses a policy gradient algorithm for training. Policy gradient

methods are a class of RL algorithms that learn policies by perform-

ing gradient ascent directly on the parameters of neural networks

using the rewards received during training. When updating policies,

large step sizes may collapse the performance, while small step sizes

may decrease the sampling efficiency. We use the Proximal Policy

Optimization (PPO) algorithms [30] to ensure that Freyr takes ap-
propriate step sizes during policy updates. More specifically, given

a policy 𝜋𝜃 parameterized by 𝜃 , the PPO algorithm updates policies

at the 𝑘-th episode via

𝜃𝑘+1 = argmax
𝜃

E
𝑠,𝑎∼𝜋𝜃𝑘

[
L(𝑠, 𝑎, 𝜃𝑘 , 𝜃)

]
,

where L is the surrogate advantage [29], a measure of how policy

𝜋𝜃 performs relative to the old policy 𝜋𝜃𝑘 using data from the old

policy. We use the PPO-clip version of a PPO algorithm, where L is

given by

L(𝑠, 𝑎, 𝜃𝑘 , 𝜃) = min
(𝜋𝜃 (𝑎 |𝑠)
𝜋𝜃𝑘 (𝑎 |𝑠)

𝐴
𝜋𝜃𝑘 (𝑠, 𝑎), 𝑔(𝜖,𝐴𝜋𝜃𝑘 (𝑠, 𝑎))

)
,

and 𝑔(𝜖,𝐴) is a clip operation defined as

𝑔(𝜖,𝐴) =
{
(1 + 𝜖)𝐴, if 𝐴 ≥ 0,

(1 − 𝜖)𝐴, otherwise,

where 𝐴 is the advantage calculated as rewards 𝑟 subtracted by

baseline values 𝑏; 𝜖 is a hyperparameter that restricts how far the

new policy is allowed to deviate from the old. Intuitively, the PPO

algorithm sets a range for step sizes of policy updates, which pre-

vents the new policy from deviating too much from the old (either

positive or negative).

Algorithm 2 presents the training process of Freyr . For each
episode, we record the whole set of trajectories including the states,

actions, rewards, baseline values predicted by the critic network,

and the logarithm probability of the actions for all invocations. After

each training episode finishes, we use the collected trajectories to

update the actor and critic networks.

B IMPLEMENTATION DETAILS
Apache OpenWhisk is an open-source, distributed serverless plat-

form that powers IBM Cloud Functions [16]. Figure 3 illustrates the

architecture of Freyr based on OpenWhisk. OpenWhisk exposes an

NGINX-based REST interface for users to interact with the platform.

Users can create new functions, invoke functions, and query results

of invocations via the frontend. The Frontend forwards function

invocations to the Controller, which selects an Invoker (typically

hosted using VMs) to execute invocations. The Load Balancer in-

side the Controller implements the scheduling logic by considering

Invoker’s health, available capacity, and infrastructure state. Once

choosing an Invoker, the Controller sends the function invocation

request to the selected Invoker via a Kafka-based distributed mes-

saging component. The Invoker receives the request and executes

the function using a Docker container. After finishing the func-

tion execution, the Invoker submits the result to a CouchDB-based

Database and informs the Controller. Then the Controller returns

the result of function executions to users synchronously or asyn-

chronously. Here we focus on resource management for containers.

Algorithm 2: Freyr Training Algorithm.

1 Initial policy (actor network) parameters 𝜃0 and value

function (critic network) parameters 𝜙0

2 for episode k← 0, 1, 2, . . . do
3 Run policy 𝜋𝑘 = 𝜋 (𝜃𝑘) in the environment until 𝑇 -th

invocation completes

4 Collect set of trajectories D𝑘 = {𝜏𝑖 }, where
𝜏𝑖 = (𝑠𝑖 , 𝑎𝑖), 𝑖 ∈ [0,𝑇]

5 Compute reward 𝑟𝑡 via Equation 4

6 Compute baseline value 𝑏𝑡 via Equation 3

7 Compute advantage Â𝑡 = 𝑟𝑡 − 𝑏𝑡
8 Update actor network by maximizing objective using

stochastic gradient ascent:

