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Abstract
Modern approaches for fast retrieval of similar vectors on
billion-scaled datasets rely on compressed-domain approaches
such as binary sketches or product quantization. These meth-
ods minimize a certain loss, typically the mean squared error
or other objective functions tailored to the retrieval problem.
In this paper, we re-interpret popular methods such as binary
hashing or product quantizers as auto-encoders, and point out
that they implicitly make suboptimal assumptions on the form
of the decoder. We design backward-compatible decoders that
improve the reconstruction of the vectors from the same codes,
which translates to a better performance in nearest neighbor
search. Our method significantly improves over binary hash-
ing methods or product quantization on popular benchmarks.

1 Introduction
The emergence of large-scale databases raise new challenges,
one of the most prominent ones being on how to explore ef-
ficiently this data. Finding similar vectors in large sets is
increasingly important with the emergence of vector embed-
dings that represent data of various modalities [7, 22]. Ex-
act nearest-neighbor search in high-dimensional spaces is in-
tractable [29], which is why researchers and practitioners have
resorted to approximate nearest-neighbors (ANN), trading
some search accuracy against orders of magnitude gains in
response time, and memory consumption. Amongst the tech-
niques widely adopted in industry [16, 12, 26], quantization-
based approaches [21], like product [14] or additive quantiz-
ers [2, 17, 19, 20], estimate distances based on approximated
vector representations.

In this paper, we regard search methods based on compact
codes as auto-encoders, and address the problem of improving
the decoder for a fixed encoder: we assume that the stage
that assigns vectors to codes is fixed, and we examine how to
improve decoding if we tolerate some runtime impact. This
setting is especially useful in situations where (1) we need
backward-compatibility on existing codes, and/or (2) for re-
ranking to refine an initial short-list [15].

The motivation behind our method is to exploit the inher-
ent suboptimality of existing decoders, which typically assume
that there is no residual mutual information between bits or
subindices. Lifting this assumption, we design a decoder that
offers a better estimation of the reproduction value (or cen-
troid) associated with binary sketches or structured compact
codes employed in multi-codebook quantization. We demon-

strate the potential of uncoupling the encoder and decoder
for several effective encoders such as binary codes [10, 24] or
product quantization [14]. Our solution relies on a simple neu-
ral decoding network. On the BigANN [15] and Deep1M [3]
benchmarks, it provides substantial gains w.r.t. the trade-off
between reconstruction and memory budget. Noticeably, we
use a very efficient encoder for index construction and initial
search, like a binary or fast quantizer [1], and use our neural
decoder to re-rank a short-list with high-quality neighbors.

2 Preliminaries
In this section, we first present the quantization methods in-
volved approximate nearest neighbor search as auto-encoders.
We then discuss popular quantization methods for which our
paper proposes to improve the decoder while keeping the en-
coder fixed.

2.1 Quantization techniques for ANN search
Most vector encoding methods for approximate nearest neigh-
bor search can be interpreted as quantization techniques [11].
A quantizer can be regarded as an auto-encoder of the form

x
f−−→ f(x) = k ∈ K g−−→ qk = g(f(x)) ∈ Q ⊂ Rd, (1)

where the input vector x ∈ Rd is first mapped by an encoder
f into a code k ∈ K. The encoder f implicitly defines a par-
titioning of Rd into K = |K| disjoint cells C1, . . . , CK , where
Ck = f−1(k). The decoder reconstructs an approximation qk
from the code k, which belongs to the set Q = {qk}k∈K of
reproduction values. The encoder-decoder q = g ◦ f is usually
referred to as a quantizer [11].

Lloyd’s optimality conditions. Given cells and their cor-
responding reproduction values qk, Lloyd [18] derived two
necessary conditions for a quantizer to be optimal in terms of
the average squared loss. First x must be assigned its closest
reproduction value, which translates to the usual assignment
rule to the nearest centroid:

f(x) = argmink′∈K ‖x− qk′‖2. (2)

This condition defines the optimal quantizer for a given set
of reproduction values, whether we can enumerate it or not.
Denoting by p the p.d.f. of the input data, the second condition
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is that each reproduction value qk should be the expectation of
the vectors assigned to the same cell as

qk =

∫
x∈Ck

p(x)xdx, (3)

2.2 Structured vector quantization
The most general form of vector quantization is when the set of
reproduction valuesQ = {q1, . . . , qK} is unconstrained, such
as the one typically produced by k-means. In the context of cod-
ing for distance estimation, a very large number of centroids
(typically, 2128) is required to obtain a sufficient precision. It is
not feasible to run k-means at that scale.

