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ABSTRACT
As the scope and complexity of modern cyber-physical systems

increase, newer and more challenging mission requirements will be

imposed on the optimal control of the underlying unmanned sys-

tems. This paper proposes a solution to handle complex temporal

requirements formalized in Signal Temporal Logic (STL) specifi-

cations within the Successive Convexification (SCvx) algorithmic

framework. This SCvx-STL solution method consists of four steps:

1) Express the STL specifications using their robust semantics as

state constraints. 2) Introduce new auxiliary state variables to trans-

form these state constraints as system dynamics, by exploiting the

recursively defined structure of robust STL semantics. 3) Smooth the

resulting system dynamics with polynomial smooth min- and max-

functions. 4) Convexify and solve the resulting optimal control prob-

lemwith the SCvx algorithm, which enjoys guaranteed convergence

and polynomial time subproblem solving capability. Our approach

retains the expressiveness of encoding mission requirements with

STL semantics, while avoiding the usage of combinatorial optimiza-

tion techniques such as Mixed-integer programming. Numerical

results are shown to demonstrate its effectiveness.
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• Mathematics of computing → Nonconvex optimization;
• Theory of computation → Modal and temporal logics; •
Computer systems organization→ Robotic autonomy.
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1 INTRODUCTION
In the envisioned near future of cyber-physical systems, unmanned

systems such as Unmanned Aerial Vehicles (UAVs) and intelligent

ground robots are playing an increasingly important role, as they

are assigned newer and more challenging tasks. From package de-

livery to traffic monitoring, from aerial photograph to fieldwork

on modern farms, careful and autonomous trajectory planning is

of utmost importance to ensure safety and mission requirements

satisfaction. An onboard optimal-control-based guidance system is

proved to be highly effective in this regard [12]. A notable line of

work on this subject is the Successive Convexification(SCvx) algo-
rithmic framework [14], which provides both theoretical conver-

gence guarantee and practical real-time solving capability. However,

traditional optimal control solvers, including SCvx, are designed to

handle spatial (state) and physical (control) constraints, not tempo-

ral ones. Meanwhile, we have seen a growing trend of stating com-

plex mission requirements as temporal specifications [1], thanks to

the expressiveness of temporal logic encoding. Examples of these

requirements include deadlines, periodic occurrences, and sequen-

tially triggered events, etc.. The downside is that its semantics are

combinatorial in nature and thus difficult to incorporate in a smooth

optimization solver, which is usually required for onboard computa-

tion. This dilemma between constraint expressiveness and real-time

solvability begs the question: is it possible to have a smooth optimal

control solver that also incorporates temporal logic specifications

as constraints?

In this work, we aim to provide a positive answer to this question.

For the smooth optimization solver part, we are going to adopt

the SCvx framework. Hence, the problem becomes how to express

the temporal logic encoding as constraints recognizable by SCvx.
Since SCvx deals with continuous-time systems we are going to use

Signal Temporal Logic (STL) as the primary form of the temporal

encoding, since it also operates on continuous-time trajectories

(“signals”). A more detailed survey on the state of the art of both

SCvx and STL is given in section 1.1. In this paper, we will establish a
four-steps approach, called SCvx-STL, to tackle the problem. Novel

contributions of this work are described in section 1.2.

https://doi.org/10.1145/3501710.3519518
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1.1 State of the art
Optimal control (trajectory optimization) of unmanned vehicles

has been extensively studied. The reader is referred to [12] for

an overview of the field. In particular, convex optimization and

convexification based technologies have been developed for more

than a decade now [2, 3], while newer 6-DoF (Degrees of Freedom)

formulations with attitude control have been studied in recent

years [10, 20, 21]. Lately we have also seen commercial usages of

these technologies on, for instance, SpaceX’s Falcon series reusable

rockets [5]. On a much smaller scale, consider quadrotors, systems

that are becoming increasingly ubiquitous in the world of cyber-

physical systems. Convexification-based real-time guidance are also

used in these agile systems [13, 22], which includes non-convex

obstacle avoidance constraints. A commonly used algorithmic par-

adigm in this line of work is the Successive Convexification (SCvx)
framework [14, 15]. It is an iterative procedure that solves opti-

mal control problems with nonlinear dynamics and non-convex

state and control constraints, and provides proofs of global conver-

gence and superlinear convergence rate. We will use SCvx as our
smooth optimization solver thanks to its good synergy with STL

specifications. More on this later.

The use of Signal Temporal Logic (STL) is often associated with

formal specification and monitoring of cyber-physical systems.