𝜃𝑘+1 = argmax
𝜃

1

|D𝑘 |𝑇
∑︁
𝜏 ∈D𝑘

𝑇∑︁
𝑡=0

L(𝑠𝑡 , 𝑎𝑡 , 𝜃𝑘 , 𝜃)

9 Update critic network by regression on mean-squared

error using stochastic gradient descent:

𝜙𝑘+1 = argmin
𝜙

1

|D𝑘 |𝑇
∑︁
𝜏 ∈D𝑘

𝑇∑︁
𝑡=0

(𝑏𝑡 − 𝑟𝑡)2

10 end

We modify the following modules of OpenWhisk to implement

our resource manager:

Frontend: Initially, OpenWhisk only allows users to define the

memory limit of their functions and allocates CPU power propor-

tionally based on memory. To decouple CPU and memory, we add a

CPU limit and enable the Frontend to take CPU and memory inputs

from users. Users are allowed to specify CPU cores and memory of

their functions, and the Frontend forwards both CPU and memory

limits to the Controller.

Controller: The Load Balancer makes scheduling decisions for

the Controller. When selecting an Invoker, the Load Balancer con-

siders available memory of Invokers. We modify the Load Balancer

also to check available CPU cores of Invokers—the Load Balancer

selects Invokers with enough available CPU cores and memory to

execute function invocations.

Invoker: The Invoker uses a semaphore-based mechanism to

control containers’ access to available memory. We apply the same

mechanism to control access to available CPU cores independently.

Container: By default, OpenWhisk uses cpu-shares parameter

to regulate CPU power of containers. When plenty of CPU cycles

are available, all containers with cpu-shares use as much CPU as

they need. While cpu-shares improves CPU utilization of Invok-

ers, it can lead to performance variation of function executions.

We change the CPU parameter to cpus which restricts how many

CPU cores a container can use. This is aligned with the CPU alloca-

tion policy of AWS Lambda [6]. For each function invocation, we

monitor the CPU cores and memory usage of its container using

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 3: Characterizations of serverless applications used
in OpenWhisk evaluation. (DH: Dynamic HTML, EG: Email
Generation, IP: Image Processing, VP: Video Processing, IR:
Image Recognition, KNN: K Nearest Neighbors, GD: Gradi-
ent Descent, ALU: Arithmetic Logic Units, MS: Merge Sort-
ing, and DV: DNA Visualization.)

Function Type Dependency

DH Web App Jinja2, CouchDB

EG Web App CouchDB

IP Multimedia Pillow, CouchDB

VP Multimedia FFmpeg, CouchDB

IR Machine Learning Pillow, torch, CouchDB

KNN Machine Learning Scikit-learn, CouchDB

GD Machine Learning NumPy, CouchDB

ALU Scientific CouchDB

MS Scientific CouchDB

DV Scientific Squiggle, CouchDB

cgroups. We record the usage peak during function execution and

keep it as history for Freyr to query.

DRL agent:We implement the Freyr’s agent using two neural

networks, each with two fully connected hidden layers. The first

hidden layer has 32 neurons, and the second layer has 16 neurons.

Each neuron uses Tanh as its activation function. The agent is

implemented in 2K lines of Python code using PyTorch [28]. Freyr
is lightweight because the policy network consists of only 1858

parameters (12 KB in total). Mapping a state to an action takes less

than 10 ms.

C WORKLOAD CHARACTERIZATIONS
Table 3 describes the type and dependency of 10 serverless applica-

tions from benchmark suites. DH downloads HTML template, pop-

ulates the templates based on input, and uploads them to CouchDB.

EG generates emails based on the input and returns them to the

CouchDB. IP downloads images, resizes them, and uploads them to

CouchDB. VP downloads videos, trims and tags them with a water-

mark, and uploads to CouchDB. IR downloads a batch of images,

classifies them using ResNet-50, and uploads them to CouchDB.

KNN downloads the dataset, performs the KNN algorithm on it,

and uploads the result to CouchDB. GD performs three kinds of

gradient descent based on input and uploads the result to CouchDB.

