
Relevance-guided Unsupervised Discovery of Abilities with
Quality-Diversity Algorithms

Luca Grillotti

Adaptive and Intelligent Robotics Lab

Imperial College London, United Kingdom

luca.grillotti16@imperial.ac.uk

Antoine Cully

Adaptive and Intelligent Robotics Lab

Imperial College London, United Kingdom

a.cully@imperial.ac.uk

ABSTRACT
Quality-Diversity algorithms provide efficient mechanisms to gen-

erate large collections of diverse and high-performing solutions,

which have shown to be instrumental for solving downstream

tasks. However, most of those algorithms rely on a behavioural

descriptor to characterise the diversity that is hand-coded, hence

requiring prior knowledge about the considered tasks. In this work,

we introduce Relevance-guided Unsupervised Discovery of Abili-

ties; a Quality-Diversity algorithm that autonomously finds a be-

havioural characterisation tailored to the task at hand. In particu-

lar, our method introduces a custom diversity metric that leads to

higher densities of solutions near the areas of interest in the learnt

behavioural descriptor space. We evaluate our approach on a simu-

lated robotic environment, where the robot has to autonomously

discover its abilities based on its full sensory data. We evaluated

the algorithms on three tasks: navigation to random targets, mov-

ing forward with a high velocity, and performing half-rolls. The

experimental results show that our method manages to discover col-

lections of solutions that are not only diverse, but also well-adapted

to the considered downstream task.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Quality-Diversity Optimisation, Unsupervised Learning, Robotics

ACM Reference Format:
Luca Grillotti and Antoine Cully. 2022. Relevance-guided Unsupervised Dis-

covery of Abilities with Quality-Diversity Algorithms. In Genetic and Evo-
lutionary Computation Conference (GECCO ’22), July 9–13, 2022, Boston, MA,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3512290.

3528837

1 INTRODUCTION
One of the motivations of using learning algorithms in robotics is to

enable robots to discover on their own how to solve a task. Ideally,

a robot should be able to discover on its own how to manipulate

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00

https://doi.org/10.1145/3512290.3528837

Container of Solutions

Random Variations

Attempt Add to Container

Solve Downstream Task

Update Container Metric

Unsupervised BDs

Training

Encoder

Buffer of Relevant

Solutions

Sensory data

Figure 1: Illustration of the process of Relevance-guided Un-
supervised Discovery of Skills (RUDA). The container of so-
lutions is filled by using the AURORA algorithm (left loop),
while the structure of the distancemetric in the latent space
is adjusted based on the content of the buffer of relevant so-
lutions. This buffer records all the solutions that were se-
lected from the container to solve a downstream task.

new objects [22] or how to adapt its behaviours when facing an

unseen situation like a mechanical damage [10]. However, despite

many impressive breakthroughs in learning algorithms for robotics

applications over the last decade [1, 20], thesemethods still require a

significant amount of engineering to become effective, for instance,

to define reward functions, or characterise the expected behaviours.

An attempt to reduce the amount of engineering required to

discover the skills of a robot has been proposed with the AU-

RORA algorithm [9, 18]. This algorithm leverages the creativity

of Quality-Diversity (QD) optimisation algorithms to generate a

collection of diverse and high-performing behaviours, called a be-

havioural repertoire. QD algorithms usually require the definition of

a manually-defined Behavioural Descriptor (BD) to characterise the

different types of behaviours contained in the repertoire. Instead,

AURORA uses dimensionality-reduction techniques to perform the

behavioural characterisation in an unsupervised manner. The re-

sulting algorithms enable robots to autonomously discover a large

diversity of behaviours without requiring a user to define a fitness

function or a behavioural descriptor.

Nevertheless, the behavioural repertoires are often meant to be

used by other processes to solve complex tasks (called downstream

tasks). For instance, a behavioural repertoire containing a diversity

of locomotion primitives can be used by a planning algorithm to

ar
X

iv
:2

20
4.

09
82

8v
1

 [
cs

.N
E

]
 2

1
A

pr
 2

02
2

https://orcid.org/0000-0003-4539-8211
https://orcid.org/0000-0002-3190-7073
https://doi.org/10.1145/3512290.3528837
https://doi.org/10.1145/3512290.3528837
https://doi.org/10.1145/3512290.3528837

GECCO ’22, July 9–13, 2022, Boston, MA, USA Grillotti, et al.

chain these primitives and solve complex navigation tasks [7, 13].

Yet, for this process to be effective, the repertoire needs to contain

the appropriate behaviours to solve the task at hand. AURORA is

task agnostic and aims at covering all the possible behaviours of a

robot. However, such a range can cover relevant but also irrelevant

behaviours. Moreover, given the fact that repertoires usually con-

tain a finite number of behaviours, it is crucial to ensure that most

of their capacity is used to capture behaviours that are relevant for

the considered tasks.

In this paper, we introduce Relevance-guided Unsupervised Dis-

covery of Skills (RUDA), an extension of AURORA, which not only

automatically defines the BD, but ensures that it is tailored to the

task at hand. This results in behavioural repertoires containing a

higher density of behaviours in the regions of the BD space that are

relevant for the task. We evaluated RUDA on a simulated hexapod

robot with three tasks: navigation to random targets, moving for-

ward with a high velocity, and performing half-rolls. Furthermore,

we compare RUDA to four baselines, including AURORA as well as

different ways to manually define the BD. The experimental results

show that RUDA manages to discover collections of behaviours

that are not only diverse, but also well-adapted to the considered

downstream task.

2 BACKGROUND
2.1 Quality-Diversity Algorithms
Quality-Diversity (QD) algorithms are a subclass of evolutionary

algorithms that aim at finding a container of both diverse and high-

performing individuals. In addition to standard evolutionary algo-

rithms, QD algorithms consider a BD, which is a low-dimensional

vector that characterises the behaviour of an individual. QD algo-

rithms use the BDs to quantify the novelty of an individual with

respect to the solutions already in the container. The container of

individuals is produced by the QD algorithm in an iterative manner:

(1) individuals are selected from the container and undergo random

variations (e.g. mutations, cross-overs); (2) their fitness score and

BD are evaluated; and (3) we try to add them back to the container.

If they are novel enough compared to solutions that are already in

the container, they are added to the container. If they are better than

similar individuals in the container, they replace these individuals.