STL was originally developed in order to specify and monitor the

expected behavior of physical systems [11], including temporal con-

straints between events. STL allows the specification of properties

of finite-horizon, dense-time, real-valued signals, and the automatic

generation of monitors for testing these properties on individual

simulation traces. It has since been applied to the analysis of sev-

eral types of continuous and hybrid systems, including dynamical

systems where the continuous variables represent quantities like

position and velocity of a vehicle [18]. STL has the advantage of

naturally admitting quantitative semantics which, in addition to

the yes/no answer to the satisfaction question, provide a real num-

ber that grades the quality of the satisfaction or violation. Such

semantics have been defined to assess the robustness of systems

to parameter or timing variations [6]. It has also been used re-

cently [4] in the context of controller synthesis with reinforcement

learning to provide a reward associated to the formalized STL prop-

erties. STL as part of the Model Predictive Control (MPC) design

has also been studied in [18], in which the combinatorial nature of

such specifications is preserved, and thus Mixed-Integer Linear Pro-

gramming (MILP) has to be employed. More recently, for a specific

multi-quadrotor setting, [16] relaxes the robustness measures using

smooth approximations (log-sum-exponential functions) so that the

resulting problem can be solved by a smooth optimization solver. It,

however, has to employ a two-tier optimization framework because

the amount of computation is not real-time implementable.

1.2 Contributions
This paper presents a four-step solution to optimal control problems

with STL specifications within the SCvx framework. The novel

contributions of this work are threefold:

• The SCvx-STL solution method: To the best of our knowl-

edge, this is the first work to incorporate STL specified

mission requirements in the SCvx framework to solve op-

timal control problems. By combining the two, we ensure

continuous-time satisfaction of temporal logic specifications,

and also enjoy the benefit of guaranteed convergence and

real-time computation provided by SCvx.
• The “STL subdynamics”: By introducing auxiliary state

variables, we take advantage of the special recursive struc-

ture of robust STL semantics and transform the STL specified

state constraints into system dynamics. They can then be

convexified in the same way we treat system dynamics in

SCvx. This approach effectively creates STL subdynamics,

and dramatically reduces the complexity of gradient compu-

tation for STL constraints.

• The polynomial smooth min and max: We borrow the

concept of polynomial smooth min-/max- functions from

computer graphics to smooth our robust STL semantics.

Practically, it gives better approximation than the log-sum-

exponential smooth min-/max- functions used in [16], espe-

cially in the case of two variables, thanks to the aforemen-

tioned “STL subdynamics” step.

The paper is organized as follows. Section 2 presents the back-

ground and mathematical preliminaries of both the SCvx algorith-
mic framework and the STL semantics. Section 3 details the pro-

posed SCvx-STL solution method and the mathematical reasoning

behind it. Section 4 gives numerical results from a quadrotor trajec-

tory planning problem with STL specifications.

2 PRELIMINARIES
2.1 Successive Convexification
Successive Convexification (SCvx) [14, 15] is a family of iterative al-

gorithms designed to solve non-convex constrained optimal control

problems with nonlinear dynamics, usually in continuous-time. In

practice, a continuous-time optimal control problem has to be dis-

cretized, see Problem 1, before it can be solved using optimization

methods on a digital computer [9].

Problem 1. Discretized Optimal Control Problem

min

𝑢
𝐶 (𝑥,𝑢) B

𝑁∑︁
𝑖=1

𝜙 (𝑥𝑘 , 𝑢𝑘 ), (1a)

subject to:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ), 𝑘 = 1, 2, . . . , 𝑁 − 1, (1b)

𝑠 (𝑥𝑘 , 𝑢𝑘 ) ≤ 0, 𝑘 = 1, 2, . . . , 𝑁 , (1c)

𝑥𝑘 ∈ 𝑋𝑘 ⊆ R𝑛𝑥 , 𝑘 = 1, 2, . . . , 𝑁 , (1d)

𝑢𝑘 ∈ 𝑈𝑘 ⊆ R𝑛𝑢 , 𝑘 = 1, 2, . . . , 𝑁 − 1. (1e)

Here without loss of generality we can assume𝐶 (𝑥,𝑢) is a convex
function, because any non-convex part of the cost function can be

rewritten as constraints, i.e. absorbed into 𝑠 (𝑥,𝑢). 𝑥𝑘 and 𝑢𝑘 repre-

sent the state and control vectors at time instance 𝑘 . 𝑋𝑘 and𝑈𝑘 are

assumed to be convex and compact sets which include the bound-

ary conditions. Equation (1a) and (1b) represent the discrete-time

objective function and system dynamics respectively. Equation (1c)

includes the non-convex part of the state and control (input) con-

straints, while (1d) and (1e) are the convex ones. State and input
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constraints can model keep-out zones, physical limitations or any

other properties that can be expressed as suitable constraints.

SCvx solves the original non-convex problem, Problem 1, by

successively convexifying non-convex system dynamics and con-

straints with respect to the solution of a previous iteration, starting

from a possibly infeasible reference trajectory (𝑥 (0) , 𝑢 (0) ). The
resulting convex subproblems as in Problem 2 are numerically

tractable, and can be computed quickly and reliably using convex

optimization solvers, making the SCvx algorithm well suited for

real-time applications.