Product Quantization (PQ). In order to learn fine-grained
codebooks, Jégou et al. [14, 25] propose a product quantizer,
where the set of centroidsQ is implicitly defined as a Cartesian
product of m codebooks Q = Q1 × ...×Qm. Each codebook
Qi consists of K′ centroids defined in R

d
m . The assignment is

separable over the m subspaces and produces indexes of the
form k = (k1, . . . , km). The advantage is that the total num-
ber of centroids is (K′)m with an assignment step to centroid
with an efficient complexity in O(dK′) = O(dK

1
m ), where d

denotes the vector dimensionality.

Notation PQm×b. We denote by PQm×b a product quan-
tizer defined by m subquantizers with b-bits subindices. It
corresponds to a compact code of size m×b.

Additive quantizers (AQ) generalize this, they define the
reproduction values as

Q = {c1 + · · ·+ cm|c1 ∈ Q1, . . . , cm ∈ Qm}, (4)

where ∀iQi ⊂ Rd. Similar to product quantization, the indices
are tuples. When not ambiguous, we use notation Qi[k] for
the element indexed by k in Qi. Functions implemented as
look-up tables (LUTs) can be written as:

x
f−−→


k1 = f1(x)

...
km = fm(x)

 g−−→ g(f(x)) =

m∑
i=1

Qi[ki]. (5)

There are different forms of additive quantizers, with differ-
ent encoder algorithms: the form of their decoders is identical
and rely on LUTs as in Eqn. 4. For instance for a residual quan-
tizer [17] the assignment is done sequentially, which is fast but
does not guarantee to assign a vector to its closest neighbors.
Subsequent additive quantizers, like the ones by Babenko et
al. [2], and Local Search Quantization (LSQ) [19, 20] by Mar-
tinez et al. improve the trade-off between encoding complexity
and reconstruction error.

Optimal centroids for a fixed encoder. Given a set of train-
ing vectors (xi)i=1..n ∈ Rd and their codes k1, ..., km, it is possi-
ble to construct an additive decoder (Eqn. 4) that minimizes the
`2 loss. Denoting by X ∈ Rn×d the matrix of training vectors,

C ∈ RmK′×d the codebook entries, and converting subindices
k1, ..., km into one-hot vectors stacked in I ∈ {0, 1}n×mK′

, the
optimal solution [2, 20] is given by

argminC‖X − CI‖
2
2 + λ‖C‖22, (6)

where the first term minimizes the reconstruction error on the
training set. As noted by Martinez et al. [20], this estimation
has numerical stability issues, which is addressed with the
regularizer weighted by λ > 0. This minimization is performed
component-wise [2] in closed form and is therefore efficient to
obtain.

Distance estimator. At search time, the ANN algorithm
estimates the distance d(x, y) or similarity between a query x
and each database vector y based on an imperfect representa-
tion of y or both x and y. When both the query and database
vectors are quantized, it is a Symmetric Distance Comparison
(SDC), which approximates any square distance d(x, y)2 by the
estimator

dSDC(x, y) = d(q(x), q(y))2. (7)

The asymmetric distance computation (ADC) [14] estimates
distances as

dADC(x, y) = d(x, q(y))2. (8)

In this case the query vector x is not quantized.
Note that the quantization is a lossy operation: the quality

of neighbors strongly depends on the estimator and of the
quantizer. ADC reduces the quantization noise compared to
SDC, which subsequently improves the search quality [14].

Compressed-domain calculation. For both PQ and AQ,
the comparison is performed in the compressed domain, one
does not need to decompress the database vectors explicitly as
discussed by Jégou et al. [14] and [2].

