
Network Representation Learning: From Preprocessing,
Feature Extraction to Node Embedding

JINGYA ZHOU∗, Soochow University, China Georgia Institute of Technology, USA State Key Laboratory
of Mathematical Engineering and Advanced Computing, China
LING LIU, Georgia Institute of Technology, USA
WENQI WEI, Georgia Institute of Technology, USA
JIANXI FAN, Soochow University, China

Network representation learning (NRL) advances the conventional graphmining of social networks, knowledge
graphs, and complex biomedical and physics information networks. Over dozens of network representation
learning algorithms have been reported in the literature. Most of them focus on learning node embeddings for
homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics
captured and used for learning node embedding. This survey paper reviews the design principles and the
different node embedding techniques for network representation learning over homogeneous networks. To
facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework
to divide and generalize the node embedding learning process on a given network into preprocessing steps,
node feature extraction steps and node embedding model training for a NRL task such as link prediction and
node clustering. With this unifying reference framework, we highlight the representative methods, models,
and techniques used at different stages of the node embedding model learning process. This survey not only
helps researchers and practitioners to gain an in-depth understanding of different network representation
learning techniques but also provides practical guidelines for designing and developing the next generation of
network representation learning algorithms and systems.

CCS Concepts: • Computing methodologies → Machine learning; • Information systems → Data
mining;

Additional Key Words and Phrases: Network representation learning, data preprocessing, feature extraction,
node embedding

ACM Reference Format:
JINGYA ZHOU, LING LIU, WENQI WEI, and JIANXI FAN. 2021. Network Representation Learning: From
Preprocessing, Feature Extraction to Node Embedding. 1, 1 (October 2021), 35 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Recent advances in deep learning and convolutional neural network (CNN) [52] have made remark-
able breakthroughs to many fields, such as machine translation [94] and reading comprehension

Authors’ addresses: JINGYA ZHOU, jy_zhou@suda.edu.cn, Soochow University, 1 Shizi street, Suzhou, Jiangsu, 215006,
China, Georgia Institute of Technology, during May 2019 - June 2020, Atlanta, Georgia, USA, State Key Laboratory
of Mathematical Engineering and Advanced Computing, Wuxi, Jiangsu, 214125, China; LING LIU, Georgia Institute of
Technology, 801 Atlantic Drive, Atlanta, Georgia, 30332, USA, lingliu@cc.gatech.edu; WENQI WEI, Georgia Institute of
Technology, 801 Atlantic Drive, Atlanta, Georgia, 30332, USA, wenqiwei@gatech.edu; JIANXI FAN, Soochow University, 1
Shizi street, Suzhou, Jiangsu, China, 215006, jxfan@suda.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2021.

ar
X

iv
:2

11
0.

07
58

2v
1 

 [
cs

.S
I]

  1
4 

O
ct

 2
02

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 J. Zhou et al.

Network 

representation 

learning

...

Representations in the latent 

space

(-0.10721, -0.08992, , 0.13841)

(-0.06068, -0.08765, , 0.14833)

(0.05364, -0.41989, , -0.08738)

 

(0.00963, -0.17259, , 0.11174)

Network input

...(                       )

Node 

classification

Link 

prediction

Community 

detection

Downstream applications

Protein 

iterface

user

item

Social 

recommendation

 Bitcoin 

transaction 

forecasting

Fig. 1. An illustration of NRL and its deployment in example applications [28, 30, 31, 43, 91, 92].

in natural language processing (NLP) [99], object detection [79] and image classification [59] in
computer vision (CV). In addition to text, audio, image and video data, information networks (or
graphs) represent another type of natural and complex data structure representing a set of entities
and their relationships. A wide variety of real-world data in business, science and engineering
domains are best captured as information networks, such as protein interaction networks, citation
networks, and social media networks like Facebook, LinkedIn, to name a few.

Network representation learning (NRL), also known as network embedding, is to train a neural
network to represent an information network as a collection of node-embedding vectors in a latent
space such that the desired network features are preserved, which enables the well-trained NRL
model to perform network analytics, such as link prediction or node cluster, as shown in Fig. 1.
The goal of NRL is to employ deep learning algorithms to encode useful network information
into the latent semantic representations, which can be deployed for performing popular network
analytics, such as node classification, link prediction, community detection, and domain-specific
network mining, such as social recommendation [28, 91], protein to protein interaction prediction
[30], disease-gene association identification [43], automatic molecule optimization [31] and Bitcoin
transaction forecasting [92].
Different from traditional feature engineering that relies heavily on handcrafted statistics to

extract structural information, NRL introduces a new data-driven deep learning paradigm to
capture, encode and embed structural features along with non-structural features into a latent space
represented by dense and continuous vectors. By embedding edge semantics into node vectors, a
variety of network operations can be carried out efficiently, e.g., computing the similarity between
a pair of nodes, visualizing a network in a 2-dimensional space. Moreover, parallel processing on
large scale networks can be naturally supported with the node embedding learned from NRL.
Most of the existing network representation learning efforts are targeted on learning node

embeddings of a homogeneous network, in which all nodes are homogeneous and all edges belong
to a single type of node relationships, e.g., a social network is considered homogeneous when we
only consider users and their friendship relationships [66]. A heterogeneous information network
consists of nodes and edges of heterogeneous types, corresponding to different types of entities
and different kinds of relations respectively. Knowledge graph [38, 47] and RDF graphs [101] are
known examples of heterogeneous information networks.
DeepWalk [66] is the first node embedding algorithm that learns to encode the neighborhood

features of each node in a homogeneous graph through learning the encoding of its scoped random

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 3

walk properties using the autoencoder algorithms in conjunction with node2vec [36]. Inspired
by DeepWalk design, dozens of node embedding algorithms have been proposed [8, 14, 15, 17,
23, 25, 27, 36, 37, 41, 51, 55, 57, 67, 69–72, 77, 81, 83, 87, 88, 93, 97, 102, 103]. Although most of
them focus on learning node embeddings for homogeneous networks, they differ in terms of
the specific encoding schemes and the specific types of node semantics captured and used for
learning node embedding. This survey paper mainly reviews the design principles and the different
node embedding techniques developed for network representation learning over homogeneous
networks. To facilitate the comparison of different node embedding algorithms, we introduce a
unified reference framework to divide and generalize the node embedding learning process on a
given network into preprocessing steps, node feature extraction steps and node embedding model
that can be used for link prediction and node clustering. With this unifying reference framework,
we highlight the most representative methods, models, and techniques used at different stages of
the node embedding model learning process.

We argue that an in-depth understanding of different node embeddingmethods/models/techniques
is also essential for other types of network representation learning approaches that are built on top
of node embedding techniques, such as edge embedding [2, 32], subgraph embedding [9, 16] and
entire-graph embedding [5, 63]. For example, an edge can be represented by a Hadamard product
of its two adjacent nodes’ vectors. Similarly, graph coarsening mechanisms [19, 100] may create a
hierarchy by successively clustering the nodes in the input graph into smaller graphs connected in
a hierarchical manner, which can be used to generate representations for subgraphs and even for
the entire graph.
We conjecture that this survey paper not only helps researchers and practitioners to gain an

in-depth understanding of different network representation learning techniques, but also provides
practical guidelines for designing and developing the next generation of network representation
learning algorithms and systems.
Current surveys [13, 20, 40] primarily focus on presenting a taxonomy to review the existing

work on network representation learning. Concretely, [13] proposes two taxonomies of graph
embedding based on problem settings and techniques respectively and it first appeared in 2017 on
ArXiv and published in 2018. [20] proposes a taxonomy of network embedding according to the
types of information preserved. [40] appeared in 2017 in the IEEE Data Eng. Bulletin. It describes a
set of conventional node embedding methods with the focus on pairwise proximity methods and
neighborhood aggregation based methods. In contrast, our unified reference framework provides a
broader and more comprehensive comparative review of the state of the art in network representa-
tion learning. In our three-stage reference framework, each stage serves as a categorization of the
set of technical solutions dedicated to the tasks respective to this stage. For example, we not only
provide a review of node embedding models using the unified framework, but also describe a set of
optimization techniques that are commonly used in different node embedding methods, and also
an overview of recent advances in NRL.
We list the mathematical notations used throughout the paper in Table 1 for reference conve-

nience.
The remainder of this survey is structured as follows. In Section 2, we describe the basic steps of

network representation learning to generate node embeddings using the autoencoder approach. In
Section 3, we present an overview of the unifying three-stage reference framework for NRL, and
discuss representative methods, models, and optimization techniques used at each stage. In Section
4, we review recent advances in conventional NRL, distributed NRL, multi-NRL, dynamic NRL and
knowledge graph representation learning by using the proposed reference framework and discuss
several open challenges. In Section 5, we conclude our survey.

, Vol. 1, No. 1, Article . Publication date: October 2021.



4 J. Zhou et al.

Table 1. The list of notations and symbols used in the paper and their meaning
Notation/Symbol Meaning Notation/Symbol Meaning
W, U, M bold capital letters represent matrices h, u𝑘 , vI bold lowercase letters represent vectors
u𝑘 , vI , v𝑖 , v𝑗 lowercase letters represent nodes 𝑣𝑖 , ℎ𝑖 , 𝑦𝑖 italic lowercase letters represent vector elements
Φ( ·) , 𝑓𝜃1 ( ·) mapping function, i.e., encoder Ψ( ·) , 𝑔𝜃2 ( ·) decoder
A adjacency matrix L Laplacian matrix
𝑁u node u’s neighborhood 𝐺𝑝 persona graph
𝐺 [𝑁u ] ego-network of node u Pk , Γk 𝑘-step transition matrix
X additional information matrix Ψ̂(vi, vj) empirical probability
g𝜃 filter of a convolution operation 𝑇𝑘 (x) Chebyshev polynomials
Θ matrix of filter parameters 𝐴𝐺𝐺𝑘 aggregation function in the 𝑘th layer
V𝑛𝑒𝑔 set of negative samples 𝜂 learning rate
𝐿1𝑠𝑡 , 𝐿2𝑛𝑑 , 𝐿 first loss, second loss, loss b biase vector
x(𝑖 ) , x̃(𝑖 ) 𝑖th instance and its corrupted form (H(i) )l matrix of representations in the 𝑙 th layer of network 𝑖
SRPR rooted PageRank matrix 𝑡𝑝 timestamp before the current event
h, r, t representations of head, translation and tail 𝑑𝑟 (h, t) distance function of a triple

2 NETWORK REPRESENTATION LEARNING: WHAT AND HOW
To establish a common ground for introducing design principles of NRL methods and techniques,
we first provide a walkthrough example to illustrate how network representation learning works
from the autoencoder perspective. We first briefly describe DeepWalk [66] as it will be used as the
reference NRL model in this section.

DeepWalk [66] is generalized from the advancements in language modeling, e.g., word2vec [61].
In a language model, the corpus is built by collecting sentences from many documents. If we regard
node traveling paths as sentences, we can build corpus for network representation learning. Given
an input network, we use the random walk method with parameters 𝛾 , 𝑡 and 𝛼 to generate multiple
node traveling paths, where 𝛾 decides how many times to issue random walks from a node, 𝑡 is the
path length, and 𝛼 is the probability of stopping walk and restarting from the initial node.
In the language processing field, skip-gram and continuous bag-of-word (CBOW) [61] are two

commonly used models for estimating the likelihood of co-occurrence among words in training set.
For network representation learning, training instances are extracted from node traveling paths
based on a sliding window. An instance consists of a target node and its context located within
a fixed window size, e.g., (3, (1,7)). In the meantime, we also need to build a vocabulary to index
and sort all nodes by their frequency in the corpus, and then build a Huffman tree based on the
frequency for hierarchical softmax.

The learning model shown in Fig. 2 contains three layers and it belongs to a typical autoencoder
paradigm. The input vectors are encoded into latent representation vectors by means of a matrix
W, which is known as encoding, and then the latent representation vectors are reconstructed into
output vectors by means of a matrix U, which is known as decoding. Given a training instance,
skip-gram model is mainly used to forecast the context given a target node, while on the contrary
CBOW model predicts the target node given its context. Skip-gram model is widely adopted in
network representation learning, since the conditional probability can be decomposed into multiple
simple conditional probabilities under independence assumption,

Pr(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI) |Φ(vI)) =
∏

v𝑗 ∈𝑐𝑜𝑛𝑡𝑒𝑥 (vI)
Pr(v𝑗 |Φ(vI)), (1)

where Φ(·) is a mapping function that embeds nodes into the low-dimensional vector space, i.e.,
Φ(vI) refers to the target node vI’s learned representation. Here Φ(·) acts as the encoder from the
autoencoder perspective. Given the embedding of the target node, the conditional probability acts as
the decoder that captures the reconstruction of the target node and its context nodes in the original
network. A loss function is defined accordingly to measure the reconstruction error and the learning
model is trained by minimizing the loss. To be specific, for each training instance, the target node vI
is initially encoded to be a one-hot vector vI and its dimension equals vocabulary size 𝑛, and W is

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 5

     NRL streamline

h

Input 
layer

Hidden 
layer

Output layer

h1

h2

h3

h4

(5) h = WTvI

(4) Feed instance from 
training set, e.g., (3, (1,7))

(1) Random walk

#seq. traveling path
seq.1 1,3,7,3,5,7,5,1
seq.2 4,8,4,2,8,4,1,4
seq.3 5,7,5,1,5,1,2,1
seq.4 8,6,2,6,2,6,8,6
… …
seq.32 1,3,1,5,7,5,1,5

target context
3 1, 7
7 3
3 7, 5
5 3, 7
7 5
… …

Corpus

Vocabulary

Training set

w3

Trained W8x4

Initial W8x4

(7) Update        
based on Eq. (8)

(2) Sliding window

-0.12446   -0.12247   0.11781    -0.08604 
0.01829    -0.10851   -0.12442   -0.00278  
-0.11103   0.02549    0.11414    0.02070
0.09615    -0.01659   -0.02230   -0.03386
0.01750    -0.11152   0.06655    0.02730
-0.00388   0.11941    0.00219    0.05245
0.11491    0.01186    -0.11006   -0.02919
0.03284    -0.03144   0.02893    0.11427

1

5

2

3

48

6

7

21
8

7

5 6

3 4

y
y5        y1    y3      y2      y8       y4    y7       y6

u1

u2 u3

u4 u5 u6 u7

(6) Hierarchical Softmax

T T T

1 1 2 4( ) ( ) (1 ( ))y      u h u h u h
T T T

7 1 3 7(1 ( )) (1 ( )) ( )y       u h u h u h

(7) Update U 
based on Eq. (6)

Trained U4x7

0.00199 
-0.00576  
0.00269  
0.00395

-0.00466 
-0.00149  
0.00271 
-0.00277

-0.00032  
0.00170  
0.00488  
0.00482

0.00007 
-0.00087  
0.00200  
0.00290

0.00268 
-0.00162 
-0.00316  
0.00098

0.00903  
0.00344 
-0.00451  
0.00019

0.00715  
0.00549  
0.00596  
0.00542

y

y1

y2

y3

y4

y5

y6

y7

y8

vI

v1

v2

v3

v4

v5

v6

v7

v8

0

0

1

0

0

0

0

0

T

8 T

1

exp( )

exp( )

i
i

ii

y







h m

h m

(6) Softmax

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

-0.2 -0.15 -0.1 -0.05 0

-0.12447   -0.12689   0.12135    -0.08523
0.01731    -0.11011   -0.12360   -0.00316
-0.11188   0.02302    0.11563     0.02066
0.09652    -0.01736   -0.02159   -0.03370
0.01709    -0.11496   0.06919     0.02744
-0.00406   0.11598    0.00459     0.05224
0.11446    0.01062    -0.10896   -0.02938
0.03309   -0.03417    0.03157     0.11493 Initial M4x8

0.0173    .  .  .    -0.0067  0.0121
0.0074    .  .  .    0.1038   0.0086
0.1003    .  .  .    -0.0034  -0.0210
-0.0021   .  .  .    0.2089   0.0421

m1 m7 (7) Update M

Trained M4x8

        .  .  .     
        .  .  .    
        .  .  .    
        .  .  .    

