
Elimination (a,b)-trees with fast, durable updates
Anubhav Srivastava

anubhav.srivastava@uwaterloo.ca
University of Waterloo

Waterloo, Canada

Trevor Brown∗
trevor.brown@uwaterloo.ca

University of Waterloo
Waterloo, Canada

Abstract
Many concurrent dictionary implementations are designed
and optimized for read-mostly workloads with uniformly
distributed keys, and often perform poorly on update-heavy
workloads. In this work, we first present a concurrent (a,b)-
tree, the OCC-ABtree, which outperforms its fastest com-
petitor by up to 2x on uniform update-heavy workloads,
and is competitive on other workloads. We then turn our
attention to skewed update-heavy workloads (which feature
many inserts/deletes on the same key) and introduce the
Elim-ABtree, which features a new optimization called pub-
lishing elimination. In publishing elimination, concurrent
inserts and deletes to a key are reordered to eliminate them.
This reduces the number of writes in the data structure. The
Elim-ABtree achieves up to 2.5x the performance of its fastest
competitor (including the OCC-ABtree). The OCC-ABtree
and Elim-ABtree are linearizable. We also introduce durable
linearizable versions1 for systems with Intel Optane DCPMM
non-volatile main memory that are nearly as fast.

CCSConcepts: •Theory of computation→Concurrent
algorithms.

Keywords: Concurrent data structures, optimistic concur-
rency, elimination, B-trees

1 Introduction
The (ordered) dictionary is one of the most fundamental
abstract data types. It stores a set of keys, each of which
has an associated value, and provides operations to insert a
key and value, remove a key, and find the value associated
with a key. Sometimes dictionaries also support predecessor,
successor, and range query operations.

∗Corresponding author
1Technically, we show that our data structures satisfy a stronger correctness
condition called strict linearizability [3].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/02.
https://doi.org/10.1145/3503221.3508441

Concurrent dictionary implementations in the literature
typically focus on maximizing performance under low con-
tention read-mostly workloads, with less attention paid to
performance under update-heavy workloads and high con-
tention workloads. In this paper, we study the question
of how to scale these challenging workloads, ideally with-
out sacrificing performance in the read-mostly workload.
Update-heavy workloads are particularly difficult to scale
when there is a lot of memory contention. To generate high
contention, we study Zipfian access distributions, in which
the frequency of a key being accessed is inversely propor-
tional to its rank. That is, the 𝑘th most frequent key is re-
quested with probability proportional to 1/𝑘𝑠 , where 𝑠 is a
parameter controlling the skew of the distribution.

The advantages of concurrent B-trees over binary search
trees, including better cache locality, are well known. Our
new data structures presented in this paper are (a,b)-trees,
which are a variant of B-trees that allow between 𝑎 and 𝑏
keys per node (for 𝑎 ≤ 𝑏/2). Our trees are based on the (non-
concurrent) relaxed (a,b)-tree of Larsen and Fagerberg [35].
Relaxed (a,b)-trees are more concurrency friendly than B-
trees. They break insert and delete operations, and any sub-
sequent rebalancing, into multiple sub-operations (each of
which modifies at most four nodes). As long as each sub-
operation is atomic, the relaxed (a,b)-tree’s structure and
balance properties are maintained. Implementing these sub-
operations atomically requires less synchronization than im-
plementing traditional (sequential) B-tree operations atomi-
cally, since B-tree operations must sometimes rebalance an
entire root-to-leaf path.

Relaxed (a,b)-trees have been implemented in a concurrent
setting before [5, 11, 12], but the overheads of existing im-
plementations are high, and they perform poorly in update-
heavy workloads. Our first new data structure, an optimistic
concurrency control (a,b)-tree (OCC-ABtree), uses mostly
known techniques to avoid the main sources of overhead
in those implementations: unnecessary node copying and
key sorting in leaves, and various overheads introduced by
lock-free synchronization primitives.

The main challenge of creating a concurrent relaxed (a,b)-
tree is guaranteeing that sub-operations occur atomically,
and that searches are correct. The OCC-ABtree uses fine-
grained versioned locks to achieve the former, and version
based validation in leaf nodes for the latter. This locking tech-
nique is somewhat similar to OPTIK [22] and the optimistic

ar
X

iv
:2

11
2.

15
25

9v
1 

 [
cs

.D
C

] 
 3

1 
D

ec
 2

02
1

https://doi.org/10.1145/3503221.3508441


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

validation of the AVL tree of Bronson et al. [10]. As our exper-
iments show, the OCC-ABtree outperforms many state-of-
the-art data structures on both read-mostly and update-heavy
workloads. However, like its competitors, its performance
degrades as contention increases.
To optimize for high-contention workloads, we take in-

spiration from another data structure that tackles extremely
high contention: elimination stacks [32]. In an elimination
stack, whenever a thread experiences contention while ac-
cessing the stack, it attempts to synchronize directly with
another thread performing the opposite operation (push/pop)
to complete both operations without accessing the stack.
Our second new data structure, the Elim-ABtree, uses a

new type of elimination called publishing elimination. This
is a primary contribution in this work. In publishing elim-
ination, threads that modify a leaf place a record of their
modification in the leaf itself. Other threads can then use
this record to return from their operation without having to
modify the data structure. In traditional elimination, pairs of
threads rendezvous and eliminate each others’ operations. In
publishing elimination, many threads can use a single record
in a leaf to eliminate their own operations. The Elim-ABtree
is significantly faster than the OCC-ABtree (and prior work)
in high contention workloads.
Publishing elimination is especially enticing in systems

with Intel Optane (DCPMM) persistent main memory, be-
cause fewer flushes and high-latency fence instructions are
needed. We present durably linearizable [34] implementa-
tions of the OCC-ABtree and Elim-ABtree. This requires
minor modifications to the code to add flushing and fencing
as appropriate to ensure that each update appears to occur
atomically in persistent memory. The resulting persistent
trees are only slightly slower than their volatile counter-
parts, offering persistence at nearly the speed of in-memory
computing.

Contributions. (1)We present two novel algorithms: OCC-
ABtree and Elim-ABtree which outperform the state-of-the-
art in many workloads. (2) We introduce a novel publishing
elimination algorithm that is optimized for our data struc-
tures. (3) We add persistence to our trees, and present ex-
periments that show the overhead of persistence is low. (4)
Our algorithms have strong theoretical properties: deadlock-
freedom, linearizability (for the volatile trees) and durable
linearizability (for the persistent trees), and can be modified
to guarantee logarithmic height bounds with some overhead.

2 Related work
We briefly survey the state-of-the-art in concurrent ordered
dictionaries and contrast with our techniques. We experi-
mentally compare with the bolded data structures.
Binary search trees. Ellen et al. [26] introduced the first
lock-free external BST. Searches are implemented the same
way as in a sequential BST. An update operation searches

for a target node to modify, then synchronizes by flagging or
marking nodes to indicate that they will be modified. Other
updates that encounter these flags or marks will help the
operation complete, guaranteeing lock-free progress. Natara-
jan and Mittal [45] improved upon this design by flagging/-
marking edges instead of nodes, and reducing the amount of
memory allocated per update operation (NM14).
Bronson et al. [10] propose a partially external balanced

BST (BCCO10) that uses optimistic concurrency control
to synchronize threads. They introduce a complex hand-
over-hand version number based validation technique to
implement fast searches. Our synchronization technique for
updates is somewhat similar to BCCO10, but our searches
avoid the complexity of Bronson’s hand-over-hand valida-
tion transactions. BCCO10 has previously been shown to
be the fastest concurrent BST in search-dominated work-
loads [6].
David et al. [22] propose a set of rules for optimizing

concurrent data structures. They apply these rules to design a
straightforward, efficient lock-based external BST (DGT15).
Brown et al. [13] introduced wait-free synchronization

primitives (LLX and SCX), used them to implement a template
for lock-free trees, and used the template to produce a (bal-
anced) chromatic tree [14]. Several other concurrent BST
algorithms have also been proposed [33, 46, 49].
B-tree variants. Brown used the aforementioned template
to design a lock-free (a,b)-tree (LF-ABtree) [11], based on
the same relaxed (a,b)-tree as our OCC-ABtree [35]. Update
operations take a read-copy-update approach: inserting or
deleting a key involves replacing a tree node with a new
copy. The LF-ABtree has been shown to be substantially
faster than NM14 and BCCO10, which are among the fastest
BSTs [15]. As our experiments show, our trees significantly
outperform the LF-ABtree in many workloads.
Braginsky and Petrank introduced the first lock-free, lin-

earizable B+tree [9]. Each node contains a lock-free linked
list of entries implemented using arrays. Each entry is a
key-value pair stored in the same word.
The Bw-Tree is a lock-free variant of a B+tree that is

designed to achieve high performance under realistic work-
loads [40]. Many of the design decisions made in the Bw-Tree
are focused onworkloads that do not fit inmemory, and incur
significant overhead. Our experiments include an optimized
variant of the Bw-Tree called the OpenBw-Tree [55].

The BzTree [7] simplifies the implementation of the Bw-
Tree by using a multi-word compare-and-swap (MwCAS),
and results in the paper suggest it is faster than the BwTree.
Guerraroui et al. introduced a faster MwCAS algorithm and
used it to accelerate the BzTree. The BzTree can also be made
persistent by using a persistent MwCAS.
Concurrent tries. Tries are an alternative to B-trees for im-
plementing concurrent (ordered) dictionaries. TheMasstree [43]
and the Adaptive Radix Tree with optimistic lock coupling



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

(OLC-ART) [37, 38] both use optimistic concurrency control
techniques. In both, operations are accelerated using SIMD
instructions. However, they are not strictly comparison-
based, and they require the programmer to serialize keys to
be binary comparable. This extra data marshalling is tedious
and can add overhead. Additionally, the shape and depth of
the trees are determined by the key distribution, not by the
number of keys they contain.2 We compare with ART with
optimistic lock coupling. ART with optimistic lock coupling
has been shown to be faster than Masstree [38].
Distribution/contention aware data structures. There
has been also some work on data structures that are designed
to accommodate non-uniform distributions. The concurrent
interpolation search tree (C-IST) of Brown et al. [15] pro-
vides doubly-logarithmic runtime for smooth distributions.
However, its updates are slow.

The splay tree [52] is a popular sequential data structure
that adapts to non-uniform distributions. After searching for
a key, the splay tree performs rotations to move the node
containing the key to the root. This reduces future access
time for searches on the same key but also introduces a point
of contention at the root, which makes the splay tree un-
suitable for concurrent use. The CBTree [2] is a concurrent
splay tree-like data structure which uses counting to perform
splaying only after a significant number of searches/updates
have accessed a node, effectively amortizing the cost of the
splay over many operations.

The Splay-List [4] is a concurrent variant of a SkipList [48]
that splays by increasing the height of frequently-accessed
keys. Like the CBTree, it uses a counter-based approach to
amortize the cost of the splaying.
The contention adapting search tree (CATree) [50] is a

variant of an external search tree with binary internal nodes.
Each external node is a sequential dictionary data structure,
protected by a lock. AVL trees were used as the sequential
dictionary in the authors’ experiments, as well as our own.
The authors approximate contention at each external node
by measuring how often a lock is already acquired when a
thread attempts to acquire it. When sufficient contention is
detected at a node, the sequential data structure is split into
two and an internal node connecting them is linked into the
tree. Similarly, two adjacent sequential data structures are
combined if neither is under contention.
General approaches. There are several universal construc-
tions for transforming sequential data structures into con-
current ones. These come in lock-based, lock-free, wait-free,
and even NUMA-aware variants [18, 27, 28]. Though they
are simple to use, these constructions either require a copy
of the data structure per thread or NUMA node (which is
not practical for large data structures) or have a single global
bottleneck on updates (e.g. an update log or state object).

2Height bounds in a trie are logarithmic in the size of the universe. Even
with path compression, some key distributions can result in deep tries.