2.3 Hashing based ANN
Binary codes are quantization techniques that derive from
Locality-Sensitive hashing (LSH) [4, 13, 9]. In this work we
focus on binarization, which ensures that a small Hamming
distance between bit vectors implies proximity in the original
space for a given metric, for instance cosine [4]. Binarization
maps a vector x to a sequence of bits (k1, . . . , km) using m

elementary projections ui: ki = sign(u>i x). It is a form of
quantization where the reconstruction is possible up to some
scaling constant. If the {ui}i is an orthonormal set, then the
reconstruction on the unit-norm `2-hyper-sphere as

qk =
1√
d

m∑
i=1

kiui ∝ [u1, . . . , um]

 k1...
km

 . (9)

leads to the same ranking as the Hamming distance between
the binary ki. Note, we use an explicit reconstruction to com-
pute ADC for binary vectors.

We consider two training methods for ANN search with
binary codes. The first is Iterative Quantization [10] (ITQ).
This simple embedding (learned rotation and sign selection)
serves as a baseline in numerous publications. The second is



the catalyzer of Sablayrolles et al. [24], which produces high-
quality binary embeddings with a neural network. We refer
the reader to existing reviews for other approaches [28, 27].

2.4 Re-ranking methods
Some Locality-Sensitive Hashing algorithms such as E2LSH [6]
rely on a two-stage approach, where (1) a first system selects
the most promising neighbor candidate; (2) which are filtered
out by a re-ranking system exact distance computation. The
VA-file [29] is the ancestor of approximation-based filtering:
a first approximation of the vector leads to select a short-list
of neighbor candidates. This approximation being too crude,
a re-ranking stage computes the exact distance between the
query and the exact representation of the vectors in the short-
list. This involves a significant amount of extra storage for
large databases. Some approaches alleviate this constraint
by refining the first-stage approximation with a secondary
compact code [15].

2.5 Architectural considerations
Indexing algorithms heavily depend on the hardware on which
they are run. Compared to other quantization approaches
based on compact codes, binary hashing is less precise but
benefits from specific low-level instructions of modern CPUs,
like XOR and popcount that make the distance computation
very fast. Quantization methods significantly benefit from
algorithms running on the GPU [16]. With smaller PQ code-
books, order(s) of magnitude faster distance comparisons can
be obtained by computing ADC distance in registers [1]. This
requires to adopt smaller quantization codebooks. For instance,
K’=16 instead of the more standard setting K’=256 with product
or additive quantization.

3 Method
Our proposal improves the decoder given an existing encoder,
such that our decoder can be used in a re-ranking stage to im-
prove the ranking. There are several advantages to keep a fast
encoder in approximate search techniques based on compact
codes, noticeably a faster indexing and large-scale search.

In this section we first introduce the binary and quantization-
based encoders that we focus on. We evidence sub-optimalities
in existing approaches on a simple case with a tractable optimal
decoder. Then we introduce our approach based on a neural
network decoder (denoted NN) illustrated in Figure 1, which
we adopt with any type of encoder.

3.1 Towards stronger decoders & a discus-
sion

In Table 1 we give the set of encoders that we consider: we
consider popular and state-of-the-art binarization and quanti-
zation methods. We indicate the usual decoder and provide
their standard decoder in the column “decoder” along with
our replacement proposal in the column “proposed decoder”.

For Product Quantization (denoted PQ) and binary codes,
we consider 64 bits codes for a more direct comparison with the

Table 1: Encoder-decoder considered in this paper, and pro-
posed decoders that we propose instead for ranking or re-
ranking. Our proposal is to design a stronger decoder for each
binarization or quantization technique: either we compute
the optimal look-up tables (w.r.t. reconstruction), as initially
proposed for additive quantization (AQ), or we train a neural
network decoder (NN).

encoder decoder proposed decoders

ITQ [10] naive AQ, NN
Catalyzer [24] naive AQ, NN
PQ16×4 [14, 1] PQ AQ, NN
PQ8×8 [14] PQ AQ, NN
LSQ++ [20] AQ –

literature. We denote by PQ8×8 the usual product quantizer
defined by m= 8 subquantizers with 8-bits subindices (i.e.,
K′ = 256) and by PQ16×4 a product quantizer such that m= 16
and K′ = 16.