(8) Output
hidden vectors

Initial U4x7

u1

0 0

0 0

Input network

(3) Huffman coding

#index node frequency
1 1 43
2 5 43
3 3 40
4 2 29
5 8 28
6 4 27
7 7 27
8 6 19

(5) Encode (6) Decode (7) Matrices 
update

(8) Output 
representations

6

8
4

2
1

7 3
5

Fig. 2. An example of a three-layer neural network used to realize network representation learning. (1) build
corpus based on random walk (𝛾 = 4, 𝑡 = 8, 𝛼 = 0); (2) build training set based on sliding window (𝑠 = 1);
(3) build vocabulary to store the set of nodes and their frequency in corpus, and build a Huffman tree. Note
that this step is optional and only necessary for hierarchical softmax; (4) feed training instance to input
layer; (5) encode input vector into hidden vector; (6) decode hidden vector into conditional probabilities
of context nodes based on softmax or hierarchical softmax; (7) update matrices W and M or U based on
back-propagation method (𝜂 = 0.025); (8) output hidden vectors as the learned representations.

a 𝑛 ×𝑚 matrix initialized by letting its entries randomly falling in a range [−1/2𝑛, 1/2𝑛]. One-hot
encoding implies that h is a𝑚-dimensional vector simply copying a row of W associated with the
target node vI. A𝑚 × 𝑛 matrix M is set to decode the encoded vector vI, where the conditional
probability is obtained by doing softmax, i.e.,𝑦𝑖 =

exp(hTm𝑖 )∑𝑛
𝑖=1 exp(hTm𝑖 ) . But softmax is not scalable, because

for each training instance, softmax requires to repeat vector multiplication for 𝑛 times to obtain
the denominator.
To improve computation efficiency of decoder, DeepWalk uses hierarchical softmax [60, 62]

instead of softmax to implement the conditional probability factorization. Hierarchical softmax
model builds a binary tree and places all network nodes on the leaf layer. Then there will be 𝑛 − 1
branch nodes and each of them has an associated𝑚-dimensional vector. For the output node vj in
a training instance, it corresponds to a leaf node 𝑦 𝑗 in the tree representing the probability of vj
in the output layer given target node vI. It is easy to identify a unique path from the root node to

, Vol. 1, No. 1, Article . Publication date: October 2021.



6 J. Zhou et al.

node 𝑦𝑖 , and the conditional probability can be computed based on the path, i.e.,

𝑦 𝑗 = Pr(v𝑗 |Φ(vI)) =
𝑙 𝑗−1∏
𝑘=1

Pr(u𝑘 |Φ(vI)), (2)

where 𝑙 𝑗 is the length of the path toward 𝑦 𝑗 . DeepWalk uses Huffman tree to implement hierarchical
softmax due to its optimal property on average path length. On the path toward leaf node 𝑦 𝑗 , a
binary classifier is used to compute the probability of going left or right at each branch node, i.e.,

Pr(u𝑘 |Φ(vI)) =
{
𝜎 (u𝑘T · h), go left
1−𝜎 (u𝑘T · h), go right , where𝜎 (u𝑘T · h) = 1

1 + exp(−u𝑘T · h) . (3)

The model’s goal is to obtain the maximized conditional probability, which is equivalent to
minimize the following loss function

𝐿 = − log Pr(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI) |Φ(vI)) =
∑︁

v𝑗 ∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI)
− log𝑦 𝑗 . (4)

To this end, back-propagation method is used to update two weight matricesW andUwith gradient
descent. Firstly, we take the derivative of loss with regard to each uk on the path toward the context
node and obtain

𝜕𝐿

𝜕u𝑘
=

𝜕𝐿

𝜕u𝑘T · h ·
𝜕u𝑘T · h
𝜕u𝑘

=
∑︁

v𝑗 ∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI)

(
𝜎 (u𝑘T · h) − 𝜋𝑘

)
· h, (5)

where 𝜋𝑘 = 1 if go left and 𝜋𝑘 = 0 otherwise. The corresponding vectors in matrix U is updated by

u𝑘 ← u𝑘 − 𝜂
∑︁

v𝑗 ∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI)

(
𝜎 (u𝑘T · h) − 𝜋𝑘

)
· h, where𝜂 is the learning rate. (6)

Then for each context node in an instance, we take the derivative of loss with regard to the hidden
vector h and obtain

𝜕𝐿

𝜕h
=

∑︁
v𝑗 ∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI)

𝑙 𝑗−1∑︁
𝑘=1

𝜕𝐿

𝜕u𝑘T · h ·
𝜕u𝑘T · h
𝜕h

=
∑︁

v𝑗 ∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI)

𝑙 𝑗−1∑︁
𝑘=1

(
𝜎 (u𝑘T · h) − 𝜋𝑘

)
·u𝑘 . (7)

The vector wI in matrixW is updated accordingly by

wI ← wI − 𝜂
∑︁

v𝑗 ∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI)

𝑙 𝑗−1∑︁
𝑘=1

(
𝜎 (u𝑘T · h) − 𝜋𝑘

)
·u𝑘 . (8)

The model will learn the latent representation for every node by updating matrices iteratively and
eventually stabilize. The hidden vectors are the node representations learned from the network.

Fig. 2 shows a simple network with 8 nodes, we build a corpus by running random walk 4 times
for each node and obtain 32 node sequences. We also generate multiple instances for training by
means of a sliding window with 𝑠 = 1, which means a target node may have 2 context nodes at
most. Instance (3, (1,7)) is the first one used for the following training, and the target node’s input
vector is v3’s one-hot vector (0,0,1,0,0,0,0,0). After encoded by weight matrix W, we obtain v3’s
hidden vector that is w3 here. In order to obtain the conditional probability, we build a Huffman
tree in the output layer. The weight matrix U is a collection of all branch nodes’ vectors, and they
are initialized to be zero vectors so as to make sure that the probabilities of going left and going
right at each branch are initially identical, i.e., 1/2. Paths (u1, u2, u4) and (u1, u3, u7) are two unique
paths toward leaf nodes 𝑦1 and 𝑦7 respectively, and then we have 𝑦1 = 𝑦7 = 1/8 based on Eq. (2).
In the following process, we need to update the correlated vectors in weight matrices reversely

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 7

to minimize the loss, so we obtain u1 = 0, u2 = u7 = 𝜂h/2, u4 = u3 = −𝜂h/2 based on Eq. (6), and
then w3 = w3

(old) − 𝜂2h/2 based on Eq. (8). After we finish the training against all instances, the
representation learned from the model is the hidden vector. Since the input layer uses one-hot
encoding, the network representation is weight matrix W. We plot these representations in a
two-dimensional coordinate system for visualization, where community structure can be observed.

3 THE REFERENCE FRAMEWORK FOR NETWORK REPRESENTATION LEARNING
We present a unified reference framework illustrated in Fig. 3 to capture the workflow of network
representation learning and it contains three consecutive stages. The first stage is the network data
preprocessing, and it is responsible for obtaining the desired network structure information from
the original input network. During this stage, the prime aim is to employ a learning-task suitable
network preprocessing method to transform the input network into a set of internal data structures,
which is more suitable for structural feature extraction in the next stage. Node state and edge state
provide additional context information other than network topological structure, which are useful
and can be leveraged for learning network representations. Different NRL algorithms tend to have
different design choices on which additional information will be utilized to augment the node
context information in addition to network topological structure. The second stage is the network
feature extraction and it is responsible for sampling training instances from the input network
structure. Prior to sampling, it should choose the source of raw features that helps preserve the
expected network properties. These properties may optionally be inferred from a specific learning
task. The source of raw features can be classified into local structure (e.g., node degree, node
neighbors, etc.) and global structure (multi-hop neighborhoods, node rank, etc. ) with respect to
every node in the raw input graph. Different sampling methods are used for extracting features
from different structures. The third stage is the learning node embeddings over the training set.
Different embedding models can be leveraged to learn hidden features for node embedding, such as
matrix factorization, probabilistic model, graph neural networks. These representative embedding
models are often coupled with optimization techniques, such as hierarchical softmax, negative
sampling, and attention mechanism, for better embedding effects.

3.1 Network Data Preprocessing
The network processing method is the data preparation stage for network representation learning.
When end-users have different applications in mind for deploying NRL models, different data
preprocessing methods should be employed. Hence, specific learning tasks should be discussed in
the section on network data preprocessing. For example, when NRL trained models are used for
node classification, if the node classification or node clustering aims to categorize new nodes based
on their node state information and node edge neighbor information, then the preprocessing stage
should employ techniques that can preprocess the raw graph input to obtain those required node
state properties and node linkage properties for deep feature extraction (the second stage) before
entering the NRL model training, the third stage of the network representation learning workflow.
However, if the end-users prefer to perform node clustering or classification based on only network
topology and traversal patterns over the network structure rather than node state information,
then the pairwise node relationships over the entire network and their hop counts are critical in
the preprocessing stage in order to learn the node distance features in terms of graph traversal
semantics in the stage 2. These two steps will ensure that the NRL model training in stage 3 will
deliver a high quality NRL model for end-users to perform their task specific node classification or
node clustering, which are network data and domain specific in real world applications.

, Vol. 1, No. 1, Article . Publication date: October 2021.



8 J. Zhou et al.

Network input

Sampling methodsNetwork preprocessing methods

Network data preprocessing Network feature extraction Node embedding

Node state 
information

Embedding models

Representation

Learning task

Source of raw features and network 
properties

Edge state 
information

Node degree

Global structure

Node 
classification

Link 
prediction

...

Network 
structure

Matrix-based 
processing

Graph 
decomposition

Training 
set

1st-order 
proximity

High-order 
proximity

Degree 
proximity

...

Edge 
sampling

Biased random 
walk

... Matrix 
factorization

Probabilistic 
model

Graph neural networks

Hidden 
feature 
vectors

Node neighbors

...

Multi-hop 
neighborhoods

Node rank

...

Local structure
Optimization techniques

Hierarchical 
softmax

Negative 
sampling

Attention mechanism

Learning 
task

Fig. 3. A unified reference framework for NRL.

3.1.1 Network Preprocessing Methods. To effectively capture useful features, the network structure
is usually preprocessed before feature extraction. We categorize current preprocessing methods
into two types:

Matrix-based Processing In most cases, we are using an adjacency matrix A to represent a
network 𝐺 , where its entries could directly describe the connection between arbitrary two nodes
and the connection is also the basic unit of network structure. According to the hypothesis in
DeepWalk that nodes with similar contexts are similar, a node’s contexts are defined as the set
of nodes arrived. In order to reflect transitions between nodes, a transition matrix P = D−1A is
proposed in [14], whereD is the diagonal matrix such that Dii =

∑
j Aij, and Pij refers to the one-step

transition probability from vi to vj. Accordingly, the transition matrix can be generalized to high

steps, and the transition matrix within 𝑘 steps [68] is obtained by P∗ = 1
k

k∑
m=1

Pm. Yang et al. [98]

defined two proximity matrices: the first-order proximity matrix X(1) is the adjacency matrix, and
the second-order proximity matrix X(2) consists of X(2)ij = cos(X(1)i ,X(1)j ), where X(1)i , X(1)j are the
corresponding rows of X(1) . As an important branch of embedding, spectral methods require to
convert adjacency matrix A into Laplacian matrix L before the Laplacian Eigenmaps [6], where
L = D − A.

Graph Decomposition Graph decomposition is another important type of methods for data
preprocessing, by which the original network is decomposed into multiple graphs and each of them
consists of a subset of nodes and a group of edges that correspond to connections in the original
network or are connected based on certain rules. These graphs may be connected together to form
a new network in order to extract features for a specific network property.

To capture the structural proximity, the context graph [70] is proposed by leveraging the decom-
position idea. The context graph is a multi-layer weighted graph 𝐺𝑐 and each layer is a complete
graph of all nodes. In particular, the edges in layer 𝑘 are linked by nodes that are 𝑘-hop away from
each other, and the edge weight in the layer is defined as𝑤𝑘 (𝑖, 𝑗) = 𝑒−𝑓𝑘 (𝑖, 𝑗) , where 𝑓𝑘 (𝑖, 𝑗) represents
the 𝑘-structural distance between node vi and vj calculated based on their 𝑘-hop neighborhoods.
For adjacent layers, the corresponding nodes are connected by directed edges, and the edge weights
in both directions are defined as𝑤𝑘,𝑘+1 (v) = log(Γk (v) + e) and𝑤𝑘,𝑘−1 (v) = 1, respectively, where
Γ𝑘 (v) denotes the number of edges incident to node v such that their weights are higher than the
layer 𝑘’s average weight.
In social networks, ego-network 𝐺 [𝑁u] induced on user u’s neighborhood 𝑁u is often used to

denote her/his social circle. If the interactions of every node in the original network 𝐺 are divided
into couples of semantic subgroups, these subgroups will capture different components of user’s
network behavior. Based on the idea, Epasto et al. [27] propose a method to convert 𝐺 into its

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 9

persona graph 𝐺𝑝 , where each original node corresponds to multiple personas. Formally, given
the original network 𝐺 = {𝑉 , 𝐸} and a clustering algorithm A, the method consists of three steps:
1) For each node u ∈ V, its ego-network 𝐺 [𝑁u] is partitioned into 𝑡u disjoint components 𝑁𝑘u via
A, denoted by A(𝐺 ( [𝑁u])) = {𝑁𝑘u |𝑘 ∈ [1, 𝑡u]}; 2) Collect a set 𝑉𝑝 of personas, where each original
node u induces 𝑡u personas; 3) Add connections between personas if and only if (u, v) ∈ 𝐸, u ∈ 𝑁 𝑖v
and v ∈ 𝑁 𝑗

u . Social users often participate in different communities, the persona graph obtained via
the above procedure presents a much better community structure for further embeddings.
For very large graphs whose scales exceed the capability of single machine, they must be

decomposed into multiple partitions before further execution. Adam et al. [54] propose a block
decomposition method that first splits entity nodes into 𝑃 parts and then divides edges into buckets
based on their source and destination entity nodes’ partitions. For example, for an edge (u, v), if
source u and destination v are in partitions 𝑝1 and 𝑝2, respectively, then it should be placed into
bucket (𝑝1, 𝑝2). For each bucket (𝑝𝑖 , 𝑝 𝑗 ), source and destination partitions are swapped from disk,
respectively, and the edges are loaded accordingly for training. To ensure that embeddings in all
partitions are aligned in the same latent space, an ’inside-out’ ordering is adopted to require that
each bucket has at least one previously trained embedding partition.

