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ABSTRACT
The recent advances of conversational recommendations provide

a promising way to efficiently elicit users’ preferences via conver-

sational interactions. To achieve this, the recommender system

conducts conversations with users, asking their preferences for

different items or item categories. Most existing conversational

recommender systems for cold-start users utilize a multi-armed

bandit framework to learn users’ preference in an online manner.

However, they rely on a pre-defined conversation frequency for

asking about item categories instead of individual items, which

may incur excessive conversational interactions that hurt user ex-

perience. To enable more flexible questioning about key-terms, we

formulate a new conversational bandit problem that allows the

recommender system to choose either a key-term or an item to rec-

ommend at each round and explicitly models the rewards of these

actions. This motivates us to handle a new exploration-exploitation

(EE) trade-off between key-term asking and item recommendation,

which requires us to accurately model the relationship between

key-term and item rewards. We conduct a survey and analyze a

real-world dataset to find that, unlike assumptions made in prior

works, key-term rewards are mainly affected by rewards of rep-

resentative items. We propose two bandit algorithms, Hier-UCB

and Hier-LinUCB, that leverage this observed relationship and the

hierarchical structure between key-terms and items to efficiently

learn which items to recommend. We theoretically prove that our

algorithm can reduce the regret bound’s dependency on the total

number of items from previous work. We validate our proposed

algorithms and regret bound on both synthetic and real-world data.

CCS CONCEPTS
• Information systems → Recommender systems; • Theory
of computation → Online learning algorithms.
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1 INTRODUCTION
Recommender systems have attracted much attention in a variety of

areas over the past decades, e.g., to steer users towards movies they

will enjoy [1] or suggest applications that they may find useful [2].

Most recommender systems utilize large amounts of historical data

to learn user behaviour and preferences. However, for cold-start

users who interact with the system for a short amount of time, there

is not enough historical data to reliably learn user preferences, and

thus the system has to interact with these users in an online manner

in order to make informed recommendations. Successfully learn-

ing user preferences from this interaction, however, is challenging,

as most users will not tolerate extensive exploration of potential

items [3, 4]. The recent advances of conversational recommender

systems (CRS) propose a new way to efficiently elicit users’ pref-

erences [3, 5–9]. The system is allowed to conduct conversations

with users to get richer feedback information, which enables better

preference elicitation and alleviates extensive explorations. These

conversations are expected to be less burdensome for users than

receiving irrelevant recommendations, allowing for less onerous

exploration of item recommendations [7].

Research challenges. Although CRSs have achieved success

in many fields (e.g., movie [5] and restaurant [6] recommendation),

current conversation mechanisms still face challenges. Most mech-

anisms utilize a multi-armed bandit framework to decide what the

agent should ask a user, based on the results of previous conver-

sational interactions. Existing conversational bandits [3, 7, 8] rely

on a pre-defined conversation frequency. Specifically, at some pre-

determined conversation rounds, the recommender agent asks users

questions about “key-terms,” i.e., their preferences for categories of

items that could be recommended, and then receives feedback that

it can use to infer users’ item preferences. However, even though

conversational interactions may be more tolerable to users than

poor item recommendations [7], we should still limit the number

of required interactions for finding an optimal item [11]. Thus, for
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Figure 1: An example showing the importance of accurately
modeling the relationship between the user preferences for
key-terms and items. The user preference for ‘fast food’ is af-
fected by some fast food restaurants (i.e., ‘KFC’ in this exam-
ple), rather than all fast food restaurants. The user’s rejec-
tion of ‘Subway’ does notmean that the agent should always
be penalized for recommending the key-term ‘fast food’. In
fact, the user does like ‘fast food’ in this case. However, af-
ter round 2, existing approaches [3, 10, 11] will penalize the
agent for recommending the key-term ‘fast food’ in round
1.

users whose preferences are easy to learn, we want to have fewer

interactions, e.g., for users with clear preferences between key-term

categories, more frequent key-term questions upfront may allow

us to quickly identify a good key-term category containing items

that the user likes. Prior work [11] takes a step in this direction by

unifying key-term questions and item recommendation in the same

action space, but their solutions do not have theoretical guarantees

and do not explicitly consider the cost of key-term questions, which

can still incur burdensome conversational interactions.

A natural approach to enable more flexible key-term question in-

teractions is to treat each such interaction as an alternative to item

recommendation. These interactions can then be associated with a

reward indicating how much the user likes this category of items,

just as item recommendations are associated with rewards that

represent how much a user likes the item. We can then model the

recommender agent’s actions as a sequence of actions, each drawn

from an action space that includes both conversational key-term

interactions and item recommendations. The goal is to choose a

sequence of actions, informed by the results from prior actions, that

maximizes the cumulative reward, i.e., user satisfaction. In doing so,

we implicitly limit the number of required interactions before find-

ing high-reward items (i.e., ones the user likes). To achieve this, we
formulate a new conversational bandit problem that allows

the agent to choose either a key-term or an item to recommend at

each round and explicitly models the rewards of both actions.

This conversational bandit setting introduces a new exploration-
exploitation (EE) trade-off between key-term questions and item rec-
ommendation, which can not be handled by previous work. Balanc-

ing such an EE trade-off is challenging as it is affected by the com-

plicated relationship between item rewards and key-term rewards.

One example of this relationship in conversational restaurant rec-

ommendations is illustrated by Figure 1. The recommender agent

first recommends key-term "fast food" to the user, which satisfies

the user as he likes fast food restaurants such as KFC, Chipotle,

and Wendy’s. The agent then recommends "Subway", but the user

rejects that recommendation since he just ate it shortly before and

does not want to eat it again. The agent finally recommends an-

other fast food restaurant "KFC", which is accepted by the user,

and the interaction ends. In this example, the user’s preference

for "fast food" is mainly determined by his enjoyment of "KFC",

but not his rejection of "Subway". Intuitively, users’ preferences

for one key-term (i.e., the rewards associated with that key-term)

are primarily affected by their preferences for the best (i.e., most

preferred) items within that key-term category. Another example

where the key-term reward is determined by the rewards of the best

items can be found in image retrieval [12]: given a specific query

from the user, we may show the user different clusters (key-terms)

of images. If a cluster contains any images the user is looking for,

he should be satisfied with that cluster. Thus, the user’s satisfaction

of a cluster is decided by whether it contains the desired images.

To verify our above intuition of the relationship between item

and key-term rewards, we conduct a survey (as detailed in Sec-

tion 3.2) asking participants to rate restaurants (items) and corre-

sponding categories (key-terms). We find that the item and key-term
reward relationship defined by previous work is inaccurate for many
categories. Specifically, [3, 8] consider the reward of a key-term

to be the average of the rewards of all associated items. However,

we find this average is usually smaller than the true key-term rat-

ings from participants, which are closer to the ratings of the most

highly rated associated items. These findings are consistent with

an analysis of restaurant ratings from the Yelp dataset (Section 3.2).