3.2 AQ: a better decoder for PQ/OPQ
Our first proposal is to adopt the Additive Quantization (AQ)
decoder of Eqn. 6 for PQ, and optimized PQ (OPQ). OPQ is
a variant of PQ where, similar to ITQ, the method applies a
learned rotation before the subspace partitioning [8, 23]. The
OPQ decoder is identical to PQ except that it rotates the vec-
tor back to compensate for the initial rotation. PQ and OPQ
are special cases of AQ. Adopting an AQ decoder instead of
the usual PQ decoder implies that we consider specific recon-
struction LUTsQ′i that have d dimensions instead of d/m: the
reconstruction is a summation with Eqn. 4 instead of a con-
catenation. Therefore and in contrast to existing quantization-
based methods, we disentangle the look-up tables associated
with the encoder from the ones associated with the decoder:
we have two sets of look-up tables.

This alleviates the decoding constraint of PQ, where each
subindex only contributes to the reconstruction in its own sub-
space. Since the subspace are not totally independent, even
after application of a pre-rotation like OPQ, the AQ decoder
improves the reconstruction.

3.3 Binary codes: LUTs reconstruction
We also propose to adopt the AQ decoder of Eqn. 6 to recon-
struct binary codes. While the decoding procedure is conceptu-
ally identical to the case of PQ and OPQ, in this binary context
this choice departs significantly from the current practice in the
literature. where there is usually no reconstruction procedure
associated with the binarization, or only a simplistic one.

In our case, for a m-dimensional bit vector, we learn m
LUTs of size d × 2. Each LUT is indexed by a bit value ki as
Qi[ki]. To our knowledge it is the first time that the AQ (strong)
decoder is proposed for binarization techniques. It is advanta-
geously combined with ADC to avoid any approximation on
the query. As we will see, it provides a significant improve-
ment without extra memory and at a negligible compute-cost
when used for re-ranking. The only requirement compared to
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Figure 1: Neural net decoder architecture. The encoder is fixed and we train the decoder to minimize the loss ‖x̃− x‖2 and/or a
triplet loss. The first layer of the decoder has the structure of an additive look-up table (LUTa).
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Figure 2: Trade-off between MSE and encoding time for mul-
tiple quantizers. LSQ++ (8×8) outperforms regular PQ w.r.t.
MSE, but the encoding speed is prohibitively slow. In contrast,
PQ16×4 allows for a quick encoding but has a poor reconstruc-
tion. We improve the compromises by changing the decoder
for a given encoder (PQ+AQ & PQ+NN).

usual binary codes is that the comparison is not context-free:
we need to store the lookup tablesQi to enable the comparison
between a query and a vector, in contrast to the context-free
Hamming distance comparison.

This stronger decoder for binary code is backward-
compatible in the sens that it can be applied for an existing
index of binary codes, with the following requirement: one
needs a training set of vectors and corresponding binary codes,
which are required to learn the LUTs with Eqn 6.

3.4 Discussion
AQ is the best possible decoder with linear reconstruction as
in Eqn. 4. In the literature, different AQ methods differ by
how the encoding is performed, which impacts the trade-off
between speed and encoding time. However, those offering
the best trade-offs like LSQ++ are computationally intensive.
In Figure 2 we plot the compromise between encoding time
and mean squared error (MSE).

LSQ++ vs PQ8×8. The LSQ++ encoder (m = 8,K′ = 256)
is 2 orders of magnitude slower than its PQ8×8 counterpart. It
is also significantly better than PQ. However, with our PQ+AQ,
that combines an AQ decoder with a PQ encoder, the gap is
reduced significantly. This advocates the choice of a faster
encoder.

PQ8×8 vs PQ16×4. The relatively poor reconstruction
accuracy associated with a PQ16×4 decoder, when using the
corresponding naive decoder, is significantly improved with
AQ decoding: it even outperforms PQ8×8 while being one
order of magnitude faster, due to the much lower number of
centroids per subquantizers (16 versus 256). A key advantage
of PQ16×4 is a strong architectural advantage at search time:
The look-up tableQi can be stored in the process registries [1],
leading to an even larger gap in efficiency. Our proposal to
leverage such efficient implementation makes this parameter
an appealing choice.

