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ABSTRACT
We study the problem of learning-augmented predictive linear

quadratic control. Our goal is to design a controller that balances

“consistency”, which measures the competitive ratio when predic-

tions are accurate, and “robustness”, which bounds the competi-

tive ratio when predictions are inaccurate. We propose a novel

𝜆-confident controller and prove that it maintains a competitive

ratio upper bound of 1 + min{𝑂 (𝜆2𝜀) +𝑂 (1 − 𝜆)2,𝑂 (1) +𝑂 (𝜆2)}
where 𝜆 ∈ [0, 1] is a trust parameter set based on the confidence

in the predictions, and 𝜀 is the prediction error. Further, motivated

by online learning methods, we design a self-tuning policy that

adaptively learns the trust parameter 𝜆 with a competitive ratio

that depends on 𝜀 and the variation of system perturbations and

predictions. We show that its competitive ratio is bounded from

above by 1 +𝑂 (𝜀)/(Θ(1) + Θ(𝜀)) +𝑂 (𝜇Var) where 𝜇Var measures

the variation of perturbations and predictions. It implies that by

automatically adjusting the trust parameter online, the self-tuning

scheme ensures a competitive ratio that does not scale up with the

prediction error 𝜀.
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1 PROBLEM STATEMENT
We study a classical online linear quadratic control problem where

the controller has access to untrusted predictions/advice during

each round, potentially from a black-box AI tool.

Denote by 𝑥𝑡 ∈ R𝑛 and 𝑢𝑡 ∈ R𝑚 the system state and action at

each time 𝑡 . We consider a linear dynamic system with adversarial

perturbations,

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡 , for 𝑡 = 0, . . . ,𝑇 − 1, (1)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 , and 𝑤𝑡 ∈ R𝑛 denotes some un-

known perturbation chosen adversarially. We make the standard

assumption that the pair (𝐴, 𝐵) is stabilizable. Without loss of gen-

erality, we also assume the system is initialized with some fixed

𝑥0 ∈ R𝑛 . The goal of control is to minimize the following quadratic

costs given matrices 𝐴, 𝐵,𝑄, 𝑅 :

𝐽 B
𝑇−1∑︁
𝑡=0

(𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 ) + 𝑥𝑇 𝑃𝑥𝑇 ,

where 𝑄, 𝑅 ≻ 0 are positive definite matrices, and 𝑃 is the solution

of the following discrete algebraic Riccati equation (DARE), which

exists because (𝐴, 𝐵) is stabilizable and 𝑄, 𝑅 ≻ 0.

𝑃 = 𝑄 +𝐴⊤𝑃𝐴 −𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴.

Given 𝑃 , we can define 𝐾 B (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴 as the optimal

LQC controller in the case of no disturbance (𝑤𝑡 = 0). Further,

let 𝐹 B 𝐴 − 𝐵𝐾 be the closed-loop system matrix when using

𝑢𝑡 = −𝐾𝑥𝑡 as the controller.
Our focus is on predictive control and we assume that, at the

beginning of the control process, a sequence of predictions of the

disturbances (𝑤0, . . . ,𝑤𝑇−1) is given to the decision maker. At time

𝑡 , the decision maker observes 𝑥𝑡 ,𝑤𝑡−1 and picks a decision 𝑢𝑡 .

Then, the environment picks 𝑤𝑡 , and the system transitions to

the next step according to (1). We emphasize that, at time 𝑡 , the

decision maker has no access to (𝑤𝑡 , . . . ,𝑤𝑇 ) and their values may
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be different from the predictions (𝑤𝑡 , . . . ,𝑤𝑇 ). Also, note that𝑤𝑡

can be adversarially chosen at each time 𝑡 , adaptively.

Formally, we define the prediction error as

𝜀 B
𝑇−1∑︁
𝑡=0






𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 (𝑤𝑡 −𝑤𝑡 )






2 . (2)

We use the competitive ratio to measure the performance of an

online control policy and quantify its robustness and consistency.

Specifically, let OPT be the offline optimal cost when all the dis-

turbances (𝑤0, . . . ,𝑤𝑇−1) are known in hindsight, and ALG be the

cost achieved by an online algorithm.

Definition 1.1. The competitive ratio for a given prediction error
𝜀, CR(𝜀), is defined as the smallest constant 𝐶 ≥ 1 such that ALG ≤
𝐶 · OPT for fixed 𝐴, 𝐵,𝑄, 𝑅 and any adversarially and adaptively
chosen perturbations (𝑤0, . . . ,𝑤𝑇−1) and predictions (𝑤0, . . . ,𝑤𝑇−1).