3.1.2 Learning task. Node classification aims to assign each node to a suitable group such that
nodes in a group have some similar features. Link prediction aims to find out pairs of nodes
that are most likely to be connected. Node classification and link prediction are two most basic
fundamental tasks for network analytics. Both tasks could be further instantiated into many
practical applications such as social recommendation [28], knowledge completion [56], disease-
gene association identification [43], etc. Therefore, we mainly focus on the two basic tasks. For
both tasks, node’s topological structure is the important basis for classification and prediction.
For example, nodes with more common neighbors often have higher probability to be assigned
to the same group or to be connected. This type of structure can be generalized to multi-hop
neighborhoods [103], which requires to compute the transition matrix of the network.
In addition to pure structural information, there are other useful information available for

learning tasks, e.g., node state information and edge state information. In many real-world networks,
node itself may contain some state information such as node attribute, node label, etc., and this
information may be essential for some tasks. For example, in social networks, besides embedding
social connections, we can also encode user attributes to obtainmore comprehensive representations
for individuals [55, 106]. Node attributes are still an important source of features to be aggregated
for inductive embeddings [8, 41]. Nodes with similar attributes and/or structures are more likely to
be connected or classified together. Meanwhile, some node labels are usually fed into supervised
models to boost the task of node classification [51, 104]. As the most common edge state information,
edge weights can be integrated with topological structure to achieve more accurate classification
and prediction. Besides, edges in some networks may have signs. Take Epinions and Slashdot as
examples, users in these two social network sites are allowed to connect to other users with either
positive or negative edges, where positive edges represent trust and like while negative edges
convey distrust and dislike. For link prediction on such a signed network, we have to predict not
only possible edges but also signs of those edges [49, 89].

3.2 Network Feature Extraction
The main task of NRL is to find out the hidden network features and encode such features as node
embedding vectors in a low-dimensional space. Network properties are used to analyze and compare
different network models. For a NRL task, the learned hidden features should preserve network
properties so that advanced network analytics can be performed accurately and at the same time

, Vol. 1, No. 1, Article . Publication date: October 2021.



10 J. Zhou et al.

the original network properties can be preserved. For example, nodes that are closer in the original
network should also be closer in the latent representation space in which the node embedding
vectors are defined. Most of the NRL methods focus on preserving topological structures of nodes,
such as in-degree or out-degree neighbors (degree proximity), first order proximity, random walk
distance, and so forth. We categorize the node structural properties into local structure and global
structure.

Embeddings from local structure focus on the preservation of local network properties such as
degree proximity, first-order proximity, etc. In comparison, global structure provides rich choices
of sources of raw features to be extracted so as to preserve even more network properties. The
classification of source of raw features as well as network properties and sampling methods are
summarized in Table 2.

3.2.1 Local Structure Extraction. Local structure reflects a node’s local view about the network,
which includes node degree (in-degree and out-degree), neighbors (in-degree neighbors and out-
degree neighbors), node state and adjacent edge (in-edge and out-edge) state. To preserve degree
proximity, Leonardo et al. [70] define a proximity function 𝑓𝑘 (𝑖, 𝑗) between two nodes where
each node’s neighbors are sorted based on their degrees and the proximity is measured by the
distance between the sorted degree sequences. The first-order proximity [81] assumes nodes that
are neighbors to each other (i.e., connected via an edge) are similar in vector space, while the degree
of similarity may depend on the edge state. For example, in a signed social network, neighbors with
positive and negative edges are often called friends and foes, respectively. From the perspective
of social psychology [49, 89], when we take edge sign into account, nodes should be more similar
to its friends than its foes in the representation space. William et al. [41] present an inductive
representation learning by aggregating features extracted from neighboring node states.

Sampling Methods For source of raw features like degree and neighbors, training instances can
be calculated or fetched directly from adjacency matrix. For adjacent edges, training instances can
be generated by edge sampling. The simple edge sampling is also to fetch entries from adjacency
matrix. When applied to weighted networks where the pairwise proximity has close relationship
with edge weights, if edge weights have a high variance, the learning model will suffer from gradient
explosion or disappearance. To address the problem, LINE [81] designs an optimized edge sampling
method that fetches edges with the probabilities proportional to their weights. For node state like
node attribute, its features can be extracted by leveraging existing embedding techniques, e.g.,
Word2vec [61]. If node state is given as a node label, it usually works as the supervised item to
train the embedding model.

3.2.2 Global Structure Extraction. Structures that transcend local views can be considered global
such as multi-hop neighborhoods, community, connectivity pattern, etc. Considering that the first-
order proximity matrix may not be dense enough to model the pairwise proximity between nodes,
as an global view [14], the pairwise proximity is generalized to high-order form by using 𝑘-step
transition matrix, i.e., Pk. Instead of preserving a fixed high-order proximity, Zhang et al. [105]
define the arbitrary-order proximity by calculating the weighted sum of all 𝑘-order proximities.
Community structure is an important network property with dense intra-community connections
and sparse inter-community connections, and it has been observed in many domain-specific
networks, e.g., social networks, co-authoring networks, language networks, etc. Wang et al. [90]
introduce a community representation matrix by means of the modularity-driven community
detection method, and use it to enable each node’s representation similar to the representation of
its community. Considering that a node may belong to multiple communities, Sun et al. [75] define
a 𝑛 ×𝑚 basis matrix W to reveal nodes’ community memberships, where 𝑛 is the node set size,𝑚

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 11

is the total number of communities and Wij indicates the propensity of node vi to community 𝐶 𝑗 .
The basis matrix is learned and preserved during the representation learning process.

Network nodes usually act as various structural roles [4, 36] and appear different connectivity
patterns such as hubs, star-edge nodes, bridges connecting different clusters, etc. Node role proximity
assumes nodes with similar roles have similar vector representations and it is a global structural
property that is different from community structure, since it primarily focuses on the connection
patterns between nodes and their neighbors.
As a global structural property, node rank is always used to denote a node’s importance in the

network. PageRank [65] is a well-known approach to evaluate the rank of a node by means of its
connections to others. Specifically, the ranking score of a node is measured by the probability of
visiting it, while the probability is obtained from the ranking score accumulated from its direct
predecessors weighted by the reciprocal of its out-degree. Lai et al. [53] demonstrate that node
representations with global ranking preserved can potentially improve both results of ranking-
oriented tasks and classification tasks. Node degree distribution is also a global inherent network
property. For example, scale-free property refers to a fact that node degrees follow a heavy-tailed
distribution, and it has proven to be ubiquitous across many real networks, e.g., Internet, social
networks, etc. The representation learning for scale-free is explored in [29].
Another global structural property is proposed in Struc2vec [70] that considers structural sim-

ilarity from network equivalence perspective without requiring two nodes being nearby, i.e.,
independent of nodes’ network positions. To reflect this property, Struc2vec presents a notion of
node structural identity that refers to a node’s global sense. Struc2vec uses the multi-layer graph
output from data preprocessing stage to measure node similarity at different scales. In the bottom
layer, the similarity exclusively depends on node degrees. In the top layer, the similarity lies in the
entire network. Tu et al. [84] propose a similar concept, i.e., regular equivalence, to describe the
similarity between nodes that may not be directly connected or not having common neighbors.
According to its recursive definition, neighbors of regularly equivalent nodes are also regularly
equivalent. To ensure the property of regular equivalence, each node’s embedding is approximated
by aggregating its neighbors’ embeddings. After updating the learned representations iteratively,
the final node embedding is capable of preserving the property in a global sense.

Different types of global structure are used to reflect different network properties where multi-
hop neighborhoods, node connectivity pattern and node identity are used to preserve pairwise
proximity, which reflects a pairwise relationship between nodes, including high-order proximity,
node role proximity, and node identity proximity. For example, the node community membership
reflects a relationship between a node and a group of nodes, which share some common network
properties. Furthermore, node rank and node degree distribution are used to preserve a kind of
distribution-based network property, including node importance ranking, or a relationship between
a node and the entire network, such as the scale free network whose degree distribution follows a
power law.

Sampling Methods For source of raw features like multi-hop neighborhoods, they can be
obtained by matrix power operation, i.e., Ak, but the computation suffers from high complexity.
Random walk and its variants are widely explored to capture the desirable network properties with
high confidence. For example, DeepWalk [66] presents a truncated random walk to generate node
traveling paths. It uses co-occurrence frequencies between node and its multi-hop neighborhoods
along these paths to reflect their similarity and capture the high-order proximity accordingly.
From the perspective of community structure, due the dense intra-community connections,

nodes within the same community have higher probability to co-occur on the traveling paths than
nodes in different communities. Hence random walk can also be used to capture the community

, Vol. 1, No. 1, Article . Publication date: October 2021.



12 J. Zhou et al.

structure. When we consider the hierarchy of communities, different communities may have
different scales. The regular random walk makes the training set having more entries from Ai than
from Aj (1 ≤ 𝑖 < 𝑗 ), and then it is biased towards preserving small-scale community structure.
Walklets [67] presents a skipped random walk to sample multi-scale node pairs by skipping over
steps in each traveling path.

Another drawback of random walk is that it requires too many steps or restarts to cover a node’s
neighborhoods. To improve its coverage, Diff2Vec [73] present a diffusion-based node sequence
generating method that consists of two steps: 1) Diffusion graph generation, which is in charge of
generating a diffusion graph 𝐷𝐺𝑖 for each node vi. 𝐷𝐺𝑖 is initialized with vi, and then randomly
fetch node vj from 𝐷𝐺𝑖 and node vk from vj’s neighborhoods in the original graph, append two
nodes and the edge 𝑒 𝑗𝑘 to 𝐷𝐺𝑖 . The above process is repeated until 𝐷𝐺𝑖 grows to the predefined
size. 2) Node sequence sampling, which generates Euler walk from 𝐷𝐺𝑖 as the node sequence. To
make sure 𝐷𝐺𝑖 is Eulerian, 𝐷𝐺𝑖 is converted to a multi-graph by doubling every edge into two
edges.

Real-world networks often exhibit a mixture of multiple network properties. In order to capture
both community structure and node role proximity, node2vec [36] designs a flexible biased random
walk that generates traveling paths in an integrated fashion of BF (breadth-first) sampling and DF
(depth-first) sampling. To this end, two parameters 𝑝 and 𝑞 are introduced to smoothly interpolate
between two sampling methods, where 𝑝 decides the probability of re-fetching a node in the path
while 𝑞 allows the sampling to discriminate between inward and outward nodes.

In scale-free networks, a tiny fraction of "big hubs" usually attracts most edges. Considering that
connecting to "big hubs" does not imply proximity as strong as connecting to nodes with mediocre
degrees, a degree penalty based random walk [29] is proposed. For a pair of connected nodes (vi,
vj), its principle is to reduce the likelihood of vj being sampled as vi’s context when vi has a high
degree and they do not share many common neighbors. To this end, the jumping probability from
vi to vj is defined as 𝐶𝑖 𝑗

(𝐷𝑖𝑖𝐷 𝑗 𝑗 )𝛽
, where 𝐶𝑖 𝑗 denotes the first and second order of proximity between

two nodes, 𝐷𝑖𝑖 and 𝐷 𝑗 𝑗 are their degrees, and 𝛽 is a parameter.
As an anonymous version of random walk, anonymous walk [46] provides a flexible way to

reconstruct a network. For a random walk rw = (v1, v2, ..., vk), its corresponding anonymous walk
is the sequence of node’s first occurrence positions, i.e., aw = (f (v1), f (v2), ..., f (vk)), where f (vi) =

min
pj∈pos(rw,vi)

pos(rw, vi). For an arbitrary node v ∈ G, a known distribution D𝑙 over anonymous

walks of length 𝑙 is sufficient to reconstruct a subgraph of G that is induced by all nodes located
within 𝑟 hops away from v. Therefore, anonymous walk can be used to preserve global network
properties like high-order proximity and community structure by approximating the distributions.
One of the baseline approaches to extracting global structure is to use random walk as the

sampling method. For complex types of global structure, e.g., multi-hop neighborhoods and node
community membership, an integrated sampling method is often recommended, which combines
random walk with other types of graph traversal methods, such as anonymous walk. An advantage
of using anonymous walk as the sampling approach is that it is sufficient to reconstruct the topology
around a node by utilizing distribution of anonymous walks of a single node, because anonymous
walk captures richer semantics than random walk.

3.3 Node Embedding
Recent years many efforts have been devoted to the design of node embedding model. We are trying
to review those work from a universal perspective of autoencoder. In general, node embedding is
equivalent to an optimization problem that encodes network nodes into latent vectors by means of
an encoding function Φ : 𝑉 → R𝑑 . Meanwhile the objective is to ensure that the results decoded

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 13

Table 2. Classification of source of raw features, network property and sampling method
Categority Source of raw features Network property Sampling method

Local structure

Degree/in-degree/out-degree [70] Degree proximity Directly from adjacency matrix
Neighbors/in-degree neighbors/out-degree neighbors [81] First-order proximity Directly from adjacency matrix
Node state [41] Node state proximity Directly from node state information
Adjacent edge state [49, 89] First-order proximity Weighted edge sampling

Global structure

Multi-hop neighborhoods [105] High-order proximity Random/Anonymous walk
Node community membership [75, 90] Community structure Random/Anonymous walk
Node connectivity pattern [4, 36] Node role proximity Random walk
Node degree distribution [29] Scale-free Degree penalty based random walk
Node rank [53] Node importance ranking Random walk
Node identity [70, 84] Node identity proximity Random walk

from vectors preserve the network properties we intend to incorporate, where the decoder is
represented by a function of encoding results, i.e., Ψ : [R𝑑 ]𝑡 → R, where 𝑡 denotes the number of
input arguments. The output vectors are the latent representations of hidden features learned by Φ,
and they are also the expected node representations.

3.3.1 Embedding Models. We classify the current embedding models into the following three types.
Matrix Factorization Given the matrix of input network, matrix factorization embedding fac-

torizes the matrix to get a low-dimensional matrix as the output collection of node representations.
Its basic idea can be traced back to the matrix dimensionality reduction techniques [18]. According
to the matrix type, we categorize the current work into relational matrix factorization and spectral
model.
(1) Relational Matrix Factorization Matrix analysis often requires figuring out the inherent

structure of a matrix by a fraction of its entries, and it is always based on an assumption that a
matrix Mn×n admits an approximation of low rank 𝑑 ≪ 𝑛. Under this assumption, the objective of
matrix factorization corresponds to finding a matrix Wd×n such that WTW approximates M with
the lowest loss 𝐿, where 𝐿 : [R]2 → R is a user-defined loss function. In the autoencoder paradigm,
the encoder is defined by the matrix Wd×n, e.g., Φ(vi) = wi, each column wi represents a vector.
The decoder is defined by the inner product of two node vectors, e.g., Ψ(wi,wj) = wT

i wj, so as to
infer the reconstruction of the proximity between node vi and vj. When we focus on preserving
the first-order proximity 𝜇, i.e., 𝜇 (vi, vj) = Aij, and let Ω be the training set sampled from A, then
the objective is to find W to minimize the reconstruction loss, i.e.,

arg min
W

𝐿 =
∑︁

(vi,vj) ∈Ω

Ψ(wi,wj) − 𝜇 (vi, vj)
2
𝐹
=

WTW − A
2
𝐹
, (9)

where Frobenius norm ∥·∥2𝐹 is often used to define the loss function. Singular value decomposi-
tion (SVD) [34] is a well-known matrix factorization approach that can find the optimal rank 𝑑
approximation of proximity matrix A. If the network property focuses on high-order proximity,
the proximity matrix can be replaced by power matrix, e.g., Ak, Pk, 𝑘 > 1. For example, GraRep
[14] implements node embedding by factorizing Pk into two matrices W and M,

arg min
W

WTM − Pk
2

𝐹
, (10)

where W denotes the representation matrix and M denotes the parameter matrix in decoder, e.g.,
the unary decoder Ψ(wi) = wT

i M computes the reconstructed proximities between vi and other
nodes.