3.5 Neural Network decoder
The AQ decoder significantly improves binary codes or prod-
uct quantization encoders. However the reconstruction linearly
depends on the separate reconstructions of the components
Qi. This is suboptimal: for instance, binary and PQ recon-
struct each sub-vector independently of the others, implic-
itly assuming independence of the codes P(k) =

∏m
i=1 P(ki).

This independence would be true if the encoding was opti-
mal (there would be no redundant information between the
m sub-vectors), but is not true in practice (sub-vectors are not
independent). We address this problem by defining a neural
network decoder g that, given a compound index (k1, . . . , km),
produces a reconstruction from the index, as shown in Figure 1.
The first layer is a structured LUT similar to Q for which we
adopt the same notation as PQ: LUTm×b indicates that the ten-
sor implementing this layer containsm×2b×dweights. In our
experiments, we use LUT16×4 and LUT8×8 with PQ16×4 and
PQ8×8, respectively. For 64-bit binary codes we use LUT64×1.

After the first layer of the decoder (LUT parameters), we
stack one or more blocks. Each block consists of a batch nor-
malization and two fully connected layers separated by a ReLU
activation function. In the following, we restrict this network
to one block, as we observed empirically that more blocks did
not provide significant improvements. Note that if the decoder
consisted of one LUT followed by an addition, it would be
equivalent to the AQ decoder.

3.6 Triplet loss
We optionally consider the triplet loss as an additional term to
preserve more explicitly the initial ranking in the reconstruction
space, defined as

Ltriplet = max(0, ‖x− q(x+)‖22 − ‖x− q(x−)‖22 + δ). (10)
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Figure 3: Small-scale experiment on the Deep1M dataset: reconstruction error when varying the size of the training set with 16-bit
codes. We compare the kmeans baseline with different reconstruction strategies for decoding PQ codes produced by the same
PQ encoder: the regular PQ decoding, the topline for a PQ encoding, and our PQ+NN decoder based on a neural network. We
report the MSE on the training set (solid) and on the validation set (dashed). For PQ and PQ+NN, we vary the number m and bits
per subspace to keep 16-bit codes: (left) PQ4×4: m= 4, nbits = 4 and (right) PQ2×8.

In this equation, we consider a query x, a positive match x+

in a given neighborhood (defined by rank) and a negative
match x− selected to be a hard negative. The margin δ ensures
separation between positives and negatives and prevents the
weights from collapsing to zero. The overall loss combines the
triplet loss and the reconstruction loss, as:

L = Lrecons + λ · Ltriplet (11)

where Lrecons = ‖x− q(x)‖2 is the reconstruction loss and the
parameter λ ≥ 0 controls the trade-off between reconstruction
and ranking quality. We vary the parameter λ to identify the
optimal values where we reach the best recall scores. We retain
the range of λ values for which we get the best 100 recall@1.
For our two test datasets, a value of λ = 1 gives near-optimal
results.

4 Analysis: A preliminary experi-
ment

While the objective of this paper is to improve the performance
of indexing techniques based on compact codes, we first evalu-
ate our proposal to change the decoder on a vanilla quantiza-
tion task.

The encoder f is the stage that defines the space partition-
ing. For a given encoder, the optimal decoder g is known and
given by Eqn. 3: we refer to it as the “topline”. It can be im-
plemented as a lookup table containing the K d−dimensional
centroids. In practical settings (K > 232) the topline computa-
tion is not feasible. To circumvent this limitation, we consider a
scale where it is feasible to estimate the optimal quantizer: we
set K = 216 for the total number of centroids, i.e. we consider
16-bit codes.

4.1 Setup of the experiment
At that scale it is possible to run the full k-means quantizer.
Therefore we can compare the following encoders:

• the k-means encoder that groups data points in k = 216

clusters. This is the topline encoder for the training set
because it minimizes the MSE itself;

• PQ2×8 splits vectors into 2 sub-vectors, each encoded
in 8 bits. This is a constrained setting of the k-means
encoder, because it is less general;

• PQ4×4 splits vectors into 4 sub-vectors, each encoded
in 4 bits. This setting is even more constrained.