2 ALGORITHM AND MAIN RESULTS
2.1 𝜆-confident control
We introduce a new trust parameter 𝜆 and consider a policy

𝜋 (𝑥𝑡 ) = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 + 𝜆

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

)
. (3)

Note that setting 𝜆 = 0 and 𝜆 = 1 respectively recovers the optimal

linear policy 𝜋 (𝑥𝑡 ) = −𝐾𝑥𝑡 for the LQR problem with Gaussian

perturbations and the MPC policy 𝜋 (𝑥𝑡 ) below that gives an action

𝑢𝑡 at each time 𝑡 :

min

(𝑢𝑡 ,...,𝑢𝑇−1)

(
𝑇−1∑︁
𝜏=𝑡

(𝑥⊤𝜏 𝑄𝑥𝜏 + 𝑢⊤𝜏 𝑅𝑢𝜏 ) + 𝑥𝑇 𝑃𝑥𝑇

)
s.t. (1) for all 𝜏 = 𝑡, . . . ,𝑇 − 1. (4)

The theorem below establishes a consistency and robustness

trade-off, i.e, the optimal confidence parameter 𝜆 depends on the

prediction error and a large 𝜆 gives a better competitive ratio if the

prediction error is small and vice versa.

Theorem 2.1 (Informal). Under our model assumptions, with a
fixed trust parameter 𝜆 > 0, the 𝜆-confident control in (3) has a worst-
case competitive ratio of at most CR(𝜀) ≤ 1 +min{𝑂 (𝜆2𝜀) +𝑂 (1 −
𝜆)2,𝑂 (1) +𝑂 (𝜆2𝑊 )} where𝑊 B ∑𝑇−1

𝑡=0




∑𝑇−1
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏




2 .
2.2 Self-tuning control
While the 𝜆-confident control finds a balance between consistency

and robustness, selecting the optimal 𝜆 parameter requires exoge-

nous knowledge of the quality of the predictions 𝜀, which is often

not possible. For example, black-box AI tools typically do not allow

uncertainty quantification. In this section, we develop a self-tuning

𝜆-confident control approach that learns to tune 𝜆 in an online

manner, as shown in Algorithm 1.

The key to the algorithm is the update rule for 𝜆𝑡 . Given pre-

viously observed perturbations and predictions, the goal of the

algorithm is to find a greedy 𝜆𝑡 that minimizes the gap between

the algorithmic and optimal costs. This can be equivalently written

as Solving the formed minimization yields the choice of 𝜆𝑡 in the

self-tuning policy in Algorithm 1.

Algorithm 1: Self-Tuning 𝜆-Confident Control
for 𝑡 = 0, . . . ,𝑇 − 1 do

if 𝑡 ≤ 1 then
Initialize and choose 𝜆𝑡 = 𝜆0

end
else

Compute a trust parameter 𝜆𝑡

𝜆𝑡 =

∑𝑡−1
𝑠=0 (𝜂 (𝑤; 𝑠, 𝑡 − 1))⊤𝐻 (𝜂 (𝑤; 𝑠, 𝑡 − 1))∑𝑡−1
𝑠=0 (𝜂 (𝑤; 𝑠, 𝑡 − 1))⊤𝐻 (𝜂 (𝑤; 𝑠, 𝑡 − 1))

where 𝜂 (𝑤; 𝑠, 𝑡 ) B
𝑡∑︁

𝜏=𝑠

(
𝐹⊤ )𝜏−𝑠

𝑃𝑤𝜏

end
Generate an action 𝑢𝑡 using 𝜆𝑡 -confident control in (3)

Update 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

end

Figure 1: Competitive ratios of Algorithm 1 and 𝜆-confident
control with fixed 𝜆’s for battery-buffered EV charging.

Theorem 2.2 (Informal). Under our model assumptions, the self-
tuning policy in Algorithm 1 has a competitive ratio CR(𝜀) ≤ 1 +

𝑂 (𝜀)
Θ(1)+Θ(𝜀) +𝑂 (𝜇Var) as a function of the prediction error 𝜀 where 𝜇Var
measures the variation of perturbations and predictions.

Theorem 2.2 implies that when the variations of predictions and

perturbations are small, the self-tuning policy is able to achieve

a bounded competitive ratio. In Figure 1, we observe a competi-

tive ratio curve (Online) 1 + Θ(𝜀)/(𝑂 (1) + Θ(𝜀)) corresponding to

Algorithm 1 that matches the competitive ratio bound given in The-

orem 2.2 in order sense (in 𝜀). More case studies are demonstrated

in the full paper [1].

In conclusion, we detail online learning-based self-tuning pol-

icy that allows the use of untrusted black-box AI tools in a way

that ensures worst-case performance bounds for linear quadratic

control.
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