Problem 2. Convex Optimal Control Subproblem

min

𝑑,𝑤
𝐶 (𝑑,𝑤) + 𝜆 𝑃 (𝑖) (𝑑,𝑤),

s.t. 𝑢 (𝑖) +𝑤 ∈ 𝑈 , 𝑥 (𝑖) + 𝑑 ∈ 𝑋, ∥𝑤 ∥ ≤ 𝑟 (𝑖) ,

where 𝑑 B 𝑥 − 𝑥 (𝑖) , 𝑑𝑘 B 𝑥𝑘 − 𝑥
(𝑖)
𝑘

, 𝑤 B 𝑢 − 𝑢 (𝑖)
, and 𝑤𝑘 B

𝑢𝑘 − 𝑢
(𝑖)
𝑘

in terms of the solution to the current iteration, (𝑥,𝑢).
At the 𝑘𝑡ℎ time step, the first-order approximation of (1b) and (1c)

about (𝑥 (𝑖)
𝑘

, 𝑢
(𝑖)
𝑘

) is given by

𝑥
(𝑖)
𝑘+1 + 𝑑𝑘+1 = 𝑓 (𝑥 (𝑖)

𝑘
, 𝑢

(𝑖)
𝑘

) +𝐴
(𝑖)
𝑘

𝑑𝑘 + 𝐵
(𝑖)
𝑘

𝑤𝑘 , (2a)

𝑠 (𝑥 (𝑖)
𝑘

, 𝑢
(𝑖)
𝑘

) + 𝑆
(𝑖)
𝑘

𝑑𝑘 +𝑄 (𝑖)
𝑘

𝑤𝑘 ≤ 0, (2b)

where 𝐴
(𝑖)
𝑘

, 𝐵
(𝑖)
𝑘

, 𝑆
(𝑖)
𝑘

and𝑄
(𝑖)
𝑘

are the respective partial derivatives.

𝑃 (𝑖) (·, ·) is the penalty function associated with (2a) and (2b), while

𝜆 > 0 is the penalty weight. 𝑟 (𝑖) is the trust region radius. For

more information on the significance of these functions to the

convergence and how the trust region updating mechanism works,

the reader is referred to [14], in which the advantages of SCvx over
other generic nonlinear programming methods are also discussed.

To summarize, we have the SCvx algorithm shown as Algorithm 1.

Algorithm 1 The SCvx Algorithm

1: procedure SCvx((𝑥 (1) , 𝑢 (1) ), 𝜆, 𝜖𝑡𝑜𝑙 )
2: input Randomly generate an initial trajectory (𝑥 (1) , 𝑢 (1) ).

Initialize trust region radius 𝑟 (1) > 0 and penalty weight 𝜆 > 0.

3: while not converged, i.e. cost reduction > 𝜖𝑡𝑜𝑙 do
4: step 1At (𝑖+1)𝑡ℎ succession, solve the convex subprob-

lem, Problem 2, at (𝑥 (𝑖) , 𝑢 (𝑖) , 𝑟 (𝑖) ) to get an optimal solution

(𝑑,𝑤).
5: step 2 Update the trust region radius, see [14]. Based

on the trust region rules, either recompute with the updated

trust region, or accept the solution (𝑑,𝑤) and assign 𝑥 (𝑖+1) =
𝑥 (𝑖) + 𝑑,𝑢 (𝑖+1) = 𝑢 (𝑖) +𝑤 and loop back to step 1.

6: end while
7: return (𝑥 (𝑖+1) , 𝑢 (𝑖+1) ).
8: end procedure

2.2 Signal Temporal Logics
Formal characterization of mission requirements can be expressed

as logical statements over states. While first order logic can be

typically used to describe state constraints, properties over trajec-

tories can be expressed using temporal logics such as LTL (Linear

temporal logics). These notions have been extended to bounded-

horizon continuous-time signals in the form of Signal Temporal
Logics (STL) and are convenient to express expected behavior of

dynamic systems. STL formulas are described using the grammar:

𝜑 ::= 𝜋𝜇 | ¬𝜓 | 𝜑1 ∧ 𝜑2 | ♢[𝑎,𝑏 ] 𝜑 | 𝜑1U[𝑎,𝑏 ] 𝜑2,

where 𝜋𝜇 is an Boolean predicate whose truth value is determined

by the sign of a real-valued function 𝜇, and 𝜑, 𝜑1, 𝜑2,𝜓 are STL

formulas. As in LTL, ♢[𝑎,𝑏 ] andU[𝑎,𝑏 ] denote the eventually and

until modalities, respectively, with a restriction to a given time

frame [𝑎, 𝑏] with 𝑎 < 𝑏. A simulation run 𝜉 (𝑥0, 𝑢) satisfies an STL

formula 𝜑 is denoted by 𝜉 |= 𝜑 .