The literature [6, 11] consider two types of containers: 1) grid-

based containers introduced by the MAP-Elites algorithm [33],

and 2) unstructured-archive, introduced by the Novelty-Search

algorithm [29]. In unstructured containers [11], we compare the

distance of the individual to all individuals present in the container,

using the Euclidean distance metric in the BD space. If that distance

is shorter than a threshold 𝑑min then the individual is added to

the container. Otherwise, if the distance to the closest individual is

inferior to 𝑑min, then their respective novelty and fitness scores are

considered. If the novelty and fitness scores of the new individual

𝜖-dominate the ones of the old individual, then the new individual

replaces the closest individual present in the container.

The minimal distance threshold 𝑑min may be fixed and hand-

coded. It can also be variable and controlled to keep the size of the

container around a target value 𝑁
𝑡𝑎𝑟𝑔𝑒𝑡

C . To that end, the Container-

Size-Control (CSC) method (introduced in AURORA [18]) con-

stantly adjusts the value of the 𝑑min depending on the current

container size C: if |C| > 𝑁
𝑡𝑎𝑟𝑔𝑒𝑡

C , then𝑑min is increased to limit the

amount of new individuals to the container; and if |C| < 𝑁
𝑡𝑎𝑟𝑔𝑒𝑡

C ,

then 𝑑min is decreased to increase the amount of new individuals

added to the container. If the container presents too many individ-

uals, then some of them need to be removed, in order to maintain

the container size around 𝑁
𝑡𝑎𝑟𝑔𝑒𝑡

C . To do so, at regular iterations

𝑇C , all individuals are removed from the container, and re-added

with the up-to-date distance threshold 𝑑min.

2.2 Discovering Unsupervised Behaviours
Quality-Diversity algorithms are a promising tool to generate a

large diversity of behaviours in robotics. However, the definition

of the BD space might not always be straightforward when the

robot or its capabilities are unknown. AURORA is a QD algorithm

designed to discover the abilities of robots, by maximising the diver-

sity of behaviours contained in the repertoire in an unsupervised

manner. AURORA automatically defines the BD by encoding the

high-dimensional sensory data generated by the robot during a

controller execution into low-dimensional representations. The

encoding can be achieved using any dimensionality reduction tech-

nique, such as Principal Component Analysis [9], and Auto-Encoder

(AE) [18].

To generate a behavioural repertoire, AURORA alternates be-

tween QD phases and Encoder phases. During the QD phase, in-

dividuals undergo the same process as in standard QD algorithms:

selection from the container, evaluation, and attempt to add to

the container. However, the evaluation is performed in a slightly

different way: instead of a low-dimensional BD, the QD task re-

turns high-dimensional sensory data, that is then encoded using

the dimensionality reduction technique.

During the Encoder phase, the dimensionality reduction struc-

ture (e.g. the AE) is trained using the high-dimensional data from all

the individuals present in the container. Once the encoder is trained,

the unsupervised BDs are recomputed with the new encoder for all

individuals present in the container.

Alternating between these two phases enables AURORA to pro-

gressively build its behavioural repertoires by discovering new

solutions, while refining its encoding of the high-dimensional sen-

sory data generated by the robot every time new solutions are

added to the archive.

3 RELATEDWORKS
3.1 Leveraging Behavioural Repertoires to

Solve Tasks
One of the direct applications of behavioural repertoires in ro-

botics is to use them to solve downstream tasks, such as maze

navigation [7, 13], damage recovery [10, 23], or throwing objects to

specific locations [21, 24]. For example, Chatzilygeroudis et al. [7]

introduced the Reset-free Trial and Error (RTE) algorithm. This al-

gorithm leverages a repertoire of locomotion controllers that enable

a hexapod robot to walk in various directions at different speeds.

RTE then uses this set of behaviours as primitive actions with a

planning algorithm (Monte Carlo Tree Search [8]) to execute com-

plex trajectories. RTE is also coupled with a Gaussian process that

predicts the effect of each primitive action and is updated after each

Relevance-guided Unsupervised Discovery of Abilities withQuality-Diversity Algorithms GECCO ’22, July 9–13, 2022, Boston, MA, USA

action execution. Thanks to these predictions, RTE enables the ro-

bot to solve its maze navigation task while crossing the reality-gap

(including damage-recovery and environmental changes).

Another example of behavioural repertoire usage is the APROL

algorithm [23], which creates a collection of behavioural repertoires

to improve the resilience of robots to damages and their ability to

generalise to different objects. Each repertoire is generated by con-

sidering a different condition. For example, a different damaged leg

on a hexapod robot in the case of a locomotion task, or an object

with a different shape in the context of object manipulation. Then

during deployment, APROL searches within its collection of reper-

toires the one that resembles the most to the current situation and

then uses the behaviours it contains to solve the task. This auto-

matic repertoire selection enables APROL to execute behaviours

that are more appropriate for the current situation, while being able

to cover a larger range of possible scenarios thanks to the options

provided by the collection of repertoires.

However, deciding on themost appropriate definitions for the BD

and the fitness for a given task requires a certain level of expertise.

For instance, MAP-Elites is often used with the same hexapod robot,

but with two different sets of definitions: 1) the leg duty-factor for

the BD, defined as the time proportion each leg is in contact with

the ground, with the average speed for the fitness [10, 11] or 2)

the final location of the robot after walking during three seconds

for the BD, with an orientation error for the fitness [7, 12, 13].

The resulting behavioural repertoires will find different types of

applications. The first set of definitions is designed for fast damage

recovery as it provides a diversity of ways to achieve high-speed

gaits, while the second one is designed for navigation tasks as the

repertoire enables the robot to move in various directions.

3.2 Behaviour Descriptor Definition
To avoid the expertise requirements in the behaviour descriptor defi-

nition, several methods have been proposed to enable the automatic

definition of the behavioural descriptors. As described previously,

AURORA aims to tackle this problem by using a dimensionality

reduction algorithm (a Deep Auto-Encoder [31]) to project the fea-

tures of the solutions into a latent space and use this latent space

as a behavioural descriptor space. Other approaches follow similar

objectives; for instance, Multi-Container AURORA [5] extends AU-

RORA by considering different complementary BD spaces, all learnt

in a simultaneous manner. TAXONS [38] is another QD algorithm

adopting the same principle; it demonstrated that this approach can

scale to camera images to produce large behavioural repertoires

for different types of robots. The same concept was also used in

the context of Novelty Search prior to AURORA and TAXONS to

generate assets for video games with the DeLeNoX algorithm [30].

Furthermore, a similar method was used to learn goal spaces in an

unsupervised manner in IMGEP-UGL [27, 40]. All these methods

aim to maximise the diversity of the produced solutions, without

specifically considering a downstream task.