Transactional memory makes it relatively easy to produce
concurrent implementations of data structures, but it has sig-
nificant drawbacks. Hardware transactional memory (HTM)
is not universally available, and software transactional mem-
ory (STM) adds substantial overhead. Furthermore, transac-
tional memory is optimized for low-contention workloads.
In the high-contention scenarios we study in this paper, al-
most all transactions would abort (or serialize) because of
data conflicts. We performed some formative experiments
comparing our trees with analogous trees implemented us-
ing HTM, STM, and a hybrid of the two (HyTM, [20]), and
found that, while the fastest of these implementations was
close in performance to our trees under very low contention,
performance degraded drastically under high contention.
We omitted these experiments, as they are only tangentially
related to this work.
Elimination. Elimination was first introduced for use in
concurrent stacks by Shavit and Touitou in [51], but this
implementation was not linearizable. The first linearizable
implementation of elimination in stacks was provided by
Hendler et al. [32]. Hendler et al. coordinate the threads
using an elimination array that stores ongoing operations’
descriptors. Without loss of generality, suppose a thread 𝑡
is performing a push. 𝑡 first attempts to modify the data
structure directly. If it fails, 𝑡 selects a random slot in the
elimination array. If this slot contains a descriptor for a pop,
𝑡 attempts to eliminate both operations. Otherwise, if the
slot is empty, it writes its own descriptor and waits a set
amount of time to be eliminated. Note that it is possible for
multiple push-pop pairs to be eliminated at once (at different
indices in the elimination array). This is key to the scalability
of the algorithm. Braginsky et al. applied a similar approach
to priority queues [8].
Combining.Adifferent approach to tackling high contention
workload is combining, in which a combiner thread aggre-
gates and performs the operations ofmany concurrent threads
on the data structure. Drachsler-Cohen and Petrank provide
an insightful summary of combining techniques [25]. Flat
combining [31] is one of the most popular techniques. In flat
combining, each thread attempting to update the data struc-
ture adds a record of its operation to a global list. Threads
compete to become the combiner by acquiring a global lock.
The combiner scans the entire list of operations, then per-
forms them in some order.

Flat combining introduces higher latency compared to our
publishing elimination technique. Threads must wait for the
combiner to complete their operations one-by-one, and the
wait can be quite long for operations near the end of the list.

Recently, Drachsler-Cohen and Petrank created a variant
of flat combining called local combining on-demand and
demonstrated it on a linked list [25]. They perform flat com-
bining at each node in the list. We tested our trees with a
similar technique: We augmented each leaf node with an



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

MCS queue [44] and used the queues to perform flat com-
bining. We found that this approach was much slower than
our publishing elimination technique, in which threads do
not have to wait for a combiner.
Persistent concurrent trees. Venkataraman et al. intro-
duced the CDDS-tree, a persistent concurrent B-tree. How-
ever, the pseudocode contains a global version number which
is a scalability bottleneck [53]. Yang et al. created the NV-
Tree, a persistent B-link tree that outperforms the CDDS
B-tree by up to 12x [57]. The NV-Tree rebuilds all of its in-
ternal nodes if any internal node becomes too full. This can
be extremely slow for large trees but occurs less than 1% of
the time in their workloads. Additionally, the NV-Tree only
persists leaf nodes since the entire tree can be recovered
from them after a crash. This makes the recovery procedure
slow, but avoids some flushes during normal execution.
The FPTree is another persistent concurrent B-tree [47].

It includes a number of optimizations that make it scale better
than the NV-Tree. Each leaf node includes a one-byte hash of
each of its keys, known as a fingerprint. The fingerprints are
scanned prior to probing the keys themselves, which limits
the average number of key comparisons to 1. This can have a
large impact when key comparisons are costly (for example,
if the keys are strings). Like the NV-Tree, the FPTree uses
unsorted leaves and only persists leaf nodes.
The RNTree is a persistent concurrent B+tree that uses

transactional memory and an indirection array with pointers
to key-value pairs in each leaf node [41]. The indirection
array makes binary searching for a key possible, with the
drawback that inserts might require shifting every key-value
pointer in the indirection array.

Finally, there are a number of general transformations for
making concurrent dictionaries persistent.

RECIPE [36] provides general advice on how tomake three
categories of data structures persistent: those whose updates
occur atomically, those whose updates fix inconsistent state,
and those whose updates do not fix inconsistent state. The
OCC-ABtree is closest to the third category. RECIPE offers
only a vague idea of how one might transform such a data
structure. In particular they instruct the data structure de-
signer to: “Add [a] mechanism to allow [updates] to detect
permanent inconsistencies. Add [a] helper mechanism to
allow [updates] to fix inconsistencies.” Both of these seem
to require deep knowledge of the data structure. They also
introduce fences after each store, whereas we carefully avoid
fences where possible in the OCC-ABtree.

The transformations in NVTraverse [29] and Mirror [30]
both provide durable linearizability, but target non-blocking
data structures (and so are not applicable to the OCC-ABtree).
Montage [56] is another transformation which guarantees
a weaker correctness condition known as buffered durable
linearizability.

3 OCC-ABtree
Semantics. The OCC-ABtree implements the following dic-
tionary operations.

• find(k): If a key-value pair with key k is present,
return the associated value. Otherwise, return ⊥.

• insert(k, v): If a key-value pair with key k is present,
return the associated value. Otherwise, insert the key-
value pair <k,v> and return ⊥.

• delete(k): If a key-value pair with key k is present,
delete it and return the associated value. Otherwise,
return ⊥.

Range queries for the trees we present could be added using
the techniques described in [5].

The OCC-ABtree consists of an entry pointer to a sentinel
node that is never removed. This sentinel node has no keys
and just one child pointer, which points to the root of the
tree. The pseudocode for the data structures used in the
OCC-ABtree and selected operations are presented below.

3.1 Data structures
The OCC-ABtree has three types of nodes: leaf nodes, inter-
nal nodes and tagged internal nodes. Leaf nodes store keys
and values in their keys and vals arrays. We say an entry
in the keys array is empty if it is ⊥. An empty key has no
associated value. The keys in a leaf are unsorted and there
can be empty entries between keys. This results in much
faster updates since inserts and deletes do not need to shift
other keys in the node.

Internal nodes contain 𝑘 child pointers (between 2 and 11,
in our implementation), and 𝑘 −1 routing keys (that are used
to guide searches to the appropriate leaf) in a sorted array.
Once an internal node is created, its routing keys are never
changed, but its child pointers can change. To add or remove
a key in an internal node, one must replace the internal node.
This happens relatively infrequently.

A TaggedInternal node (or simply tagged node) con-
ceptually represents a temporary height imbalance in the
tree. A tagged node is created when a key/value must be in-
serted into a node but the node is full. The node is split, and
the two halves are joined by a tagged node. Tagged nodes are
not part of any other operation, and thus always have exactly
two children. Tagged nodes are eventually removed from
the tree when the fixTagged rebalancing step is invoked.
Each node has a lock field. We use MCS locks as our

lock implementation [23, 44]. In MCS locks, threads waiting
for the lock join a queue and spin on a local bit (meaning
they scale well across multiple NUMA nodes). In our trees, a
thread only modifies a node if it holds its lock. Leaf nodes
have an additional version field, ver, that records how many
times the leaf has changed and whether it is currently being
changed. After acquiring a leaf’s lock, a thread increments
the version before making any changes to the leaf and incre-
ments the version again once it has completed its changes,
and finally releases the lock. Thus the version is even if the



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

1 // K is key type , V is value type
2 abstract type Node
3 keys : K[MAX_SIZE]
4 lock : MCSLock
5 size : int
6 marked : bool
7
8 type Leaf inherits Node
9 vals : V[MAX_SIZE]
10 ver : int
11
12 type Internal inherits Node
13 ptrs : Node[MAX_SIZE]
14
15 type TaggedInternal inherits Internal
16
17 // The result of a search
18 type PathInfo
19 gp : Node // grandparent
20 p : Node // parent
21 pIdx : int
22 n : Node // node
23 nIdx : int
24
25 type RetCode is SUCCESS or FAILURE or RETRY
26
27 // Sentinel node: points to root
28 entry : Internal
29 MIN_SIZE = 2, MAX_SIZE = 11

Figure 1. OCC-ABtree data structures

leaf is not being modified and odd if it is being modified.
The version is used by searches to determine whether any
modifications occurred while reading the keys of a leaf3.
Nodes also contain a marked bit, which is set when a

node is unlinked from the tree so that updates can easily
tell whether a node is in the tree. Marked nodes are never
unmarked.
The PathInfo structure is returned by search and con-

tains the node at which the search terminated, the node’s
parent and grandparent, the index of the node in the parent’s
ptrs array, and the index of the parent in the grandparent’s
ptrs array.

3.2 Operations
All operations invoke a common search procedure, which
takes a key and optionally a target node as its arguments,
and searches the tree, starting at the root, looking for key. At
each internal node, search determines which child pointer
it should follow by traversing the (sorted) routing keys se-
quentially. Once search reaches a leaf (or the target node),
it returns a PathInfo object as described in Section 3.1.

searchLeaf is similar to the classical double-collect snap-
shot algorithm [1]. It reads the leaf’s version, reads its keys
and values, then re-reads the leaf’s version to verify that
the leaf did not change while the keys and values were be-
ing read. If the leaf did change, then searchLeaf retries.
If the key is found, searchLeaf returns <SUCCESS, val>,
otherwise, it returns <FAILURE, ⊥>. Note that search and

3A leaf’s version field could hypothetically wrap around and cause an ABA
problem, but at 100 million updates per second, this would take 2900 years
for a 64 bit word size.

30 <RetCode , V> searchLeaf(leaf , key)
31 RETRY:
32 ver1 = leaf.ver
33 if ver1 is odd
34 goto RETRY
35
36 val = ⊥
37 for keyIndex = 0 up to MAX_SIZE - 1
38 if leaf.keys[keyIndex] = key
39 val = leaf.vals[keyIndex]
40 break
41 ver2 = leaf.ver
42 if ver1 ≠ ver2 goto RETRY
43 if val = ⊥ return <FAILURE , ⊥>
44 else return <SUCCESS , val >
45
46 PathInfo search(key , targetNode)
47 gp = NULL , p = NULL , pIdx = 0, n = entry , nIdx = 0
48 while n is not Leaf
49 if n = targetNode break
50 gp = p, p = n, pIdx = nIdx , nIdx = 0
51 while nIdx < node.size -1 and key ≥ node.keys[nIdx]
52 nIdx++
53 n = n.ptrs[nIdx]
54 return PathInfo(gp, p, pIdx , n, nIdx)
55
56 V find(key)
57 path = search(key , NULL)
58 rc, val = searchLeaf(path.n, key)
59 return val

Figure 2. OCC-ABtree search operations

searchLeaf do not acquire locks. This allows for greater con-
currency since internal nodes can be updated while searches
are traversing through them.
The find(key) operation simply invokes search and

searchLeaf, and returns val. find operations in the OCC-
ABtree never have to restart, unlike in other trees.
Delete. The update operations are perhaps best understood
with reference to Figure 3. In a delete(key) operation, a
thread first invokes search(key, target) and searchLeaf.
If it does not find key, then delete returns ⊥. Otherwise,
it locks the leaf and deletes the key by setting it to ⊥, and
returns the associated value (Figure 3(1)). If key was deleted
by another thread between search and acquiring the lock,
delete returns⊥. If deleting the key makes the node smaller
than the minimum size 𝑎, delete invokes fixUnderfull
to remove the underfull node by merging it with a sibling
(Figure 3(2)).
Insert. In an insert(key, val) operation, a thread first in-
vokes search(key, target) and searchLeaf. If it finds the
key, then insert returns the associated value (Figure 3(3)).
Otherwise, it locks the leaf and tries to insert key (resp., val)
into an empty slot in the keys (resp., vals) array. We call this
case a simple insert. If there is no empty slot, insert locks
the leaf’s parent and replaces the pointer to the leaf with a
pointer to a new tagged node whose two (newly-created)
children contain the leaf’s old contents and the inserted key-
value pair (Figure 3(4)). We call this case a splitting insert.
The pointer change, and hence the insert of key, is atomic.
The insert then invokes fixTagged to get remove the tagged
node (Figure 3(5)).