Our contributions. Inspired by the above observation that key-

term rewards are mainly affected by the rewards of representative

items, we leverage this relationship and the hierarchical structure

between key-terms and items to develop more efficient recom-

mendation algorithms. Since maximizing the cumulative reward

is achieved by quickly identifying the item that most appeals to

the user, we can accelerate our search by first identifying the most

appealing key-term (which, from our results above, will contain the

most appealing item). To do so, we propose two algorithms, Hier-

UCB (upper confidence bound) and Hier-LinUCB, for stochastic and

contextual conversational bandit settings, respectively. We prove

the theoretical regret bound of the proposed algorithm reduces the

dependency on the total number of items, from |A| in previous

work [3] to |K | + |A𝑘∗ |, where |A| is the size of the item pool,

|K | is the size of the key-term pool, and |A𝑘∗ | is the number of

constituent items of the best key-term. Our regret analysis is also

different from the previous hierarchical Bayesian bandit works [13–

17]: with a careful treatment of the regrets caused by choosing

sub-optimal key-terms or items, we provide a stronger frequentist

regret bound that, unlike the previous Bayes regret bounds, is ag-

nostic to the quality of prior information. Experimental results on a
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synthetic dataset show that Hier-UCB outperforms both traditional

UCB and Hier-LinUCB with a moderated item pool. We run Hier-

UCB with three real-world datasets with large item pools and find

it outperforms baseline algorithms from previous works.

In summary, our research contributions are as follows:
• To enable flexible key-term question frequencies for prefer-

ence elicitation, we formulate a conversational bandit problem
that explicitlymodels the exploration-exploitation (EE) trade-

off between key-term questions and item recommendation.

• We study the relationship between item and key-term rewards
based on a survey and analysis of a real-world dataset. We

have an essential observation for our algorithm design that

the key-term rewards are mainly determined by the rewards

of representative items.

• We propose Hier-UCB and Hier-LinUCB, efficient bandit algo-

rithms that leverage the observed relationship and the hierar-

chical structure between attributes and items. We prove that

Hier-UCB reduces the theoretical regret bound’s dependency

on the total number of items in prior work.

• We validate our proposed algorithms and regret bounds on
both synthetic and real-world data.

The rest of the paper is organized as follows. We formulate the new

conversational bandit problem and study the item-key-term reward

relationship in Section 3. In Section 4, we propose Hier-UCB and

Hier-LinUCB and analyze their regrets. The experimental setup and

results are presented in Section 5. We discuss some related works

in Section 2 and conclude the paper in Section 6.

2 RELATEDWORK
2.1 Conversational Preference Elicitation
The recent advances of conversational recommender systems (CRS)

provide a promising way to efficiently elicit users’ preferences [3, 5–

8, 18, 19]. By developing advanced models and efficient algorithms

in CRS, we can promisingly derive more information about the user

preferences and understand their preferences more accurately [20–

29]. To determine when to have the conversations and what to ask

during conversations, previous works formulate the task as a multi-

step decision-making process and propose reinforcement learning

based approaches [30–34]. The most related works of this paper

are a series of studies that utilize a multi-armed bandit framework

for preference elicitation from cold-start users in an online manner.

Christakopoulou et al. [7] first introduce the use of bandit-based

strategies for preference elicitation into CRS. Zhang et al. [3] formu-

late the conversational contextual bandit problem that integrates

linear contextual bandits and CRS. They propose the ConUCB al-

gorithm, one of our baselines, which achieves a smaller theoretical

regret upper bound than the conventional contextual bandit algo-

rithm LinUCB [35]. A follow-up [11] models key-term asking and

item recommendation in an unified framework and proposes a ban-

dit solution based on Thompson Sampling. Xie et al. [8] introduce a

comparison-based CRS with relative feedback to the comparisons of

key-terms. However, none of these works explicitly model the cost

(i.e., incurred regret) of the conversations that ask users about their

key-term preferences in the conversational bandit framework. Thus,

they may let users suffer from excessive conversational interactions.

To the best of our knowledge, we are the first to formally model

the regret of key-term asking and study the new EE trade-off be-

tween key-term asking and item recommendation, to enable more

flexible conversations. We further revisit the relationship between

key-term and item rewards and, based on our results, propose a

new model for key-term rewards as determined by the rewards of

representative items, instead of all items as assumed in prior work.

2.2 Bandits with Hierarchy
There is a branch of research that relates to our proposed bandit al-

gorithms that take advantages of a hierarchy structure. Hierarchical

Bayesian bandits have been studied in [13–17], with applications

in meta-learning and multi-task learning. A hierarchical Bayesian

framework is proposed in [13] to solve the metadata-based multi-

task multi-armed bandit problem. Hong et al. [14] formulate a

general hierarchical Bayesian bandit problem for solving multiple

similar bandit tasks sequentially or concurrently, where each task

is parameterized by task parameters drawn from a distribution pa-

rameterized by hyper-parameters. Hong et al. [16] study the bandit

problem with a deep hierarchical structure other than the tradi-

tional 2-level Bayesian hierarchy. However, all these works rely

on the prior knowledge of arms and specific Bayesian hierarchi-

cal structures that may not be practical in real-world applications.

Our proposed algorithms do not require any prior information and

utilize the simple hierarchical structure between key-terms and

items that is available in most applications. Moreover, we provide

a stronger frequentist regret bound than the Bayes regret bounds

in previous works, which is agnostic to the quality of priors. Our

analysis for the frequentist regret is also different from that for the

Bayes regret: without the hierarchical Bayesian structure, we need

to carefully bound the regrets caused by the 4 cases in Section 3.3.

3 PROBLEM FORMULATION
In this section, we will formulate conversational recommendation

as a conversational bandit problem. We start by introducing the

stochastic conversational bandit scenario where an agent can rec-

ommend either a key-term or an item to a user. We then discuss the

limitations of the previous works’ models of key-term rewards and

propose a new key-term reward function, based on both human

evaluation and data analysis. We also provide a contextual version

of our new conversational bandit problem.

3.1 Stochastic Conversational Bandit
We formulate a novel stochastic conversational bandit problem that

allows the recommender agent to choose either key-term asking or

item recommendation at each round. It explicitly models the regret

caused by key-term asking, which is ignored by prior work [3, 8, 11].

The goal of the agent is to maximize the cumulative reward in 𝑇

rounds through repeated key-term and item recommendations.

Consider a finite set of items (e.g., restaurants) denoted byA and

a finite set of key-terms (e.g., restaurant categories) denoted by K .