In the autoencoder paradigm, the equivalence between DeepWalk and matrix factorization can
be proved by making the following analogies: 1) Define the pairwise proximity 𝜇 (vi, vj) as the
co-occurrence probability inferred from the training set. 2) Let W and M corresponds to WT and
MT in DeepWalk, where each column wi, mi of them refers to the representation of node vi acting
as target node and context node, respectively.

, Vol. 1, No. 1, Article . Publication date: October 2021.



14 J. Zhou et al.

In addition, matrix factorization can also incorporate additional information into node embed-
dings. For example, given a text feature matrix Tx×n where 𝑛 denotes the node set size and 𝑥
denotes the feature vector dimension, TADW [97] applies inductive matrix completion to the node
embedding and defines the following matrix factorization problem:

arg min
W,M

P∗ −WTMT
2
𝐹
+ 𝜆

2
(
∥W∥2𝐹 + ∥M∥2𝐹

)
, (11)

where 𝜆 is a harmonic factor. The output matrices W and MT factorized from the transition matrix
P∗ can be regarded as the collection of node embeddings and concatenated as a 𝑛×2𝑑 representation
matrix.
(2) Spectral Model In spectral model, a network is mathematically represented by a Laplacian

matrix, i.e., L = D − A, where adjacency matrix A acts as the proximity matrix, and the entry Dii
of diagonal matrix D describes the importance of node vi. L is a symmetric positive semidefinite
matrix that can be thought of as an operator on functions defined on the original network. Let Wn×d
be the representation matrix, it also acts as the encoder that maps the network to a 𝑑-dimensional
space. The representations should assure neighboring nodes stay as close as possible. As a result,
the decoder can be defined as wT

i Lwi according to Laplacian Eigenmaps [7], where wi is the 𝑖th
column of W. Then the node embedding problem is defined as follows:

arg min
WTDW=I

WTLW, (12)

where WTDW = I is imposed as a constraint to prevent collapse onto a subspace of dimension
less than 𝑑 − 1. The solution W consists of the eigenvectors wi corresponding to the lowest 𝑑
eigenvalues of the generalized eigenvalue problem Lw = 𝜆Dw. Furthermore, given an additional
information matrix X describing node attribute features, the node embedding can be derived by
following the idea of locality preserving projection (LPP) [44] that introduces a transformation
matrix M to realize the mapping wi = MTxi, where wi and xi are the 𝑖th column of W and X.
Similarly, the solution M is obtained by computing the mapping vectors m corresponding to 𝑑
lowest eigenvalues of the problem XLXTm = 𝜆XDXTm, and the node embedding incorporates
additional information by W = MTX.

Probabilistic Model Probabilistic model is specifically designed for node embedding via pre-
serving the pairwise proximity measured by a flexible probabilistic manner.

(1) Skip-gram Model Skip-gram is the classic embedding model that converts pairwise proximity
to the conditional probability between node and its context. For example, DeepWalk [66] relies on
the co-occurrence probability derived from random traveling paths to preserve the second-order
proximity during node embedding.
(2) Edge Probabilistic Model Edge probabilistic model enforces node embeddings designed pri-

marily for network reconstruction. For example, LINE [81] relies on the idea of edge probability
reconstructionwithout assistance of randomwalk sampling. It focuses on preserving both first-order
and second-order proximities by defining two decoders, i.e.,

Ψ1 (vi, vj) = Pr(vi, vj) =
1

1 + exp(−viTvj)
, Ψ2 (vi,mj) = Pr(vj |vi) =

exp(mj
Tvi)∑n

k=1 exp(mk
Tvi)

, (13)

where mk refers to the representation of vk acting as a context node. The objectives to be optimized
are based on the loss functions derived from the distance 𝐷𝑖𝑠 (·, ·) between two distributions, i.e.,

arg min
vi

𝑛∑︁
𝑖=1

𝜆𝑖𝐷𝑖𝑠 (Ψ1 (vi, ·), Ψ̂1 (vi, ·)), arg min
vi

𝑛∑︁
𝑖=1

𝜆𝑖𝐷𝑖𝑠 (Ψ2 (vi, ·), Ψ̂2 (vi, ·)) (14)

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 15

where Ψ̂1 (vi, vj) =
𝑠𝑖 𝑗∑

𝑒𝑥𝑦∈𝐸 𝑤𝑥𝑦
, Ψ̂2 (vi, vj) =

𝑠𝑖 𝑗∑
𝑒𝑖𝑘 ∈𝐸 𝑠𝑖𝑘

are the empirical probabilities and 𝑠𝑖 𝑗 is the
weight of edge 𝑒𝑖 𝑗 .

Graph Neural Networks It is not difficult to find that each node’s embedding via the above
models requires the participation of its neighboring nodes, e.g., building 𝑘-order proximity matrix
with nodes and their 𝑘-step neighborhoods in matrix factorization model, and counting node’s
co-occurrence frequency with its context nodes in skip-gram model. The common idea can be
intuitively generalized to a more general model, graph neural networks (GNNs) that follow a
recursive neighborhood aggregation or message passing scheme. Graph convolutional network
(GCN) [11] is a very popular variant of GNNs, where each node’s representation is generated by a
convolution operation that aggregates its own features and its neighboring nodes’ features. Graph
isomorphism network (GIN) [96] is another recently proposed variant with a relatively strong
expressive power.

(1) Graph Convolutional Network In terms of the definition of convolution operation [95], GCNs
are often grouped into two categories: Spectral GCNs and Spatial GCNs. Spectral GCNs [11, 22]
define the convolution as conducting the eigendecomposition of the normalized Laplacian matrix
L = In −D−

1
2 AD−

1
2 in Fourier domain. An intuitive way to explain spectral convolution is to regard

it as an operation that uses a filter g to remove noise from a graph signal x ∈ Rn. The graph signal
denotes a feature vector of the graph with entry xi representing node vi’s value. Let U be the
matrix of eigenvectors of L, graph Fourier transform is defined as a function that projects input
signal x to the orthonormal space formed by U, i.e., F (x) = UTx. Let x̂ be the transformed signal,
entries of x̂ correspond to the coordinates of the input signal in the new generated space, and the
inverse Fourier transform is defined as F −1 (x̂) = Ux̂. When the filter g is parameterized by 𝜃 ∈ Rn

and defined as g𝜃 = 𝑑𝑖𝑎𝑔(UTg), then the convolution operation against signal x with filter g𝜃 is
represented by

g𝜃 ★ x = F −1 (F (g) ◦ F (x)) = U(UTg ◦ UTx) = Ug𝜃UTx, (15)
where ◦ represents the Hadamard product. Nevertheless, The eigendecomposition of Laplacian
matrix L is expensive for large graphs, and the complexity of multiplication with U is 𝑂 (𝑛2). To
address the complexity problem, Hammond et al. [42] suggests that the filter g𝜃 can be approximated
by an abridged expansion based on Chebyshev polynomials𝑇𝑘 (x) up to 𝐾th order. The convolution
is redefined as

g𝜃 ′ ★ x ≈
𝐾∑︁
𝑘=0

𝜃 ′
𝑘
𝑇𝑘 (L̃)x, (16)

where L̃ = 2
𝜆max

L − In and 𝑇𝑘 (x) = 2xTk−1 (x) − Tk−2 (x) with 𝑇1 (x) = x and 𝑇0 (x) = 1. The above
convolution operation is 𝐾-localized since it requires the participation of the neighboring nodes
within 𝐾-hop away from the central node. Spectral GCNs model consists of multiple convolution
layers of the form Eq. 16 where each layer is followed by a point-wise non-linearity. From the
perspective of autoencoder, each node’s feature embedding is encoded by the convolution operation,
so that the graph convolution actually acts as the encoder and we call it spectral convolution encoder
or filter encoder here. In order to deal with multi-dimensional input graph signals, the spectral
convolution encoder is generalized to account for the signal matrix X ∈ Rn×c with 𝑐 input channels
and 𝑑 filters, i.e.,

Φ(X,A) = D̃−
1
2 ÃD̃−

1
2 XΘ, (17)

where Ã = A + In, D̃ii =
∑

j Ãij and Θ ∈ R𝑐×𝑑 is matrix of filter parameters. The signal matrix is
often initialized by the input graph information such as node attributes. It is noted that the filter
parameters Θ can be shared over the whole graph, which significantly decreases the amount of
parameters as well as improves the efficiency of filter encoder.

, Vol. 1, No. 1, Article . Publication date: October 2021.



16 J. Zhou et al.

Table 3. Classification of node embedding models
Category Sub-category Encoder Decoder Optimization

objective
Publication

Matrix
Factorization

Relational matrix
factorization

Φ(vi) = wi Ψ(wi,wj) = wT
i wj ,

Ψ(wi) = wT
i M,

Ψ(wi) = wT
i MT

Eq. 9, Eq. 10, Eq. 11 [14, 97]

Spectral model Φ(𝑉 ) = W,
Φ(𝑉 ) = MTX

wT
i Lwi , xiLxT

i mi Eq. 12 [7, 44]

Probabilistic
Model

Skip-gram model Φ(vi) = wi Eq. 2 Eq. 4 [66]
Edge probabilistic

model
Φ(vi) = wi Eq. 13 Eq. 14 [81]

Graph Neural
Networks

Spectral Graph
Convolutional

Network

Eq. 17 Ψ𝜃 (Φ(xi,A)) Eq. 20 [42, 50, 51]

Spatial Graph
Convolutional

Network

Eq. 18 Ψ𝜃 (Φ(xi,A)) Eq. 20 [41]

Graph Isomorphism
Network

Eqs. 18, 19 Ψ𝜃 (Φ(xi,A)) Eq. 20 [96]

Similar to convolution neural networks on images, spatial GCNs [41] consider graph nodes
as image pixels and directly define convolution operation in the graph domain as the feature
aggregation from neighboring nodes. To be specific, the convolution acts as the encoder to take the
aggregation of the central node representation and its neighbors’ representations to generate an
updated representation, and here we call it spatial convolution encoder or aggregation encoder.
In order to explore the depth and breadth of a node’s receptive field, spatial GCNs usually stack
multiple convolution layers. For a 𝐾-layer spatial GCN, its aggregation encoder Φ is defined as
follows: {

Φ(X,A) = 𝑁𝑂𝑅𝑀 (HK),HK = (hK
1 , ..., h

K
n ),

hk
v = 𝜎 (Wk · 𝐴𝐺𝐺k (hk−1

v , {hk−1
u })),∀u ∈ 𝑁v,∀k ∈ [0,K],

(18)

where hk
v is node v’s representation (also called hidden state in some other literatures) in the

𝑘th layer with h0
v = xv. 𝐴𝐺𝐺k is an aggregation function responsible for assembling a node’s

neighborhood information in the 𝑘th layer, and parameter matrix Wk specifies how to do aggre-
gation from neighborhoods, like filters in spectral GCNs, Wk is shared across all graph nodes for
generating their representations. As the layer deepens, the node representations will contain more
information aggregated from wider coverage of nodes. The final node representations are output
as the normalized matrix of node representations on layer K, i.e., 𝑁𝑂𝑅𝑀 (HK).
(2) Graph Isomorphism Network The representational power of a GNN primarily depends on

whether it maps two multisets to different representations, where multiset is a generalized concept
of a set that allows multiple instances for its elements. The aggregation operation can be regarded
as a class of functions over multisets that their neural networks can represent. To maximize the
representational power of a GNN, its multiset functions must be injective. GCN has been proven to
be not able to distinguish certain simple structural features as its aggregation operation is inherently
not injective. To model injective multiset functions for the neighbor aggregation, GIN [96] presents
a theory of deep multisets that parameterizes universal multiset functions with neural networks.
With the help of multi-layer perceptrons (MLPs), GIN updates node representations as follows:

hk
v = 𝑀𝐿𝑃k

((
1 + 𝜀k

)
hk−1

v +
∑︁

u∈𝑁v

hk−1
u

)
, (19)

where 𝜀 is a learnable parameter or a fixed scalar. The aggregation encoder Φ can be defined in the
same way of Eq. 18.
For both GCN and GIN, the decoder can be designed in any form of the previously discussed

decoders. Recently, many efforts have been devoted to designing task-driven GCNs, so that the

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 17

Table 4. Comparison of node embedding models
Category Advantage Disadvantage

Matrix Factorization 1) has the solid theoretical foundation available to enhance
its interpretability. 2) additional information, e.g., node
state and edge state, can be easily incorporated into the
matrix factorization model.

1) high computation cost. 2) hard to be applied to dynamic
embedding.

Probabilistic Model relatively efficient compared to other models especially
when it was designed for network reconstruction.

hard to be applied to dynamic embedding.

Graph Neural Networks 1) naturally supports embedding of both structural and ad-
ditional information. 2) easy to be applied to dynamic em-
bedding.

high computation cost.

decoder has to incorporate supervision from a specific task. For instance, assume that each node
has a label chosen from a label set y. A function like sigmoid, 𝑦𝑖 = Ψ𝜃 (Φ(xi,A)), can be defined
as a decoder to realize the mapping from a node representation Φ(xi,A) to its corresponding
label 𝑦𝑖 , where parameters 𝜃 are learnable throughout the embedding process. We use function
𝑓 (𝑦𝑖 ,Ψ𝜃 (Φ(xi,A))) to measure the loss between the true label 𝑦𝑖 and the predicted one 𝑦𝑖 , then the
objective is concluded as

arg min
Φ(xi,A)

𝑛∑︁
i=1

𝑓 (𝑦i,Ψ𝜃 (Φ(xi,A))). (20)

We summarize the specific classification of node embedding models outlined in Table 3 and
make comparisons among them as shown in Table 4.

3.3.2 Optimization Techniques. Many of the above models have achieved non-trivial embedding
results. The success of these models inevitably relies on some optimization techniques that have
been proposed to assist the node embedding from various aspects such as the computational
complexity reduction, the acceleration of embedding process and the enhancement of training
efficiency and effectiveness. In this section, we will show several popular optimization techniques
with a focus on how they work at different stages of NRL, and summarize these techniques in Table
5.

Hierarchical Softmax As a variant of softmax, hierarchical softmax [62, 66] has been proposed
to speed up the training process. To this end, hierarchical softmax leverages a well-designed tree
structure with multiple binary classifiers to compute the conditional probabilities for each training
instance (see Sec. 2 for details). Therefore, it helps decoder reduce the complexity from 𝑂 (𝑛) to
𝑂 (log𝑛).

Negative Sampling As an alternative to hierarchical softmax, noise contrastive estimation
(NCE) [39] suggests that logistic regression can be used to help models distinguish data from noise.
Negative sampling (NEG) is a simplified version of NCE that was firstly leveraged by Word2vec
[61] to help the skip-gram model to deal with the difficulty of high computational complexity w.r.t.
model training. Specifically, NEG needs a noise distribution 𝑃𝑛 (v) to generate 𝑘 negative samples
for every positive one. 𝑃𝑛 (v) can be arbitrarily chosen, and more often it is empirically set by
raising the frequency to the 3/4 power for the best quality of embeddings. The training loss of NEG
is formally defined as

𝐿 = − log𝜎 (vO
TΦ(vI)) −

∑︁
vj∈V𝑛𝑒𝑔

𝐸vj∼𝑃𝑛 (v)
[
log𝜎 (−vj

TΦ(vI))
]
, (21)

where V𝑛𝑒𝑔 is the set of negative samples and vO is the output vector of node vO that corresponds
to the column O of matrix M in the skip-gram model. Then the training objective is simplified to
be able to discriminate the output node vO from nodes draws from 𝑃𝑛 (v) using logistic regression.
To update node embeddings under NEG, the derivative of loss 𝐿 with regard to the input of output

, Vol. 1, No. 1, Article . Publication date: October 2021.