For PQ encoders, we compare the decoders:
• the “natural” decoder uses the PQ tables to reconstruct

the vectors, i.e., those used by the PQ encoder;
• the topline decoder uses a K × d size lookup table with

the optimal reconstruction from Equation (3). Note that
this setting is feasible only in a very small scale like here;

• the neural net (NN) decoder reconstructs the vectors
with a small neural net, see Section 3.5.

The k-means encoder can be seen as the product quantizer
PQ1×16. For PQ1×16 the “natural” and the topline decoders
coincide. In addition, the NN decoder of a PQ1×16 also boils
down to a look-up table because all possible inputs of the NN
are mapped into a table.

In Figure 3 we measure the MSE as a function of the number
of training vectors. Note that the linear additive decoder (PQ
as encoder and AQ as decoder) was omitted because AQ is a
particular case of the neural network decoder: the AQ decoder
is equivalent to our NN decoder with just the LUT layer.

4.2 Training and validation error
In all the settings, when increasing the number of training
vectors, we observe the typical behavior of learning algorithms:
for few training vectors, the MSE on training is much lower
than that on validation vectors (overfitting); for more training
vectors, the two errors become identical. This is because of
the generalization capacity to unseen data of any algorithm
trained on more data.

This transition from overfitting to convergence occurs for
all encoder/decoder pairs, but the speed of convergence de-
pends on the capacity of the encoder and decoder: for “natural”
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Figure 4: Accuracy vs. search time on the BigANN1M dataset
when re-ranking: The NN decoder re-orders the top PQ results.
The isolated points correspond to the baseline, i.e., without
reranking the short-list. The curves are obtained by sweeping
over the number of top elements to re-rank (2 to 1000).

decoders it is faster for PQ2x8 than for k-means because the
latter has more parameters to train. It is even faster for PQ4×4.
On the decoder front, the topline decoder has the same number
of parameters as the regular k-means, so it is not suprising that
both converge as slowly. The NN decoder is in-between the
topline and natural decoders.

4.3 Discussion
The linear additive decoder achieves at best the same perfor-
mance as the optimized decoder (PQ as encoder and NN as
decoder).

We first compare the “topline” curves with the k-means
curves. This quantifies the suboptimality of the encoder be-
cause the k-means is an optimal encoder and decoder while
the topline has a PQ encoder with an optimal decoder. The
difference with the topline is much higher for PQ4×4, which
is a particular case (and more constrained) of PQ2×8. Then
we compare the “topline” with the “natural” PQ decoder. This
shows the contribution of the decoder only. We observe that
the gain due to the encoder is a bit smaller than that due to the
decoder.

By adding an optimized decoder after the encoding step,
we attempt to approach the optimal decoder with a NN that
scales beyond this toyish setup. We observe that the NN de-
coder has an asymptotic accuracy close to that of the topline
decoder.

Interestingly our PQ+NN decoder, while asymptotically
(ntrain→ ∞) inferior to the topline, achieves better perfor-
mance on the validation set than the topline in the data-starving
regime. Our interpretation is that it has to learn fewer parame-
ters and is therefore better able to generalize with less data.

5 Experiments

5.1 Experimental setting
We use publicly available benchmarks to evaluate the per-
formance of nearest neighbor search techniques, namely Bi-

gANN1M [15] (d = 128) and DEEP1M [3] (d = 96). Both
are image features extracted from real images, arranged in a
database of 1M vectors, a query set of 10.000 queries, and a
separate set of training vectors. We measure the Recall@R, i.e.
the rate of queries for which the nearest neighbor is ranked in
the firstR ranks, for a code of size 64 bits in all the experiments.
The measurements are averaged over 5 runs of training with
different random seeds. Our NN decoder minimizes the recon-
struction loss with Adam optimizer. We train on 300 epochs
with a batch size bs = 256 and a learning rate lr = 5 · 10−4.
We use a scheduler that reduces the learning rate by a factor
lrdecay = 0.5 when the validation loss stops improving. We do
not regularize with weight decay.

5.2 Results with PQ codes
Table 2 compares the deep decoder with baselines in terms
of recall for PQ/OPQ encodings. The AQ decoder already
improves the accuracy with respect to the PQ/OPQ baseline.
Wwe obtain the largest improvement with the neural network
(NN) decoder, especially for PQ16×4 codes. This parameter
choice seems of high practical interest, since it combines a very
fast encoder with a competitive indexing performance.