The relationships between the arms and the key-terms are defined

by a weighted bipartite graph (A,K,𝑊 ), where item 𝑎 ∈ A is

associated to a key-term 𝑘 ∈ K with weight𝑊𝑎,𝑘 ≥ 0. Without loss

of generality, we assume

∑
𝑘∈K𝑊𝑎,𝑘 = 1. More discussion of the

weights can be found in Section 3.2.
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Figure 2: Restaurant category ratings from our survey are
closer to the ratings of the top 20% of items in each category
than the average ratings of all items in each category.

Figure 3: Restaurant category ratings from the Yelp dataset,
showing similar category-item relationships as in Figure 2.

At each round 𝑡 = 1, · · · ,𝑇 , the agent needs to choose an item

𝑎𝑡 ∈ A or a key-term 𝑘𝑡 ∈ K and shows it to the user. If the agent

chooses an item, it will receive an item reward:

𝑟𝑎𝑡 ,𝑡 = 𝜇𝑎𝑡 + 𝜖𝑡 , (1)

where 𝜇𝑎𝑡 is the expected reward of item 𝑎𝑡 and 𝜖𝑡 is a random vari-

able representing the random noise. Similarly, if the agent chooses

a key-term, it will receive a key-term reward:

𝑟𝑘𝑡 ,𝑡 = 𝜇̃𝑘𝑡 + 𝜖𝑡 , (2)

where 𝜇̃𝑘𝑡 is the expected reward of key-term 𝑘𝑡 and 𝜖𝑡 is a random

variable representing the random noise. For ease of presentation, if

the agent chooses an item 𝑎𝑡 ∈ A, we assume it also chooses 𝑘𝑡 = ∅;
if the agent chooses a key-term 𝑘𝑡 ∈ K , we assume it also chooses

𝑎𝑡 = ∅. With a slight abuse of notation, we let 𝑟∅,𝑡 = 𝑟∅,𝑡 = 0. We

define the real obtained reward of the agent at round 𝑡 as:

𝑅𝑎𝑡 ,𝑘𝑡 ,𝑡 = 𝑟𝑎𝑡 ,𝑡 + 𝑟𝑘𝑡 ,𝑡 . (3)

The goal of the agent is to maximize the expected cumulative

rewards. Let

∑𝑇
𝑡=1
E[𝑅𝑎∗𝑡 ,𝑘∗

𝑡 ,𝑡
] denote the maximum expected cu-

mulative reward in 𝑇 rounds, where (𝑎∗𝑡 , 𝑘∗𝑡 ) is the optimal ac-

tion at round 𝑡 , i.e., E[𝑅𝑎∗𝑡 ,𝑘∗
𝑡 ,𝑡
] ≥ E[𝑅𝑎,𝑘,𝑡 ], ∀𝑎 ∈ A, 𝑏 = ∅ or

∀𝑘 ∈ K, 𝑎 = ∅. The goal of the agent is to maximize the expected

cumulative reward or, equivalently, to minimize the expected cu-

mulative regret in 𝑇 rounds:

𝑅𝑒𝑔(𝑇 ) =
𝑇∑︁
𝑡=1

(
E[𝑅𝑎∗𝑡 ,𝑘∗

𝑡 ,𝑡
] − E[𝑅𝑎𝑡 ,𝑘𝑡 ,𝑡 ]

)
. (4)

3.2 Key-term Reward Revisited
Since we allow the agent to choose from key-term or item recom-

mendations, the relationship between key-term and item rewards

plays an important role in deciding which action to take at each

round. Previous work [3] proposes that the reward of key-term 𝑘

is the weighted average of the rewards of all related items:

E[𝑟𝑘,𝑡 ] =
∑︁
𝑎∈A

𝑊𝑎,𝑘∑
𝑎′∈A𝑊𝑎′,𝑘

E[𝑟𝑎,𝑡 ], 𝑘 ∈ K . (5)

However, it is unrealistic for the recommender agent to know the

exact weight𝑊𝑎,𝑘 between item 𝑎 and key-term 𝑘 in advance. It is

also impractical to learn these weights online. As a result, previ-

ous work considers simplified binary weights for real applications,

i.e.,𝑊𝑎,𝑘 = 1 if item 𝑎 belongs to key-term 𝑘 , otherwise𝑊𝑎,𝑘 = 0.

For example, if there are only 3 restaurants 𝑎1, 𝑎2, 𝑎3 belonging

to key-term 𝑘1, then the expected reward of key-term 𝑘1 is calcu-

lated as E[𝑟𝑘1,𝑡 ] =
E[𝑟𝑎

1
,𝑡 ]+E[𝑟𝑎

2
,𝑡 ]+E[𝑟𝑎

3
,𝑡 ]

3
. We call this key-term

reward calculation method the "simple average", and we study its

correctness from a survey and data analysis on a real dataset.

We conduct the survey by asking the participant questions. Each

participant is asked to first rate 3 restaurant categories (key-terms),

"Hotpot", "Fine Dining", and "Coffee", and then 10 restaurants (items)

randomly sampled from 50 restaurants for each category, on a scale

of 1 to 5. The rating of category has an extra option "I have never

tried", and participants who check this option will not be counted

into the analysis of the corresponding category. In total, there are

55 participants. The true ratings of different categories and the

ratings calculated by a simple average are shown in Figure 2. We

find the simple average ratings are always smaller than the true

ratings, which suggests that simple average is not an accurate way

to calculate key-term rewards. One potential explanation is that

people’s preferences for a restaurant category are mainly deter-

mined by their preferences for some representative restaurants, so

the simple average method underestimates the key-term reward as

it treats all associated restaurants in the same category equally.

To verify this idea, we propose a new key-term reward calcula-

tion method called "top-𝛼 average", which takes the average reward

of the top 𝛼 fraction of restaurants as the key-term reward. We

choose 𝛼 = 20% for better comparison with the simple average

ratings, while 𝛼 ∈ [0.1, 0.5] generally provides similar results. As

shown in Figure 2, top-20% average ratings are much closer to the

true ratings than simple average ratings.

Since the scale of the survey is relatively small, to further verify

our findings, we run a data analysis on the Yelp dataset [36]. We

choose 7 restaurant categories with over 10, 000 reviews for each.