18 J. Zhou et al.

Table 5. Summary of optimization techniques
Technique Working stage Technical principle Optimization goal Publication
Hierarchical
Softmax

Node embedding Leverage a tree structure to minimize
the computation of conditional

probabilities

Computational complexity reduction,
acceleration of embedding process

[62, 66]

Negative
Sampling

Feature
extraction

Reduce the number of output vectors
that need to be updated

Computational complexity reduction,
acceleration of embedding process

[39, 61]

Attention
Mechanism

(1) Feature
extraction; (2)

Node embedding

(1) Replace previously fixed
hyperparameters with trainable ones; (2)
Distinguish neighborhood’s importance

via trainable weights

Enhancement of training efficiency and
effectiveness

[3, 86]

vj is given by
𝜕𝐿

𝜕vjTΦ(vI)
= 𝜎 (vj

TΦ(vI)) − 𝑠 𝑗 , (22)

where 𝑠 𝑗 is a binary indicator of samples, i.e., 𝑠 𝑗 = 0 if vj is a negative sample, otherwise 𝑠 𝑗 = 1. The
output vector is updated by

vj ← vj − 𝜂
(
𝜎 (vj

TΦ(vI)) − 𝑠 𝑗
)
Φ(vI) (23)

By using NEG, we just need to update the output vectors of nodes from {vO} ∪ V𝑛𝑒𝑔 instead of the
entire node set 𝑉 . The computational effort is therefore saved significantly. Finally, the node vector
is updated accordingly by the error backpropagation to the hidden layer, i.e.,

Φ(vI) ← Φ(vI) − 𝜂
∑︁

vO∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (vI)

∑︁
vj∈{vO }∪V𝑛𝑒𝑔

(
𝜎 (vj

TΦ(vI)) − 𝑠 𝑗
)

vj (24)

AttentionMechanism Ever since attentionmechanismwas proposed, it has become an effective
way to help models focus on the most important part of data. NRL also benefits from attention
mechanism by conducting attention-guided randomwalks in feature extraction stage, and designing
attention-based encoder in node embedding stage.
In the stage of feature extraction, the attention mechanism [3] is borrowed to lead random

walk to optimize an upstream objective. Let Γ be the transition matrix, P̃(0) be the initial positions
matrix with P̃(0)vv set to the number of walks starting at node v, and 𝐶 be the walk length, the
context distribution can be represented by a 𝐶-dimensional vector Q = (Q1,Q2, ...,QC). To obtain
the expectation on co-occurrence matrix, E[D], Qk need to be assigned to Γk as a co-efficient. An
attention model is proposed to learn Q automatically, where Q = softmax((q1, q2, ..., qC)), and all
qk can be trained by backpropagation. The attention model aims to guide the random surfer on
"where to attend to" as a function of distance. To this end, the model on Γ∞ is trained according to
the expectation on random walk matrix, i.e.,

E[Dsoftmax[∞] ; q1, q2, ..., q∞] = P̃(0) lim
𝐶→∞

𝐶∑︁
k=1

softmax(q1, q2, ..., q𝑘 )Γk. (25)

For many random walk based methods like DeepWalk, they are special cases of the above equation
where 𝐶 is not infinite, Q are fixed apriori, i.e., Qk =

[
1 − k−1

𝐶

]
.

In the stage of node embedding, the graph attention network (GAT) [86] proposes to incorporate
attention mechanism into a spatial GCN for providing differentiated weights of neighborhoods.
Specifically, GAT defines a graph attention layer parametrized by a weight vector a and builds a
graph attention network by stacking the layers. The attention function 𝛼 (·) is defined to measure
the importance of neighbor u to the central node v,

𝛼vu =
exp(LeakyReLU(aT [Whv | |Whu]))∑

w∈Nv exp(LeakyReLU(aT [Whv | |Whw]))
, (26)

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 19

Network 
representation 

learning
(2) Distributed NRL

(3) Multi-NRL

(4) Dynamic NRL

(1) Conventional NRL

Execution fashion

Support for multi-network

Support for dynamic network

distributed fashion

centralized 
fashion

single 
network

static 
network

multi-network

dynamic network

Fig. 4. A taxonomy of NRLs based on its evolution directions.

where hv refers to the feature of input node and W denotes the weight matrix of a shared linear
transformation which is applied to every node. The convolution operation (aggregation encoder) is
defined as

ht
v = 𝜎

( ∑︁
u∈Nv

𝛼 (ht−1
v , ht−1

u )Wt−1ht−1
u

)
. (27)

4 RECENT ADVANCES IN NETWORK REPRESENTATION LEARNING
Here we review existing NRL studies with a focus on recent methods that have achieved significant
advances in machine learning and/or data mining. These studies are classified into four categories
and the detailed taxonomy is shown in Fig. 4 which enables us to classify current NRL methods
based on whether the learning is: 1) performed in centralized or distributed fashion; 2) using single
network or multiple networks; 3) applied to static network or dynamic evolving network. Besides,
we also include some works on knowledge graph as one of important extensions of NRL. We review
these works according to the proposed reference framework and present a brief summary as shown
in Table 6.

4.1 Conventional NRL Methods
Methods in this category share some common features such as performing in a centralized fashion,
applying to only single network representation learning and only learning from a static network.
We introduce recent advances in this category according to two main types of network properties,
i.e., pairwise proximity and community structure.

4.1.1 Pairwise Proximity. MVE [69] presents a multi-view embedding framework where pairs of
nodes with different views are sampled as instances. Each view corresponds to a type of proximity
between nodes, for example, the following-followee, reply, retweet relationships in many social
networks. These views are usually complementary to each other. MVE uses skip-gram model to
yield the view-specific representations that preserve the first-order proximities encoded in different
views. Moreover, an attention-based voting scheme is proposed to identify important views by
learning different weights of views.

SDNE [87] presents a semi-supervised learning model to learn node representations by capturing
both local and global structure. The model architecture is illustrated in Fig. 5 that consists of
two components: unsupervised component and supervised component. The former is designed
to learn node representations by preserving the second-order proximity and the latter utilizes
node connections as the supervised information to exploit the first-order proximity and refine
node representations. Specifically, given the adjacency matrix A, the first component utilizes a
deep autoencoder to reconstruct the neighborhood structure of each node. The encoder relies on

, Vol. 1, No. 1, Article . Publication date: October 2021.



20 J. Zhou et al.

xi

... ...

yi
(1) yi

(k) yi
(1)

<

xi

<

Unsupervised component for second-order proximity

xj

... ...

yj
(1) yj

(k) yj
(1)

<

xj

<

Unsupervised component for second-order proximity

Laplacian Eigenmaps

Supervised component for 
first-order proximity

Parameter 
sharing

Node vi Node vj

Fig. 5. The semi-supervised model of SDNE (adapted from Fig. 2 [87]).

multiple non-linear functions to encode each node vi into a vector representation. The hidden
representation in the 𝑘th layer is defined as

y(𝑘)
𝑖

= 𝜎 (W(𝑘)y(𝑘−1)
𝑖

+ b(𝑘) ), (28)

where xi is the input vector of vi, y(0)
𝑖

= x𝑖 , W(k) and b(k) are weights and biases respectively in
the 𝑘th layer. The decoder reconstructs the input vectors (e.g., x̂𝑖 ) from the most hidden vectors
(e.g., y(𝑘)

𝑖
) by means of non-linear functions. Note that the number of zero elements in A is far less

than that of zero elements. The autoencoder is prone to reconstruct the zero elements. To avoid
this situation, SDNE imposes more penalty to the reconstruction error of non-zero elements and
the loss function is defined as

𝐿2𝑛𝑑 =

𝑛∑︁
𝑖=1
∥(x̂𝑖 − x𝑖 ) ◦ b𝑖 ∥22, (29)

where ◦ denotes the Hadamard product. The second component enhances the first-order proximity
by borrowing the idea of Laplacian Eigenmaps to incur a penalty once neighboring nodes are
embedded far away. Consequently, the loss function is defined as

𝐿1𝑠𝑡 =

𝑛∑︁
𝑖, 𝑗=1

A𝑖 𝑗
(y(𝑘)𝑖 − y(𝑘)

𝑗
) ◦ b𝑖

2

2
. (30)

In addition, in order to avoid falling to local optima in the parameter space, SDNE leverages deep
belief network to pretrain the parameters at first.
DNGR [15] designs a deep denoising autoencoder method to capture the non-linearities of

network features. Its basic idea is to learn node representations from the positive pointwise mutual
information (PPMI) matrix of nodes and their contexts. As illustrated in Fig. 6, DNGR consists of
three components: random surfing, calculation of PPMI and a stacked denoising autoencoder (SDAE).
In the first component, random surfing is used to generate the probabilistic co-occurrence (PCO)
matrix that corresponds to a transition matrix by nature. Then the second component calculates the
PPMI matrix based on the PCO matrix by following [12]. After that, SDAE is presented for highly
non-linear abstractions learning. In order to recover the complete matrix under certain assumptions,
SDAE partially corrupt the training sample x by randomly assigning some of x’s entries to zero
with a certain probability. As a result, the objective becomes minimizing the reconstruction loss,
i.e.,

min
𝜃1,𝜃2

𝑛∑︁
𝑖=1

𝐿(x(𝑖) , 𝑔𝜃2 (𝑓𝜃1 (x̃(𝑖) ))), (31)

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 21

21
8

7

5 6

3 4 .        .         .        .      .    
.        .         .        .      . 

. .     0.2   0.03   0.1    . .

.        .         .        .      .

.        .         .        .      .  

pt
i

.        .         .        .      .    

.     .    0.05    0     0.7   .     

.  .       0.1    0.3     0    . .

.     .     0      0.2     0     .     

.        .         .        .      .     

x1

x2

x3

x4

x5

+1

y1

y2

y3

y4

x1

x2

x3

x4

x5

+1

x1

x2

x3

x4

x5

+1

y1

y2

y3

y4

z1

z2

z3

+1
PCO Matrix PPMI Matrix

SDAE Structure

Random 
Surfing

Calculation 
of PPMI

SDAE

Feature reduction and 
reconstruction

Layer-wise learning

Removal after 
reconstruction

Fig. 6. The framework of DNGR (adapted from Fig. 1 [15]).

where 𝑓𝜃1 (·) denotes an encoding function, 𝑔𝜃2 (·) denotes a decoding function, the 𝑖th instance and
its corrupted form are denoted by x(𝑖) and x̃(𝑖) respectively.

Struc2vec [70] insists that node identity similarity should be independent of network position and
neighborhoods’ labels. To well preserve the property, the input network 𝐺 is firstly preprocessed
into a context graph𝑀 which is a multi-layer weighted graph described in Sec. 3.1.1. Then a biased
random walk process is conducted to produce node traveling sequences. Each walker chooses its
next step on the same layer or across different layers and the choosing probabilities are proportional
to edge weights, so that the structurally similar nodes are more likely to be visited. After having
samples, Struc2vec uses skip-gram to train the learning model and hierarchical softmax is leveraged
to minimize the complexity.

4.1.2 Community Structure. MRF [48] proposes a structured pairwise Markov random field frame-
work. To ensure the global coherent community structure, MRF adopts the Gibbs distribution to
measure the posterior probability 𝑃 (𝐶𝑝 |A) of community partition 𝐶𝑝 given network adjacency
matrix A and maximize 𝑃 (𝐶𝑝 |A) by optimizing a well-designed energy function 𝐸 (𝐶𝑝 ; A). 𝐸 (𝐶𝑝 ; A)
consists of two parts: a group of unary potentials that are used to enforce node representations
playing a dominant role and a group of pairwise potentials that are used to fine-tune the obtained
unary potentials based on the connections of nodes. Besides, Gaussian mixture model is utilized to
approximate the probability distributions of all nodes belonging to various communities.

To capture the overlapping community structure, Epasto et al. [27] propose a multi-embedding
method, splitter, to learn multiple vectors for each node, representing each one’s involvement in
various communities. In order to exploit the multi-community participation, splitter preprocesses
the original network into a persona graph𝐺𝑝 (see Sec. 3.1.1) having multiple personas for every
node. But the persona graph may consists of many disconnected components that pose challenges
for representation learning. To address the challenge, splitter adds virtual edges between each
persona and its parent node in the original network so as to enforce that every original node vo can
be predicted given its arbitrary persona vi’s representation, i.e., Pr(vo |Φ𝐺𝑝

(vi)). Like DeepWalk,
splitter uses skip-gram model coupled with hierarchical softmax to learn node representations. By
introducing a regularization parameter 𝜆, the optimization objective is formalized as follows:

arg min
Φ𝐺𝑝

− log Pr({vi−w, ..., vi+w}\vi |Φ𝐺𝑝
(vi)) − 𝜆 Pr(vo |Φ𝐺𝑝

(vi)) . (32)

vGraph [76] presents a probabilistic generative model where each node v is viewed as a mixture
of multiple communities and represented by a multinomial distribution over communities 𝐶 ,
i.e., 𝑝 (𝐶 |v), meanwhile each community 𝐶 can be represented by a distribution over nodes, i.e.,
𝑝 (v|𝐶). vGraph casts the edge generation process as an inference problem. Specifically, for each
node v, vGraph first draws a community assignment 𝐶 from 𝑝 (𝐶 |v) and then generates an edge
evu by drawing another node u according to distribution 𝑝 (𝑢 |C). Both types of distributions are

, Vol. 1, No. 1, Article . Publication date: October 2021.



22 J. Zhou et al.

Parallel random walk based 
sampling (CPU)

...

Parallel negative sampling 
(GPU)

... embedding 
matrices

read & 
update

collaboration 
strategy

sample pools

Fig. 7. Overview of the CPU-GPU hybrid system (adapted from Fig. 1 [110]).

parameterized by the representations of nodes and communities. Besides, a smoothness regularizer
is borrowed by vGraph to ensure the community memberships of neighborhoods to be similar.

4.2 Distributed NRL Methods
Considering the recent advances in GPU-enabled neural network training, Zhu et al. [110] propose
a CPU-GPU hybrid system, GraphVite, which is a hardware coupling system specifically designed
for large-scale network embedding. To leverage distinct advantages of CPUs and GPUs, GraphVite
focuses on the parallelization of instance sampling inside of feature extraction and node embedding,
and its overview is shown in Fig. 7. The random walk based sampling procedure involves excessive
random access and the random walks initiated from different starting nodes are independent, so
the positive instance sampling is suitable for parallel execution on multiple CPUs. While the node
embedding procedure involves excessive matrix computation which is the advantage of GPUs. Due
to the limited GPU memory, it is impossible to place all sampling instances and parameter matrices
of node embeddings on a GPU, GraphVite organizes a grid sample pool. The pool is divided into
multiple blocks and each one corresponds to a subset of the original network. The training task is
also divided into many subtasks and they are assigned with varied blocks for training. Due to the
sparse nature of networks, many block pairs are gradient exchangeable, which means exchanging
the order of gradient descent steps does not result in a vector difference. As a result, subtasks on
different GPUs are capable of performing gradient updates currently in their own subsets without
any synchronization. At the same time, the sampling pool is shared between CPUs and GPUs.
In order to reduce the synchronization cost, GraphVite presents a collaboration strategy which
maintains two sample pools in the main memory, so that CPUs fill up a pool and pass it to GPUs
and they always work on different pools in a parallel fashion. GraphVite reports about 50 times
faster than the current fastest system and takes around 20 hours to embed a network as large as 66
million nodes and 1.8 billion edges.
Lerer et al. [54] also present a distributed embedding system, PyTorch-BigGraph (PBG), which

incorporates several modifications to traditional embedding systems so as to allow it supports scale
to multi-entity, multi-relation graphs with billions of nodes and trillions of edges. To implement
parallelization, PBG partitions the adjacency matrix of original graph into multiple buckets and
feeds the edge samples from buckets distributively. An example of the training of one bucket upon
rank 2 is illustrated in Fig. 8. The trainer requests a bucket from the lock server residing on rank 1,
where all partitions of that bucket are locked. Then the trainer saves the no longer used partitions
and loads new partitions that it needs to and from the shared partition servers, at which point it
drops its old partitions left on the lock server. Edge samples are loaded from a shared filesystem
and the training is performed inside multi-thread with no inter-thread synchronization required.
In a single thread, only a small fraction of shared parameters will be synchronized with a shared
parameter server. Note that checkpoints will be occasionally written back to the filesystem from

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 23

Trainer
...Thread 

1
Thread 

2

Parameter 
client 

thread

Lock 
server

Trainer
...Thread 

1
Thread 

2

Parameter client 
thread

Trainer
...Thread 

1
Thread 

2

Parameter client 
thread

...