A different direction to automatically define a behavioural de-

scriptor is to useMeta-Learning. The idea is to find the BD definition

that maximises the performance of the resulting collection of so-

lutions when used in a downstream task. For instance, Bossen et

al. [4] consider the damage recovery capabilities provided by a

Algorithm 1 RUDA (number of iterations 𝐼 ; encoder E; target
container size 𝑁

𝑡𝑎𝑟𝑔𝑒𝑡

C , container update period 𝑇C , downstream
task execution period 𝑇𝑡𝑎𝑠𝑘)

1: metric(·, ·) ← Euclidean distance

2: C ← ∅, B ← ∅
3: Initialise 𝑑min

4: for 𝑖𝑡𝑒𝑟 = 1→ 𝐼 do
5: C ← QD_Iteration(𝑖𝑡𝑒𝑟 , C, E, metric(·, ·))
6: if encoder update expected at iteration 𝑖𝑡𝑒𝑟 then
7: {E, C} ← Encoder_Update(E, C)
8: {C, 𝑑min } ←Manage_Container_Size(C, 𝑑min, 𝑁

𝑡𝑎𝑟𝑔𝑒𝑡

C ,𝑇C)

9: if 𝑖𝑡𝑒𝑟 multiple of𝑇𝑡𝑎𝑠𝑘 then
10: popuseful ← 𝑟𝑢𝑛_𝑡𝑎𝑠𝑘 (C)
11: Add popuseful to circular buffer B
12: metric(·, ·) ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (B)
13: return container C

behavioural repertoire as a Meta-Learning objective and search for

the linear combination of a pre-defined set of behaviour descriptors

that will maximise this objective. A related approach proposed by

Meyerson et al. [32] uses a set of training tasks to learn what would

be the most appropriate BD definition to solve a "test task".

It is also possible to bias the search towards specific regions of

the BD space. For instance, Surprise Search [17] and BR-NS [41] use

a dynamic surprise-based metric that bias the search towards non-

predictable behaviours. Furthermore, the algorithm MAP-Elites

with sliding boundaries [15] proposes to automatically adjust the

size of cells in MAP-Elites to focus on the most explored regions of

the BD space. Instead of adapting the cell size, the Interactive MAP-

Elites algorithm [2, 3] enables the users to manually pick the BD

dimensions that are themost interesting for their application, before

continuing the execution of the MAP-Elites algorithms. Finally, the

algorithms SERENE [36] and STAX [37] have proposed to use the

concept of emitters, introduced in CMA-MAP-Elites [16], to change

the exploration strategy in different regions of the BD space to

tackle environments with sparse rewards.

Interestingly, all the methods described above are either strictly

task-agnostic or require the definition of a meta-fitness, or a metric

to quantify how well the learnt set of behaviours contribute to

solving the downstream task. While these works illustrate that it

is possible to do this in certain scenarios, we follow the original

motivation behind AURORA, which is to discover a set of relevant

behaviours with a minimal amount of prior knowledge about the

task or the robot.

4 RELEVANCE-GUIDED UNSUPERVISED
DISCOVERY OF SKILLS (RUDA)

In this paper, we introduce RUDA, an extension of AURORA with

an explicit mechanism to guide the search of solutions towards

the most relevant areas of the BD space given a task to solve. That

extension consists of three components: (1) A Task Solver which

returns a set of relevant individuals; (2) a buffer B of relevant

solutions, used to save the most relevant solutions at each step; and

(3) an updater of the container metric, that distorts the BD space

to promote solutions that are near the ones present in the buffer

GECCO ’22, July 9–13, 2022, Boston, MA, USA Grillotti, et al.

Downstream Task Task Solver return Task Score Container Score

Navigation Individuals for reaching the goal −1∗(number of actions to reach goal) 𝑥𝑇 , 𝑦𝑇 coverage

Moving Forward 10 individuals with highest 𝑥𝑇 max𝑖𝑛𝑑

(
𝑥𝑖𝑛𝑑
𝑇

)
𝑚𝑒𝑎𝑛𝑖𝑛𝑑

(
𝑥𝑖𝑛𝑑
𝑇

)
Half-roll 10 individuals with closest 𝛼𝑝𝑖𝑡𝑐ℎ to −𝜋

2
max𝑖𝑛𝑑

(
−|𝛼𝑖𝑛𝑑

𝑝𝑖𝑡𝑐ℎ
− (−𝜋

2
) |
)

𝑚𝑒𝑎𝑛𝑖𝑛𝑑

(
−|𝛼𝑖𝑛𝑑

𝑝𝑖𝑡𝑐ℎ
− (−𝜋

2
) |
)

Table 1: Description of downstream tasks

QD Task Properties

Downstream Task Hand-coded BD Fitness

Navigation (𝑥𝑇 , 𝑦𝑇) −
��𝛼𝑦𝑎𝑤 − 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 ��

Moving Forward Duty Factor 𝑥𝑇
Half-roll (𝛼𝑦𝑎𝑤 , 𝛼𝑟𝑜𝑙𝑙) −

��𝛼𝑝𝑖𝑡𝑐ℎ − (
−𝜋

2

) ��
Table 2: Hand-coded Quality-Diversity tasks. The related
downstream tasks are listed in Table 1.

B. The pseudo-code of RUDA can be found in Algorithm 1. An

illustration of the algorithm is also provided in Fig. 1.

4.1 Choice of Relevant Individuals
The choice of relevant individuals indicates which parts of the

learned BD space are more useful to the task. We consider a Task
Solver that takes as input the current container of individuals from
AURORA, and that returns the list of individuals that it used to solve

the task. That Task Solver can take several forms. For example, if

the task consists of moving to a goal while minimising the number

of steps to reach it, then the Task Solver may be a path planner, and

the returned individuals are the controllers used before reaching

the goal. Similarly, if the task consists of moving forward as fast

as possible, the Task Solver may return all the individuals of the

container reaching the furthest 𝑥 position at the end of their episode.

4.2 Circular Buffer of Relevant Individuals
The individuals returned by the Task Solver are then stored in a

circular Buffer B. This way, the buffer keeps track of the individuals
that are relevant for the downstream task. In all our experiments,

that buffer was chosen to be circular to prevent “outdated” individu-

als from staying in the buffer. Indeed, between two calls to the Task

Solver, the content of the container may change: it may contain

individuals that are more suitable for solving the task. In that case,

if some individuals have not been added to the buffer for a long

time, this means there are more suitable individuals present in the

container.