We calculate the weighted average ratings of them, by taking the

review counts of restaurants as the weights. This key-term reward

can be interpreted as the average score of a review for a restaurant in

that category. Notice that the recommender agent should not know

the review counts before its recommendations, so weighted average

ratings are only used for evaluation but not recommendation. We

compare weighted average ratings with simple average ratings and

top-50% average ratings in Figure 3. Top-50% average ratings are

closer to weighted average ratings than simple average ratings,

which is consistent with our findings from our survey.
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3.3 Contextual Conversational Bandit
We next introduce a contextual version of the new conversational

bandit problem, which allows us to more easily accommodate large

item pools. The agent plays with a user with unknown feature 𝜽 ∗ ∈
R𝑑 for 𝑇 rounds. At each round 𝑡 , the agent observes contextual

vector 𝒙𝑎,𝑡 for all items 𝑎 ∈ A and contextual vector 𝒙̃𝑘,𝑡 for all
key-terms 𝑘 ∈ K . It then needs to choose an item 𝑎𝑡 ∈ A or a

key-term 𝑘𝑡 ∈ K and shows it to the user, as in the non-contextual

problem. We follow LinUCB [35] in modeling the reward as a linear

function of the context. If the agent chooses an item, it will receive

an item reward:

𝑟𝑎𝑡 ,𝑡 = 𝒙𝑇𝑎𝑡 ,𝑡𝜽
∗ + 𝜖𝑡 , (6)

where 𝒙𝑇𝑎𝑡 ,𝑡𝜽
∗
is the expected reward of item 𝑎𝑡 and 𝜖𝑡 is a ran-

dom variable representing the random noise. Similarly, if the agent

chooses a key-term, it will receive a key-term reward:

𝑟𝑘𝑡 ,𝑡 = 𝒙̃𝑇
𝑘𝑡 ,𝑡

𝜽 ∗ + 𝜖𝑡 , (7)

where 𝜇̃𝑘𝑡 is the expected reward of key-term 𝑘𝑡 and 𝜖𝑡 is a random

variable representing the random noise. The definitions of the ob-

tained reward 𝑅𝑎𝑡 ,𝑘𝑡 ,𝑡 and the regret 𝑅𝑒𝑔(𝑇 ) are the same as those

in Section 3.1. The goal of the agent is still to minimize the expected

regret 𝑅𝑒𝑔(𝑇 ), defined as in (4).

4 ALGORITHM & THEORETICAL ANALYSIS
In this section, we propose two algorithms, Hier-UCB and Hier-

LinUCB, for the stochastic and contextual conversational bandit

settings, respectively. As discussed in Section 3.2, the reward of a

key-term is mainly determined by the rewards of the representative

items, and the proposed algorithms take advantages of this finding

and the hierarchical structure between key-terms and items to

achieve more efficient learning.

4.1 Hier-UCB
Inspired by the well-known upper-confidence bound (UCB) solu-

tion algorithm for traditional multi-armed bandit formulations, we

propose a Hierarchical UCB (Hier-UCB) algorithm described in

Algorithm 1 for the stochastic setting of our conversational bandit

problem. The algorithm maintains the empirical mean 𝜇𝑎, ˜𝜇𝑘 and a

confidence radius 𝜌𝑎, 𝜌𝑘 for each item 𝑎 ∈ A and key-term 𝑘 ∈ K .

The confidence radius is designed to be large if item 𝑎 or key-term

𝑘 is not chosen often (𝑇𝑎 or 𝑇𝑘 , which denote the number of times

item 𝑎 or key-term 𝑘 has been recommended, is small) as is typical

in UCB-based algorithms, so as to encourage exploration of rarely

sampled arms or key-terms.

At each round, the algorithm first calculates key-term
¯𝑘∗ with the

highest UCB value among all key-terms, and then finds item 𝑎∗ with
the highest UCB value from all associated items of key-term

¯𝑘∗ (line
6). It then decides whether to select an item or a key-term based on

a switching condition (line 7): if the condition is not satisfied, which

indicates the key-terms have not been sufficiently explored, it will

recommend key-term
¯𝑘∗ (line 8) for one time, then recommend

item 𝑎∗ (line 12); otherwise, it will only recommend item 𝑎∗ (line
12). Note that both key-term and item recommendations can incur

regret. Intuitively, the switching condition ensures that an item is

chosen if a conservative estimate of the best item reward exceeds a

generous estimate of the best key-term reward: in other words, if

Algorithm 1 Hier-UCB

1: Input: graph (A,K,𝑊 ), 𝛾 .
2: Init: 𝑇𝑎 = 0,𝑇𝑘 = 0, 𝜇𝑎 = 1, ˜𝜇𝑘 = 1.

3: while 𝑡 ≤ 𝑇 do
4: For each item 𝑎, 𝜌𝑎 =

√︃
3 ln 𝑡
2𝑇𝑎

.

5: For each key-term 𝑘 , 𝜌𝑘 =
√︃

3 ln 𝑡

2𝑇𝑘
.

6:
¯𝑘∗ = argmax𝑘∈K ˜𝜇𝑘 + 𝜌𝑘 , 𝑎

∗ = argmax𝑎∈A𝑊𝑎, ¯𝑘∗ (𝜇𝑎 + 𝜌𝑎)
7: if not (𝜇𝑎∗ − 𝛾 · 𝜌𝑎∗ ≥ ˜𝜇 ¯𝑘∗ + 𝛾 · 𝜌 ¯𝑘∗ ) then
8: Choose key-term

¯𝑘∗, receive reward 𝑟 ¯𝑘∗,𝑡 .

9: Update𝑇¯𝑘∗ , ˜𝜇 ¯𝑘∗ :𝑇¯𝑘∗ = 𝑇¯𝑘∗ +1, ˜𝜇 ¯𝑘∗ = ˜𝜇 ¯𝑘∗ + (𝑟 ¯𝑘∗,𝑡 − ˜𝜇 ¯𝑘∗ )/𝑇¯𝑘∗ .

10: 𝑡 = 𝑡 + 1.

11: end if
12: Choose item 𝑎∗, receive reward 𝑟𝑎∗,𝑡 .
13: Update 𝑇𝑎∗ , 𝜇𝑎∗ : 𝑇𝑎∗ = 𝑇𝑎∗ + 1, 𝜇𝑎∗ = 𝜇𝑎∗ + (𝑟𝑎∗,𝑡 − 𝜇𝑎∗ )/𝑇𝑎∗ .
14: 𝑡 = 𝑡 + 1.

15: end while

the best item’s reward exceeds the best key-term’s reward with high

probability. The parameter 𝛾 in the switching condition controls

how easily the condition can be satisfied, and Theorem 4.2 gives

the appropriate values of 𝛾 .

4.2 Hier-LinUCB
We propose a Hierarchical LinUCB (Hier-LinUCB) algorithm, de-

scribed in Algorithm 2, for the contextual setting. It is a modified

version of Hier-UCB based on the LinUCB [35] algorithm for con-

textual bandits. Hier-LinUCB maintains user feature estimate 𝜽 , ˜𝜽
and confidence radius 𝐶𝑎,𝑡 ,𝐶𝑘,𝑡 for each item 𝑎 ∈ A and key-term

𝑘 ∈ K . At each round, the algorithm first calculates the key-term
¯𝑘∗

with the highest UCB value among all key-terms (line 7) and then

finds the item 𝑎∗ with the highest UCB value from all associated

items of key-term
¯𝑘∗ (line 8). It then decides whether to only explore

on item 𝑎∗ based on a switching condition (line 9): if the condition

is false, which indicates the key-terms have not been sufficiently

explored, it will recommend key-term
¯𝑘∗ for one time (line 10),

then recommend item 𝑎∗ for one time (line 14). Otherwise, it will

only choose item 𝑎∗ to recommend (line 14). Again, the switching

condition controls when to recommend key-terms or items and is

based on comparing a conservative estimate of the best item reward

with a generous estimate of the key-term reward. The parameter 𝛾

again controls how conservative or generous these estimates are.