Shared file system

Shared parameter server Shared partition server

1 Request bucket

2 Swap 
partitionsAsync

Rank 1 Rank 2 Rank n

3 Load edges 4 Write checkpoint

Fig. 8. A block diagram of the modules used for PBG’s distributed mode (adapted from Fig. 2 [54]).

trainers. A distributed execution of PBG on 8 machines achieves 4x speedup and reduces memory
consumption by 88%.

4.3 Multi-NRL Methods
Compared to single network embedding, multiple networks may contain complementary infor-
mation and multi-network embedding can produce better representations. Similar examples can
be observed in many fields like social networks, bioinformatics, etc. a node in one network may
be associated with multiple nodes in another network which forms a many-to-many mapping
relationship between networks. Ni et al. [64] propose a deep multi-network embedding (DMNE)
method, which coordinates different neural networks with one co-regularized loss to manipulate
cross-network correlations. An example of DMNE for two networks is illustrated in Fig. 9, where
A(1) and A(2) are network contexts derived from the two networks, S(12) and S(21) denote the
cross-network relationship matrix, and (H(i) )l corresponds to the matrix of representations for
all nodes in the 𝑙th layer of network 𝑖 . For single network embedding say network 𝑖 , the neural
network consists of 𝐿𝑖 + 1 layers built in the autoencoder fashion, where half of hidden layers act
as encoders to learn node representations, while the others are decoders who are in charge of the
reconstruction of input. To achieve the network information complementarity, DMNE relies on
the intuition that a node’s representation should be similar to the representation of its mapped
node in another network, and introduces the cross-network regularization based on two kinds of
loss functions: embedding disagreement (ED) loss function and proximity disagreement (PD) loss
function. The former is for situation that all networks have an identical embedding dimension,
while the latter is more flexible without dimension constraint. As a result, the unified objective is
represented by

arg min
𝜃 (𝑖 ) ,U(𝑖 )

𝑔∑︁
𝑖=1

𝐿
(𝑖)
𝑎𝑒 + 𝛼

𝑔∑︁
(𝑖, 𝑗) ∈𝐼

𝐿
(𝑖)
𝑅
+ 𝛽

𝑔∑︁
𝑖=1

U(𝑖) − H(𝑖)
2

𝐹
(33)

where U(i) denotes network 𝑖’s representation matrix, 𝜃 (i) denotes the weight matrix, 𝐿 (𝑖)𝑎𝑒 refers to
the loss of network 𝑖 , 𝐿 (𝑖 𝑗)

𝑅
can be either ED loss or PD loss, and 𝛼 and 𝛽 are trade-off factors.

TransLink [108] models social network alignment as a link prediction between different networks
and aims to find out all pairs of user accounts with same identities and connects them via anchor
links. TransLink embeds users and links between uses into a latent space by incorporating both

, Vol. 1, No. 1, Article . Publication date: October 2021.



24 J. Zhou et al.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

ED loss 
or 

PD loss

S(12)

S(21)

(H(1))1
(H(1))2 (H(1))3 (H(1))4

(H(2))1
(H(2))2 (H(2))3 (H(2))4

A(1)

A(2)

                                                                                                                Individual network embedding

                                                                                                                Individual network embedding

Cross-network 
regularization

Fig. 9. The DMNE framework for two networks (adapted from Fig. 2 [64]).

network structure and user interaction meta-path, and then iteratively predict the potential anchor
links between users who have similar representations over translative operations. Du et al. [26]
investigate a joint framework, CENALP that couples link prediction and network alignment together.
The newly predicted links enrich the network structure information, and new potential nodes with
richer features will have a greater chance to be identified and vice versa. Therefore, link prediction
and network alignment are allowed to work in a mutually beneficial way. CENALP relies on a
biased random walk to generate samples across different networks. For each training sample (vi, vj),
CENALP adopts a product layer to decode the latent interaction between two nodes and sets up a
logistic regression layer for prediction.

4.4 Dynamic NRL Methods
The methods introduced so far mainly focus on exploring NRL for static networks. However,
real-world networks like social networks and biological networks are dynamically evolving over
time, which means not all nodes are available during the training. Inductive learning is an effective
way to support the representation learning for unseen nodes. As the first inductive framework,
GraphSage [41] derives from the idea of Spatial GCN where in order to generate node embeddings.
It designs an aggregation function to essentially assemble features from each node’s neighborhood,
e.g., text attributes, node degrees. The aggregation encoder is defined as follows:

hk
v = 𝜎 (Wk · 𝐴𝐺𝐺𝑘 (hk−1

v , {hk−1
u ,∀u ∈ 𝑁v})), (34)

where the function 𝐴𝐺𝐺𝑘 (·, ·) should be symmetric so as to ensure the framework can be trained
and applied to neighborhood feature sets with arbitrary order. GraphSage examines three types of
functions, i.e., mean aggregator, LSTM aggregator and pooling aggregator. Note that LSTM is not
inherently permutation invariant, so it is applied to a random permutation of neighborhoods for
implementation. The learning procedure of GraphSage is illustrated by an example in Fig. 10. For
each node to be embedded, GraphSage first samples a fixed number of neighborhoods within 𝑘
hops, then obtains the central node’s state by aggregating its neighborhoods’ features, and finally
makes predictions and backpropagate errors based on the node’s state. In order to learn useful
predictive representations, negative sampling is introduced to enhance performance, and then a
graph-based loss function is given by

𝐿(zu) = − log(𝜎 (zT
uzv)) −𝑄 · 𝐸vn∼𝑃𝑛 (v)

[
log𝜎 (−zT

uzn)
]
, (35)

where zu denotes the representation of node vu, 𝑄 denotes the amount of negative samples and 𝑃𝑛
represents the negative sampling distribution. As an inductive representation learning method,
GraphSage enforces that every representation vu fed into the above function is generated from the

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 25

k=1

k=2

Sample 
neighborhood

k=1

k=2Aggregator 1 Aggregator 2

.

.

.

. .
.

.

.

.

.
.
.

.

.

.

.
k=1

k=2

.

.
Label

Aggregate feature 
information from neighbors

Predict graph context and label 
using aggregated information

Fig. 10. An example illustrating the three-step learning procedure of GraphSage (adapted from Fig. 1 [41]).

features of node u’s neighborhoods rather than a unique representation trained by an embedding
look-up.

Graph2Gauss (G2G) [8] proposes a novel unsupervised inductive learning method that embeds
nodes in (un)directed attributed graphs into Gaussian distributions rather than conventional vector
representations, so that it can capture the uncertainty of each node’s embedding. G2G first uses a
deep encoder to yield the parameters associated with the node’s embedding distribution from the
node attributes. The mean and diagonal representations for a node are learned as functions of the
node attributes. After that, G2G optimizes a ranking loss function that incorporates the ranking
of nodes derived from the network structure. Given an anchor node v, nodes at distance 1 of v
are closer than nodes at distance 2, etc. Distance between node representations is measured by
the asymmetric KL divergence. The ranking loss is a square-exponential loss proposed in energy
based models. To avoid the situation that low-degree nodes are less often updated, G2G presents a
node-anchored sampling method. For each node v, the method randomly samples one other node
from its neighborhoods and then optimize over all the corresponding pairwise constraints. To
enable the inductive learning for unseen nodes, G2G passes the attributes of these unseen nodes
through the learned deep encoder.

To incorporate global structural information, SPINE [37] proposes a structural identity preserved
method. Rooted PageRank matrix SRPR is used as the indicator of pairwise proximity where SRPR

i
represents vi’s global feature. As an inductive method, the length of a node’s structural description
should be independent of the network size, so that the structural feature Ti of vi is defined as
the top-𝑘 values of SRPR

i . Given the content feature matrix Fk
i of 𝑘 nodes, node vi’s embedding

is generated by aggregating the 𝑘 vectors w.r.t. the corresponding weights in Ti. To encode the
similarity in terms of both structural identities and local proximities simultaneously, a biased
positive sampling strategy is proposed to collaborate with negative sampling.
Zhou et al. [109] proposes a dynamic NRL method, DynamicTriad, to preserve both structural

information and evolution patterns during the learning process. The evolution of a dynamic network
is described by a series of static network snapshots over discrete time. A triad of three nodes works
as the basic units of networks and its closure process is used to capture the network dynamics. In
specific, the triad closure process reflects how a closed triad develops from an open triad over time
by means of an evolutionary probability, where a closed triad is a complete graph of three nodes
while an open triad misses a connection between any two nodes. For sampling, considering the
expensive computation on the combination of positive and negative samples, DynamicTriad adopts
an idea of sample corruption to generate negative samples by replacing nodes in positive triad with
varied nodes. Besides, DynamicTriad enforces the evolutionary smoothness by minimizing the
distance of node representations in adjacent timestamps. In the dynamic settings, nodes not seen at

, Vol. 1, No. 1, Article . Publication date: October 2021.



26 J. Zhou et al.

t6,k=1
t7,k=1

t1,k=1
t2,k=1
t4,k=1

t3,k=1
t5,k=1 t8,k=1

(c) (a)

New edge

New node

Mutual evolution 
through embedding

tp,k=0 tq,k=0 tr,k=0 Time

u1(t1)u1(t1)

...

...

u1

u2

u2(t1)u2(t1)

...

...

u3

u4

u4(tq)u4(tq)

...

...

u3(tq)u3(tq)
...

...

(b)

Evolving representations 
drive association

Association evolves node 
representations

Evolving representations 
drive communication

Communication 
evolves node 

representations

Fig. 11. An illustration of evolution for representation learning. (a) Association events (k=0); (b) Evolving
representations; (c) Communication events (k=1). (adapted from Fig. 1 [82])

the current timestamp are regarded as out-of-sample nodes and their embeddings can be inferred
by exploring the idea of inductive learning. To ensure the inferred embeddings preserve intricate
network properties, DepthLGP [58] designs a high-order Laplacian Gaussian process (hLGP) to
encode these properties, and employs a DNN to learn a nonlinear transformation from the hLGP.
The above work assume that network dynamics evolve at a single time scale, however, the

evolution of real-world networks usually exhibit multiple time scales. DyRep [82] uses two distinct
dynamic processes to model the dynamic evolution: association process describes dynamics of the
network, which brings structural changes caused by nodes and edges and results in long-lasting
information flow associated with them; and communication process reflects dynamics on the
network, which relates to the activities between connected or non-connected nodes and results
in temporary information exchange across them. As shown in Fig. 11, the dynamic evolution of a
network is given by a stream of events that involve both processes. To model the occurrence of
event 𝑝 = (u, v, tp, k) between u and v at time tp, a conditional intensity function is defined based
on the temporal point process, i.e.,

𝜆
u,v
𝑘
(𝑡𝑝 ) = 𝑓𝑘 (𝑔u,v

𝑘
(𝑡𝑝 )), (36)

where 𝑡𝑝 is the timestamp before the current event, and 𝑓𝑘 (·) is a parameterized softplus function
designed for capturing the timescale dependence. Once an event 𝑝 occurred, the representation
of each involved node will be updated via a deep recurrent neural network (RNN), e.g., node v’s
representation zv (tp) at current timestamp 𝑡𝑝 is updated by

zv (𝑡𝑝 ) = 𝜎 ( W𝑠𝑡𝑟𝑢𝑐𝑡hu
𝑠𝑡𝑟𝑢𝑐𝑡 (𝑡𝑝 )︸                 ︷︷                 ︸

Localized embedding propagation

+ W𝑟𝑒𝑐zv (𝑡v
𝑝 )︸       ︷︷       ︸

Self−propagation

+W𝑡 (𝑡𝑝 − 𝑡v
𝑝 )︸        ︷︷        ︸

Exogenous drive

), (37)

where hu
𝑠𝑡𝑟𝑢𝑐𝑡 is the representation aggregated from node u’s neighborhoods, zv (𝑡v

𝑝 ) is the recurrent
state obtained from v’s previous representation, and 𝑡v

𝑝 denotes the timestamp of v’s previous event.
Parameter matrices W𝑠𝑡𝑟𝑢𝑐𝑡 , W𝑟𝑒𝑐 and W𝑡 are applied to control the aggregate effect of three inputs.
For a set of observed events, the learning objective is defined as negative log likelihood. Specifically,

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 27

Activation

Embedding 
matrices

Entity embedding

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Relation embedding

Knowledge 
graph ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
... h

... r

Kernels

...

...

...

...

Feature maps

Fully connected 
layer

...

...

...

...

...

...

...

...

0.1

0.7

0.5

0.3

0.2

Fully 
connected 

projection

Matrix 
multiplication 

with entity 
matrix

Logits Predictions

Sigmoid

Weighted 
GCN encoder Conv-TransE decoder

1

l


1

l


2

l


3

l


Fig. 12. An illustration of SACN (adapted from Fig. 1 [74]).

DyRep borrows the idea of graph attention networks (GAT) [86] that is the attention mechanism
applied to graph data, and uses it to endue neighborhoods with varied attention coefficients that
also evolve over time.

4.5 Knowledge Graph Representation Learning
As a special type of networks, knowledge graph can be viewed a structured representation of
facts, denoted by a set of triples. Each triple consists of two entities h, t and a relation r between
them, e.g., (h, r, t). Knowledge graph representation learning (KRL) is to map entity nodes and
relation edges into low-dimensional vectors while capturing their semantic meanings [47]. The
primary goal of KRL is to improve the plausibility of facts where the plausibility can be viewed as a
specialization of network property. Distance proximity is often used to enhance the plausibility
of a fact by minimizing the distance between entities of the corresponding triple. In the classic
translating embedding model [10], the relation r corresponds to a translation from head entity
to tail entity and their embeddings h + r ≈ t hold when (h, r, t) is a fact. RotatE [78] expands the
embedding space from real-valued space to complex space where entities and relations are mapped
to low-dimensional complex vectors and each relation corresponds to a rotation from head entity
to tail entity, i.e.,

t ≈ h ◦ r, (38)

where ◦ denotes the Hadamard product. For each element in the embedding space, 𝑡𝑖 ≈ ℎ𝑖 ◦ 𝑟𝑖 and
|𝑟𝑖 | = 1. Element 𝑟𝑖 is of the form 𝑒𝑖𝜃𝑟,𝑖 , which corresponds to a counterclockwise rotation by 𝜃𝑟,𝑖
radians about the origin of the complex plane. For each triple (h, r, t), its distance is defined as

𝑑𝑟 (h, t) = ∥h ◦ r − t∥ . (39)

The complex space allows RotatE to capturemore relation patterns including symmetry/antisymmetry,
inversion and composition. During the training, traditional negative sampling samples the negative
triples in a uniform way, which suffers the problem of inefficiency since many samples are obviously
false and cannot provide meaningful information. RotatE presents a variant called self-adversarial
negative sampling, which samples negative triples from the following distribution

𝑝 (ℎ′𝑗 , 𝑟 , 𝑡 ′𝑗 |{(ℎ𝑖 , 𝑟𝑖 , 𝑡𝑖 )}) =
exp𝛼𝑑𝑟 (h′ 𝑗 , t′ 𝑗 )∑
𝑖

exp𝛼𝑑𝑟 (h′𝑖 , t′𝑖 )
, (40)

, Vol. 1, No. 1, Article . Publication date: October 2021.