Informally, we have Eventually denoted as 𝜉 |= ♢[𝑎,𝑏 ] 𝜑 , meaning

𝜑 holds at some time between 𝑎 and 𝑏. Also, we have Until denoted
as 𝜉 |= 𝜑U[𝑎,𝑏 ] 𝜓 , meaning 𝜑 holds at every time before 𝜓 holds,

and𝜓 holds at some time between 𝑎 and 𝑏. Additionally, we define

Always as □[𝑎,𝑏 ] 𝜑 = ¬ ♢[𝑎,𝑏 ] (¬𝜑), so that 𝜉 |= □[𝑎,𝑏 ] 𝜑 means 𝜑

holds at all times between 𝑎 and 𝑏.

The formal semantics of a formula 𝜑 with respect to a run 𝜉 is

defined inductively as in Definition 2.1.

Definition 2.1 (STL semantics).
𝜉 |= 𝜑 ⇔ (𝜉, 𝑡0) |= 𝜑

(𝜉, 𝑡𝑘 ) |= 𝜋𝜇 ⇔ 𝜇 (𝑥𝑘 ,𝑢𝑘 ) > 0

(𝜉, 𝑡𝑘 ) |= ¬𝜓 ⇔ ¬(𝜉, 𝑡𝑘 ) |= 𝜓

(𝜉, 𝑡𝑘 ) |= 𝜑 ∧𝜓 ⇔ (𝜉, 𝑡𝑘 ) |= 𝜑 ∧ (𝜉, 𝑡𝑘 ) |= 𝜓

(𝜉, 𝑡𝑘 ) |= ♢[𝑎,𝑏 ] 𝜑 ⇔ ∃ 𝑡𝑘′ ∈ [𝑡𝑘 + 𝑎, 𝑡𝑘 + 𝑏 ], (𝜉, 𝑡𝑘′ ) |= 𝜑

(𝜉, 𝑡𝑘 ) |= 𝜑 U[𝑎,𝑏 ] 𝜓 ⇔ ∃ 𝑡𝑘′ ∈ [𝑡𝑘 + 𝑎, 𝑡𝑘 + 𝑏 ], (𝜉, 𝑡𝑘′ ) |= 𝜓

∧ ∀ 𝑡𝑘′′ ∈ [𝑡𝑘 , 𝑡𝑘′ ], (𝜉, 𝑡𝑘′′ ) |= 𝜑.

A key challenge here is to efficiently relate logical specifications

with optimal control. Robust semantics of STL [6] amounts to char-

acterize a real-valued function 𝜌𝜑 of signal 𝜉 and time 𝑡 such that

𝜌𝜑 (𝜉, 𝑡) > 0 ⇒ (𝜉, 𝑡) |= 𝜑 . That is, 𝜌𝜑 serves as a robustness mea-

sure and its absolute value can be viewed as the signed distance of 𝜉

from the set of trajectories in the space of projections with respect

to the function 𝜇 that define the predicates of 𝜑 . The robustness

function can also be defined recursively as in Definition 2.2.

Definition 2.2 (Robust STL semantics).

𝜌𝜋
𝜇 (𝜉, 𝑡𝑘 ) = 𝜇 (𝑥𝑘 ,𝑢𝑘 )

𝜌¬𝜓 (𝜉, 𝑡𝑘 ) = − 𝜌𝜓 (𝜉, 𝑡𝑘 )
𝜌𝜑1∧𝜑2 (𝜉, 𝑡𝑘 ) = min (𝜌𝜑1 (𝜉, 𝑡𝑘 ), 𝜌𝜑2 (𝜉, 𝑡𝑘 ))
𝜌𝜑1∨𝜑2 (𝜉, 𝑡𝑘 ) = max (𝜌𝜑1 (𝜉, 𝑡𝑘 ), 𝜌𝜑2 (𝜉, 𝑡𝑘 ))

𝜌
♢[𝑎,𝑏 ] 𝜓 (𝜉, 𝑡𝑘 ) = max

𝑡𝑘′∈[𝑡𝑘+𝑎,𝑡𝑘+𝑏 ]
𝜌𝜓 (𝜉, 𝑡𝑘′ )

𝜌
𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝜉, 𝑡𝑘 ) = max

𝑡𝑘′∈[𝑡𝑘+𝑎,𝑡𝑘+𝑏 ]
min

(
𝜌𝜑2 (𝜉, 𝑡𝑘′ ),

min

𝑡𝑘′′∈[𝑡𝑘 ,𝑡𝑘′ ]
𝜌𝜑1 (𝜉, 𝑡𝑘′′ )

)
.