4.3 Regret Analysis
In this section, we analyze the regret (4) of Hier-UCB in the stochas-

tic conversational setting. Let A𝑘 = {𝑎 | 𝑎 ∈ A,𝑊𝑎,𝑘 ≠ 0} denote
the set of all associated items for key-term𝑘 ,𝑘∗ denote the key-term
with the highest expected reward, and 𝑎∗

𝑘
= argmax𝑎∈A𝑘

𝜇𝑎 . Note

that
¯𝑘∗ is the key-term with the current highest UCB value and

may not be 𝑘∗. In order to derive the regret bound, we assume that

𝑎∗
𝑘∗ = argmax𝑎 E[𝑟𝑎,𝑡 ], i.e., the best item in the key-term with the

highest reward also has the highest reward among all items. This

assumption is consistent with our observation in Section 3.2 that

the key-term rewards are mainly affected by the rewards of the best
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Algorithm 2 Hier-LinUCB

1: Input: graph (A,K,𝑊 ), 𝛾 .
2: Init: 𝑴̃ = 𝑰 , ˜𝒃 = 0,𝑴 = 𝑰 , 𝒃 = 0.

3: while 𝑡 ≤ 𝑇 do
4:

˜𝜽 = 𝑴̃−1 ˜𝒃, 𝜽 = 𝑴−1𝒃 .
5: For each item 𝑎, 𝐶𝑎,𝑡 = 𝛼𝑡 | |𝒙̃𝑘,𝑡 | | ˜𝑴−1

.

6: For each key-term 𝑘 , 𝐶𝑘,𝑡 = 𝛼𝑡 | |𝒙̃𝑘,𝑡 | | ˜𝑴−1
.

7:
¯𝑘∗ = argmax𝑘∈K 𝒙̃𝑇

𝑘,𝑡
˜𝜽 +𝐶𝑘,𝑡 .

8: 𝑎∗ = argmax𝑎∈A𝑊𝑎, ¯𝑘∗

(
𝒙𝑇𝑎,𝑡𝜽 +𝐶𝑎,𝑡

)
.

9: if not (𝒙𝑇
𝑎∗,𝑡𝜽 − 𝛾𝐶𝑎∗,𝑡 ≥ 𝒙̃𝑇

¯𝑘∗,𝑡
˜𝜽 + 𝛾𝐶 ¯𝑘∗,𝑡 ) then

10: Choose key-term
¯𝑘∗, receive reward 𝑟 ¯𝑘∗ .

11: Update 𝑴̃ ,
˜𝒃 : 𝑴̃ = 𝑴̃ + 𝒙̃ ¯𝑘∗,𝑡 𝒙̃

𝑇
¯𝑘∗,𝑡

,
˜𝒃 = ˜𝒃 + 𝒙̃ ¯𝑘∗,𝑡𝑟

𝑇
¯𝑘∗,𝑡

.

12: 𝑡 = 𝑡 + 1.

13: end if
14: Choose item 𝑎∗, receive reward 𝑟𝑎∗,𝑡 .
15: Update 𝑴 , 𝒃 : 𝑴 = 𝑴 + 𝒙𝑎∗,𝑡𝒙𝑇𝑎∗,𝑡 , 𝒃 = 𝒃 + 𝒙𝑎∗,𝑡𝑟𝑇𝑎∗,𝑡 .
16: 𝑡 = 𝑡 + 1.

17: end while

associated items. It is also quite general compared to the first-order

dominance assumption used to design previous hierarchical bandit

algorithms [37], which requires the 𝑖𝑡ℎ best item in key-term 𝑘∗

has larger reward than the 𝑖𝑡ℎ best item of key-term 𝑘 , for any 𝑖, 𝑘 .

There are four cases in total that can cause regret in a given round:

(1)
¯𝑘∗ is sub-optimal and switching condition is not satisfied

(2)
¯𝑘∗ is sub-optimal and switching condition is satisfied

(3)
¯𝑘∗ is optimal and switching condition is not satisfied

(4)
¯𝑘∗ is optimal and switching condition is satisfied

We consider the regret decomposed into these four cases separately.

4.3.1 Sub-optimal ¯𝑘∗, no switching. For sub-optimal key-term
¯𝑘∗,

when the switching condition is not satisfied, we recommend key-

term
¯𝑘∗ and item 𝑎∗. In this case, we only need to consider that

∃¯𝑘∗ ≠ 𝑘∗, ˜𝜇 ¯𝑘∗ + 𝜌 ¯𝑘∗ ≥ ˜𝜇𝑘∗ + 𝜌𝑘∗ . (8)

By applying Hoeffding’s inequality on
˜𝜇 ¯𝑘∗ , we have 𝜇̃ ¯𝑘∗ − 𝜌 ¯𝑘∗ ≤

˜𝜇 ¯𝑘∗ ≤ 𝜇̃ ¯𝑘∗ + 𝜌 ¯𝑘∗ with high probability (at least 1 − 2|K |𝑡−2
). Then

(8) becomes

∃¯𝑘∗ ≠ 𝑘∗, 2𝜌 ¯𝑘∗ ≥ 𝜇̃𝑘∗ − 𝜇̃ ¯𝑘∗ . (9)

Substituting 𝜌 ¯𝑘∗ with its definition 𝜌 ¯𝑘∗ =

√︂
3 ln 𝑡

2𝑇¯𝑘∗
, we have

E[𝑇¯𝑘∗ ] ≤
6 ln 𝑡

(𝜇̃𝑘∗ − 𝜇̃ ¯𝑘∗ )2
. (10)

The regret caused by selecting sub-optimal key-terms and items is

bounded as

𝑅𝑒𝑔1 (𝑇 ) ≤
∑︁
𝑘≠𝑘∗
E[𝑇𝑘 ] · (𝜇𝑎∗ − 𝜇̃𝑘 + 1) . (11)

4.3.2 Sub-optimal ¯𝑘∗, switching. By applying Hoeffding’s inequal-

ity on
˜𝜇𝑘 and 𝜇𝑎 , we have 𝜇̃𝑘 − 𝜌𝑘 ≤ ˜𝜇𝑘 ≤ 𝜇̃𝑘 + 𝜌𝑘 and 𝜇𝑎 − 𝜌𝑎 ≤

𝜇𝑎 ≤ 𝜇𝑎 + 𝜌𝑎 with high probability. If the switching condition is

satisfied, we have

𝜇𝑎∗ + (1 − 𝛾) · 𝜌𝑎∗ ≥ 𝜇̃ ¯𝑘∗ + (𝛾 − 1) · 𝜌 ¯𝑘∗ , (12)

𝜌𝑎∗ + 𝜌 ¯𝑘∗ ≤ 1

𝛾 − 1

(𝜇𝑎∗ − 𝜇̃ ¯𝑘∗ ). (13)

We also have 𝑇𝑎∗ ≤ 𝑇¯𝑘∗ ≤ 6 ln 𝑡
(𝜇̃𝑘∗−𝜇̃ ¯𝑘∗ )2

at the first time that the

switching condition is satisfied, which gives us

𝜌𝑎∗ + 𝜌 ¯𝑘∗ ≥ 𝜇̃𝑘∗ − 𝜇̃ ¯𝑘∗ . (14)

If 𝛾 >
𝜇𝑎̄∗−𝜇̃ ¯𝑘∗
𝜇̃𝑘∗−𝜇̃ ¯𝑘∗

+ 1, (13) and (14) will never be true at the same time.