4.3 Update Relevance-based Distance Metric
The role of the relevance-based distance metric is to make it easier

for new individuals to be added to the container if they are closer

to the relevant individuals present in B. When a new individual

attempts to be added to the container, a relevance score is assigned

to it. That relevance score estimates the proximity of this individ-

ual to the circular buffer of relevant individuals B; the closer an

individual is to B, the higher is its relevance score. That relevance
score is calculated as the inverse mean Euclidean distance in the

BD space to the 𝑘-nearest neighbours from the buffer B:

𝑟𝑒𝑙𝑒𝑣𝑖𝑛𝑑𝑖𝑣 =
©«
1

𝑘

∑︁
�̃�∈𝑘𝑁𝑁 (𝒃𝑖𝑛𝑑𝑖𝑣 ,B)

∥�̃� − 𝒃𝑖𝑛𝑑𝑖𝑣 ∥2
ª®®¬
−1

(1)

Then this relevance score is used to define a new distance metric,

that distorts the BD space in favour of individuals having a high

relevance score:

∀𝑥, metric(𝑖𝑛𝑑𝑖𝑣, 𝑥) = 𝑟𝑒𝑙𝑒𝑣𝑖𝑛𝑑𝑖𝑣
𝒃𝑖𝑛𝑑𝑖𝑣 − 𝒃𝑥

2

(2)

That new metric is used to estimate all the distances between

individuals in the container; it is also taken into account when

calculating novelty scores. Thus, if an individual is close to B, then
its relevance score will be high, and all the distances seen from

the point of view of this individual will be higher. This means that

individuals with higher relevance scores have higher chances of

being added to the container, and the container will present higher

densities of individuals in the regions near the buffer B.

5 EXPERIMENTAL SETUP
5.1 Agent: Neural-network controlled hexapod
In all our experiments, our agent consists of a simulated hexapod

robot controlled via a neural network controller. The hexapod robot

presents 18 controllable joints (3 per leg). Each leg 𝑙 has two Degrees

of Freedom: its hip angle 𝛼𝑙 and its knee angle 𝛽𝑙 . The ankle angle

is always set to the opposite of the knee angle.

The neural network controller is a Multi-Layer Perceptron with

a single hidden layer of size 8. It takes as input the current joint

angles and velocities (𝛼𝑙 , 𝛽𝑙 , ¤𝛼𝑙 , ¤𝛽𝑙)1≤𝑙≤6 (of dimension 24), and

outputs the target values to reach for the joint angles (𝛼𝑙 , 𝛽𝑙)1≤𝑙≤6
(of dimension 12). The controller has in total (24+1)∗8+(8+1)∗12 =
308 independent parameters, operates at a frequency of 50Hz, while

each episode lasts for 3 seconds. The environment and the controller

are deterministic.

5.2 Dimensionality Reduction Algorithm of
AURORA and RUDA

For each evaluated individual, the collected sensory data corre-

sponds to the joint positions, and torso positions and orientations

collected at a frequency of 10Hz. In the end, this represents 18

streams ((𝛼𝑖 , 𝛽𝑖)𝑖=1...6, and the positional and rotational coordi-

nates of the torso), with each of those streams containing 30 mea-

surements. The dimensionality reduction algorithm used in AU-

RORA and RUDA is a reconstruction-based auto-encoder. The input

Relevance-guided Unsupervised Discovery of Abilities withQuality-Diversity Algorithms GECCO ’22, July 9–13, 2022, Boston, MA, USA

data is using two 1D convolutional layers, with 128 filters and a

kernel of size 3. Those convolutional layers are followed by one

fully-connected linear layer of size 256. The decoder is made of

a fully-connected linear layer of size 256, followed by three 1D

deconvolutions with respectively 128, 128 and 18 filters.

The loss function used to train the encoder corresponds to the

mean squared error between the sensory data passed as input and

the reconstruction obtained as output. The training is performed

using the Adam gradient-descent optimiser [25] with 𝛽1 = 0.9 and

𝛽2 = 0.999. As the encoder needs to be updated less and less fre-

quently as the number of iterations increases, the interval between

two encoder updates linearly increases over time (as in previous

work [18]): encoder updates occur at iterations 0, 10, 30, 60, 100...

5.3 Downstream Tasks and QD Tasks
Wemake the distinction between downstream tasks andQD tasks. A

QD task evaluates the diversity and the performance of individuals

present in the container returned by a QD algorithm. A downstream

task corresponds to a high-level problem that we intend to solve

using the QD container.

For each experiment, we define a Task Solver, a Task Score, a
Container Score and an associated QD Task. The Task Solver chooses
individuals from the container that are relevant to solve the task,

and sends them to the buffer B. The Task Score characterises the

overall performance of the Task Solver in solving the downstream

task; contrary to the fitness score which evaluates the performance

of an individual, the task score indicates the performance of a full

container. The Container Score is a theoretic measure of the ex-

pected performance, taking into account all individuals present in

the container. Finally, the associated QD Task is a set of BD and

fitness function specifically hand-coded for succeeding at the down-

stream task; consequently, the QD Task is defined to be strongly

correlated with the downstream task.

We consider three downstream tasks with the hexapod agent:

Navigation, Moving Forward, and Half-roll.

5.3.1 Navigation. The Navigation task is inspired from (Chatzi-

lygeroudis et al.) [7] and (Kaushik et al.) [23]. The container pro-

vided by the QD algorithm is used as a basis for choosing actions

to reach successive goals, characterised by their 𝑥,𝑦 position.

Task Solver: A goal is randomly positioned goal at a distance of

approximately 5 meters from the starting position of the robot. The

solver then iteratively chooses the individual from the repertoire

that gets the closest to the goal, runs it for three seconds, and repeat

the previous steps until the distance to the goal is lower than 5cm.

Task Score: We compute the number of actions required to

reach a fixed number of 50 goals at specific positions, all separated

by approximately 7 meters. The task score then corresponds to the

negated average number of actions required to reach each separate

goal.

Container Score: It corresponds to the coverage of the con-

tainer in 𝑥,𝑦 space. That coverage is calculated by discretising the

space of possible final positions [−2.2𝑚, 2.2𝑚]2 into a 50 × 50 grid.
The coverage then corresponds the number of grid cells containing

at least one individual from the unstructured container.