28 J. Zhou et al.

where 𝛼 is the temperature of sampling. The above probability work as the weight of the negative
sample. The negative sampling loss is defined as

𝐿 = − log𝜎 (𝛾 − 𝑑𝑟 (h, t)) −
∑︁
𝑖

𝑝 (ℎ′𝑖 , 𝑟 , 𝑡 ′𝑖 ) log𝜎 (𝑑𝑟 (h′𝑖 , t′𝑖 ) − 𝛾), (41)

where 𝛾 is a fixed margin, 𝜎 is the sigmoid function, and (ℎ′𝑖 , 𝑟 , 𝑡 ′𝑖 ) is the 𝑖th negative triple.
SACN [74] proposes an end-to-end structure-aware convolutional network, SACN, to predict new

triples for knowledge graph completion. As illustrated in Fig. 12, SACN presents a weighted GCN as
the encoder to learn entities’s representations by aggregating connected entities as specified by the
relations in the knowledge graph, where the weighted GCN weights the different types of relations
differently by defining the interaction strength, e.g., 𝛼𝑡 denotes the strength of relation type 𝑡 , so
that the amount of information from neighboring nodes used in aggregation can be controlled. Let
h𝑙𝑖 be the input vector of node vi in the 𝑙th layer, its output vector is given by

h𝑙+1𝑖 = 𝜎
©«

∑︁
v𝑗 ∈𝑁𝑖

𝛼𝑙𝑡𝑔(h𝑙𝑖 , h𝑙𝑗 )
ª®¬ , (42)

where 𝑁𝑖 is the neighbor set of node v𝑖 and 𝑔 is the aggregation function. With node embeddings
as the input, the decoder aims to represent the relations more accurately by recovering the original
triples. Based on ConvE [24], SACN develops Conv-TransE as the decoder where the translation
fashion of TransE is incorporated. Conv-TransE aligns the convolutional outputs of both entity
and relation embeddings with all kernels and yields a matrix M(h, r). Both encoder and decoder
are jointly trained by minimizing the cross-entropy between h + r and t to preserve the distance
proximity and the objective function is defined as

𝑑𝑟 (h, t) = 𝑓 (𝑣𝑒𝑐 (M(h, r))W)t, (43)

where 𝑓 is a non-linear function and𝑊 is a matrix for the linear transformation. 𝑣𝑒𝑐 (M) corresponds
to a reshaping operation that changes feature map matrix to a vector.

4.6 Discussions and Open Challenges
The past half-decade has witness the rapid development of NRL, meanwhile NRL research also
faces multiple challenges, among which we select some promising challenges with high attention
to discuss, hoping to provide useful guidance for future study.

4.6.1 Automated Learning. We have shown that different NRL approaches tend to exhibit different
performances for different scenarios. There is no single method that is the winner for all scenarios.
When one method is considered to be better than another, it typically depends on which benchmark
is used, including tasks and datasets available for evaluation. According to our framework, proper
combinations of candidate methods, models, and techniques at different stages of NRL may have
greater potential to boost the performance of NRL. For example, Struc2vec [70] preprocesses the
input graph into a context graph, generates samples via a biased random walk method and learns
representations by leveraging skip-gram model as well as negative sampling technique to reflect
features w.r.t. node identities. It ranks the second-best model for node classification on Wikipedia
[1]. Most of existing NRL approaches follow the data-driven paradigm and is semi-automatic,
i.e., given a benchmark with the specified dataset, we have to decide 1) how the data should be
preprocessed? 2) what features should be preserved? 3) what models and techniques can be used?
4) how to optimize the chosen model? It is not a trivial task even for an expert to answer the
above questions. Some recent efforts on meta-learning [45] hold potential to partially address these
questions. The learning-to-learn mode allows meta-learning being useful in multi-task scenarios

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 29

Table 6. Summary of recent advances in NRL

Category NRL work Data preprocessing
method, input data

Network feature extraction Node embedding
Network property Sampling

method
Embedding model Optimization

technique

Conventional
NRL

MVE [69] -, Adjacency matrix Multi-view first-
order proximities Edge sampling Skip-gram model Attention mechanism,

negative sampling
SDNE [87] Matrix-based

processing,
Adjacency matrix,
Laplacian matrix

1st, 2nd order
proximity

Fetch from
adjacency matrix

Deep autoencoder,
Laplacian Eigenmaps

Deep belief network

DNGR [15] Random surfing,
PCO matrix

High-order proximity Fetch from PPMI
matrix

SDAE Negative sampling

Struc2vec
[70]

Graph
decomposition,
Context graph

Node identity
proximity

Biased random
walk

Skip-gram model Hierarchical softmax

MRF [48] Matrix-based
processing,

Transition matrix

Community structure Random pairwise
sampling

Markov random field Gaussian mixture
model

splitter [27] Graph
decomposition,
Persona graph

Overlapping
community structure

Random walk Skip-gram model Hierarchical softmax

vGraph [76] -, Adjacency matrix Community structure Edge sampling Probabilistic
generative model

Negative sampling

Distributed
NRL

GraphVite
[110]

-, Adjacency matrix 1st, 2nd order
proximity

Parallel random
walk

Edge probabilistic
model

Parallel negative
sampling

PBG [54] Graph
decomposition,
Multi-bucket

1st-order proximity Distributed edge
sampling

Edge probabilistic
model

batched negative
sampling

Multi-NRL

DMNE [64] -, Adjacency matrix,
cross-network

relationship matrix

High-order proximity
under many-to-many

mapping

Random walk Deep autoencoder Negative sampling

TransLink
[108]

Meta-path
extraction,

Meta-path, node
state, edge state

High-order proximity
under translations

Fetch from
adjacency matrix

Translating
embedding

Negative sampling

CENALP
[26]

-, Adjacency matrix High-order proximity Biased random
walk

Skip-gram model Negative sampling

Dynamic NRL

GraphSage
[41]

Matrix-based
processing,

Transition matrix,
node state

2nd-order proximity Random walk Spatial GCN Negative sampling

Graph2Gauss
[8]

-, Adjacency matrix,
node state

High-order proximity Node-anchored
sampling

Deep autoencoder Negative sampling

SPINE [37] Matrix-based
processing, Rooted
PageRank matrix,

node state

Node identity
proximity

Random walk Skip-gram model Biased positive
sampling, Negative

sampling

DynamicTriad
[109]

-, Adjacency matrix 1st-order proximity Edge sampling Edge probabilistic
model

Negative sampling
base on corruption

DyRep [82] -, Adjacency matrix,
node state, edge

state

2nd-order proximity Random walk GNN Graph attention
network, negative

sampling

KRL

RotatE [78] -, Adjacency matrix Distance proximity Fetch from
adjacency matrix

Translating
embedding

Self-adversarial
negative sampling

SACN [74] -, Adjacency matrix,
node state, edge

state

Distance proximity Fetch from
adjacency matrix

Weighted GCN Negative sampling

where task-agnostic knowledge is learned from a family of tasks and used to improve learning of
new tasks from the same family. AutoNE [85] presents an automatic hyperparameter optimization,
the principle behind which is transferring the knowledge regarding optimized hyperparameters
from multiple subnetworks to the original network.
Nevertheless, implementing a fully automated learning of network representation remains an

open problem.

4.6.2 Proximity vs. Distinguishability. Observed from Table 6, we find that most of the current
studies prefer to put feature proximity preserving as the guideline to learn node representations, so
as to ensure structurally similar nodes having similar representations. As a result, application tasks
like node classification and social recommendation benefit from this proximity-driven embedding.
On the contrary, enhancing proximity reduces the distinguishability of nodes at the same time.

, Vol. 1, No. 1, Article . Publication date: October 2021.



30 J. Zhou et al.

Here the distinguishability refers to that an arbitrary node is significantly different from others in
the representation space even though there is structural proximity between nodes. The enforced
proximity imposes adverse impacts on some other application tasks. For example, in order to
accurately identify anchor users between different social networks, it is desirable to ensure that
each node’s representation should be explicitly separated from the representations of its proximities.
Otherwise, it would be hard to discriminate the anchor nodes from their structurally similar
neighborhoods. Generative Adversarial Networks (GANs) [35] may provide a possible way to
enhance distinguishability, e.g., dNAME [107] presents a GAN mechanism to learn the latent
space of single network combined with a graph kernel based regularizer for discriminating anchor
nodes from others. GAN’s function depends on capturing true data distribution. How to make
use of GANs to finely distinguish each node meanwhile preserving proximity is still open to
exploring. GCNs [11] generate node representations by combining its own features with features
aggregated from its neighborhoods. A well-designed convolution operation can benefit the trade-off
between proximity and distinguishability. Nowadays, many real-world networks can be classified
as scale-free networks such as airline networks and co-authorship networks. Scale-free networks
follow power-law distributions and the vast majority of network nodes have few neighbors, on the
contrary, a tiny fraction of network nodes have huge number of neighbors. Can we design a proper
preprocessing method to deal with such extreme imbalance and to keep the structural features
of different nodes at the same time? The receptive field for convolution largely depends on the
adopted sampling method. How to design a sampling method to collaborate with preprocessing
method and embedding models to handle this challenge still needs to be explored.

4.6.3 Interpretability. Compared with handcrafted feature engineering, the superiority of NRL
research has been empirically verified by both visualization and benchmarks, but less studies on
NRL can give theoretically satisfactory answers to the following fundamental questions: 1) what
exactly latent features are learned from the network? 2) what contributes to good performance
on visualization and benchmarks? The connections between the underlying working mechanism
and the performance results have not been well revealed yet. NetMF [68] makes a good attempt
to create intrinsic connections between four NRL methods (e.g., DeepWalk [66], LINE [81], PTE
[80] and node2vec [36]) and graph Laplacian by unifying them into the matrix factorization model.
Gogoglou et al. [33] try to explore the association of the embedding space with both external
and internal node categorization. Abductive learning [21] provides another beneficial attempt by
unifying machine learning and logic programming, where the former learns to perceive primitive
logic facts from data while the latter is able to exploit symbolic domain knowledge and correct
the wrongly perceived facts for improving learning results including interpretability. In short, to
answer the above questions and ensure that the learned representations truly reflect the network
information, more efforts need to be devoted to the interpretable learning in the future.

5 CONCLUSIONS
We have presented a comprehensive overview of the state-of-the-art NRL techniques through a
unifying reference framework. We describe and compare different NRL approaches in terms of the
network data preprocessing methods, the network feature learning models and the node embedding
and optimization techniques. We also discuss open challenges of NRL research, including automated
learning, trade-off between proximity and distinguishability and interpretability. Our unified three
phase reference framework offers a number of unique benefits: (1) This framework presents a new
perspective to reviewing the state of the art NRL methods and technical optimizations employed. (2)
The unified framework promotes reviewing the state of the art NRLmethods using three progressive
and complementary phases. This new approach provides an in-depth understanding of network

, Vol. 1, No. 1, Article . Publication date: October 2021.



Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 31

representation learning from three important perspectives: (i) raw input preprocessing, (ii) the
node feature extraction task and different methods utilized for improving and optimizing node
feature extraction qualities, and (iii) network representation learning models. (3) This unified three
phase framework by design serves dual purposes: (i) help beginner readers and practitioners to
understand the end to end NRL workflow, and (ii) help researchers and graduate students who are
interested in learning the state of the art NRL to gain a deeper understanding through reviewing
each of the three phases in the network representation learning workflow.

ACKNOWLEDGMENTS
The first author conducted this work during his one year visit at Georgia Institute of Technology
under Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-
aged Teachers and Presidents. The authors from Soochow University acknowledge the support
from National Natural Science Foundation of China under Grants 61972272, 62172291, 62072321,
U1905211 and Open Project Program of the State Key Laboratory of Mathematical Engineering and
Advanced Computing under Grant 2019A04. The authors from Georgia Institute of Technology
acknowledge the partial support from the National Science Foundation under Grants 2038029,
1564097 and an IBM faculty award.

REFERENCES
[1] [n.d.]. Node Classification on Wikipedia. https://paperswithcode.com/sota/node-classification-on-wikipedia
[2] Sami Abu-El-Haija, Bryan Perozzi, and Rami Al-Rfou. 2017. Learning Edge Representations via Low-Rank Asymmetric

Projections. In Proceedings of CIKM ’17. 1787–1796.
[3] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A. Alemi. 2018. Watch Your Step: Learning Node

Embeddings via Graph Attention. In Proceedings of NeurIPS ’18. 9198–9208.
[4] Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Xiangnan Kong, Theodore L. Willke, Rong Zhou, and Hoda

Eldardiry. 2018. Learning Role-based Graph Embeddings. CoRR abs/1802.02896 (2018). arXiv:1802.02896 http:
//arxiv.org/abs/1802.02896

[5] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, and Wei Wang. 2019.
Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity. In Proceedings of IJCAI ’19.
1988–1994.

[6] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering.
In Proceedings of NIPS ’01. 585–591.

[7] Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.
Neural Computation 15, 6 (2003), 1373–1396.

[8] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding of Graphs: Unsupervised Inductive
Learning via Ranking. In Proceedings of ICLR ’18.

[9] Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question Answering with Subgraph Embeddings. In
Proceedings of EMNLP ’14. 615–620.

[10] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko. [n.d.]. Translating
Embeddings for Modeling Multi-relational Data. In Proceedings of NeurIPS ’13. 2787–2795.

[11] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral Networks and Locally Connected
Networks on Graphs. In Proceedings of ICLR ’14.

[12] John A. Bullinaria and Joseph P. Levy. 2007. Extracting semantic representations from word co-occurrence statistics.
Behavior Research Methods 39, 3 (2007), 510–526.

[13] HongYun Cai, VincentW. Zheng, and Kevin Chen-Chuan Chang. 2018. A Comprehensive Survey of Graph Embedding:
Problems, Techniques, and Applications. IEEE Trans. Knowl. Data Eng. 30, 9 (2018), 1616–1637.

[14] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Representations with Global Structural
Information. In Proceedings of CIKM ’15. 891–900.

[15] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for Learning Graph Representations. In
Proceedings of AAAI ’16. 1145–1152.

[16] Zhu Cao, Linlin Wang, and Gerard de Melo. 2018. Link Prediction via Subgraph Embedding-Based Convex Matrix
Completion. In Proceedings of AAAI ’18. 2803–2810.

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://paperswithcode.com/sota/node-classification-on-wikipedia
http://arxiv.org/abs/1802.02896
http://arxiv.org/abs/1802.02896
http://arxiv.org/abs/1802.02896


32 J. Zhou et al.

[17] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019. Representation Learning for
Attributed Multiplex Heterogeneous Network. In Proceedings of KDD ’19. 1358–1368.