Thus, by taking 𝛾 ≥ max𝑘≠𝑘∗
𝜇𝑎∗

𝑘
−𝜇̃𝑘

𝜇̃𝑘∗−𝜇̃𝑘 + 1, the switching condition

will never be satisfied and the regret caused by this part is

𝑅𝑒𝑔2 (𝑇 ) ≤ 𝑂 (1) . (15)

4.3.3 Optimal ¯𝑘∗, no switching. Similar to the previous case, when

the switching condition is not satisfied, we have

𝜇𝑎∗ − (𝛾 + 1) · 𝜌𝑎∗ < 𝜇̃ ¯𝑘∗ + (𝛾 + 1) · 𝜌 ¯𝑘∗ , (16)

𝜌𝑎∗ + 𝜌 ¯𝑘∗ >
1

𝛾 + 1

(𝜇𝑎∗ − 𝜇̃ ¯𝑘∗ ). (17)

We then bound E[𝑇𝑘∗ ] with Lemma 1.

Lemma 4.1.

E[𝑇𝑘∗ ] ≤ 6(𝛾 + 1)2
ln 𝑡

(𝜇𝑎∗ − 𝜇̃𝑘∗ )2
+

∑︁
𝑎∈A𝑘∗ ,𝑎≠𝑎∗

6 ln 𝑡

(𝜇𝑎∗ − 𝜇𝑎)2
. (18)

Proof. For the sub-optimal key-term
¯𝑘∗, before the switching

condition is satisfied, we have

𝑇𝑎∗
¯𝑘∗

≥ 𝑇¯𝑘∗ −
∑︁

𝑎∈A ¯𝑘∗ ,𝑎≠𝑎
∗
¯𝑘∗

𝑇𝑎 ≥ 𝑇¯𝑘∗ −
∑︁

𝑎∈A𝑘∗ ,𝑎≠𝑎∗

6 ln 𝑡

(𝜇𝑎∗ − 𝜇𝑎)2
. (19)

Let us consider a threshold for 𝑇¯𝑘∗ and discuss two cases. If 𝑇¯𝑘∗ >

6(𝛾+1)2
ln 𝑡

(𝜇𝑎∗−𝜇̃𝑘∗ )2
+∑

𝑎∈A𝑘∗ ,𝑎≠𝑎∗
6 ln 𝑡

(𝜇𝑎∗−𝜇𝑎)2
, with Eq.(19), we have

𝑇𝑎∗
¯𝑘∗

≥ 6(𝛾 + 1)2
ln 𝑡

(𝜇𝑎∗ − 𝜇̃𝑘∗ )2
. (20)

From Eq.(17), we can also derive an upper bound for 𝑇𝑎∗
¯𝑘∗
:

𝑇𝑎∗
¯𝑘∗

<
©­­«

𝜇𝑎∗ − 𝜇̃ ¯𝑘∗

(𝛾 + 1)
√︁

3 ln 𝑡/2

− 1√︃
𝑇¯𝑘∗

ª®®¬
−2

. (21)

However, since 𝑇¯𝑘∗ >
6(𝛾+1)2

ln 𝑡

(𝜇𝑎∗−𝜇̃𝑘∗ )2
+∑

𝑎∈A𝑘∗ ,𝑎≠𝑎∗
6 ln 𝑡

(𝜇𝑎∗−𝜇𝑎)2
, Eq.(21)

becomes

𝑇𝑎∗
¯𝑘∗

<
6(𝛾 + 1)2

ln 𝑡

(𝜇𝑎∗ − 𝜇̃𝑘∗ )2
+

∑︁
𝑎∈A𝑘∗ ,𝑎≠𝑎∗

6 ln 𝑡

(𝜇𝑎∗ − 𝜇𝑎)2
, (22)

which is contrary to Eq.(19). Thus, we only need to consider the case

that𝑇¯𝑘∗ ≤ 6(𝛾+1)2
ln 𝑡

(𝜇𝑎∗−𝜇̃𝑘∗ )2
+∑𝑎∈A𝑘∗ ,𝑎≠𝑎∗

6 ln 𝑡
(𝜇𝑎∗−𝜇𝑎)2

, which provides the

upper bound

E[𝑇𝑘∗ ] ≤ 6(𝛾 + 1)2
ln 𝑡

(𝜇𝑎∗ − 𝜇̃𝑘∗ )2
+

∑︁
𝑎∈A𝑘∗ ,𝑎≠𝑎∗

6 ln 𝑡

(𝜇𝑎∗ − 𝜇𝑎)2
. (23)

□
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The regret caused by this part is bounded as

𝑅𝑒𝑔3 (𝑇 ) ≤ E[𝑇𝑘∗ ] · (𝜇𝑎∗ − 𝜇̃𝑘∗ + 1) . (24)

4.3.4 Optimal ¯𝑘∗, switching. This part can be considered as the

regret of the traditional UCB algorithm on the arm set A𝑘∗ .

𝑅𝑒𝑔4 (𝑇 ) ≤
∑︁

𝑎∈A𝑘∗ ,𝑎≠𝑎∗

6 ln 𝑡

𝜇𝑎∗ − 𝜇𝑎
. (25)

4.3.5 Overall regret. We define Δ𝑎 = 𝜇𝑎∗ − 𝜇𝑎, Δ̃𝑘 = 𝜇̃𝑘∗ − 𝜇̃𝑘 ,Δ
∗
𝑘
=

𝜇𝑎∗
𝑘
− 𝜇̃𝑘 . The overall regret of Hier-UCB is given below.