Temporal operators (e.g. max𝑡𝑘′ ∈[𝑡𝑘+𝑎,𝑡𝑘+𝑏 ] ) are treated as con-

junctions or disjunctions along the time axis once discretized for

computation on digital computers.

An example optimal control problem with robust STL specifica-

tions can be written as follows, in Problem 3.
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Problem 3. Optimal Control with Robust STL Specs

min

𝑢
𝐶 (𝑥,𝑢)

s.t. 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ), 𝑘 = 1, 2, . . . , 𝑁 − 1,

𝑥𝑘 ∈ 𝑋𝑘 , 𝑢𝑘 ∈ 𝑈𝑘 , 𝑘 = 1, 2, . . . , 𝑁 ,

𝜌𝜑 (𝑥) ≥ 0.

(3)

Unfortunately as shown in Definition 2.2, 𝜌𝜑 is mainly built

using min- and max- operators leading to difficult combinatorial

problems, which necessitates the use of Mixed-Integer Program-

ming solvers [18]. A smooth (infinitely differentiable) approxima-

tion of these function has been proposed [16] and the solution is to

straightforwardly substitute min- and max- functions in 𝜌𝜑 with

log-sum-exponential functions:

˜max𝑘 (𝑎1, . . . , 𝑎𝑛) :=
1

𝑘
ln(𝑒𝑘𝑎1 + . . . + 𝑒𝑘𝑎𝑚 ),

m̃in𝑘 (𝑎1, . . . , 𝑎𝑛) := − ˜max𝑘 (−𝑎1, . . . ,−𝑎𝑛) .
(4)

Despite the improved run-time from the smooth operators, ex-

periments reported [16] were not successful to solve (3) with this

smooth robust STL semantics, efficiently, in real-time, for a multi-

drone fleet trajectory planning problem using the full quadrotor

dynamics. It uses a two-tier sampling method instead.

One obvious drawback of this straightforward smoothingmethod

is that the gradient calculation will quickly getting out of hand

when the elemental STL specification, such as 𝜌𝜑1 (𝜉, 𝑡𝑘′′) in the

formula for the Until operator 𝜌𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝜉, 𝑡𝑘 ), is moderately

complex. Therefore, it is of great interest to explore other ways to

systematically encode and smooth the robust STL semantics.

3 THE SCVX-STL METHOD
In this section, we will present the SCvx-STL method that system-

atically encodes and smooths the robust STL specifications 𝜌𝜑 (𝑥)
in Problem 3. The first step is to follow the discretization procedure

described in section 2.1 and the robustification procedure described

in section 2.2 and obtain Problem 3.

3.1 STL subdynamics
Once we have established Problem 3 as our main problem to solve,

the next step is to take a closer look at the temporal specifications

we are trying to encode, namely the Eventually 𝜌♢[𝑎,𝑏 ] 𝜓 (𝜉, 𝑡𝑘 ) and
the Until 𝜌𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝜉, 𝑡𝑘 ).

3.1.1 The Eventually operator ♢[𝑎,𝑏 ] . Notice that with the dis-

cretized state and control variables, we can denote the first and last

time instance for 𝑡𝑘′ ∈ [𝑡𝑘 + 𝑎, 𝑡𝑘 + 𝑏] as 𝑘 (𝑎) and 𝑘 (𝑏) respectively.
Additionally, we define the set of instances in between 𝑘 (𝑎) and
𝑘 (𝑏) as K B {𝑘 (𝑎) , 𝑘 (𝑎) + 1, . . . , 𝑘 (𝑏) }. Then, we have

𝜌♢[𝑎,𝑏 ] 𝜓 (𝑥, 𝑘) = max

𝑘′∈K
𝜌𝜓 (𝑥, 𝑘 ′)

We can then introduce an auxiliary variable𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑘 , . . . , 𝑦𝑁 ]
as follows.

𝑦𝑘 = 𝜌𝜓 (𝑥, 𝑘 (𝑎) ), ∀ 1 ≤ 𝑘 ≤ 𝑘 (𝑎) ,

𝑦𝑘+1 = max

(
𝑦𝑘 , 𝜌

𝜓 (𝑥, 𝑘 + 1)
)
, ∀𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) ,

𝑦𝑘 = 𝑦𝑘 (𝑏) , ∀𝑘 (𝑏) < 𝑘 ≤ 𝑁 .

Given 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) from the system dynamics, we have

𝜌𝜓 (𝑥, 𝑘 + 1) = 𝜌𝜓 (𝑓 (𝑥𝑘 , 𝑢𝑘 )) B 𝜌𝜓 (𝑥𝑘 , 𝑢𝑘 ).