Associated QD Task: This task aims at finding a container

of controllers reaching diverse final (𝑥𝑇 , 𝑦𝑇) positions in 𝑇 = 3

Variant BD

Uses Downstream

Task Solver

Has Fitness

RUDA Unsupervised ✓ ✗

AURORA Unsupervised ✗ ✓

R-MeS Mean streams ✓ ✗

MeS Mean streams ✗ ✓

HC QD Task BD ✗ ✓

Table 3: Characteristics of the variants of RUDAunder study,
grouped based on their type of Behavioural Descriptor (BD).

seconds following circular trajectories. Hence the hand-coded BD

in this case is (𝑥𝑇 , 𝑦𝑇), while the fitness is the final orientation error
as defined in the literature [7, 12].

5.3.2 Moving Forward. This task is inspired from the work of Cully

et al. [10], which aims to obtain a container with a variety of ways

to move forward at a high velocity.

Task Solver: it takes as input the entire container obtained from
the AURORA phase, and returns the 10 individuals reaching the

furthest position along the 𝑥 axis after 3 seconds. Those individuals

are added to the buffer, with replacement.

Task Score: The score associated to that task corresponds to

the maximal position (along the 𝑥 axis) achieved by the container.

Container Score: corresponds to the mean position (along the

𝑥 axis) of all individuals in the container.

Associated QD Task: The associated QD task follows the defi-

nition from Cully et al. [10], with the Duty Factor as hand-coded

BD. The Duty Factor evaluates the proportion of time the each leg

is in contact with the ground. The QD fitness promotes individuals

achieving the highest 𝑥 position at the end of the episode.

5.3.3 Half-roll. The Half-roll task aims at obtaining a variety of

ways to reach a position where the pitch angle of the robot is equal

to −𝜋
2
(i.e. where the robot falls on its back).

Task Solver: In this downstream task, the task solver returns

the 10 individuals whose pitch angle is the closest to −𝜋
2
.

Task Score: The score associated to that task is the negated

minimal distance to a pitch angle of −𝜋
2
.

Container Score:The container score corresponds to the negated
average distance to a pitch angle of −𝜋

2
.

Associated QD Task: The QD task associated to the half-roll

downstream task aims at finding a diversity of ways to perform

half-rolls, i.e. behaviours such that the hexapod ends with its back

on the floor. In particular, the behaviours are characterised via the

final yaw and roll angle of the torso. And the fitness is the distance

of the pitch angle 𝛼𝑝𝑖𝑡𝑐ℎ of the hexapod to −𝜋
2
.

𝒃𝑖𝑛𝑑𝑖𝑣 =
(
𝛼𝑖𝑛𝑑𝑖𝑣𝑦𝑎𝑤 , 𝛼𝑖𝑛𝑑𝑖𝑣

𝑟𝑜𝑙𝑙

)
𝑓 𝑖𝑛𝑑𝑖𝑣 = −

���𝛼𝑖𝑛𝑑𝑖𝑣𝑝𝑖𝑡𝑐ℎ
−
(
−𝜋
2

)��� (3)

5.4 Compared algorithms and variants
We study two categories of variants: those that learn their BD au-

tonomously, and those based on hand-defined BDs. Those variants

are summarised in Table 3.

5.4.1 Algorithms with Unsupervised Behavioural Descriptors.

GECCO ’22, July 9–13, 2022, Boston, MA, USA Grillotti, et al.

−2 0 2

xT

−2

−1

0

1

2
N

av
ig

at
io

n
y T

RUDA

−2 0 2

xT

−2

−1

0

1

2
AURORA

−2 0 2

xT

−2

−1

0

1

2
R-MES

−2 0 2

xT

−2

−1

0

1

2
MES

−2 0 2

xT

−2

−1

0

1

2
HC

−2 0 2

xT

−2

−1

0

1

2

M
ov

in
g

Fo
rw

ar
d

y T

−2 0 2

xT

−2

−1

0

1

2

−2 0 2

xT

−2

−1

0

1

2

−2 0 2

xT

−2

−1

0

1

2

−2 0 2

xT

−2

−1

0

1

2

−2 0 2

yawT

−2

0

2

H
al

f-
ro

ll
ro

ll T

−2 0 2

yawT

−2

0

2

−2 0 2

yawT

−2

0

2

−2 0 2

yawT

−2

0

2

−2 0 2

yawT

−2

0

2

−3

−2

−1

Fitness

0.0

0.5

1.0

1.5

2.0

−3

−2

−1

Figure 2: Containers obtained for each task and each algorithm variant. On each plot, each dot represents the BD obtained
by one individual, and the colour represents the fitness score of that individual. For relevance-based algorithms (RUDA and
R-MeS), the orange dots represent the BDs of the individuals present in the buffer B.

In addition to RUDA, we also study a version of RUDA that

does not have a relevance-based mechanism, which corresponds to

AURORA.

RUDA: The dimensionality of the learnt BD space is set to 10.

Similarly to prior work [18, 38], we suppose RUDA is completely

QD-task-agnostic, whichmeans that not only it automatically learns

its BDs, but it also does not have access to the fitness function of

the QD task 𝑓 𝑖𝑛𝑑𝑖𝑣 .

AURORA: It corresponds to RUDAwithout the relevance-based

mechanism that updates the container metric. Contrary to RUDA,

AURORA does not interact with a downstream task, but we consider

AURORA has access to the fitness function 𝑓 𝑖𝑛𝑑𝑖𝑣 of the QD task.

This way, we will be able to evaluate the difference between using

a fitness function, and using a relevance-based mechanism.

5.4.2 Variants with Hand-defined Behavioural Descriptors.
We consider three different variants having hand-defined BDs.

Hand-Coded (HC): considers a low-dimensional BD that is

defined by hand as the Behavioural Descriptor of the QD task

(e.g. see Table 2). The HC variant corresponds to a standard QD

algorithm with an unstructured archive [11] and the mechanism of

container size control introduced in previous work [18].

R-MeS: considers a Behavioural Descriptor with more infor-

mation from the collected sensory than the Hand-Coded variant

explained above. To calculate its BD, this variant considers the 18

data streams collected by the hexapod, and average each one of

them to obtain a BD of dimension 18. This variant uses the same

relevance-based bias as RUDA; and similarly to RUDA, it does not

have access to the fitness function of the QD task 𝑓 𝑖𝑛𝑑𝑖𝑣 . The com-

parison between this variant and RUDA will be useful to evaluate

the usefulness of the automatic dimensionality reduction algorithm.

MeS: presents the same characteristics as R-MeS, except that it

does not use any relevance-based mechanism. As AURORA, MeS

does not have access to the downstream task, but it uses the fitness

function 𝑓 𝑖𝑛𝑑𝑖𝑣 .