Theorem 4.2. Assume that 𝛾 > max𝑘≠𝑘∗
Δ∗
𝑘

Δ̃𝑘

+ 1, Hier-UCB has
the following regret upper bound

𝑅𝑒𝑔(𝑇 ) =
4∑︁

𝑖=1

𝑅𝑒𝑔𝑖 (𝑇 )

≤6

[ ∑︁
𝑘≠𝑘∗

Δ∗
𝑘
+ 1

Δ̃2

𝑘

+
∑︁

𝑎∈A𝑘∗ ,𝑎≠𝑎∗

Δ∗
𝑘∗ + Δ𝑎 + 1

Δ2

𝑎

+
∑︁

𝑎∈A𝑘∗ ,𝑎≠𝑎∗

(𝛾 + 1)2 (Δ∗
𝑘∗ + 1)

(Δ∗
𝑘∗ )2

]
ln𝑇 . (26)

Remark. Looking at the above distribution dependent bound,

we have the 𝑂 (( |K | + |A𝑘∗ |) ln𝑇 ) regret, which is asymptotically

tight in 𝑇 . Since applying traditional UCB algorithms to item set

A leads to a regret of 𝑂 ( |A| ln𝑇 ), we improve the regret bound

by reducing |A| ln𝑇 to ( |K | + |A𝑘∗ |) ln𝑇 , owing to the utilization

of hierarchical structure between key-terms and items. Notice that

ConUCB [3] in the stochastic setting will lead to the regret of

𝑂 ( |A| + ln𝑇 ) even without considering the regret caused by key-

term asking. Thus, our proposed algorithms prevail over the others

when the size of the item pool |A| is substantially large. It is possible
to analyze the regret of Hier-LinUCB following similar steps of

regret decomposition for Hier-UCB, but it is more involved due to

users’ feature estimation and we left it for the future work.

5 EXPERIMENTS
We conduct experiments on both synthetic and real-world data to

validate our proposed algorithms.

5.1 Experimental Setup
In this section, we discuss our experimental setup. We first intro-

duce two baseline algorithms, then describe the metrics used for

evaluation. We also list three research questions that we would like

to answer.

5.1.1 Baselines. We compare our algorithm with two baseline al-

gorithms that do not properly model the relationship between user

preferences to key-terms and items.

• LinUCB [35]: A standard non-conversational contextual

bandit algorithm. This comparison demonstrates the benefits

of Hier-LinUCB’s ability to select key-terms.

• ConUCB [3]: A recent conversational bandit algorithm pro-

posed in the contextual setting that employs a fixed fre-

quency of choosing key-terms. This comparison demon-

strates Hier-LinUCB’s ability to adaptively select key-terms

or items depending on each user, accounting for the cost of

choosing key-terms.

5.1.2 Metrics. We use the cumulative regret in Eq.(4) to measure

the performance of algorithms. As a common metric for bandit

problems, it captures the gap between the reward of always choos-

ing the optimal action and the reward of the action chosen by a

specific algorithm. Besides, in Section 5.3, we show the average

reward over iterations,
1

𝑁

∑𝑁
𝑡=1

𝑅𝑎𝑡 ,𝑘𝑡 ,𝑡 .

5.1.3 ResearchQuestions. To validate our approach, we design the

following research questions:

RQ1. In a real-world setting, what relationship can be observed

between user preferences to key-terms and items?

RQ2. Can our algorithms achieve less regret than baseline algo-

rithms by leveraging the relationship and the hierarchical

structure between key-terms and items?

RQ3. Can our algorithms adapt to switch between key-term and

item recommendations more flexibly than previous work?

The extensive study in Section 3.2 can answer RQ1. We observe

that users’ preference on a specific key-term is mainly affected by

their preference on its representative items.

5.2 Synthetic Data
We consider a stochastic conversational bandit setting with 10 key-

terms and 100 items. We create an item poolA = {𝑎1, 𝑎2, · · · , 𝑎100}
and a key-term poolK = {𝑘1, 𝑘2, · · · , 𝑘10}. We assume each item is

only associated with one key-term, and let 𝑎1, 𝑎2, · · · , 𝑎10 associate

with𝑘1,𝑎11, 𝑎12, · · · , 𝑎20 associate with𝑘2, etc.We set each item𝑎𝑖 ’s

expected reward as 𝜇𝑎𝑖 = 𝑖/100. We assume that the reward of key-

term 𝑘 is equal to the discounted reward of the best associated item,

i.e., E[𝑟𝑘,𝑡 ] = 𝜆 · max𝑎

(
𝑊𝑎,𝑘E[𝑟𝑎,𝑡 ]

)
, where 𝜆 ≤ 1 is a discount

factor. Note that it is a special form of the general assumption

required by Hier-UCB in Section 4.3. We choose 𝜆 = 0.5, then for

each key-term 𝑘𝑖 , 𝜇̃𝑘𝑖 = 𝑖/2. The rewards of items and key-terms

are generated from Bernoulli distributions. We run Hier-UCB, Hier-

LinUCB and traditional UCB algorithms on these items and key-

terms. We set 𝛾 = 1 for both Hier-UCB and Hier-LinUCB, and

𝛼𝑡 = 1 for Hier-LinUCB. For Hier-LinUCB, as it is designed for the

contextual setting, we consider 100-dimensional one-hot contextual

vectors for all items, and the algorithm will try to estimate a 100-

dimensional feature vector. We repeat the experiment 50 times and

show the average cumulative regret with 95% confidence interval.

Answer to RQ2. Figure 4 shows that Hier-UCB achieves less re-

gret than traditional UCB and Hier-LinUCB in the stochastic setting,

owing to the strategic balance between key-term and item recom-

mendations: it spends around 2000 iterations on key-term learning,

then switch to explore on a smaller item pool, thus achieves much

less regret than UCB. This also validates our regret bound. As

Hier-UCB is specifically designed for the stochastic setting with

moderate-size item pools, it also outperforms Hier-LinUCB, which

is designed for the contextual setting: the least square estimation

of feature vectors in Hier-LinUCB may incur higher regrets than

directly estimating the expected reward of each arm.



Conference’17, July 2017, Washington, DC, USA Jinhang Zuo, Songwen Hu, Tong Yu, Shuai Li, Handong Zhao, and Carlee Joe-Wong

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

0

500

1000

1500

2000

2500

3000

3500

4000
Cu

m
ul

at
iv

e 
Re

gr
et

Hier-UCB
Hier-LinUCB
UCB

Figure 4: The result validates the regret bound of our algo-
rithm in the stochastic setting.

5.3 Real-world Datasets
5.3.1 Dataset Description. In this section, we evaluateHier-LinUCB
on three real-world datasets, and compare its performance with

LinUCB and ConUCB. The original datasets are released by Yelp
1
,

MovieLens
2
, and LastFM

3
. In our experiments, we use the public

source data prepossessed by [3] for the Yelp dataset and [8] for the

MovieLens and LastFM datasets. The Yelp dataset has 1000 key-

terms, 5000 items and 200 users, where the key-terms are restau-

rant categories (e.g., “Burgers”) and the items are restaurants. The

LastFM dataset has 2726 key-terms, 2000 items and 100 users, where

the key-terms are artist tags (e.g., “Rock”) and the items are artists.