Hence, for 𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) , we have

𝑦𝑘+1 = max

(
𝑦𝑘 , 𝜌

𝜓 (𝑥𝑘 , 𝑢𝑘 )
)
B 𝑓𝑦 (𝑦𝑘 , 𝑥𝑘 , 𝑢𝑘 ), (5)

which is recursively defined, and thus 𝑦 can be treated as a state

variable, whose corresponding dynamical equation is exactly (5)

for 𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) .

3.1.2 The Until operator U[𝑎,𝑏 ] . Similar considerations can be

taken for the Until operator, albeit more complex. In additon to

the same notation for 𝑘 (𝑎) , 𝑘 (𝑏) and K , we also define of all time

instances in between 𝑡𝑘 and 𝑡𝑘′ as K ′
, and all time instances in

between 𝑡𝑘 and 𝑡𝑘 (𝑎) as K (𝑎)
. Then we can rewrite the formula for

the Until operator as

𝜌𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝑥, 𝑘) = max

𝑘′∈K
min

(
𝜌𝜑2 (𝑥, 𝑘 ′), min

𝑘′′∈K′
𝜌𝜑1 (𝑥, 𝑘 ′′)

)
.

First, we introduce an auxiliary variable 𝜁 = [𝜁1, 𝜁2, . . . , 𝜁𝑘 , . . . , 𝜁𝑁 ]
as follows.

𝜁𝑘 = min𝑘′′∈K (𝑎) 𝜌
𝜑1 (𝑥, 𝑘 ′′), ∀ 1 ≤ 𝑘 ≤ 𝑘 (𝑎) ,

𝜁𝑘+1 = min

(
𝜁𝑘 , 𝜌

𝜑1 (𝑥, 𝑘 + 1)
)
, ∀𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) ,

𝜁𝑘 = 𝜁𝑘 (𝑏) , ∀𝑘 (𝑏) < 𝑘 ≤ 𝑁 .

Similarly, given 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) from the system dynamics, we

have

𝜌𝜑1 (𝑥, 𝑘 + 1) = 𝜌𝜑1 (𝑓 (𝑥𝑘 , 𝑢𝑘 )) B 𝜌𝜑1 (𝑥𝑘 , 𝑢𝑘 ) .
Hence, for 𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) , we have

𝜁𝑘+1 = min

(
𝜁𝑘 , 𝜌

𝜑1 (𝑥𝑘 , 𝑢𝑘 )
)
B 𝑓𝜁 (𝜁𝑘 , 𝑥𝑘 , 𝑢𝑘 ), (6)

which is recursively defined, and thus 𝜁 can be treated as a state

variable, whose corresponding dynamical equation is exactly (6)

for 𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) .
Next, for the outer max function, we introduce another auxiliary

variable 𝜂 = [𝜂1, 𝜂2, . . . , 𝜂𝑘 , . . . , 𝜂𝑁 ] as follows.
𝜂𝑘 = min

(
𝜌𝜑2 (𝑥, 𝑘 (𝑎) ), 𝜁𝑘

)
, ∀ 1 ≤ 𝑘 ≤ 𝑘 (𝑎) ,

𝜂𝑘+1 = max

(
min

(
𝜌𝜑2 (𝑥, 𝑘 + 1), 𝜁𝑘+1

)
, 𝜂𝑘

)
, ∀𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) ,

𝜂𝑘 = 𝜂𝑘 (𝑏) , ∀𝑘 (𝑏) < 𝑘 ≤ 𝑁 .

Given 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) from the system dynamics, we have

𝜌𝜑2 (𝑥, 𝑘 + 1) = 𝜌𝜑2 (𝑓 (𝑥𝑘 , 𝑢𝑘 )) B 𝜌𝜑2 (𝑥𝑘 , 𝑢𝑘 ) .

Combined with the dynamics for 𝜁 (6), we have for 𝑘 (𝑎) < 𝑘 < 𝑘 (𝑏) ,

𝜂𝑘+1 = max

(
min

(
𝜌𝜑2 (𝑥𝑘 , 𝑢𝑘 ), 𝑓𝜁 (𝜁𝑘 , 𝑥𝑘 , 𝑢𝑘 )

)
, 𝜂𝑘

)
B 𝑓𝜂 (𝜂𝑘 , 𝜁𝑘 , 𝑥𝑘 , 𝑢𝑘 ), (7)

Note that the dynamical time window from 𝑘 (𝑎) to 𝑘 (𝑏) for each
STL specification can be different, and they are all relative to their

respective starting time 𝑡𝑘 . Therefore, the above formulation also

applies to nested STL specifications. For example, 𝜌𝜓 (𝜉, 𝑡𝑘′) in the

Eventually formula can be anUntil specification 𝜌𝜑1 U[𝑎′,𝑏′ ] 𝜑2 (𝜉, 𝑡𝑘′)
starting from 𝑡𝑘′ . One just need to adjust the dynamical time win-

dow for the associated auxiliary state variable(s) accordingly.