5.5 Implementation Details
All our experiments were run for 15,000 iterations with a uniform

QD selector. We only use polynomial mutations as variation opera-

tors with 𝜂𝑚 = 10, and a mutation rate of 0.3. The target container

size 𝑁
𝑡𝑎𝑟𝑔𝑒𝑡

C of all algorithms is set to 5,000 for the Moving Forward

and the Half-roll tasks. In the case of the Navigation Task, we set it

to 1,500 to obtain appropriate comparisons between the different

approaches. To keep the container size around 𝑁
𝑡𝑎𝑟𝑔𝑒𝑡

C , we perform

a container update every 𝑇C = 10 iterations (as explained in Sec-

tion 2.1). For relevance-based algorithms (RUDA and R-MeS), the

downstream task execution period 𝑇𝑡𝑎𝑠𝑘 is set to 10 iterations, the

maximal buffer size is set to 200, and relevance scores (see Eq. 1)

are calculated with 𝑘 = 15 nearest neighbours.

All our implementation is based on Sferesv2 [34] and uses the

DART simulator [28], while the auto-encoders are coded and trained

using the C++ API of PyTorch [39].

For each downstream task, each variant was run for 10 replica-

tions, and the statistical significance of the comparisons is measured

using the Wilcoxon rank-sum test, with a Holm-Bonferroni cor-

rection [19]. To facilitate the replications of the results, we stored

Relevance-guided Unsupervised Discovery of Abilities withQuality-Diversity Algorithms GECCO ’22, July 9–13, 2022, Boston, MA, USA

−15

−10

−5

Ta
sk

Sc
or

e

Navigation

1.50

1.75

2.00

Moving Forward

−0.2

−0.1

0.0
Half-roll

RUDA

AURORA

R-M
ES

M
ES

HC

0.0

0.2

0.4

C
on

ta
in

er
Sc

or
e

RUDA

AURORA

R-M
ES

M
ES

HC

0.5

1.0

1.5

RUDA

AURORA

R-M
ES

M
ES

HC

−3

−2

−1

Figure 3: First row: Task Score, for the 3 tasks under study
(Navigation, Moving Forward, Half-roll). The second row
presents the Container Scores.

pre-built experiments in a singularity container [26], and made it

available with the code at: https://github.com/adaptive-intelligent-

robotics/RUDA.

6 RESULTS
We intend to show that the containers obtained through RUDA

exhibit (1) relevance with respect to the downstream task under

study, (2) while maintaining an overall behavioural diversity.

6.1 Relevance to the Downstream Task
We first aim at demonstrating that RUDA finds containers of indi-

viduals that are useful with respect to the task to solve. The first

thing to note is that, on the Moving Forward and Half-roll tasks,

most of the container is situated near individuals present in the

buffer (Fig. 2). In those two tasks, this results in higher container

scores for relevance-based mechanisms compared to AURORA and

MeS (Fig. 3-bottom, 𝑝 < 2 × 10−3).
In particular, in the Moving Forward task, RUDA and R-MeS

perform better than all other variants (𝑝 < 2 × 10−3). That is likely
due to the shifting of the container distribution towards the most

relevant individuals. Indeed, as most individuals in the container

have a high 𝑥 position, then there is a high probability to generate

individuals who also have a high 𝑥 position, and there are more

chances to generate better offspring. In other words, the QD selec-

tion is biased in the direction of the most useful individuals, which

improves the results obtained by the relevance-based variants.

Also, in the Moving Forward and Half-roll tasks, RUDA also

leads to higher container scores compared to the other relevance-

based variant, R-MeS, (Fig. 3-bottom, 𝑝 < 5 × 10−3). This shows
that having a flexible encoding mechanism is useful for adapting

the BD to maximise the relevance of the archive. Moreover, in the

tasks where the relevance is directly correlated with the fitness

(Moving Forward and Half-roll), RUDA manages to find encodings

that favour the most relevant individuals (see Fig. 2).

In the case of the Navigation task, we can see that RUDA achieves

significantly better task scores than AURORA (Fig. 3, 𝑝 < 2× 10−3).
One possible explanation for this is that the containers obtained

by RUDA present a wider coverage in terms of 𝑥,𝑦 final positions

than AURORA (Fig. 3-bottom, and 2). That may also explain why

using Hand-Coded BDs leads to the best scores. We can also note

that the coverage follows the peculiar distributions of the relevant

individuals in the buffer: there is a higher-density of individuals

executing either small manoeuvres or very large displacement. This

makes sense as an effective way to solve this downstream task is to

first walk as fast as possible in the direction of the goal and then

adjust during the final approach. Hence, RUDA takes in average

fewer actions to reach each goal, leading to a better task score.

6.2 Container Diversity
As explained before, the purpose of RUDA is not only to find spe-

cialised containers, but also containers that are diverse. This means

that we expect RUDA to return a container of diverse relevant be-

haviours. However, the notion of relevance is task-dependent, so

we need to adjust the analysis to the task under study. In particular,

we take the containers returned by the different algorithms, and

we project them in hand-coded BD spaces that are unrelated to the

task. Then we evaluate the achieved coverage in the BD space by

considering the coverage for several minimum fitness scores.

6.2.1 Coverage per minimum fitness. The containers returned by

QD algorithms always result in a trade-off between the diversity of

solutions and the total quality of the entire container. To evaluate

the coverage depending on the quality of the solutions, we study

the evolution of the coverage given several minimum fitness scores.

With a fitness 𝑓𝑚𝑖𝑛 and a BD space discretised into a grid, the

"coverage given minimum fitness 𝑓𝑚𝑖𝑛" is defined as: the percentage

of cells with individuals whose fitness is higher than 𝑓𝑚𝑖𝑛 [14].

6.2.2 Navigation Task. In the Navigation task, we have seen that

RUDA and the Hand-Coded baseline return containers with diverse

𝑥,𝑦 positions (Figs. 2 and 3). We intend to show that RUDA also

discovers diverse ways to move to those positions. To evaluate

this gait diversity, we project the containers in the BD space "Duty

Factors", and evaluate the coverage in that BD space. Even when

considering all individuals (𝑓𝑚𝑖𝑛 = −3.5), the container returned
by RUDA on the Navigation task exhibits a higher coverage than

the hand-coded container (Figs. 4 and 6, all 𝑝-values are < 10
−2
).

The hand-coded variant does not have any incentive to promote

diversity in the BD space of Duty Factors as it only attempts to

maximise the diversity of final positions. This may explain the poor

performance of the Hand-coded variant in terms of diversity.