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

Figure 3. An OCC-ABtree with 𝑎 = 2, 𝑏 = 4. (1) The key-value pair ⟨6,C⟩ is deleted. This creates an underfull node. (2) The
underfull node is merged with its sibling. This leaves the parent underfull, but the parent is the root, which is allowed to
remain underfull. (3) ⟨9,E⟩ is inserted into an empty slot (simple insert). (4) No empty slot exists for ⟨5,F⟩, so the appropriate
leaf is split and a TaggedInternal node is created (splitting insert). (5) The TaggedInternal node is conceptually merged
into its parent. We implement this by replacing it with a new Internal node.

60 V insert(key , val)
61 RETRY:
62 path = search(key , NULL)
63 rc, val = searchLeaf(path.n, key)
64 if rc = SUCCESS return val
65
66 leaf , parent = path.n, path.p
67
68 Lock leaf
69 if leaf.marked
70 Unlock leaf and goto RETRY
71
72 // Verify key is not present
73 for i = 0 to DEGREE - 1
74 if leaf.keys[i] = key
75 Unlock leaf and return leaf.vals[i]
76
77 if leaf.size < MAX_NODE_SIZE
78 // Insert without splitting
79 for i = 0 to DEGREE - 1
80 if leaf.keys[i] = ⊥
81 leaf.ver++ // Start modification
82 leaf.keys[i] = key
83 leaf.vals[i] = val
84 leaf.size++
85 leaf.ver++ // End modification
86 Unlock leaf and return ⊥
87 else
88 Lock parent
89 if parent.marked
90 Unlock leaf and parent and goto RETRY
91
92 N = {contents of leaf} ∪ {key/val}
93 newLeaf = TaggedInternal with two children that

evenly share N
94 parent.ptrs[path.nIdx] = newLeaf
95 node.marked = true
96 Unlock leaf and parent
97 fixTagged(newLeaf)
98 return ⊥

Figure 4. OCC-ABtree insert operation

Rebalancing. fixTagged attempts to remove a tagged node.
It first searches for the tagged node, returning if it is unable to
find it. (This case only occurs if another thread has already re-
moved the tagged node) If fixTagged finds the target node,
it tries to get rid of it by creating a copy 𝑐 of its parent,
with the tagged node’s key and children merged into 𝑐 , and
changing the grandparent to point to 𝑐 (Figure 3(5)). How-
ever, if the merged node would be larger than the maximum

99 V delete(key)
100 RETRY:
101 path = search(key , NULL)
102 rc, val = searchLeaf(path.n, key)
103 if rc = FAILURE
104 return ⊥
105
106 leaf = path.n
107 Lock leaf
108 if leaf is marked
109 goto RETRY
110
111 for i = 0 to DEGREE - 1
112 if leaf.keys[i] = key
113 deletedVal = leaf.vals[i]
114 leaf.ver++ // Start modification
115 leaf.keys[i] = ⊥
116 leaf.size --
117 leaf.ver++ // End modification
118
119 if leaf.size < MIN_NODE_SIZE
120 Unlock leaf
121 fixUnderfull(leaf)
122 return ⊥

Figure 5. OCC-ABtree delete operation

allowed size, fixTagged instead creates a new node 𝑝 with
two new children, which evenly share the contents of the
old tagged node and its parent (Figure 6). The grandparent
is then changed to point to 𝑝 . (𝑝 is a tagged node, unless it
is the new root, in which case it is simply an internal node).
Now we turn to fixUnderfull. fixUnderfull fixes a

node 𝑛 which is smaller than the minimum size, unless 𝑛
is the root/entry node. It does this by either distributing
keys evenly between 𝑛 and its sibling 𝑠 if doing so does
not make one of the new nodes underfull (Figure 8). Oth-
erwise, fixUnderfull merges 𝑛 with 𝑠 (Figure 3(2)). In this
case, the merged node might still be underfull or the par-
ent node might be underfull (if it was of the minimum size
before merging its children). Thus, fixUnderfull is called
on the merged node and its parent. fixUnderfull requires
that 𝑛 is underfull, its parent 𝑝 is not underfull, and none of
𝑛, 𝑝 , and 𝑠 are tagged. If these conditions are not satisfied,
fixUnderfull retries its search.



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Figure 6. fixTagged split case (merge is in Figure 3)

123 fixTagged(node)
124 RETRY:
125 if node.marked return
126 path = search(node.searchKey , node)
127 if path.n ≠ node return
128
129 Lock path.n, path.p, and path.gp
130 if node , parent or gParent is marked or
131 path.p is TaggedInternal
132 Release all locks and goto RETRY
133
134 node.marked = true
135 path.p.marked = true
136 if path.p.size + 1 ≤ MAX_NODE_SIZE
137 newNode = new Internal containing the keys &

pointers of node and parent
138 path.gp.ptrs[path.pIdx] = newNode
139 Release all locks
140 else
141 // newNode is a TaggedInternal , unless it will be

the new root (in which case it is Internal)
142 newNode = new subtree of three nodes consisting of

a new Internal that points to two new internal
nodes which evenly share the keys & pointers

of node and parent (except for the pointer to
node)

143 path.gp.ptrs[path.pIdx] = newNode
144 Release all locks
145 fixTagged(newNode)

Figure 7. OCC-ABtree fixTagged rebalancing step

3.3 Correctness
This section proves that the OCC-ABtree is linearizable. Re-
call that an algorithm is linearizable if, in every concurrent
execution, every operation appears to happen atomically at
some point between its invocation and its response.
Proving the linearizability of the OCC-ABtree requires a

definition linking the physical representation of the OCC-
ABtree (i.e. the contents of the system’s memory) to the
abstract dictionary it represents. The operations are then
shown to modify the physical state of the tree in a way that
is consistent with the abstract semantics described at the
beginning of Section 3.

3.3.1 Definitions.

Definition 3.1 (Reachable node). Anode is said to be reach-
able if it can be reached by following child pointers from
the entry node.

Definition 3.2 (Key in OCC-ABtree). Let 𝑙 be a reachable
leaf. 𝑘 is in the OCC-ABtree if, when 𝑙 ’s version was last
even, 𝑘 was in 𝑙 ’s keys array. Furthermore, if 𝑘 is the 𝑖th key
in 𝑙 , the value associated with 𝑘 is l.vals[i].

Figure 8. fixUnderfull distribute case (merge is in Figure 3)
146 fixUnderfull(node)
147 if node = entry or node = entry.ptrs [0] return
148
149 RETRY:
150 path = search(node.searchKey , node)
151 if path.n ≠ node return
152
153 if path.nIdx = 0
154 sIndex = 1 // Sibling is right child
155 else
156 sIndex = path.nIdx - 1 //
157 sibling = parent.ptrs[sIndex]
158
159 Lock node , sibling , path.p, and path.gp
160 if node.size ≥ MIN_NODE_SIZE return
161 if parent.size < MIN_NODE_SIZE or
162 node , sibling , parent , or gParent is marked or
163 node , sibling or parent is TaggedInternal
164 Release all locks and goto RETRY
165
166 if node.size + sibling.size ≤ 2 * MIN_NODE_SIZE
167 newNode , sibling = Distribute keys of node and

sibling evenly amongst new node and sibling
168 newParent = copy of parent plus pointer to newNode

and key between newNode and sibling
169 gParent.ptrs[path.pIdx] = newParent
170 Mark node , parent , and sibling
171 Release all locks and return
172 else
173 newNode = Combined keys of node and sibling
174 if gParent = entry and parent.size = 2
175 entry.ptrs [0] = newNode
176 Mark node , parent , and sibling
177 Release all locks and return
178 else
179 newParent = copy of parent with pointer to

newNode instead of node/sibling
180 path.gp.ptrs[path.pIdx] = newParent
181 Mark node , parent , and sibling
182 Release all locks
183 fixUnderfull(newNode)
184 fixUnderfull(newParent)

Figure 9. OCC-ABtree fixUnderfull rebalancing step

In other words, a key is logically inserted or deleted when
a thread increments the version number of the leaf for the
second time (making it even).
Definition 3.2 is somewhat counter-intuitive. One might

consider the following simpler definition: a key 𝑘 is in the
tree if it is in some leaf’s keys array. Indeed, this alternate
definition can also be used to prove that the OCC-ABtree
is linearizable. However, Definition 3.2 is necessary for the
correctness of publishing elimination (Section 4). Using a
consistent definition hopefully makes the correctness argu-
ment easier for the reader.
There are two more definitions which are used in the

proofs throughout this paper. The key range of a node is
a half-open subset of the universe of keys (e.g. [100, 200) if
the keys are numbers, or [“𝑎𝑎𝑟𝑑𝑣𝑎𝑟𝑘”, “𝑎𝑝𝑝𝑙𝑒”) if the keys
are strings). Intuitively, the key range of a node is the set of
keys that are allowed to appear in the subtree rooted at that
node.



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

Definition 3.3 (Key range). The key range of the entry node
is defined to be the universe of keys. Let 𝑛 be a reachable
internal node with key range [𝐿, 𝑅). If 𝑛 has no keys, the
key range of its child is also [𝐿, 𝑅). Otherwise, suppose 𝑛
contains keys 𝑘1 to 𝑘𝑚 . The key range of 𝑛’s leftmost child
(pointed to by n.ptrs[0]) is [𝐿, 𝑘1), the key range of 𝑛’s
rightmost child (pointed to by n.ptrs[m]) is [𝑘𝑚, 𝑅), and
the key range of any middle child pointed to by n.ptrs[i]
is [𝑘𝑖 , 𝑘𝑖+1).

Finally, the OCC-ABtree (along with all other trees in in-
troduced in this paper) is a relaxed (a,b)-tree, as introduced by
Larsen and Fagerberg [35]. The relaxed (a,b)-tree is a search
tree (as defined below). The most important consequence of
the OCC-ABtree being a search tree is that, for any key 𝑘 in
the universe of keys, there is a unique search path for 𝑘 , and
this path passes through every reachable node whose key
range contains 𝑘 . Intuitively, this path is the path an atomic
search of 𝑘 would take. Note that the uniqueness of the path
implies that there is a unique reachable leaf in the search
tree whose key range contains 𝑘 .

Definition 3.4 (Search Tree). Suppose 𝑛 is an internal node
in a tree and 𝑘 is a key in 𝑛. A tree is a search tree if

• All keys in the subtrees to the left of 𝑘 in 𝑛 are less
than 𝑘 AND

• All keys in the subtrees to the right of 𝑘 in𝑛 are greater
than or equal to 𝑘

3.3.2 Invariants. Proving an insert is correct requires
proving that search finds the correct leaf to insert into. For
search to find the correct leaf, the tree must satisfy some
structural properties, which are only satisfied if previous
inserts and deletes were correct. We deal with this cyclical
dependency is by assuming a set of invariants about the
structure of the tree. These invariants hold for the initial
state of the tree, and every modification to the tree preserves
all invariants. These invariants can then be used to prove
the linearizability of the data structure.

Theorem 3.5 (OCC-ABtree Invariants). The following in-
variants are true at every configuration in any execution of
the OCC-ABtree.

1. The reachable nodes form a relaxed (a,b)-tree.
2. The key range of a node that was once reachable is con-

stant.
3. A node that is not reachable contains the same keys and

values that it contained when it was last reachable and
unlocked (i.e. updates do not both unlink and modify a
node).

4. A key appears at most once in a leaf.
5. If a node was once reachable, and is currently unmarked,

it is still reachable.
6. If a node is unlocked and was once reachable, its size

field matches the number of keys it contains.

7. The key range of n in search(key, target) contains
key.

Intuitively, invariants 1 to 4 follow from the sequential
correctness of the updates together with the guarantee that
any node that might be replaced or modified is locked and
reachable until the update occurs. The sequential correctness
of the updates (i.e. their correctness in a single-threaded ex-
ecution) can be established by inspection of the pseudocode,
so we do not prove it in detail. We briefly explain the (con-
current) correctness of invariants 1 to 4. Invariants 5 and 6
are straightforward from the pseudocode.