Re-ranking. We use this approach in a re-ranking setting:
since we have a fast decoder (row with Decoder “PQ”) and a
slower but more accurate one (Decoder “NN”), we consider a
two-stage retrieval procedure, where we first filter out at least
99.9% of the vectors with the fast one.

Figure 4 shows the results of this approach. Most of the
accuracy gain is obtained by re-ranking just the top-10 first-
level results. Therefore the re-ranking time is negligible w.r.t.
the initial search time. The largest gain (3.4 points) is obtained
with PQ16×4 codes, that are also the fastest for the first-level
decoder.

5.3 Results on binary codes
Table 3 reports results with binary encoders. We consider two
encoders: ITQ [10] and the catalyzer [24]. We show how the
deep decoder stands amongst popular baselines in term of
reconstruction error and recall for binary encodings. Recall that
for the AQ solver and the optimized decoder, the lookup table
structure is M×b = 64×1. With binary codes, an asymmetric
comparison is the element that provides the most significant
boost in accuracy, which is shown by the comparison between
SDC and ADC.

Our approach ITQ+NN provides an additional gain com-
pared with the ITQ encoder. For the stronger encoder (cat-
alyzer), our approach catalyzer+NN provides a significant im-
provement on the Deep1M dataset, in particular when adding
a triplet loss to make our training more consistent with the one
of the catalyzer. However we point that on BigANN1M, our
simpler choice of using AQ as a decoder is the best. This may
be due to the optimization because formally, the AQ decoder
is a particular case of the NN decoder.



Table 2: Retrieval results on BigANN1M and Deep1M with PQ/OPQ 64-bit quantization and ADC comparisons. The LSQ++
results are a topline, very slow at encoding time. All results are computed with ADC. The OPQ (en/de)coder is identical to PQ
(en/de)coder up to a learned rotation. The methods introduced in this paper are shaded.

16×4 8×8

Encoder Decoder R@1 R@10 R@100 R@1 R@10 R@100

BigANN1M

PQ PQ 0.168 0.530 0.887 0.223 0.651 0.948
PQ AQ 0.182 0.564 0.908 0.234 0.667 0.955
PQ NN 0.202 0.606 0.928 0.239 0.681 0.958

OPQ OPQ 0.194 0.605 0.937 0.231 0.667 0.960
OPQ NN 0.202 0.621 0.945 0.225 0.665 0.959

LSQ++ AQ 0.309 0.785 0.987

Deep1M

PQ PQ 0.087 0.324 0.703 0.091 0.339 0.730
PQ AQ 0.083 0.313 0.670 0.094 0.355 0.749
PQ NN 0.100 0.370 0.756 0.105 0.380 0.776

OPQ OPQ 0.151 0.493 0.872 0.167 0.538 0.898
OPQ NN 0.154 0.516 0.889 0.168 0.550 0.908

LSQ++ AQ 0.246 0.688 0.965

5.4 Other limiting factors
For most applications there is a single limiting factor. In this
paper we mainly fix the code size and evaluate the encoding
accuracy vs. speed tradeoff. However, there are other resource
constraints that can become limiting. Concerning the memory
requirement of storing the codes of the look-up tables itself,
the neural network approach is less parsimonious than fixed
(binary) quantizers that don’t need to store centroids in lookup
tables. The parameters of a neural network decoder exceed that
of a linear additive quantizer because they store LUTs, and also
the trained network parameters. Note that the memory usage
for the codec is rarely a limiting factor because it is constant
w.r.t. the amount of data to process.

The optimized decoder added to a fixed PQ encoder is
always the optimal solution in term of accuracy given a fixed
encoding time. Note that the NN decoder training time is not a
problem in this context: it is several orders of magnitude faster
than training image classification networks and can easily be
done on CPU.

5.5 Sensitivity to decoder parameters
We analyse the sensitivity of our neural network decoder to
variations of the hyper-parameters. We run two analyses: one
on the network architecture and the other on the parameters in
the decoder training process. In our analysis, all results have
been run on the BigANN1M dataset, with a training set of
500000 points and a validation set of 100000 points. The inputs
of the network are codes returned by a PQ16×4 encoder.