It is also worth noting that AURORA and MeS achieve a higher

diversity than the relevance-based variants. That discrepancy is

likely due to the fact that AURORA and MeS do not intend to

specialise for any task. On the contrary, as RUDA returns a container

specialised for a downstream task, some diversity is inherently lost.

Finally, we see that the containers returned by the non-relevance

based algorithms contain more high-performing individuals than

RUDA and R-MeS. This phenomenon is due to the fact that RUDA

does not optimise for that fitness function, which promotes circular

trajectories. Instead, here RUDA optimises for the downstream

Navigation Task, and it is possible to succeed at that task while

using individuals which are not performing circular trajectories.

6.2.3 Moving Forward Task. While RUDA produces containers of

controllers to move forward, we also expect those containers to ex-

hibit diversity in terms of other features. We estimate this additional

diversity by projecting the obtained containers in two classical BD

https://github.com/adaptive-intelligent-robotics/RUDA
https://github.com/adaptive-intelligent-robotics/RUDA

GECCO ’22, July 9–13, 2022, Boston, MA, USA Grillotti, et al.

D
ut

y
Fa

ct
or

RUDA AURORA R-MeS MeS HC

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

Fitness

Figure 4: Visualisations of the obtained containers from the "Navigation" task, for all algorithms under study. The containers
are presented after having projected the individuals on the Duty Factor BD space. Each coloured pixel represents a grid cell
of the BD space that has been filled with at least one individual. The colour is representative of the fitness. Note that the grids
presented have six dimensions, they are presented using the same technique as in the work of Cully et al. [10].

D
ut

y
Fa

ct
or

RUDA AURORA R-MeS MeS HC

Bo
dy

O
ri

en
ta

ti
on

BD

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Fitness

Figure 5: Visualisations of the obtained containers from the "Moving Forward" task, for all algorithms under study. The first
row presents the containers after having projected the individuals on the Duty Factor BD space. The second row shows the
obtained containers after a projection on the Body Orientation BD space.

−3 −2 −1 0

Minimum Fitness

0.00

0.05

0.10

Navigation Task
Projection on BD=Duty Factor

0.0 0.5 1.0 1.5 2.0

Minimum Fitness

10−3

10−2

10−1

Moving Forward Task
Projection on BD=Duty Factor

0.0 0.5 1.0 1.5 2.0

Minimum Fitness

0.0

0.2

0.4

0.6

Moving Forward Task
Projection on BD=Body Orientation

RUDA AURORA R-MeS MeS HC

Figure 6: Coverage per minimum fitness, considered with
different downstream tasks and projected in different BDs.

spaces used for the Hexapod uni-directional task [10]: the Duty

Factor, and the Body Orientation. The Duty Factor BD space is the

same as defined previously, it is the one used by the hand-coded

variant on the Moving Forward task. The Body Orientation BD

space characterises the amount of time spent by the torso of the

hexapod at given orientations (more details can be found in the

work of Cully et al. [10]).

Figures 5 and 6 show that the containers of RUDA present a lower

coverage compared to the other variants that are not relevance-

based (𝑝 < 10
−2
). However, when considering a minimum fitness

score above 1.4, which corresponds to a minimal 𝑥𝑇 of 1.4 meters,

the diversity exhibited by RUDA is better (𝑝 < 2 × 10
−3
). This

confirms the fact that the container returned by RUDA not only

specialises for a downstream task, but also still exhibits diversity

in its specialisation.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduced RUDA, an extension of AURORAwhich

aims to autonomously generate behavioural repertoires with a

higher density of behaviours in the regions of the BD space that

are relevant for the considered tasks. Our experimental evaluation

demonstrated that RUDA can adjust the distribution of behaviours

depending on the situation, over the three considered tasks.

We also noticed that specialising for a downstream task often

reduces the behavioural diversity, or moves the diversity towards

the most relevant areas of the behavioural spaces. It would be inter-

esting to study whether all future methods to distort the learnt BD

space will show the same influence on the trade-off between special-

isation and diversity. It would also be relevant to try our approach

on more complex problems, such as multi-tasks problems [35].

ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical Sciences

Research Council (EPSRC) grant EP/V006673/1 project REcoVER.

Relevance-guided Unsupervised Discovery of Abilities withQuality-Diversity Algorithms GECCO ’22, July 9–13, 2022, Boston, MA, USA

REFERENCES
[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-

Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas,

et al. 2019. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113
(2019).

[2] Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. 2019. Empower-

ing quality diversity in dungeon design with interactive constrained map-elites.

In 2019 IEEE Conference on Games (CoG). IEEE, 1–8.
[3] Alberto Alvarez, Jose Maria Maria Font Fernandez, Steve Dahlskog, and Julian

Togelius. 2020. Interactive constrained map-elites: Analysis and evaluation of the

expressiveness of the feature dimensions. IEEE Transactions on Games (2020).
[4] David M Bossens, Jean-Baptiste Mouret, and Danesh Tarapore. 2020. Learning

behaviour-performance maps with meta-evolution. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference. 49–57.

[5] Leo Cazenille. 2021. Ensemble feature extraction for multi-container quality-

diversity algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference. 75–83.

[6] Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-

Baptiste Mouret. 2021. Quality-Diversity Optimization: a novel branch of sto-

chastic optimization. In Black Box Optimization, Machine Learning, and No-Free
Lunch Theorems. Springer, 109–135.

[7] Konstantinos Chatzilygeroudis, Vassilis Vassiliades, and Jean-Baptiste Mouret.

2018. Reset-free trial-and-error learning for robot damage recovery. Robotics and
Autonomous Systems 100 (2018), 236–250.

[8] Rémi Coulom. 2007. Efficient Selectivity and Backup Operators in Monte-Carlo

Tree Search. In Computers and Games, H. Jaap van den Herik, Paolo Ciancarini,

and H. H. L. M. (Jeroen) Donkers (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 72–83.

[9] Antoine Cully. 2019. Autonomous skill discovery with quality-diversity and

unsupervised descriptors. In GECCO 2019 - Proceedings of the 2019 Genetic and
Evolutionary Computation Conference. Association for Computing Machinery,

Inc, 81–89. arXiv:1905.11874

[10] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.

Robots that can adapt like animals. Nature 521, 7553 (2015), 503–507.
[11] Antoine Cully and Yiannis Demiris. 2018. Quality and Diversity Optimization: A

Unifying Modular Framework. IEEE Transactions on Evolutionary Computation
22, 2 (apr 2018), 245–259. arXiv:1708.09251

[12] Antoine Cully and Jean Baptiste Mouret. 2013. Behavioral repertoire learning

in robotics. In GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary
Computation Conference. ACM Press, New York, New York, USA, 175–182.