Invariant 7 is slightly different from the others, in that it is
not a structural invariant. Rather, it describes the correctness
of one of the operations. The proof is somewhat involved,
so it is proved in detail.

Proof. The invariants are satisfied at the initial state of the
OCC-ABtree.
1: OCC-ABtree is a relaxed (a,b)-tree. The updates to the
tree are the same as those described by Larsen and Fagerberg
in [35]. They prove that, if these updates occur atomically,
the tree is always a relaxed (a,b)-tree. Thus, the remainder
of the proof simply shows that each update affects the tree
atomically. This requires proving that for each update:

• There is a single step at which the update appears to
take place

• The update is correct
The first condition is simple. Simple inserts and deletes ap-
pear when the modified leaf is unlocked, by Definition 3.2.
All other updates only change a single pointer of a reachable
node (to point to the update’s newly created nodes).

For the second condition, assume that the updates are se-
quentially correct. This is easily verifiable by examining the
pseudocode in this paper and comparing it to the pseudocode
in [35]. To establish concurrent correctness from sequential
correctness, it is sufficient to show that the update occurs
on the correct data (i.e. on the correct node and with any
preconditions of the sequential code satisfied), the update
affects data that is actually in the tree, and the data used to
construct the update does not change while the update is
being constructed.
An insert(key, val) operation uses the search func-

tion to find the leaf in which to insert. By invariant 7, the
leaf’s key range contains key. By invariant 1 (this invari-
ant), the tree is a relaxed (a,b)-tree and thus a search tree, so
there is a unique reachable leaf whose key range contains
key. Finally, this leaf is reachable if the insert returns, be-
cause insert verifies that the leaf is not marked. Thus, the
insert occurs in the correct leaf. A similar argument holds
for delete.
The sequential code for the rebalancing steps has some

preconditions. The fixTagged rebalancing step requires that
the node is tagged, but its parent and grandparent node are



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

not. fixUnderfull requires that none of the involved nodes
are tagged, the parent node is not underfull, and the target
node is underfull. This is explicitly verified in both functions.
Thus, the rebalancing steps also act on the correct data.

Each update verifies that all involved nodes are notmarked
before performing its update. If the node is not marked, it
is in the tree until the update itself unlinks the node, by
invariant 5. Moreover, any children of the node are also in
the tree by Definition 3.1. Thus, the data used to construct
the update is actually in the tree.

Finally, the locks acquired by each update guarantee that
any data involved in the update is constant until the locks
are released.
2: Constant key range. We must examine places where
existing nodes are attached to a new parent and ensure that
the key range of all descendent nodes remains the same.
This happens in fixTagged and fixUnderfull. In either
function, the routing keys surrounding any pointer that is
not removed remain the same before and after the update.
Thus, the key range of the pointed to node does not change.
This holds for leftmost and rightmost children of a node too,
since the grandparent’s key range does not change (by this
invariant), and the new parent’s key range is the same as the
old parent’s.
3: Unreachable nodes contain the same keys and val-
ues as they did when they were last reachable and un-
locked. Updates that unlink a node first lock it, then unlink
it, then unlock it, without changing the node’s keys or values.
4: No duplicate key. Insert operations read the whole leaf
while it is locked before attempting to insert a key, so a dupli-
cate key is never inserted. The leaf that an insert operation
tries to insert into is correct by invariant 7.

fixUnderfull does not create duplicate keys when merg-
ing two leaves because there is a unique leaf whose key
range contains a given key, and any keys in that key range
are only present in that leaf (invariant 1). Thus, a key can
only be in one of the two leaves and so cannot appear twice
in the merged node.
7: Search correctness. The search maintains the invariant
that the key range of the node it is currently reading contains
the search key. Call this node 𝑛. The invariant is satisfied for
the entry node, since its key range is the entire key space.
Since the routing keys of an internal node partition its key
range, there is a unique child whose key range contains the
search key.
Let 𝑐 be the child followed by the search after reading

node 𝑛. Even if 𝑛 is not in the tree when the pointer to 𝑐

is read by the search, 𝑐 must have been set as a child of
𝑛 while 𝑛 was in the tree, since only nodes in the tree are
modified (invariant 3). Thus, at the time that 𝑛 was in the
tree and had 𝑐 as its child, the key range of 𝑐 contained the
search key (Definition 3.3). Since the key range of a node is
constant (invariant 2), the key range of 𝑐 still contains the
search key. □

With these invariants proved, the linearizability of the
operations can now be established.

3.3.3 Linearizability of find. The leaf at which search(key,
target) terminates was, at some point, the unique leaf that
might have contained key, by invariant 7.
The search only returns if, during an interval when the

leaf was unlocked, it either finds the search key and reads
its value or it reads the entire leaf and does not find it. In
the former case, we know that this key is unique in the
leaf (invariant 4). Since the leaf was unlocked for the entire
interval and nodes are not modified while they are unlocked,
the result value of find is correct for the leaf state in that
interval.
If the leaf was in the tree at any point in this interval,

find may linearize at that point and be correct. If the leaf
was never in the tree during the unlocked interval, find
linearizes at the point just before the leaf was unlinked. The
leaf must have been marked when it was unlinked; so, by
invariant 3, the value returned by find is the same as it
would be if the find occurred atomically just before the
node was unlinked.

In this case, we must show that the find was concurrent
with the point when the leaf was unlinked. Theorem 3.6
implies that the leaf must have been in the tree at some point
during find’s invocation of search. Since (by assumption)
the node was not in the tree in the unlocked interval, the
find must have been concurrent with its unlinking. Note
that the search procedure does not actually read the marked
bit to check whether a leaf is in the tree; it is only described
here for analysis.

Theorem 3.6. Each node search visits was in the tree at
some time during the search.

Proof. The statement is true for the root. If the root is a
leaf, the proof is complete. Otherwise, search reads a child
pointer from the root. We now show that any child pointer
read from a node 𝑛 which was in the tree at some time during
the search points to a child which was also in the tree at
some time during the search.

If 𝑛 is still in the tree at the time the child pointer is read,
the child pointed to is also in the tree at that point by Def-
inition 3.2. Thus the child is also in the tree at some point
during the search.
Otherwise, 𝑛 must have been (atomically) unlinked by

some update 𝑈 at time 𝑡 . The search was concurrent with
the unlinking of 𝑛 since 𝑛 was in the tree at some point
during the search (by assumption) and 𝑛 was not in the tree
when the search read the child pointer.

By invariant 3, the pointers of 𝑛 point to its children just
before it was unlinked at time 𝑡 . Thus, the child followed by
the search procedure was in the tree at some time during
the search as well (namely, at 𝑡 ). □



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

3.3.4 Linearizability of insert and delete. There are
four possible linearization points for an insert(key, val)
operation. Note that in the final iteration of the RETRY loop,
the leaf 𝑙 that the insert locks is the unique reachable leaf
that might contain key since the OCC-ABtree is a search
tree (invariant 1), key is in 𝑙 ’s key range (invariant 7), and 𝑙
is not marked (invariant 5).
An insert that succeeds in its search is linearized in

the same way as a find operation. The return value of the
search is the value associated with the key (by the correct-
ness of find) and is the correct value to return for insert.
An insert that finds key in the leaf 𝑙 after acquiring the

𝑙 ’s lock (and thus does not modify 𝑙) may linearize at any
point while the 𝑙 ’s lock is held because while 𝑙 is locked, the
key cannot be removed from 𝑙 , the key’s associated value
cannot change, and 𝑙 cannot be unlinked (since unlinking 𝑙
would require marking it). Since the leaf’s version is even,
the associated value is the correct return value according to
Definition 3.2.
An insert that inserts a key-value pair into a non-full

leaf 𝑙 linearizes at its second increment of 𝑙 ’s version (which
marks the modification as complete). The key is not in the
OCC-ABtree before the linearization point since the insert
read 𝑙 while it was locked without finding the key, and 𝑙 is
the unique reachable leaf that might contain 𝑙 . The key is
in the OCC-ABtree after the linearization point (according
to Definition 3.2) because the key is added to 𝑙 , 𝑙 is still
reachable, and 𝑙 ’s version is even.
For splitting inserts, searches can observe the change as

soon as the pointer to the new subtree is written in the
parent, since searches do not read locks on internal nodes.
Thus, splitting insertsmust linearize at thewrite to the parent
node. Suppose a splitting insert writes the new pointer into
the parent node 𝑝 at time 𝑡 . Let 𝑙 be the leaf that was split
and replaced by a tagged node 𝑡 with children 𝑙1 and 𝑙2. The
inserted key is not in the OCC-ABtree before the write to 𝑝
since the insert reads 𝑙 while it is locked and does not find
the key (and 𝑙 is the unique reachable leaf that might contain
the key). After the write to 𝑝 , the inserted key is in the tree
because it is in either 𝑙1 or 𝑙2, both of which are reachable
because 𝑝 is unmarked and thus reachable (invariant 5). The
other keys in 𝑙 are not affected by splitting inserts since they
are placed in one of 𝑙1 or 𝑙2 by the splitting insert.

The returned value of ⊥ is correct in the above two cases,
since the insert succeeded. The linearization of deletes and
justification of return values is similar to the first three cases
above.

3.3.5 Deadlock freedom. Intuitively, deadlock freedom
is guaranteed by locking order: nodes are locked from bottom
to top, with ties broken by left-to-right ordering. Note that
the relative ordering never changes between two siblings,
nor between parent and child.

We have also created a version of the OCC-ABtree with
a height bounded by 𝑂 (log(𝑛) + 𝑐) height, where 𝑐 is the
number of threads currently executing an operation on the
tree. However, this version is slightly slower and has more
complicated rebalancing logic.

4 Elimination
We now describe a technique for eliminating dictionary op-
erations by carefully choosing the linearization order for
concurrent insertions and deletions of the same key. In the
following, we say an insertion or deletion of key is in progress
after it is invoked and before it returns.
Suppose 𝑂 is a simple insert(key, val). If a deletion

of key is in progress when 𝑂 is linearized, then the delete
can be linearized immediately before 𝑂 and return ⊥ (with-
out modifying the data structure). Similarly, if an insertion
of key is in progress when 𝑂 is linearized, then the insert
can be linearized immediately after 𝑂 and return val. Since
neither of these operations change the data structure (when
linearized in this way), an arbitrary number of insertions
and deletions of key can be eliminated, provided they are in
progress when 𝑂 is linearized.
The case where 𝑂 is a successful delete(key) is similar.

A deletion of key that is in progress when 𝑂 is linearized
can be linearized after 𝑂 (and return ⊥), and an insertion of
key that is in progress when𝑂 is linearized can be linearized
before 𝑂 (and return the value removed by 𝑂).

4.1 Publishing elimination algorithm
The challenge is now to detect insertions and deletions of
key that are in progress when 𝑂 is linearized. We describe a
modified version of the OCC-ABtree called the Elim-ABtree,
in which each leaf additionally stores a summary, called an
ElimRecord, of the last operation 𝑂 that modified it. An
ElimRecord contains the following three fields. key (resp.
val) stores the key (resp. value) that 𝑂 inserted or deleted.
ver stores a version number that helps an insert or delete
determine whether it was in progress when 𝑂 is linearized.
Concurrent operations use the ElimRecord to eliminate

themselves as follows. Recall how a simple insert or success-
ful delete 𝑂 modifies a leaf 𝑙 . It first increments the version
number of 𝑙 to an odd value 𝑣 , then modifies 𝑙 , then incre-
ments 𝑙 ’s version number to the even value 𝑣 +1. It linearizes
at this second increment.𝑂 publishes an ElimRecord rec in
𝑙 just after the first increment. rec.ver is set to 𝑣 .4

Observe that an insert or delete 𝑂 ′ is in progress when 𝑂
is linearized if the following conditions hold:

C1. 𝑂 ′ reads 𝑙 .𝑣𝑒𝑟 and sees it is ≤ 𝑟𝑒𝑐.𝑣𝑒𝑟 , and
C2. 𝑂 ′ returns after 𝑙 .𝑣𝑒𝑟 > 𝑟𝑒𝑐.𝑣𝑒𝑟

4For simplicity, we only eliminate simple inserts and successful deletes.
Eliminating splitting inserts would be more complicated and they are not
as frequent.