Architecture. The parameters we consider for the network
architecture are the type of blocks (linear or residual), the num-

ber of blocks, the number of neurons in the hidden layers, and
the dropout rate. In our case, a residual architecture doesn’t
significantly improve the performance of the decoder, probably
because the depth of the network is low (only 1 to 3 blocks).
We observe on Figure 5a that a linear network with only 2
blocks already outperforms AQ decoders and adding more
blocks shows down the inference without adding much more
accuracy.

Whatever the number of neurons in the hidden layers, the
learning process of the decoder is stable but we reach smaller
loss values with more hidden neurons. We experimented with
dropout but it did not improve the validation accuracy signifi-
cantly.

Optimization. The parameters we consider for the de-
coder optimization are the optimizer, the learning rate, the
learning decay factor, the weight decay factor, and the batch
size. We compare four optimizers that are commonly used in
deep learning: SGD, Adam, Adadelta and RMSprop. We vary
the learning rate from 5 ·10−3 to 5 ·10−5 to assess their stability.
We observe that all networks have a stable learning process
and achieve their best accuracy scores for different range of
learning rates. We choose Adam optimizer because it is more
locally stable and was shown to be faster and more stable than
SGD when fine-tuned [5].

Having chosen Adam as the optimizer, we vary more pre-
cisely the learning rates. Figure 5b shows that both training
and validation losses smoothly decrease and that the decoder
is stable with regards to variations of the learning rate. We
recommend to use learning rates greater than 5 · 10−4. They
reach a better accuracy than the fixed encoder/decoder PQ
in less than 5 epochs. We tested the effect of learning rate de-
cay: varying the learning rate decay factor from 0.2 to 1 has



Table 3: Performance of different binary quantizers (64 bits), on Deep1M and BigANN1M, with ITQ encoding or the neural
network encoder of [24]. SDC refers to the case where we compare codes with Hamming distance, ADC when the database vector
is reconstructed by Eqn. 9. AQ and NN decoders also use an asymmetrical comparison. The row NN/triplet corresponds to the
case where we combine the `2 loss with a triplet loss similar to the one used to learn the catalyzer, as discussed in Section 3.6. The
methods introduced in this paper are shaded, see Table 1.

BigANN1M Deep1M

Encoder Decoder R@1 R@10 R@100 R@1 R@10 R@100

ITQ SDC 0.055 0.220 0.538 0.056 0.213 0.516
ITQ ADC 0.103 0.383 0.783 0.100 0.368 0.759
ITQ AQ 0.098 0.372 0.768 0.097 0.362 0.753
ITQ NN 0.118 0.427 0.819 0.112 0.401 0.790

catalyzer SDC 0.083 0.298 0.622 0.071 0.254 0.558
catalyzer ADC 0.158 0.520 0.879 0.137 0.457 0.830
catalyzer AQ 0.160 0.524 0.881 0.139 0.459 0.833
catalyzer NN 0.153 0.509 0.865 0.142 0.463 0.834
catalyzer NN/triplet 0.157 0.519 0.876 0.145 0.471 0.841

no significant effect on the learning process. We draw similar
conclusions when varying the weight decay factor from 0 to
0.2. The batch size has no significant influence on the decoder
training. After epoch 40, the optimization reaches the same
loss values whatever the batch size (128, 256, 512 and 1024).

Overall, since the optimization does not appear to be sen-
sitive to hyperparameters, we select the most lightweight ar-
chitecture and the most natural hyperparameters for all our
experiments (see Section 5.1).

6 Conclusion
In this paper we have focused on the decoder associated with
popular approximate nearest neighbor search based on com-
pact codes. Our main proposal is to design stronger decoders
for existing encoders for approximate search. We have evi-
denced that decoders associated with existing methods are sub-
optimal in terms of reconstruction given the indices. We have
proposed an enhanced decoder based on a neural network that
we use with several types of encodings, such as binary hash-
ing method or product quantization. This optimized decoder
improves the accuracy when performing similarity search, and
we do not compromise the efficiency since the main use-case
of our method is to provide a re-ranking stage.
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