[13] Miguel Duarte, Jorge Gomes, Sancho Moura Oliveira, and Anders Lyhne Chris-

tensen. 2016. EvoRBC: evolutionary repertoire-based control for robots with

arbitrary locomotion complexity. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016. ACM, 93–100.

[14] Matthew Fontaine and Stefanos Nikolaidis. 2021. Differentiable Quality Diversity.

Advances in Neural Information Processing Systems 34 (2021).
[15] Matthew C. Fontaine, Scott Lee, L. B. Soros, Fernando De Mesentier Silva, Julian

Togelius, and Amy K. Hoover. 2019. Mapping Hearthstone Deck Spaces with Map-

Elites with Sliding Boundaries. In Proceedings of The Genetic and Evolutionary
Computation Conference. ACM.

[16] Matthew C Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K Hoover.

2020. Covariance matrix adaptation for the rapid illumination of behavior space.

In Proceedings of the 2020 genetic and evolutionary computation conference. 94–102.
[17] Daniele Gravina, Antonios Liapis, andGeorgios Yannakakis. 2016. Surprise search:

Beyond objectives and novelty. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016. 677–684.

[18] Luca Grillotti and Antoine Cully. 2021. Unsupervised Behaviour Discovery with

Quality-Diversity Optimisation. arXiv preprint arXiv:2106.05648 (2021).
[19] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scan-

dinavian journal of statistics (1979), 65–70.
[20] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios

Tsounis, Vladlen Koltun, and Marco Hutter. 2019. Learning agile and dynamic

motor skills for legged robots. Science Robotics 4, 26 (2019), eaau5872.
[21] Marija Jegorova, Stéphane Doncieux, and Timothy M Hospedales. 2020. Behav-

ioral Repertoire via Generative Adversarial Policy Networks. IEEE Transactions
on Cognitive and Developmental Systems (2020).

[22] Edward Johns, Stefan Leutenegger, and Andrew J Davison. 2016. Deep learning

a grasp function for grasping under gripper pose uncertainty. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 4461–
4468.

[23] Rituraj Kaushik, Pierre Desreumaux, and Jean-Baptiste Mouret. 2020. Adaptive

prior selection for repertoire-based online adaptation in robotics. Frontiers in
Robotics and AI (2020), 151.

[24] Seungsu Kim, Alexandre Coninx, and Stéphane Doncieux. 2021. From exploration

to control: learning object manipulation skills through novelty search and local

adaptation. Robotics and Autonomous Systems 136 (2021), 103710.

[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[26] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. 2017. Singularity:

Scientific containers for mobility of compute. PloS one 12, 5 (2017), e0177459.
[27] Adrien Laversanne-Finot, Alexandre Péré, and Pierre-Yves Oudeyer. 2021. Intrin-

sically motivated exploration of learned goal spaces. Frontiers in neurorobotics
(2021), 109.

[28] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye,

Siddhartha S Srinivasa, Mike Stilman, and C Karen Liu. 2018. Dart: Dynamic

animation and robotics toolkit. Journal of Open Source Software 3, 22 (2018), 500.
[29] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution

through the search for novelty alone. Evolutionary computation 19, 2 (2011),

189–223.

[30] Antonios Liapis, Héctor P Martínez, Julian Togelius, and Georgios N Yannakakis.

2013. Transforming Exploratory Creativity with DeLeNoX. Technical Report.
[31] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. Stacked

convolutional auto-encoders for hierarchical feature extraction. In International
conference on artificial neural networks. Springer, 52–59.

[32] Elliot Meyerson, Joel Lehman, and Risto Miikkulainen. 2016. Learning behavior

characterizations for novelty search. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016. 149–156.

[33] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping

elites. (apr 2015). arXiv:1504.04909

[34] J.-B. Mouret and S. Doncieux. 2010. SFERESv2: Evolvin’ in the Multi-Core World.

In Proc. of Congress on Evolutionary Computation (CEC). 4079–4086.
[35] Jean-Baptiste Mouret and Glenn Maguire. 2020. Quality Diversity for Multi-task

Optimization. (2020).

[36] Giuseppe Paolo, Alexandre Coninx, Stéphane Doncieux, and Alban Laflaquière.

2021. Sparse reward exploration via novelty search and emitters. In Proceedings
of the Genetic and Evolutionary Computation Conference. 154–162.

[37] Giuseppe Paolo, Alexandre Coninx, Alban Laflaquière, and Stephane Doncieux.

2021. Discovering and Exploiting Sparse Rewards in a Learned Behavior Space.

arXiv preprint arXiv:2111.01919 (2021).
[38] Giuseppe Paolo, Alban Laflaquiere, Alexandre Coninx, and Stephane Doncieux.

2020. Unsupervised learning and exploration of reachable outcome space. In

2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2379–2385.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

2019. Pytorch: An imperative style, high-performance deep learning library. In

Advances in neural information processing systems. 8026–8037.
[40] Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer.

2018. Unsupervised Learning of Goal Spaces for Intrinsically Motivated Goal

Exploration. 6th International Conference on Learning Representations, ICLR 2018
- Conference Track Proceedings (mar 2018). arXiv:1803.00781

[41] Achkan Salehi, Alexandre Coninx, and Stephane Doncieux. 2021. BR-NS: an

archive-less approach to novelty search. In Proceedings of the Genetic and Evolu-
tionary Computation Conference. 172–179.

https://arxiv.org/abs/1905.11874
https://arxiv.org/abs/1708.09251
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1803.00781

	Abstract
	1 Introduction
	2 Background
	2.1 Quality-Diversity Algorithms
	2.2 Discovering Unsupervised Behaviours

	3 Related Works
	3.1 Leveraging Behavioural Repertoires to Solve Tasks
	3.2 Behaviour Descriptor Definition

	4 Relevance-guided Unsupervised Discovery of Skills (RUDA)
	4.1 Choice of Relevant Individuals
	4.2 Circular Buffer of Relevant Individuals
	4.3 Update Relevance-based Distance Metric

	5 Experimental Setup
	5.1 Agent: Neural-network controlled hexapod
	5.2 Dimensionality Reduction Algorithm of AURORA and RUDA
	5.3 Downstream Tasks and QD Tasks
	5.4 Compared algorithms and variants
	5.5 Implementation Details

	6 Results
	6.1 Relevance to the Downstream Task
	6.2 Container Diversity

	7 Conclusion and Future Work
	Acknowledgments
	References