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

185 // K is key type , V is value type
186 type ElimRecord {key: K, val: V, ver: int}
187 type Leaf
188 ...
189 rec: ElimRecord
190
191 V insert(key , val)
192 ... // Find leaf and search it once
193 acq , retval = lockOrElim(leaf , key)
194 if not acq
195 return retval
196
197 // Did not eliminate , insert as usual
198 leaf.ver++
199 leaf.rec = <key , val , leaf.ver >
200 ... // Insert key
201 leaf.ver++
202 Unlock leaf and return ⊥
203 ...
204
205 // Returns <true , _> if acquired
206 // Returns <false , val > if eliminated
207 <bool , V> lockOrElim(leaf , key)
208 startVer = leaf.ver
209 while true
210 // Try to eliminate self
211 do
212 ver1 = leaf.ver
213 rec = leaf.rec
214 ver2 = leaf.ver
215 while ver1 is odd or ver1 ≠ ver2
216
217 if startVer ≤ rec.ver and rec.key = key
218 return <false , rec.val >
219
220 // Cannot eliminate , try to lock
221 if leaf.lock.tryLock ()
222 return <true , _>

Figure 10. Elimination pseudocode

Let us see how an insert(key, val) decides whether it
can eliminate itself. The insert first searches towards a leaf.
Once it arrives at a leaf 𝑙 , it optimistically scans 𝑙 once looking
for key. (In contrast, in the OCC-ABtree, searchLeaf is used
to repeatedly scan 𝑙 until it obtains a consistent snapshot of
𝑙 ’s contents.)

If this single scan is not consistent, then the insert is con-
current with another update, so we try to eliminate it by
invoking lockOrElim (Figure 10). lockOrElim either elim-
inates the insert and returns <false, rec.val> (where
rec.val is the value that the insert should return), or ac-
quires the leaf’s lock and returns <true, ⊥>. In the latter
case, the insert then inserts <key, val> into 𝑙 and releases
the lock (as in the OCC-ABtree).
On the other hand, suppose the scan was consistent. If it

found key, then no modification is necessary, and the insert
returns. Otherwise, it will use lockOrElim to try to lock 𝑙 so
it can insert key. (If the insert experiences contention while
acquiring the lock, it might even be eliminated.)
How lockOrElim performs elimination. In lockOrElim,
the insert attempts to read a snapshot of the leaf’s ElimRecord.
To do this, it reads the leaf’s version (line 211), then reads the
ElimRecord rec, then re-reads the leaf’s version (line 215).
If the reads of the leaf’s version return identical results, and
the version is even (indicating the leaf is not being modified),

Figure 11. Consider the state of leaf 𝑙 as shown. 𝑙 .𝑟𝑒𝑐 stores
the Elim-ABtree of a completed simple insert insert(2,F).
Consider three (independent) inserts that are attempting to
insert in 𝑙 and are all at line 217. Insert 1 cannot eliminate
itself with rec since the version of the leaf it read is greater
than rec.ver. Insert 2 cannot eliminate itself since its key
does not match rec.key. Insert 3 can eliminate itself.

then a snapshot was obtained. Otherwise, lockOrElim tries
to obtain a snapshot again.
Once a snapshot is obtained, condition C2 is guaranteed

to be satisfied. To see why, note that the leaf’s version is
even when it is last read at line 214 by the exit condition
of the loop. But, rec.ver is always an odd value, thus the
version read at line 214 is at least rec.ver+1.

At line 217, lockOrElim tries to determine whether condi-
tion 1 is satisfied. If it is, and keymatches rec.key, then this
insert can be eliminated. So, lockOrElim returns <false,
rec.val> and insert returns rec.val at line 195. Other-
wise, lockOrElim tries to lock the leaf at line 221. If it ac-
quires the lock, it returns <true, ⊥>. If lockOrElim fails
to acquire the lock, it attempts to eliminate the insert again.

The elimination of deletes is similar, except that eliminated
deletes always return ⊥ (not rec.val). Figure 11 shows an
example of publishing elimination.
Searches could be eliminated. Finally, we note that the
ElimRecord could also be used to linearize finds in high-
contention workloads. In some extreme scenarios, this could
possibly be useful in preventing find(key) from being starved
by an endless stream of updates to key. We did not observe
this in our experiments, since our node size is small enough
that searches can typically traverse a leaf in the interval be-
tween when one update completes and the next one begins.

5 Persistent trees
In this section we describe the changes to make a persistent
version of the OCC-ABtree, the p-OCC-ABtree. The p-OCC-
ABtree persists only its keys, values, and pointers. Every
update in the p-OCC-ABtree appears to occur atomically in
persistent memory. Thus, the recovery procedure for the p-
OCC-ABtree is extremely simple: it traverses the tree in
persistent memory starting from the root (which is in a
known location), and fixes all non-persisted fields (i.e. setting
size to the actual number of pointers/values in the node,
and resetting version, lock state, and the marked bit to their
initial values).



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

The updates in the p-OCC-ABtree require the following
cache line flushes. (Below, a flush refers to a clwb instruction
followed by an sfence). For a simple insert(key, val),
two flushes must be used: val must be flushed after it is
written, and keymust be flushed after it is written. The insert
occurs atomically when the key reaches persistent memory.
Note that if a crash occurs after val is flushed but before
key is, key is still ⊥ so the key-value pair is not logically in
the tree. For a successful delete, key must be flushed after it
is set to ⊥. The delete occurs atomically when the key field
is equal to ⊥ in persistent memory.
Recall that splitting inserts and rebalancing steps occur

atomically in volatile memory by creating a set of new nodes
and linking them into the tree by changing a single pointer.
We guarantee that these updates appear atomically in per-
sistent memory by flushing the new nodes before changing
the pointer, then flushing the pointer. The update occurs
atomically when the new pointer is flushed.
Operations in the p-OCC-ABtree must only follow per-

sisted pointers. To see why, consider the following scenario:
a splitting insert inserts key and val, then a find(key)
operation returns val, then a crash occurs before the pointer
to the new nodes is persisted. In this case, the recovered tree
will not contain the inserted key-value pair, so the find can-
not be linearized. To ensure that all operations only access
persisted data, we use the link-and-persist method from [21]
(a similar technique is given in [54]). In this technique, when-
ever an update writes a new pointer 𝑝 into the tree, 𝑝 is
written with a mark on it to indicate that it has not been per-
sisted. It is then flushed, and the mark is removed. Whenever
a thread encounters a marked pointer, it waits until the mark
is cleared (hence the pointer is flushed) before following the
pointer.

There are two differences in the linearization points of the
p-OCC-ABtree. First, splitting inserts must linearize when
the new pointer is flushed. Operations cannot access the
new key-value pair before this point because the pointer to
the tagged node is still marked. The second change is more
subtle. In the OCC-ABtree and Elim-ABtree, a simple insert
or successful delete 𝑂 is linearized at the second increment
of the version number. In the persistent setting, a crash could
occur before this increment but after key has been flushed,
so the update will be recovered. To deal with this, any simple
insert or successful delete that flushes key but has not yet
incremented version for the second time when a crash occurs
is linearized at the time of the crash. These changes result in
a durable linearizable implementation.

The Elim-ABtree can also be made persistent by applying
the same changes. We call the resulting tree the p-Elim-
ABtree. The change to the linearization point of 𝑂 does not
affect the correctness argument for publishing elimination,
since 𝑂 can only cause the elimination of another operation
after 𝑂 has incremented the version for the second time.

5.1 p-OCC-ABtree Correctness
This section begins by providing a definition to link the
physical state of the p-OCC-ABtree to its abstract contents.
It then mentions some invariants which hold for the p-OCC-
ABtree; these are analogous to the invariants of the OCC-
ABtree and can similarly be used to show that the p-OCC-
ABtree is strictly-linearizable.

5.1.1 Definitions.

Definition 5.1 (p-Reachable node). A node is p-reachable
(short for persistently reachable) if it can be reached from the
entry node by following child pointers in persistent memory.

Definition 5.2 (Recovering). The system is said to be re-
covering from the time when a crash occurs until the time
when the recovery procedure returns.

In strict linearizability, every operation that is concurrent
with a crash must either be linearized before the crash or be
removed from the execution. Any simple insert or successful
delete that has flushed a key will be recovered (and thus
cannot be removed from the execution). These operations
must therefore be linearized before the crash, even if they
have not yet incremented the version for the second time.
This is reflected in the definition below, and in the changes
to the linearization points in the following section.

Definition 5.3. Let 𝑙 be a p-reachable node. A key 𝑘 (not
equal to ⊥) is in the p-OCC-ABtree if either

1. The system is recovering and 𝑘 is in 𝑙 ’s keys array OR
2. The system is not recovering and 𝑘 was in 𝑙 ’s keys

array when 𝑙 ’s version (in volatile memory) was last
even

Furthermore, if key 𝑘 is the 𝑖th key in 𝑙 , the value associated
with 𝑘 is l.vals[i].

If the system is not recovering, Definition 5.3 is similar
to the definition of a key being in the OCC-ABtree. That is,
keys and values are logically added or removed from the
tree when the version number is incremented to an even
number. If the system is recovering, however, every key in a
p-reachable node is in the tree (the version is ignored).

5.1.2 Invariants.

Theorem5.4 (p-OCC-ABtree Invariants). The p-OCC-ABtree
satisfies the following invariants, which are analogous to the
OCC-ABtree invariants:

1. The p-reachable nodes form a relaxed (a,b)-tree.
2. The key range of a node that was once p-reachable is

constant.
3. A node that is not p-reachable contains the same keys

and values that it did when it was last p-reachable and
unlocked (i.e. updates do not both unlink and modify a
node).

4. A key appears at most once in a leaf.



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

5. If a node was once p-reachable, and is currently un-
marked, it is p-reachable.

6. If a node is unlocked and was once reachable, its size
field matches the number of keys it contains.

7. The key range of n in search(key, target) contains
key.

Proof. The proofs of most of these invariants are similar to
the proofs in Section 3.3. The proof for invariant 1 requires
an additional explanation of why every node used by an
update was once p-reachable.
Proof of invariant 1.Recall that to prove the p-OCC-ABtree
is a relaxed (a,b)-tree, it suffices show that for each update:

• There is a single step at which the update appears to
take place

• The update is correct
The first condition holds for the reasons laid out in the pre-
vious section on atomic updates.

The second condition is largely the same as the proof in
the OCC-ABtree. However, that proof uses invariant 5, which
requires showing that the nodes traversed in the search were
all reachable at some time. This was trivial in the case of the
OCC-ABtree (because the nodes are reached by following
child pointers), but is not trivial in the p-OCC-ABtree, which
uses p-reachability.

We will show that every node traversed by search in the
p-OCC-ABtree was p-reachable at some time. Assume that
every node traversed by a search until node 𝑛 is p-reachable.
If 𝑛 is the entry node, it is p-reachable by definition.

Otherwise, the search reached𝑛 by following an unmarked
pointer from a node 𝑝 . We will show that there exists a
time 𝑡 when 𝑝 was p-reachable and contained the unmarked
pointer to 𝑛. If 𝑝 was p-reachable when it read the unmarked
pointer to 𝑛, 𝑡 is the time of the read. Otherwise, invariant 3
guarantees that 𝑝’s pointers have not been modified since
it was last p-reachable. Thus, when 𝑝 was last p-reachable,
it contained an unmarked pointer to 𝑛. In this case, 𝑡 is the
time when 𝑝 was last reachable.
Finally, notice that there are two ways 𝑝 could contain

an unmarked pointer to 𝑛. The first way is if 𝑝 contained a
pointer to 𝑛 when it was created. In this case, since 𝑝 was
flushed before being linked into the tree, its pointer to 𝑛 is
persisted. Otherwise, the pointer was first introduced to 𝑝
by an update 𝑈 as a marked pointer. This update must have
flushed the pointer before unmarking it. In either case, the
unmarked pointer was in persistent memory by time 𝑡 .