SCvx for Optimal Control with STL HSCC ’22, May 4–6, 2022, Milan, Italy

Assuming both the Eventually and theUntil operators are present,
we may append the auxiliary states 𝑦, 𝜁 and 𝜂 to the original state

variable 𝑥 and obtain a new state variable

𝑧 =


𝑥

𝑦

𝜁

𝜂

 and 𝑧𝑘+1 = 𝑓𝑧 (𝑧𝑘 , 𝑢𝑘 ) =


𝑓 (𝑥𝑘 , 𝑢𝑘 )

𝑓𝑦 (𝑦𝑘 , 𝑥𝑘 , 𝑢𝑘 )
𝑓𝜁 (𝜁𝑘 , 𝑥𝑘 , 𝑢𝑘 )

𝑓𝜂 (𝜂𝑘 , 𝜁𝑘 , 𝑥𝑘 , 𝑢𝑘 )

 . (8)

We call the dynamics for the auxiliary variables 𝑦, 𝜁 and 𝜂 (5), (6),

and (7) “STL subdynamics”, since they correspond to the subvector

of the last three lines in (8).

To replace the STL specified state constraints with these newly

defined dynamical equations, one just need to add a simple convex

state constraint with respect to the associated auxiliary variable, to

ensure the robust satisfaction of the original constraints. Use the

Until operator as an example, we have

Problem 4. Optimal Control with the Until Specifications

min

𝑢
𝐶 (𝑥,𝑢)

s.t. 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ),

𝜌𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝑥, 𝑘) ≥ 0.

(9)

Problem 5. Optimal Control with the Until Subdynamics

min

𝑢
𝐶 (𝑥,𝑢)

s.t. 𝑧𝑘+1 = 𝑓𝑧 (𝑧𝑘 , 𝑢𝑘 ),
𝜂𝑘 (𝑏) ≥ 0.

(10)

and the following theorem:

Theorem 3.1. Problem 4 and Problem 5 are equivalent.

Proof. Directly from the reasoning in Section 3.1.2. □

One clear advantage of using this transformation is the dramatic

simplification of gradient computation when doing convexification

in (2a) and (2b). Previously, the temporal specification is over a time

window, which could include a large number of sampling instances.

Since one needs to apply the chain rule to calculate the gradient, too

many terms will make the gradient formula very difficult to obtain.

In contrast, the “STL subdynamics” approach exploits the recursive

structure of the STL semantics, and temporally group all the terms

together in the same form (the auxiliary subdynamics). Additionally,

by appending the original state vector, we are essentially solving

the same problem as vanilla SCvx does, just with an expanded state

space, which also makes implementation much easier.

3.2 Polynomial smooth min smin()
Now that we have transformed the STL specified constraints into

subdynamics, the next step is to make the corresponding dynamical

equations smooth so that we can apply SCvx to solve. Note that

in (5), (6), and (7), we still have non-differentiable min- or max-

functions. One can certainly use the log-sum-exponential function

in (4) to approximate these min-/max- functions, but this approach

is usually not accurate around non-differentiable points, especially

with only two variables, which is exactly the case we have on hand.

To solve this problem, we use the polynomial smooth min function

smin(𝑎, 𝑏, 𝑘) defined as

smin(𝑎, 𝑏, 𝑘) =


𝑎, if 𝑎 − 𝑏 ≥ 𝑘 ,

𝑏, if 𝑎 − 𝑏 ≤ −𝑘 ,
𝑔(𝑎, 𝑏, 𝑘), if 𝑎 − 𝑏 ∈ (−𝑘, 𝑘),

(11)

where 𝑔(𝑎, 𝑏, 𝑘) is a smooth interpolator, and 𝑘 > 0 controls the

interpolation range. The idea of this smin() function is simple: we

want to smoothly interpolate the values a and b if they are close

to each other (i.e. 𝑎 − 𝑏 ∈ (−𝑘, 𝑘)), otherwise we return the true

minimum. A polynomial smooth interpolator function is given

in [19] with a a rather simple derivation:

𝑔(𝑎, 𝑏, 𝑘) = 𝑎(1 − ℎ) + ℎ𝑏 − 𝑘ℎ(1 − ℎ), (12)

where ℎ = 1

2
+ 𝑎−𝑏

2𝑘
. One can easily verify that with this 𝑔(𝑎, 𝑏, 𝑘)

in (12), the smin() function in (11) is continuously differentiable.

To the authors knowledge, this concept of polynomial smooth

min function goes back to a blog post decade ago [17], though

both [17] and [19] use it on smoothing the edges in computer

graphics applications. The authors have not seen this technique

been used in optimization settings, probably due to the limitation of

only accepting two variables. However, it lends itself perfectly for

smoothing the STL subdynamics, because we only need to calculate

the min or max of two values at a time thanks to the recursive

nature of dynamical equations.