The Movielens dataset has 5585 key-terms, 2000 items and 200

users, where the key-terms are movie tags (e.g., “Action”) and the

items are movies. We aim to show our algorithms perform well

on the Yelp and the LastFM datasets and that, although Movielens

has more key-terms than items, which may reduce the benefit of

key-term asking, our proposed algorithm can still achieve compa-

rable performance to the previous baselines. All datasets provide

the hierarchical relationship between key-terms and items, the con-

textual vectors of key-terms and items, and the feature vectors of

all users (detailed data generation methods can be found in Section

5.1 of [3] and Section 4.3 of [8]).

For Hier-LinUCB, we set 𝛾 = 0.5, 𝛼𝑡 = 1 on Yelp and 𝛾 = 0.5,

𝛼𝑡 = 0.25 on LastFM and MovieLens. For LinUCB and ConUCB,

we generally follow the original experimental settings in [3, 8],

while some experimental configurations are changed to fit our

new scenario, which will be discussed in the next section. We

choose 𝑏 (𝑡) = 10⌊log(𝑡)⌋ as the conversation frequency function

for ConUCB, which leads to the smallest regret in their experiments.

5.3.2 Experimental Settings.

Key-term reward. We assume that the reward of key-term 𝑘 is

equal to the discounted reward of the best associated item, i.e.,

E[𝑟𝑘,𝑡 ] = 𝜆 · max𝑎

(
𝑊𝑎,𝑘E[𝑟𝑎,𝑡 ]

)
, where 𝜆 ≤ 1 is a discount factor.

It is a special form of the general assumption in Section 4.3. We set

𝜆 = 0.5 and re-calculate the expected rewards and feature vectors

of key-terms.

Item pool size. ConUCB [3] randomly chooses an arm pool of

50 items at each round in their original experiments. However,

1
https://www.yelp.com/dataset/

2
https://www.grouplens.com

3
https://www.lastfm.com

such an arm pool is too small compared to the whole arm pool

with thousands of items, and it is very likely to exclude many

good items with high rewards, Instead, we use the full item pool

in our experiments, which also makes the learning problem more

challenging, To encourage exploration, we set 𝛼𝑡 = 1 for all baseline

algorithms. We observe higher cumulative regrets than the original

experiments, which is consistent with Figure 2 in [3].

5.3.3 Results. In our experiments, we compare the performance

of Hier-LinUCB with LinUCB and ConUCB. We also conduct a case

study of two users in the Yelp dataset with ConUCB.

Answer to RQ2. We show the cumulative regrets and averaged

rewards of different algorithms in Figures 5 and 6. Notice that the

system recommends one key-term or item to one user at each in-

teraction; when the averaged reward almost converges after 20000

interactions for Yelp, the average number of key-term asking and

item recommendations per user is 100, which is reasonable after a

few days or weeks. Figure 5 shows that Hier-LinUCB achieves lower

regrets than LinUCB and ConUCB after iteration ends. At the very

beginning, due to more exploration on key-terms, Hier-LinUCB

may not achieve lower regrets than LinUCB and ConUCB. However,

as long as it learns the correct key-terms, it will converge to the

optimal actions much faster than others. We observe that the regret

of ConUCB periodically increases, which comes from key term con-

versations predefined by the conversation frequency function [3].

To better observe the early state rewards and understand the behav-

ior of different algorithms in cold-start recommender systems, we

further compare the averaged reward with the logarithmic x-axis in

Figure 6. The results are shown in Figure 6. Although LinUCB can

achieve good rewards at the early stage, it may not find the optimal

item eventually compared to ConUCB and Hier-LinUCB, showing

the necessity of key-term asking. Besides, the averaged rewards of

ConUCB and Hier-LinUCB converge to the similar levels once they

successfully identify the best key-terms. However, in Figures 6a

and 6b, Hier-LinUCB searches faster than ConUCB and has higher

rewards for the early iterations, since the number of key-terms

is similar to (or less than) the number of items for the Yelp and

LastFM datasets. When the number of key-terms is larger than the

number of items (MovieLens), as shown in Figure 6c, Hier-LinUCB

has to explore more at first (resulting in initially lower rewards),

before eventually achieving higher reward than ConUCB. Notice

that the former case (i.e., number of key-terms is limited) is com-

mon in practice, since the key-terms of the items need to be labeled

carefully, which usually leads to a lot of human efforts.

Answer to RQ3. We pick two users from the Yelp dataset and

monitor their regrets in Figure 7. We find Hier-LinUCB has different

switch points for different users: before the switch point, it explores

more on key-terms; after the switch point, it only chooses items

and the regret converges quickly. By contrast, ConUCB has a fixed

key-term conversation period as highlighted in red. Hier-LinUCB

thus enables more flexible and personalized switching between

key-term asking and item recommendations. As discussed before,

the key-term exploration of Hier-LinUCB is based on the switching

condition, while the key-term exploration of ConUCB is based on

a fixed conversation frequency function. Hier-LinUCB treats User
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(a) Yelp (b) LastFM (c) MovieLens

Figure 5: Comparison of the cumulative regrets on real-world datasets usingHier-LinUCB, LinUCBandConUCB.Hier-LinUCB
has the lowest converged regret after more than 30000 iterations. The improvement is most apparent on Yelp, likely because
the MovieLens and LastFM datasets have a large number of key terms, requiring more key-term exploration.

(a) Yelp (b) LastFM (c) MovieLens

Figure 6: Comparison of the averaged rewards on real-world datasets using Hier-LinUCB, LinUCB and ConUCB. The averaged
reward of Hier-LinUCB grows faster than ConUCB on Yelp and LastFM, while slightly slower than ConUCB on MovieLens at
the early stage. This is likely due to the large number of key-terms for MovieLens.

Figure 7: A case study of two users on the Yelp dataset.
ConUCB has fixed exploration on key-terms (i.e., switching
from item recommendations to key-term asking) for user
0 and user 1 (marked by red color), while Hier-LinUCB en-
ablesmore flexible and personalized switching between key-
term asking and item recommendations.

1 and User 0 differently, while ConUCB uses a fixed exploration

policy and results in worse regrets.

6 CONCLUSION
To avoid the excessive conversational interactions incurred by the

pre-defined conversation frequency of existing conversational ban-

dit algorithms, we formulate a new conversational bandit problem

that allows the recommender system to choose either a key-term

or an item to recommend at each round. To balancing the new

exploration-exploitation (EE) trade-off between key-term asking

and item recommendation, we need accurately understand the re-

lationship between key-term and item rewards. We study such

relationship based on a survey and analysis on a real-world dataset.

We observe that key-term rewards are mainly affected by rewards

of representative items. We propose two bandit algorithms based on

this observation and the hierarchical structure between key-terms

and items. We prove the theoretical regret bound of our algorithm

and validate them on synthetic and real-world data.
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