At time 𝑡 , 𝑝 was p-reachable and contained a pointer to 𝑛
in persistent memory. Thus, 𝑛 was p-reachable at time 𝑡 .
The remainder of the proof of is similar to the proof for

the OCC-ABtree. □

5.1.3 Strict linearizability. The p-OCC-ABtree has slightly
different linearization points than the OCC-ABtree, to deal
with the different definition of when a key is in the tree.

Operations which do not modify the tree are linearized as
in the OCC-ABtree. Splitting inserts in the p-OCC-ABtree
are linearized when the pointer to the new nodes is flushed
to persistent memory (instead of it is written to volatile
memory).

Simple inserts and successful deletes linearize differently
depending on whether or not they are interrupted by a crash.
When not interrupted by a crash, simple inserts and suc-
cessful deletes have the same linearization points as they
did in the OCC-ABtree: the increment of the leaf’s version
(in volatile memory) to an even number. Recall that this lin-
earization point is chosen to support publishing elimination.

To see why we cannot linearize the same way when inter-
rupted by a crash, consider the following scenario. Suppose
a simple insert or successful delete that flushes key (thus
making its change persistent) but does increment the version
to an even number before a crash. The recovery procedure
would recover this key-value pair, even though the operation
was not linearized.

To solve this problem, we linearize these operations at the
crash.

Theorem 5.5. The p-OCC-ABtree is strictly-linearizable.

Proof. Note that these linearization points all occur after an
operation’s invocation and before its response or crash. We
must show that performing each operation at its lineariza-
tion point (and returning the appropriate value) correctly
affects the contents of the abstract dictionary according to
Definition 5.3. Let 𝐸 be an arbitrary execution of the p-OCC-
ABtree. We prove that 𝐸 is strictly-linearizable by induction.

Suppose the prefix of 𝐸 up to the beginning of the 𝑖th
era of operations (including the recovery procedure after
the 𝑖 − 1th crash, if 𝑖 > 1) is strictly-linearizable, and that
the p-OCC-ABtree satisfies all invariants. We show that the
prefix up to the beginning of the 𝑖 + 1th era of operations is
strictly-linearizable and the p-OCC-ABtree recovered after
the 𝑖th crash satisfies all invariants.
We do this by breaking up the execution fragment from

the beginning of the 𝑖th era of operations to the beginning
of the 𝑖 + 1th era of operations into three parts: the execu-
tion fragment before the 𝑖th crash, the 𝑖th crash, and the
recovery after the 𝑖th crash. We show that each fragment
is strictly-linearizable by showing that the operations cor-
rectly modify the abstract dictionary. Note that the concate-
nation of strictly-linearizable execution fragments is strictly-
linearizable, by the locality property of strict linearizability.
Before the 𝑖th crash. We consider the tree operations per-
formed from the beginning of the 𝑖th era until (but not includ-
ing) the 𝑖th crash. The linearizability arguments for these
operations is analogous to the arguments established for
linearizability in the OCC-ABtree: the linearization points
used in this section are all analogous to the OCC-ABtree’s
linearization points, the p-OCC-ABtree satisfies analogous



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

invariants, and the definition of a key being in the p-OCC-
ABtree is Definition 5.3.2 (which is analogous to the OCC-
ABtree’s definition of a key being in the tree).
At the 𝑖th crash. At the time of the crash, the definition
of a key being in the tree changes from Definition 5.3.2 to
Definition 5.3.1. It must be shown that the keys in the tree
after the crash are exactly those that were in the tree before
the crash, plus any that were inserted by a simple insert
linearized at the crash and minus any that were deleted by a
successful delete linearized at the crash.
First consider the case when a key 𝑘 is in the tree after a

crash. That is, there exists some p-reachable leaf 𝑙 such that
k = l.keys[i] (for some index i).
If 𝑘 was also in the tree before the crash (according to

Definition 5.3.2), it is only correct for 𝑘 to be in the tree
after the crash if no delete of 𝑘 linearized at the crash. This
is indeed the case, since a delete of 𝑘 that linearized at the
crash would have set l.keys[i] to ⊥ and flushed ⊥. But, by
assumption, 𝑘 is in the keys array of 𝑙 after the crash.
Otherwise, if 𝑘 was not in the tree before the crash, it

is only correct for 𝑘 to be in the tree after the crash if an
insert of 𝑘 did linearize at the crash. This is true. Since 𝑘
was not in the tree before the crash but 𝑙 was p-reachable
and contained 𝑘 , the 𝑙 ’s version must have been odd at the
crash (according to Definition 5.3.2). Thus, there must have
been an ongoing insert that inserted 𝑘 at the time of the
crash. Since the crash occurred after the flush of 𝑘 but before
the version was incremented to an even number, this insert
linearized at the crash.

A similar argument shows that 𝑘 is not in the tree after a
crash if and only if 𝑘 was either deleted at the crash or was
not in the tree before the crash (and was not inserted at the
crash).

p-OCC-ABtree invariants 1-4 and 7 are maintained during
a crash since they only describe persisted data. Invariants 5
and 6 might be incorrect since they refer to volatile fields.
However, they are restored by the recovery procedure.
After the 𝑖th crash (recovery). The recovery procedure
does not affect the set of p-reachable nodes or their keys or
values, so the set of keys in the tree is fixed while the system
is recovering. By the time the recovery procedure returns,
all p-reachable nodes’ versions are 0, and thus the key in the
tree is the same according to Definitions 5.3.1 and 5.3.2.
Additionally, all p-OCC-ABtree invariants are satisfied

by the time the recovery procedure returns. p-OCC-ABtree
invariants 1-4 and 7 were correct before recovery, and the
recovery procedure fixes the volatile fields, which ensures
that invariants 5 and 6 hold by the time it returns.

Thus, the execution up to the beginning of the operation in
the 𝑖 + 1th era is strictly-linearizable, and the p-OCC-ABtree
satisfies all invariants. □

The proofs for the p-Elim-ABtree is similar. Note that elim-
ination does not conflict with the change of linearizing some

operations at a crash. In both the p-OCC-ABtree and the
p-Elim-ABtree, an operation 𝑂𝑒 is only eliminated after the
successful operation𝑂𝑝 has executed its second increment of
the leaf’s version. Any simple insert or successful delete has
linearized by this time (and a future crash does not change
this fact).

6 Experiments
In this section, we compare our trees with other leading dic-
tionary implementations using both a synthetic microbench-
mark and the Yahoo! Cloud Serving Benchmark [19], as
implemented in SetBench (a framework for benchmarking
concurrent dictionaries) [15].

See Section 2 for descriptions of the data structures
included in our graphs. In the following figures, solid
bars represent our trees, striped bars represent data struc-
tures that are distribution-naïve (LF-ABtree, BCCO10, NM14,
DGT15, OLC-ART, OpenBw-Tree), and checkered bars repre-
sent data structures that adapt their structure to the access
distribution (CATree, CBTree, SplayList), or try to exploit it
to obtain faster searches (C-IST).
System. Our volatile memory experiments (Figure 14, Fig-
ure 16) run on a 4-socket Intel Xeon Gold 5220 with 18 cores
per socket and 2 hyperthreads (HTs) per core (for a total of
144 hardware threads), and 192GiB of RAM. Our persistent
memory experiments (Section 6.3) run on a 2-socket Intel
Xeon Gold 5220R CLX with 24 cores per socket and 2 HTs
per core (for a total of 96 hardware threads), 192GiB of RAM,
and 1536GiB of Intel 3DXPoint NVRAM. In all of our experi-
ments, we pin threads such that the first socket is saturated
before the second socket is used, and so on. Additionally,
the pinning ensures that all cores on a socket are used be-
fore hyperthreading was engaged. The machine runs Ubuntu
20.04.2 LTS. All code is written in C++ and compiled with
G++ 7.5.0-3 with compilation options -std=c++17 -O3. We
use the scalable allocator jemalloc 5.0.1-25. We use numactl
-i all to interleave pages evenly across all NUMA nodes.
Memory reclamation. All data structures use DEBRA, a
variant of epoch-based memory reclamation [16], except
the SplayList and FPTree (which do not reclaim memory)
and the OpenBw-Tree (which uses a different epoch-based
reclamation scheme which we were unable to change due to
its complexity).
Methodology. Each experiment run starts with a prefilling
phase, in which a random subset of 8-byte keys and values
are inserted into the data structure until the data structure
size reaches its expected steady-state size (half of the key
range, since the proportions of inserts and deletes are equal
in our experiments). After the prefilling phase, 𝑛 threads
are created and started together, and the measured phase
of the experiment begins. In this phase, each thread repeat-
edly selects an operation (insert, delete, find) based on
the desired update frequency, and selects a key according



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

up
da
te
s

50
%
up

da
te
s

20
%
up

da
te
s

5%
up

da
te
s

Figure 12. SetBench microbenchmark with 10K keys. x-axis: number of threads. y-axis: operations per 𝜇s.

to a uniform or Zipfian distribution. This continues for 10
seconds, and the total throughput (operations completed per
second) is recorded. Each experiment is run three times, and
our graphs plot the averages of these runs.
Validation. To sanity-check the correctness of the evaluated
data structures, each thread keeps track of the sum of keys
that it successfully inserts and deletes. At the end of each
run, all threads’ sums are added to a grand total, and the
grand total must match the sum of keys in the data structure.

6.1 SetBench microbenchmark
Read-mostly (5% updates). Performance on read-mostly
workloads has been shown to be correlated with short paths
to keys, since shorter paths resulted in fewer cache misses
(which dominate runtime in read-mostly workloads) [15].

Thus, we expected the (a,b)-trees, OpenBw-Tree, CBTree, and
C-IST (all of which use fat nodes containing many pointers)
to be the fastest. However, this is only true for the (a,b)-trees.
The C-IST, which is heavily optimized for search-only work-
loads, performs well in the uniform case, but performs much
worse in the Zipfian case. The OpenBw-Tree performs poorly
in both workloads. However, a short experiment suggests
that both the C-IST and OpenBw-Tree perform comparably
to the (a,b)-trees with no updates. The extent to which just
5% updates affects their read performance is surprising. The
BSTs (BCCO10, NM14) have similar performance relative to
one another (roughly half that of the (a,b)-trees).
The CBTree and SplayList fell short of our expectations

on the Zipfian workload. We expected that splaying would



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

up
da
te
s

50
%
up

da
te
s

20
%
up

da
te
s

5%
up

da
te
s

Figure 13. SetBench microbenchmark with 100K keys. x-axis: number of threads. y-axis: operations per 𝜇s.

greatly accelerate searches (especially since the splayed key
is never removed in a read-mostly workload), but they barely
exceed their performance on the uniform workload. The
CATree’s performance is reasonable on the uniform work-
load, but is much worse than the other data structures on
the Zipfian workload. All of the CATree’s operations (even
searches) require locking a leaf.

Update-heavy (50%, 100% updates). Overall, throughput
decreases as the proportion of updates increases (as expected).
On uniform update-heavy workloads, the LF-ABtree and

the C-IST scale much worse than our trees. The LF-ABtree
creates a new copy of a (fat) node every time a key is inserted.
The C-ISTmust completely rebuild the tree after𝑛/4 updates,
where 𝑛 is the size of the tree. As a result, both incur high

overhead for updates. The other competing trees have better
scaling but relatively poor absolute throughput. Our trees are
roughly 2x faster than the leading competitor (the CATree)
in the uniform 100% workload.
On skewed update-heavy workloads, the benefit of pub-

lishing elimination becomes clear. The Elim-ABtree is signifi-
cantly faster than the OCC-ABtree on these workloads, with
the gap increasing as the proportion of updates does. At 100%
updates, the Elim-ABtree is up to 2.5x as fast as its fastest
competitor. The C-IST still scales poorly on these workloads,
but the LF-ABtree performs extremely well, outperforming
even the OCC-ABtree at 50% updates. At relatively low up-
date rates, the benefit of lock-freedom (i.e., faster threads
helping slower threads) exceeds the overhead of allocating



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

up
da
te
s

50
%
up

da
te
s

20
%
up

da
te
s

5%
up

da
te
s

Figure 14. SetBench microbenchmark with 1M keys. x-axis: number of threads. y-axis: operations per 𝜇s.

new nodes for each key inserted. At the highest update rates,
the overhead of managing memory dominates the perfor-
mance of the LF-ABtree.