ALU computes the arithmetic logic based on input and uploads the

result to CouchDB. MS performs merge sorting based on input and

uploads the result to CouchDB. DV downloads a DNA sequence

file, visualizes the sequence, and uploads the result to CouchDB.

We profile the ten applications configured with eight CPU cores

and 1,024 MB memory, which is the maximum allocation in our

experimental environment.

D SAFEGUARD SENSITIVITY ANALYSIS

Safeguard threshold. We set the default threshold value in the

safeguard algorithm to be 0.8, which allows Freyr to trigger the

safeguard just before detecting a full utilization. The threshold is

Sa
fe

 In
vo

ke

0%

50%

100%

Threshold
0 0.5 1.0

Avg Slowdown Degradation

Av
g

Sl
ow

do
w

n

0.8

0.9

1.0 D
egradation

0%

5%

10%

15%

Threshold
0 0.5 1.0

(a) % of safe invocations (b) Avg slowdown & degradation

Figure 8: Sensitivity analysis of safeguard thresholds.

tunable—a high threshold may allow Freyr to presumptuously har-

vest idle resource and deteriorate performance, while a low thresh-

old may too conservatively restrict the harvesting and under-utilize

resources. We conduct a threshold analysis on our OpenWhisk

testbed using the workload OW-test from Table 2 to evaluate the

sensitivity of safeguard threshold in Freyr . We increase Freyr’s safe-
guard threshold from 0 to 1 with a step of 0.1 and run the same

workload using Freyr . Figure 8(a) shows the percentage of safe

invocations (invocations allocated with user-defined CPU/memory)

under each threshold. Figure 8(b) shows the average slowdown and

percentage of degraded invocations under each threshold. When

increasing the threshold, the rate of safe invocation drops down

as Freyr gradually harvests idle resources wildly. The percentage

of degraded invocations gradually rises because Freyr’s harvesting
policy becomes more and more unrestricted. For average slowdown

of the workload, Freyr achieves better and better overall perfor-

mance until its threshold reaching 0.8. Due to severe performance

degradation, Freyr yields a worse performance for thresholds 0.9

and 1.0.

To deploy Freyr in a production environment, service providers

can tune the safeguard threshold based on their own criteria, i.e.,
tightening the threshold to conservatively harvest or loosing the

threshold to actively harvest idle resources.

Safeguard effectiveness. To examine safeguard effectiveness in

Freyr , we also evaluate a variant of Freyr with safeguard turned

off. We run the workload OW-test from Table 2 on our OpenWhisk

testbed using safeguard-off Freyr and obtain the average slowdown

and performance degradation. Freyr without safeguard processes

the testing workload with an average slowdown of 1.28 while de-

grading at most 15.7% to function response latency, which is 36%

slower and has 9.5% more degradation than the original version.

The result shows that Freyr’s safeguard effectively regulates the

decision-making process, thus guaranteeing the performance of

individual functions.

E DEPLOYING FREYR
In industrial serverless computing environments, such as Open-

Whisk, AWS Lambda, and Google Cloud Functions, integrating

Freyr lead to merits for both service providers and users. For ser-

vice providers, Freyr carefully harvests idle resources and reuses

them to accelerate function invocations, which improves the overall

serverless platform’s resource utilization. For users who mistak-

enly configured insufficient resource allocation for their functions,

Freyr transparently brings potential performance protection (i.e.,
faster function executions) using harvested idle resources without

violating other users’ SLOs.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Resource Provisioning and Allocation in Serverless Computing
	2.2 Resource Saturation Points
	2.3 The Need for Harvesting Idle Resources
	2.4 Deep Reinforcement Learning

	3 Overview
	3.1 Design Challenges
	3.2 Freyr's Architecture

	4 Design
	4.1 Problem Formulation
	4.2 Information Collection and Embedding
	4.3 Score Network
	4.4 Safeguard
	4.5 Training the DRL Agent

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References
	A The Training Algorithm
	B Implementation Details
	C Workload Characterizations
	D Safeguard Sensitivity Analysis
	E Deploying Freyr