3.3 Solving with SCvx
In (5), (6), and (7), replace the min operator with smin() and the

max operator with −smin(). Denoting the resulting smooth dy-

namics as
˜𝑓𝑦 (), ˜𝑓𝜁 (), ˜𝑓𝜂 () and ˜𝑓𝑧 (), we arrive at the optimal control

problem with smooth STL subdynamics, Problem 6 (Using Until as
an example again).

Problem 6. Optimal Control with Smooth Subdynamics
min

𝑢
𝐶 (𝑥,𝑢)

s.t. 𝑧𝑘+1 = ˜𝑓𝑧 (𝑧𝑘 , 𝑢𝑘 ),
𝜂𝑘 (𝑏) ≥ 0.

(13)

This problem is now finally ready to be solved by the SCvx
algorithm. Therefore, we summarize the entire SCvx-STL solution

method as a high-level Algorithm 2.

Algorithm 2 The SCvx-STL Algorithm

1: procedure SCvx-STL(Problem 1 with an Until specification)
2: step 1 Use robust Until semantics in Definition 2.2 to obtain

a real-valued problem, Problem 4.

3: step 2 Follow the steps in section 3.1 to transform STL

specified constraints into STL subdynamics (8), and thus obtain

Problem 5.

4: step 3 Smooth the STL subdynamics with polynomial

smooth min function smin() in (11) and obtain the smooth

optimal control problem, Problem 6.

5: step 4 Solve Problem 6 with the SCvx algorithm, Algo-

rithm 1, and obtain the final result.

6: end procedure
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4 NUMERICAL RESULTS
In this section, we use a quadrotor obstacle avoidance problem to

preliminarily demonstrate the capability of the proposed SCvx-STL
algorithm. The non-convexity of this problem stems from cylindri-

cal obstacle keep-out zones (see Figure 1), nonlinear aerodynamic

drag, and the Until specified STL constraints.
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Figure 1: A perspective view of the problem setup.
The obstacles are represented by the black cir-
cles. The red dots and blue lines represent the
time discretized positions and thrust vectors, re-
spectively. The green dots represent the initial
trajectory (i.e., a straight line). The motion of the
vehicle is from left to right.

The physical parameters for this numerical experiment closely

follows [14], with the exception of STL related parameters and

constraints. For a detailed description of the physical model and

the problem/parameters setup, the reader is referred to [14].

The STL specified requirement we choose to simulate in this

experiment is an Until statement: “Do not get in certain range of

the destination Until a thrust reducing maneuver has been per-

formed within a time window.” This is a typical requirement for

close proximity operations. This translate to 𝜌𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝑥, 𝑡0) ≥ 0.

Here 𝜌𝜑1 (𝑥,𝑢) = ∥𝑥 − 𝑥 𝑓 ∥ − 𝑅 and 𝜌𝜑2 (𝑥,𝑢) = 𝑇𝑟 − ∥𝑢∥, and 𝑅

is the keep-out range, while 𝑇𝑟 is the reduced thrust limit. The

value of these parameters selected for this experiment is as follows.

𝑎 = 0(𝑠), 𝑏 = 2.4(𝑠), 𝑅 = 3(𝑚) and 𝑇𝑟 = 𝑇max/2.
Algorithm 2 was implemented in MATLAB using CVX [8] and the

SDPT3 [23] solver. For onboard real-time computation, one might

want to use customized convex optimization solvers that make use

of the problem structures. For example, the solver in [7] generates

aggressive quadrotor guidance trajectories onboard at rates exceed-

ing 8 Hz. It takes around 22 successful outer iterations to converge

for this experiment, which just adds a few more iterations to the

one in [14]. Not a bad trade-off for including an STL requirement.

Figure 2 shows the top view of the converged trajectory, as

well as thrust profiles (both tilt and magnitude). The converged

trajectory is feasible in the physical space as shown in the figure.

Note that a clear thrust reducing maneuver is performed around

time 2.2s, which is within the preset time window [0, 2.4s]. One can

clearly observe the differences in the thrust magnitude between

here in Figure 2 and the one in [14], which is exactly the effect of

the additional STL requirement.

Figure 3 shows the robust measures of 𝜌𝜑1
and 𝜌𝜑2

. One can

easily see that 𝜌𝜑1
holdsUntil 𝜌𝜑2

holds, which verifies the temporal

requirement 𝜌𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝑥, 𝑡0) ≥ 0 for this experiment.

SCvx_Traj-Tilt-Thrust.png

Figure 2: Converged trajectory and thrust pro-
file. Feasibility in physical space and in terms of
temporal requirement is validated.

Figure 3: STL robustmeasures of 𝜌𝜑1 and 𝜌𝜑2 . The
pattern verifies 𝜌𝜑1 U[𝑎,𝑏 ] 𝜑2 (𝑥, 𝑡0) ≥ 0.
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