NM14 scalesmuch better than BCCO10 in theseworkloads,
slightly exceeding the performance of the OCC-ABtree. This
is because searches in BCCO10 have to restart many times
because of frequent updates along the path to the frequently-
accessed keys. A notable outlier in the skewed update-heavy
workloads is the SplayList, which had relatively poor read-
mostly performance but matches the performance of NM14
and the LF-ABtree on the skewed update-only workload.
This may be partially because the SplayList never frees mem-
ory (simply marking keys as deleted instead), so reinserting
a key that was once in the SplayList requires no memory

allocation (which normally adds considerable overhead to
the other data structures). This approach is quite efficient in
our microbenchmark, but might be less so if the set of keys
that are ever inserted is much larger than the set of keys that
are typically in the dictionary.

6.2 YCSB
The Yahoo! Cloud Serving Benchmark (YCSB) is a standard
tool for benchmarking concurrent database indices [19]. We
run the benchmark using the above data structures as the
database index. We run Workload A (50% reads, 50% writes,
Zipf factor 0.5) from the YCSB standard workloads, with a
uniform access distribution and an initial data structure size
of 100M (Figure 16). Figure 16 does not contain the SplayList
since it does not reclaim memory and consequently caused



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

up
da
te
s

50
%
up

da
te
s

20
%
up

da
te
s

5%
up

da
te
s

Figure 15. SetBench microbenchmark with 10M keys. x-axis: number of threads. y-axis: operations per 𝜇s.

the system to run out of memory. Note that the writes in
the YCSB workload are to the database itself, not the index.
That is, a YCSB write simply reads the row pointer from the
index, then locks the row, updates it, and unlocks it (without
modifying the index). As a result, the results are closest to
our microbenchmark uniform read-mostly workload.

6.3 Persistence experiments
Of the concurrent persistent trees in Section 2, only the
FPTree and RNTree have publicly available implementations
that passed our validation scheme (both implementions were
from [41]). However, these implementations do not reclaim
memory.

Figure 17 shows the results of our microbenchmark on
our persistent memory machine. Even with the overhead of
reclaiming memory, the p-OCC-ABtree and p-Elim-ABtree
outperform both the FPTree and the RNTree on all thread
counts. (Results on smaller/larger key ranges and different
update percentages were similar). In the uniform case, the
FPTree performs similarly to our trees at low thread counts
but exhibits extreme negative scaling when running on 2
sockets (96 threads). However, this might be an artifact of this
particular implementation, since the original paper shows
better scaling on 2 sockets. The RNTree performs worse than
the FPTree on uniform workloads, but slightly better on the
Zipfian workload. Both the FPTree and RNTree also exhibit



Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Figure 16. YCSB throughput onWorkload A. x-axis: number
of threads. y-axis: transactions per 𝜇s.

Figure 17. Comparing with other persistent trees: SetBench
microbenchmark with 1M keys, 50% updates (25% insert and
25% delete). Left: Uniform access distribution. Right: Zipfian
access distribution (with Zipf factor 1). x-axis: number of
threads. y-axis: operations per 𝜇s.

negative scaling in the Zipfian case, even when running on
only one socket.

We attempted to compare with an unofficial implementa-
tion of the BzTree [39], but encountered failures during vali-
dation. The implementors mentioned that the errors might
be fixable, but were unable to produce a fix in time for this
publication. Table 1 shows the persistence overhead of our
trees. Comparing with the overheads listed in the BzTree
paper, the overhead of our trees is slightly less than the

BzTree’s average persistence cost of 5% on a uniform 10%-
update workload and 12% on a uniform 50%-update workload.

Uniform Zipfian
Update rate: 100% 50% 10% 100% 50% 10%
p-OCC-ABtree -16% -8% -6% -6% -9% -7%
p-Elim-ABtree -14% -9% -1% -5% -5% -5%

Table 1. Change in throughput upon enabling persistence.
96 threads, 1 million keys.

7 Future work and conclusion
It would be interesting to explore the interaction between
publishing elimination and different data structure semantics.
Publishing elimination remains correct for some alternative
definitions of insert. If insert replaces existing keys but re-
turns no value (instead of simply returning the existing key),
publishing elimination does not require any modifications:
the thread that successfully modifies the data structure is
linearized last.
On the other hand, if insert returns the value it replaces,

then publishing elimination would require changes to allow
each insert in a sequence of linearized inserts to communi-
cate its value to the next insert.
Using MCS locks (instead of test-and-test-and-set spin-

locks) significantly increased the scalability of the OCC-
ABtree. Using NUMA-aware locks like HCLH [42], lock co-
horting [24], or NUMA-aware reader-writer locks [17] might
also be a simple way of improving performance further.
We have introduced the OCC-ABtree, which provides

good performance in both read-mostly and update-heavy
workloads, and the Elim-ABtree which uses publishing elim-
ination to further improve performance in high-contention
workloads. Finally, we have presented persistent versions of
our trees that require only minor modifications and are still
highly performant.

Acknowledgments
This work was supported by: the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Collaborative
Research and Development grant: CRDPJ 539431-19, the
Canada Foundation for Innovation John R. Evans Leaders
Fund with equal support from the Ontario Research Fund
CFI Leaders Opportunity Fund: 38512, Waterloo Huawei
Joint Innovation Lab project “Scalable Infrastructure for Next
Generation Data Management Systems”, NSERC Discovery
Launch Supplement: DGECR-2019-00048, NSERC Discovery
Program under the grants: RGPIN-2019-04227 and RGPIN-
04512-2018, and the University of Waterloo. We would also
like to thank the reviewers for their insightful comments.



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

References
[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,

and Nir Shavit. 1993. Atomic Snapshots of Shared Memory. J. ACM
40, 4 (Sept. 1993), 873–890. https://doi.org/10.1145/153724.153741

[2] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and
Robert E. Tarjan. 2012. CBTree: A Practical Concurrent Self-Adjusting
Search Tree. In Proceedings of the 26th International Conference on
Distributed Computing (Salvador, Brazil) (DISC’12). Springer-Verlag,
Berlin, Heidelberg, 1–15. https://doi.org/10.1007/978-3-642-33651-5_1

[3] Marcos K Aguilera and Svend Frølund. 2003. Strict linearizability and
the power of aborting. Technical Report. HP Labs.

[4] Vitaly Aksenov, Dan Alistarh, Alexandra Drozdova, and Amirkeivan
Mohtashami. 2020. The Splay-List: A Distribution-Adaptive Concur-
rent Skip-List. In 34th International Symposium on Distributed Comput-
ing (DISC 2020) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 179), Hagit Attiya (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 3:1–3:18. https://doi.org/10.4230/
LIPIcs.DISC.2020.3

[5] Maya Arbel-Raviv and Trevor Brown. 2018. Harnessing Epoch-Based
Reclamation for Efficient RangeQueries. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Vienna, Austria) (PPoPP ’18). Association for Computing Machinery,
New York, NY, USA, 14–27. https://doi.org/10.1145/3178487.3178489

[6] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. 2018. Getting
to the Root of Concurrent Binary Search Tree Performance. In 2018
USENIX Annual Technical Conference (USENIX ATC 18). USENIX Asso-
ciation, Boston, MA, 295–306. https://www.usenix.org/conference/
atc18/presentation/arbel-raviv

[7] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake
Larson. 2018. Bztree: A High-Performance Latch-Free Range Index for
Non-Volatile Memory. Proc. VLDB Endow. 11, 5 (Jan. 2018), 553–565.
https://doi.org/10.1145/3164135.3164147

[8] Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. 2016. CBPQ:
High Performance Lock-Free Priority Queue. In Euro-Par 2016: Parallel
Processing, Pierre-François Dutot and Denis Trystram (Eds.). Springer
International Publishing, Cham, 460–474.

[9] Anastasia Braginsky and Erez Petrank. 2012. A Lock-Free B+tree. In
Proceedings of the Twenty-Fourth Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures (Pittsburgh, Pennsylvania, USA)
(SPAA ’12). Association for Computing Machinery, New York, NY, USA,
58–67. https://doi.org/10.1145/2312005.2312016

[10] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Oluko-
tun. 2010. A Practical Concurrent Binary Search Tree. In Proceed-
ings of the 15th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (Bangalore, India) (PPoPP ’10). Asso-
ciation for Computing Machinery, New York, NY, USA, 257–268.
https://doi.org/10.1145/1693453.1693488

[11] Trevor Brown. 2017. Techniques for Constructing Efficient Lock-
free Data Structures. Ph.D. Dissertation. University of Toronto.
arXiv:1807/80693

[12] Trevor Brown. 2017. A Template for Implementing Fast Lock-Free
Trees UsingHTM. In Proceedings of the ACM Symposium on Principles of
Distributed Computing (Washington, DC, USA) (PODC ’17). Association
for Computing Machinery, New York, NY, USA, 293–302. https://doi.
org/10.1145/3087801.3087834

[13] Trevor Brown, Faith Ellen, and Eric Ruppert. 2013. Pragmatic Primi-
tives for Non-Blocking Data Structures. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing (Montréal, Québec,
Canada) (PODC ’13). Association for Computing Machinery, New York,
NY, USA, 13–22. https://doi.org/10.1145/2484239.2484273

[14] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Tech-
nique for Non-Blocking Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Orlando,
Florida, USA) (PPoPP ’14). Association for Computing Machinery, New

York, NY, USA, 329–342. https://doi.org/10.1145/2555243.2555267
[15] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-

Blocking Interpolation Search Trees with Doubly-Logarithmic Run-
ning Time. In Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Diego, California)
(PPoPP ’20). Association for Computing Machinery, New York, NY,
USA, 276–291. https://doi.org/10.1145/3332466.3374542

[16] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free
Data Structures: There Has to Be a Better Way. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing (Donostia-
San Sebastián, Spain) (PODC ’15). Association for Computing Machin-
ery, New York, NY, USA, 261–270. https://doi.org/10.1145/2767386.
2767436

[17] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J.
Marathe, and Nir Shavit. 2013. NUMA-Aware Reader-Writer Locks.
In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13). As-
sociation for Computing Machinery, New York, NY, USA, 157–166.
https://doi.org/10.1145/2442516.2442532

[18] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K.
Aguilera. 2017. Black-Box Concurrent Data Structures for NUMA
Architectures. In Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (Xi’an, China) (ASPLOS ’17). Association for Computing
Machinery, New York, NY, USA, 207–221. https://doi.org/10.1145/
3037697.3037721

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(Indianapolis, Indiana, USA) (SoCC ’10). Association for Computing
Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/
1807128.1807152

[20] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark
Moir, and Daniel Nussbaum. 2006. Hybrid Transactional Memory.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS XII). Association for Computing Machinery,
New York, NY, USA, 336–346. https://doi.org/10.1145/1168857.1168900

[21] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor
Zablotchi. 2018. Log-Free Concurrent Data Structures. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Confer-
ence (Boston, MA, USA) (USENIX ATC ’18). USENIX Association, USA,
373–385.