[18] Haochen Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2018. A Tutorial on Network Embeddings. CoRR
abs/1808.02590 (2018). arXiv:1808.02590 http://arxiv.org/abs/1808.02590

[19] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. HARP: Hierarchical Representation Learning for
Networks. In Proceedings of AAAI ’18. 2127–2134.

[20] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2019. A Survey on Network Embedding. IEEE Trans. Knowl. Data
Eng. 31, 5 (2019), 833–852.

[21] Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. 2019. Bridging Machine Learning and Logical Reasoning
by Abductive Learning. In Proceedings of NeurIPS ’19. 2811–2822.

[22] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering. In Proceedings of NeurIPS ’16. 3837–3845.

[23] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. 2020. GraphZoom: A multi-level spectral
approach for accurate and scalable graph embedding. In Proceedings of ICLR ’20.

[24] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018. Convolutional 2D Knowledge
Graph Embeddings. In Proceedings of AAAI ’18. 1811–1818.

[25] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning Structural Node Embeddings via
Diffusion Wavelets. In Proceedings of KDD ’18. 1320–1329.

[26] Xingbo Du, Junchi Yan, and Hongyuan Zha. 2019. Joint Link Prediction and Network Alignment via Cross-graph
Embedding. In Proceedings of IJCAI ’19. 2251–2257.

[27] Alessandro Epasto and Bryan Perozzi. 2019. Is a Single Embedding Enough? Learning Node Representations that
Capture Multiple Social Contexts. In Proceedings of WWW ’19. 394–404.

[28] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph Neural Networks
for Social Recommendation. In Proceedings of WWW ’19. 417–426.

[29] Rui Feng, Yang Yang, Wenjie Hu, Fei Wu, and Yueting Zhang. 2018. Representation Learning for Scale-Free Networks.
In Proceedings of AAAI ’18. 282–289.

[30] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein Interface Prediction using Graph Convolu-
tional Networks. In Proceedings of NeurIPS ’17. 6530–6539.

[31] Tianfan Fu, Cao Xiao, and Jimeng Sun. 2020. CORE: Automatic Molecule Optimization Using Copy & Refine Strategy.
In Proceedings of AAAI ’20. 638–645.

[32] Zheng Gao, Gang Fu, Chunping Ouyang, Satoshi Tsutsui, Xiaozhong Liu, Jeremy J. Yang, Christopher Gessner,
Brian Foote, David J. Wild, Ying Ding, and Qi Yu. 2019. edge2vec: Representation learning using edge semantics for
biomedical knowledge discovery. BMC Bioinform. 20, 1 (2019), 306:1–306:15.

[33] Antonia Gogoglou, C. Bayan Bruss, and Keegan E. Hines. 2019. On the Interpretability and Evaluation of Graph
Representation Learning. CoRR abs/1910.03081 (2019).

[34] G.H. Golub and C. Reinsch. 1970. Singular value decomposition and least square solutions. Numer. Math. 14, 5 (1970),
403–420.

[35] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. 2014. Generative Adversarial Nets. In Proceedings of NIPS ’14. 2672–2680.

[36] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks. In Proceedings of KDD ’16.
855–864.

[37] Junliang Guo, Linli Xu, and Jingchang Liu. 2019. SPINE: Structural Identity Preserved Inductive Network Embedding.
In Proceedings of IJCAI ’19. 2399–2405.

[38] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. 2018. Knowledge Graph Embedding With Iterative
Guidance From Soft Rules. In Proceedings of AAAI ’18. 4816–4823.

[39] Michael Gutmann and Aapo Hyvärinen. 2012. Noise-Contrastive Estimation of Unnormalized Statistical Models,
with Applications to Natural Image Statistics. J. Mach. Learn. Res. 13 (2012), 307–361.

[40] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning on Graphs: Methods and Applica-
tions. IEEE Data Eng. Bull. 40, 3 (2017), 52–74.

[41] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In
Proceedings of NeurIPS ’17. 1024–1034.

[42] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets on Graphs via Spectral Graph Theory.
Applied and Computational Harmonic Analysis 30, 2 (2011).

[43] Peng Han, Peng Yang, Peilin Zhao, Shuo Shang, Yong Liu, Jiayu Zhou, Xin Gao, and Panos Kalnis. 2019. GCN-MF:
Disease-Gene Association Identification By Graph Convolutional Networks and Matrix Factorization. In Proceedings
of KDD ’19. 705–713.

[44] Xiaofei He and Partha Niyogi. 2003. Locality Preserving Projections. In Proceedings of NIPS ’03. 153–160.

, Vol. 1, No. 1, Article . Publication date: October 2021.

http://arxiv.org/abs/1808.02590
http://arxiv.org/abs/1808.02590


Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 33

[45] Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J. Storkey. 2020. Meta-Learning in Neural
Networks: A Survey. CoRR abs/2004.05439 (2020).

[46] Sergey Ivanov and Evgeny Burnaev. 2018. Anonymous Walk Embeddings. In Proceedings of ICML ’18, Jennifer G. Dy
and Andreas Krause (Eds.), Vol. 80. 2191–2200.

[47] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. 2020. A Survey on Knowledge Graphs:
Representation, Acquisition and Applications. CoRR abs/2002.00388 (2020).

[48] Di Jin, Xinxin You, Weihao Li, Dongxiao He, Peng Cui, Françoise Fogelman-Soulié, and Tanmoy Chakraborty. 2019.
Incorporating Network Embedding into Markov Random Field for Better Community Detection. In Proceedings of
AAAI ’19. 160–167.

[49] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. 2018. SIDE: Representation Learning in Signed Directed
Networks. In Proceedings of WWW ’18. 509–518.

[50] Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. In Proceedings of NeurIPS ’16 workshop on
BDL.

[51] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In
Proceedings of ICLR ’17.

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional
Neural Networks. In Proceedings of NeurIPS ’12. 1106–1114.

[53] Yi-An Lai, Chin-Chi Hsu, Wen-Hao Chen, Mi-Yen Yeh, and Shou-De Lin. 2017. PRUNE: Preserving Proximity and
Global Ranking for Network Embedding. In Proceedings of NeurIPS ’17. 5257–5266.

[54] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit Bose, and Alexander Peysakhovich.
2019. PyTorch-BigGraph: A Large-scale Graph Embedding System. In Proceedings of SysML ’19.

[55] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed Social Network Embedding. IEEE
Trans. Knowl. Data Eng. 30, 12 (2018), 2257–2270.

[56] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning Entity and Relation Embeddings for
Knowledge Graph Completion. In Proceedings of AAAI ’15. 2181–2187.

[57] Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and Xia Hu. 2019. Is a Single Vector Enough?:
Exploring Node Polysemy for Network Embedding. In Proceedings of KDD ’19. 932–940.

[58] Jianxin Ma, Peng Cui, and Wenwu Zhu. 2018. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic
Networks. In Proceedings of AAAI ’18. 370–377.

[59] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. 2017. The More You Know: Using Knowledge Graphs
for Image Classification. In Proceedings of CVPR ’17. 20–28.

[60] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in
Vector Space. In Proceedings of ICLR ’13.

[61] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed Representations of
Words and Phrases and their Compositionality. In Proceedings of NeurIPS ’13. 3111–3119.

[62] Frederic Morin and Yoshua Bengio. 2005. Hierarchical Probabilistic Neural Network Language Model. In Proceedings
of AISTATS ’05.

[63] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and Shantanu
Jaiswal. 2017. graph2vec: Learning Distributed Representations of Graphs. CoRR abs/1707.05005 (2017). http:
//arxiv.org/abs/1707.05005

[64] Jingchao Ni, Shiyu Chang, Xiao Liu, Wei Cheng, Haifeng Chen, Dongkuan Xu, and Xiang Zhang. 2018. Co-Regularized
Deep Multi-Network Embedding. In Proceedings of WWW ’18. 469–478.

[65] Larry Page, Sergey Brin, R. Motwani, and T. Winograd. 1998. The PageRank Citation Ranking: Bringing Order to the
Web.

[66] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In
Proceedings of KDD ’14. 701–710.

[67] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. 2017. Don’t Walk, Skip!: Online Learning of
Multi-scale Network Embeddings. In Proceedings of ASONAM ’17. 258–265.

[68] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018. Network Embedding as Matrix
Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In Proceedings of WSDM ’18. 459–467.

[69] Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, and Jiawei Han. 2017. An Attention-based Collaboration
Framework for Multi-View Network Representation Learning. In Proceedings of CIKM ’17. 1767–1776.

[70] Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, and Daniel R. Figueiredo. 2017. struc2vec: Learning Node
Representations from Structural Identity. In Proceedings of KDD ’17. 385–394.

[71] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2018. Deep Inductive Network Representation Learning. In
Proceedings of WWW ’18. 953–960.

, Vol. 1, No. 1, Article . Publication date: October 2021.

http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1707.05005


34 J. Zhou et al.

[72] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles A. Sutton. 2019. GEMSEC: graph embedding with self
clustering. In Proceedings of ASONAM ’19. 65–72.

[73] Benedek Rozemberczki and Rik Sarkar. 2020. Fast Sequence-Based Embedding with Diffusion Graphs. CoRR
abs/2001.07463 (2020). arXiv:2001.07463 https://arxiv.org/abs/2001.07463

[74] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. 2019. End-to-End Structure-Aware
Convolutional Networks for Knowledge Base Completion. In Proceedings of AAAI ’19. 3060–3067.

[75] Bing-Jie Sun, Huawei Shen, Jinhua Gao, Wentao Ouyang, and Xueqi Cheng. 2017. A Non-negative Symmetric
Encoder-Decoder Approach for Community Detection. In Proceedings of CIKM ’17. 597–606.

[76] Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang. 2019. vGraph: A Generative Model for
Joint Community Detection and Node Representation Learning. In Proceedings of NeurIPS ’19. 512–522.

[77] Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant G. Honavar. 2019. MEGAN: A Generative
Adversarial Network for Multi-View Network Embedding. In Proceedings of IJCAI ’19. 3527–3533.

[78] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowledge Graph Embedding by Relational
Rotation in Complex Space. In Proceedings of ICLR ’19.

[79] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. 2013. Deep Neural Networks for Object Detection. In
Proceedings of NeurIPS ’13. 2553–2561.

[80] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE: Predictive Text Embedding through Large-scale Heterogeneous
Text Networks. In Proceedings of KDD ’15. 1165–1174.

[81] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. LINE: Large-scale Information
Network Embedding. In Proceedings of WWW ’15. 1067–1077.

[82] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019. DyRep: Learning Representations
over Dynamic Graphs. In Proceedings of ICLR ’19.

[83] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018. VERSE: Versatile Graph Embeddings
from Similarity Measures. In Proceedings of WWW ’18. 539–548.

[84] Ke Tu, Peng Cui, Xiao Wang, Philip S. Yu, and Wenwu Zhu. 2018. Deep Recursive Network Embedding with Regular
Equivalence. In Proceedings of KDD ’18. 2357–2366.

[85] Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. 2019. AutoNE: Hyperparameter Optimization for Massive
Network Embedding. In Proceedings of the 25th ACM SIGKDD ’19. 216–225.

[86] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph
Attention Networks. In Proceedings of ICLR ’18.

[87] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Embedding. In Proceedings of KDD ’16.
1225–1234.

[88] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018.
GraphGAN: Graph Representation LearningWith Generative Adversarial Nets. In Proceedings of AAAI ’18. 2508–2515.

[89] Suhang Wang, Jiliang Tang, Charu C. Aggarwal, Yi Chang, and Huan Liu. 2017. Signed Network Embedding in Social
Media. In Proceedings of SDM ’17. 327–335.

[90] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017. Community Preserving Network
Embedding. In Proceedings of AAAI ’17. 203–209.

[91] Zekai Wang, Hongzhi Liu, Yingpeng Du, Zhonghai Wu, and Xing Zhang. 2019. Unified Embedding Model over
Heterogeneous Information Network for Personalized Recommendation. In Proceedings of IJCAI ’19. 3813–3819.

[92] Wenqi Wei, Qi Zhang, and Ling Liu. 2020. DLForecast: Deep Spatiotemporal Forecasting on Bitcoin Transactions.
under the submission of IEEE Trans. Emerging Topics Comput. (2020).

[93] Jun Wu, Jingrui He, and Jiejun Xu. 2019. DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph
Classification. In Proceedings of KDD ’19. 406–415.

[94] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation.
CoRR abs/1609.08144 (2016).

[95] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2019. A Comprehensive
Survey on Graph Neural Networks. CoRR abs/1901.00596 (2019).

[96] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In
Proceedings of ICLR ’19.

[97] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. 2015. Network Representation Learning
with Rich Text Information. In Proceedings of IJCAI ’15. 2111–2117.

, Vol. 1, No. 1, Article . Publication date: October 2021.

http://arxiv.org/abs/2001.07463
https://arxiv.org/abs/2001.07463


Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding 35

[98] Shuang Yang and Bo Yang. 2018. Enhanced Network Embedding with Text Information. In Proceedings of ICPR ’18.
326–331.

[99] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V. Le. 2018.
QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension. In Proceedings of ICLR
’18.

[100] Lei Yu, Qi Zhang, Donna Dillenberger, Ling Liu, Calton Pu, Ka Ho Chow, Mehmet Emre Gursoy, Stacey Truex,
Hong Min, Arun Iyengar, and Gong Su. 2019. GRAHIES: Multi-Scale Graph Representation Learning with Latent
Hierarchical Structure. In Proceedings of CogMI ’19. 8–15.

[101] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013. TripleBit: a Fast and Compact System
for Large Scale RDF Data. Proc. VLDB Endow. 6, 7 (2013), 517–528.

[102] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. SINE: Scalable Incomplete Network Embedding. In
Proceedings of ICDM ’18. 737–746.

[103] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural Networks. In Processings of NeurIPS ’18.
5171–5181.

[104] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Üstebay. 2019. Bayesian Graph Convolutional Neural
Networks for Semi-Supervised Classification. In Proceedings of AAAI ’19. 5829–5836.

[105] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu. 2018. Arbitrary-Order Proximity
Preserved Network Embedding. In Proceedings of KDD ’18. 2778–2786.

[106] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, and Can Wang. 2018.
ANRL: Attributed Network Representation Learning via Deep Neural Networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. 3155–3161.

[107] Fan Zhou, Zijing Wen, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fang Liu. 2019. Disentangled Network
Alignment with Matching Explainability. In Proceedings of INFOCOM ’19. 1360–1368.

[108] Jingya Zhou and Jianxi Fan. 2019. TransLink: User Identity Linkage across Heterogeneous Social Networks via
Translating Embeddings. In Proceedings of INFOCOM ’19. 2116–2124.

[109] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic Network Embedding by Modeling
Triadic Closure Process. In Proceedings of AAAI ’18. 571–578.

[110] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. 2019. GraphVite: A High-Performance CPU-GPU Hybrid
System for Node Embedding. In Proceedings of WWW ’19. 2494–2504.

, Vol. 1, No. 1, Article . Publication date: October 2021.


	Abstract
	1 Introduction
	2 Network Representation Learning: What and How
	3 The Reference Framework for Network Representation Learning
	3.1 Network Data Preprocessing
	3.2 Network Feature Extraction
	3.3 Node Embedding

	4 Recent Advances in Network Representation Learning
	4.1 Conventional NRL Methods
	4.2 Distributed NRL Methods
	4.3 Multi-NRL Methods
	4.4 Dynamic NRL Methods
	4.5 Knowledge Graph Representation Learning
	4.6 Discussions and Open Challenges

	5 Conclusions
	Acknowledgments
	References