[22] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-
chronized Concurrency: The Secret to Scaling Concurrent Search Data
Structures. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems (Istanbul, Turkey) (ASPLOS ’15). Association for Computing
Machinery, New York, NY, USA, 631–644. https://doi.org/10.1145/
2694344.2694359

[23] Dave Dice and Alex Kogan. 2019. Compact NUMA-Aware Locks.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 12, 15 pages. https://doi.org/10.1145/3302424.
3303984

[24] David Dice, Virendra J. Marathe, and Nir Shavit. 2012. Lock Cohorting:
A General Technique for Designing NUMA Locks. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (New Orleans, Louisiana, USA) (PPoPP ’12). Association
for Computing Machinery, New York, NY, USA, 247–256. https://doi.
org/10.1145/2145816.2145848

[25] Dana Drachsler-Cohen and Erez Petrank. 2014. Lcd: Local combining
on demand. In International Conference On Principles Of Distributed
Systems. Springer, Cortina d’Ampezzo, Italy, 355–371.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1007/978-3-642-33651-5_1
https://doi.org/10.4230/LIPIcs.DISC.2020.3
https://doi.org/10.4230/LIPIcs.DISC.2020.3
https://doi.org/10.1145/3178487.3178489
https://www.usenix.org/conference/atc18/presentation/arbel-raviv
https://www.usenix.org/conference/atc18/presentation/arbel-raviv
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1145/1693453.1693488
https://doi.org/10.1145/3087801.3087834
https://doi.org/10.1145/3087801.3087834
https://doi.org/10.1145/2484239.2484273
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/3332466.3374542
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2442516.2442532
https://doi.org/10.1145/3037697.3037721
https://doi.org/10.1145/3037697.3037721
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1168857.1168900
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1145/2694344.2694359
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1145/2145816.2145848
https://doi.org/10.1145/2145816.2145848


Elimination (a,b)-trees with fast, durable updates PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

[26] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-Blocking Binary Search Trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (Zurich, Switzerland) (PODC ’10). Association for Computing
Machinery, New York, NY, USA, 131–140. https://doi.org/10.1145/
1835698.1835736

[27] Panagiota Fatourou and Nikolaos D. Kallimanis. 2009. The RedBlue
Adaptive Universal Constructions. In Proceedings of the 23rd Interna-
tional Conference on Distributed Computing (Elche, Spain) (DISC’09).
Springer-Verlag, Berlin, Heidelberg, 127–141.

[28] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A Highly-
Efficient Wait-Free Universal Construction. In Proceedings of the
Twenty-Third Annual ACM Symposium on Parallelism in Algorithms
and Architectures (San Jose, California, USA) (SPAA ’11). Association
for Computing Machinery, New York, NY, USA, 325–334. https:
//doi.org/10.1145/1989493.1989549

[29] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch,
and Erez Petrank. 2020. NVTraverse: In NVRAM Data Structures, the
Destination is More Important than the Journey. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 377–392. https://doi.org/10.1145/
3385412.3386031

[30] Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror:
Making Lock-Free Data Structures Persistent. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association
for Computing Machinery, New York, NY, USA, 1218–1232. https:
//doi.org/10.1145/3453483.3454105

[31] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
Combining and the Synchronization-Parallelism Tradeoff. In Proceed-
ings of the Twenty-Second Annual ACM Symposium on Parallelism in
Algorithms and Architectures (Thira, Santorini, Greece) (SPAA ’10).
Association for Computing Machinery, New York, NY, USA, 355–364.
https://doi.org/10.1145/1810479.1810540

[32] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A Scalable
Lock-Free Stack Algorithm. In Proceedings of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures (Barcelona,
Spain) (SPAA ’04). Association for Computing Machinery, New York,
NY, USA, 206–215. https://doi.org/10.1145/1007912.1007944

[33] Shane V. Howley and Jeremy Jones. 2012. A Non-Blocking Internal
Binary Search Tree. In Proceedings of the Twenty-Fourth Annual ACM
Symposium on Parallelism in Algorithms and Architectures (Pittsburgh,
Pennsylvania, USA) (SPAA ’12). Association for Computing Machinery,
New York, NY, USA, 161–171. https://doi.org/10.1145/2312005.2312036

[34] Joseph Izraelevitz, Hammurabi Mendes, and Michael Scott. 2016. Lin-
earizability of Persistent Memory Objects Under a Full-System-Crash
Failure Model. In International Symposium on Distributed Comput-
ing, Vol. 9888. Association for Computing Machinery, Paris, France,
313–327. https://doi.org/10.1007/978-3-662-53426-7_23

[35] Kim S. Larsen and Rolf Fagerberg. 1995. B-Trees with Relaxed Balance.
In Proceedings of the 9th International Symposium on Parallel Processing
(IPPS ’95). IEEE Computer Society, USA, 196–202.

[36] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. Recipe: Converting Concurrent DRAM
Indexes to Persistent-Memory Indexes. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 462–477. https://doi.org/10.1145/3341301.3359635

[37] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adap-
tive radix tree: ARTful indexing for main-memory databases. In 2013
IEEE 29th International Conference on Data Engineering (ICDE). IEEE,
Brisbane, QLD, Australia, 38–49.

[38] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
2016. The ART of Practical Synchronization. In Proceedings of the
12th International Workshop on Data Management on New Hardware
(San Francisco, California) (DaMoN ’16). Association for Computing
Machinery, New York, NY, USA, Article 3, 8 pages. https://doi.org/10.
1145/2933349.2933352

[39] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and
Thomas Willhalm. 2019. Evaluating Persistent Memory Range Indexes.
Proc. VLDB Endow. 13, 4 (Dec. 2019), 574–587. https://doi.org/10.14778/
3372716.3372728

[40] J. J. Levandoski, D. B. Lomet, and S. Sengupta. 2013. The Bw-Tree: A
B-tree for new hardware platforms. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, Brisbane, QLD, Australia,
302–313. https://doi.org/10.1109/ICDE.2013.6544834

[41] Mengxing Liu, Jiankai Xing, Kang Chen, and Yongwei Wu. 2019. Build-
ing Scalable NVM-Based B+tree with HTM. In Proceedings of the 48th
International Conference on Parallel Processing (Kyoto, Japan) (ICPP
2019). Association for Computing Machinery, New York, NY, USA,
Article 101, 10 pages. https://doi.org/10.1145/3337821.3337827

[42] Victor Luchangco, Dan Nussbaum, and Nir Shavit. 2006. AHierarchical
CLH Queue Lock. In Proceedings of the 12th International Conference on
Parallel Processing (Dresden, Germany) (Euro-Par’06). Springer-Verlag,
Berlin, Heidelberg, 801–810. https://doi.org/10.1007/11823285_84

[43] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
Craftiness for Fast Multicore Key-Value Storage. In Proceedings of the
7th ACM European Conference on Computer Systems (Bern, Switzerland)
(EuroSys ’12). Association for Computing Machinery, New York, NY,
USA, 183–196. https://doi.org/10.1145/2168836.2168855

[44] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors. ACM
Trans. Comput. Syst. 9, 1 (Feb. 1991), 21–65. https://doi.org/10.1145/
103727.103729

[45] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-
Free Binary Search Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Orlando,
Florida, USA) (PPoPP ’14). Association for Computing Machinery, New
York, NY, USA, 317–328. https://doi.org/10.1145/2555243.2555256

[46] Aravind Natarajan, Lee H. Savoie, and Neeraj Mittal. 2013. Concur-
rent Wait-Free Red Black Trees. In 15th International Symposium on
Stabilization, Safety, and Security of Distributed Systems - Volume 8255
(Osaka, Japan) (SSS 2013). Springer-Verlag, Berlin, Heidelberg, 45–60.

[47] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In Proceedings of the
2016 International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 371–386. https://doi.org/10.1145/2882903.2915251

[48] William Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced
Trees. Commun. ACM 33, 6 (June 1990), 668–676. https://doi.org/10.
1145/78973.78977

[49] Arunmoezhi Ramachandran and Neeraj Mittal. 2015. A Fast Lock-
Free Internal Binary Search Tree. In Proceedings of the 2015 Interna-
tional Conference on Distributed Computing and Networking (Goa, India)
(ICDCN ’15). Association for Computing Machinery, New York, NY,
USA, Article 37, 10 pages. https://doi.org/10.1145/2684464.2684472

[50] K. Sagonas and K.Winblad. 2015. ContentionAdapting Search Trees. In
2015 14th International Symposium on Parallel and Distributed Comput-
ing. Association for Computing Machinery, Limassol, Cyprus, 215–224.
https://doi.org/10.1109/ISPDC.2015.32

[51] Nir Shavit and Dan Touitou. 1995. Elimination Trees and the Con-
struction of Pools and Stacks: Preliminary Version. In Proceedings
of the Seventh Annual ACM Symposium on Parallel Algorithms and
Architectures (Santa Barbara, California, USA) (SPAA ’95). Associa-
tion for Computing Machinery, New York, NY, USA, 54–63. https:

https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/2312005.2312036
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1145/3337821.3337827
https://doi.org/10.1007/11823285_84
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/2684464.2684472
https://doi.org/10.1109/ISPDC.2015.32
https://doi.org/10.1145/215399.215419
https://doi.org/10.1145/215399.215419


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Srivastava and Brown

//doi.org/10.1145/215399.215419
[52] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-Adjusting

Binary Search Trees. J. ACM 32, 3 (jul 1985), 652–686. https://doi.org/
10.1145/3828.3835

[53] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
and Roy H. Campbell. 2011. Consistent and Durable Data Structures
for Non-Volatile Byte-Addressable Memory. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (San Jose, Califor-
nia) (FAST’11). USENIX Association, USA, 5.

[54] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy
lock-free indexing in non-volatile memory. In 2018 IEEE 34th Inter-
national Conference on Data Engineering (ICDE). IEEE, Paris,France,
461–472.

[55] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. 2018. Building a
Bw-Tree Takes More Than Just Buzz Words. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA)
(SIGMOD ’18). Association for Computing Machinery, New York, NY,
USA, 473–488. https://doi.org/10.1145/3183713.3196895

[56] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin
Valpey, and Michael L. Scott. 2021. A Fast, General System for Buffered
Persistent Data Structures. Association for Computing Machinery, New
York, NY, USA, 1–11. https://doi.org/10.1145/3472456.3472458

[57] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost
for NVM-Based Single Level Systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (Santa Clara, CA) (FAST’15).
USENIX Association, USA, 167–181.

8 Artifact Description
The artifact containing the source code for all algorithms
and experiments run in this paper is available at https://doi.
org/10.5281/zenodo.5733351.
Note: Sudo permission may be required to execute the

following instructions.
1. Install the latest version of Docker on your system.

The artifact was tested with the Docker version 20.10.2.
(Instructions to install Docker can be found at https:
//docs.docker.com/get-docker/.)

2. Download the artifact from Zenodo at URL: https://
doi.org/10.5281/zenodo.5733351.

3. Load the downloaded docker image:
$ sudo docker load -i setbench.tar.gz

4. Verify that image was loaded:
$ sudo docker images

5. Start a docker container from the loaded image:
$ sudo docker run -p 2222:22 -d –privileged
–name setbench setbench

6. Verify that the container is running (you should see a
setbench container):
$ sudo docker container ls

7. SSH into the running container with password root:
$ ssh root@localhost -p 2222

8. Follow the instructions in setbench/README.md to
replicate results. Note that you might have to change
thread counts in the run.sh and run_persistence_cost.sh
scripts to match the constraints of your system.

https://doi.org/10.1145/215399.215419
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.1145/3472456.3472458
https://doi.org/10.5281/zenodo.5733351
https://doi.org/10.5281/zenodo.5733351
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://doi.org/10.5281/zenodo.5733351
https://doi.org/10.5281/zenodo.5733351

	Abstract
	1 Introduction
	2 Related work
	3 OCC-ABtree
	3.1 Data structures
	3.2 Operations
	3.3 Correctness

	4 Elimination
	4.1 Publishing elimination algorithm

	5 Persistent trees
	5.1 p-OCC-ABtree Correctness

	6 Experiments
	6.1 SetBench microbenchmark
	6.2 YCSB
	6.3 Persistence experiments

	7 Future work and conclusion
	Acknowledgments
	References
	8 Artifact Description

