
Overcoming Congestion in Distributed Coloring∗

Magnús M. Halldórsson1, Alexandre Nolin1, and Tigran Tonoyan2

1ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
2Krisp Technologies Inc., Armenia

mmh@ru.is; alexandren@ru.is; ttonoyan@gmail.com

Abstract

We present a new technique to efficiently sample and communicate a large number of
elements from a distributed sampling space. When used in the context of a recent Local
algorithm for (degree +1)-list-coloring (D1LC), this allows us to solve D1LC in O(log5 log n)
Congest rounds, and in only O(log∗ n) rounds when the graph has minimum degree
Ω(log7 n), w.h.p.

The technique also has immediate applications in testing some graph properties locally,
and for estimating the sparsity/density of local subgraphs in O(1) Congest rounds, w.h.p.

1 Introduction and Related Work

We explore ways to reduce bandwidth, particularly for the fundamental vertex coloring problem.
Bandwidth is the key difference between the otherwise similar models of locality that are Local
and Congest: while nodes can send messages of arbitrary size in Local (and thus, the round
complexity of a problem only depends on how far in the graph its nodes need to see), in
Congest the nodes are restricted to messages of size O(log n), where n is the number of nodes
in the graph. While some classical algorithms designed without bandwidth in mind nonetheless
immediately work in both models, this is not true of many recent algorithms for distributed
coloring.

In this paper, we introduce a technique to implement some general sampling and estimation
tasks in Congest. At its heart are families of hash functions we call representative for having
certain statistical properties. The technique improves on the bandwidth cost of a näıve approach
by optimizing the use of randomness, taking ideas from the pseudorandomness literature. In
the context of distributed coloring, the technique allows us to adapt crucial parts of recent ran-
domized Local algorithms to Congest. Through this and some additional ideas, we construct
randomized Congest algorithms for some of the most common distributed coloring problems
that almost match the complexity of the current best Local algorithms for the same problems.
Aside from our results for vertex coloring, our technique has direct applications of independent
interest related to testing for the presence of some graph structure, and constructing structural
decompositions known as almost-clique decompositions in Congest.

The key idea behind our technique is a combination of using hashing and optimizing the
amount of randomness we use when selecting a hash function. In bandwidth-constrained con-
texts, hashing is a natural hammer for a number of nails. It allows to exchange information
about sparse data living in a very large space by exchanging much smaller images. Random
hash functions are also useful tools to sample elements, by taking as sample the elements that

∗This paper incorporates results from the technical report [HNT21] on adapting Local algorithms to Con-
gest. This excludes the other results in [HNT21], which were refactored in [HKNT21].

1

ar
X

iv
:2

20
5.

14
47

8v
1

 [
cs

.D
C

]
 2

8
M

ay
 2

02
2

mailto:mmh@ru.is
mailto:alexandren@ru.is
mailto:ttonoyan@gmail.com

hash to certain values. However, the full description of an arbitrary function requires a lot of
bits, necessarily more than the data we want to hash. Only by making the hash functions we
use less random can they become useful tools in Congest. Overall, using hashing in Congest
is a balancing act between using enough randomness for the random hash functions to have the
statistical properties we need, and using randomness efficiently and sparingly so as to make the
hash functions communicable within our bandwidth constraints.

When analyzing recent Local algorithms for vertex coloring focusing on the bandwidth
use of each of their steps, two steps in particular stand out. One is related to the computation
of so-called almost-clique decompositions. In such decompositions, nodes decide to join their
neighbors in so-called almost-cliques depending on how similar their neighborhood is to that
of their neighbors. Since in a graph of maximum degree ∆, the description of a node’s neigh-
borhood requires up to ∆ log n bits, a näıve approach would require ∆ Congest rounds. The
other seemingly high-bandwidth step has to do with a procedure named MultiTrial, which
has nodes send multiple colors (up to Θ(log n)) to their neighbors. With colors living in a set
C, describing an arbitrary set of this many colors takes log |C| log n bits, i.e., log |C| rounds.

Both steps have the shared quality of essentially reducing to some sampling task. In the
case of the almost-clique decomposition, two nodes can get a sense of how similar their neigh-
borhoods are by sending each other random elements from their respective neighborhoods. In
the case of MultiTrial, the goal of each node is to sample random colors jointly with its
neighbors such that each color has a good chance of being both a valid color for it and not
simultaneously sampled by one of its neighbors. This and the fact that some sort of random
sampling also appears in a variety of other randomized algorithms motivates looking for an
efficient implementation in Congest.

The cost of communicating a random sample is intrinsically linked to how random it is: for
example, it requires 10 times less communication to communicate 10 random elements if they
are guaranteed to be all equal instead of being all independent. Thus, it might be tempting
to use less randomness to save on communication in a distributed setting. But modifying a
working algorithm by making it use less randomness runs the risk of skewing the probabilities
to a point where the algorithm no longer works. The field of pseudorandomness has come
up with techniques to save on randomness while keeping an algorithm functional, for example
in the context of repeating a randomized algorithm to boost the probability of computing the
correct answer. Ideas related to pseudorandomness have also previously made their way in fields
focusing on the communication cost of algorithms, notably in the form of a seminal result in
2-party communication complexity known as Newman’s theorem [New91]. In our setting where
we use hash functions as tools for sampling elements, techniques from pseudorandomness allow
us to construct families of hash functions that strike a balance between being random enough
to produce useful samples, but small enough for our communication constraints.

One of the most general versions of the vertex coloring problem is the (degree+1)-list-coloring
problem (D1LC). In this version, each vertex v is given a list of dv + 1 colors at the beginning
of the algorithm, where dv is the degree of v. Each node must then color itself with a color from
its list that is distinct from the colors adopted by its neighbors. Compared to versions of the
problem where nodes all receive a list of ∆ + 1 colors, where ∆ is the maximum degree in the
graph, D1LC requires to find procedures that can be parameterized to work with nodes that
differ greatly in the number of colors they can choose from. Our techniques using pseudorandom
hash functions allows such parameterization, by using different sets of hash functions depending
on the size of the space we are trying to sample from. Once all steps reducible to a sampling
task are implemented using our pseudorandom family of hash functions, few steps of recent
randomized Local algorithms remain to be adapted to work in Congest. We give a complete
Congest adaptation of a recent Local algorithm for D1LC. On graphs of large minimum
degree, the resulting algorithm matches the ultrafast complexity of the Local algorithm it
draws from. On graphs containing nodes of lower degree, our algorithm has a higher complexity

2

but remains of order polynomial in log log n.
As our main tool for tackling D1LC in Congest is a general technique for different types

of sampling tasks, and sampling is extensively used in randomized algorithms, it might find
uses in a variety of other problems. In fact, we give two simple direct applications in the
context of subgraph detection. Our O(1) Congest algorithm for computing an almost-clique
decomposition might also prove useful in problems other than vertex coloring.

As our main tool is only shown to exist through an existential proof, our algorithms are
not uniform in their default form, in the sense that they require that the nodes either perform
massive computation exploring the set of all hash functions, or are given some common advice
bits that only depends on the size of the input. We provide explicit, uniform implementations
of the subroutines crucial to our vertex coloring results. These implementations are ad hoc, but
can be taken as indications that explicit constructions of our general tool of representative hash
functions might be possible.

1.1 Related Work

The literature of distributed graph coloring is vast and we only mention those with direct
implications for our work. In the paper introducing the Local model [Lin92], Linial showed
that (∆ + 1)-coloring constant-degree graphs requires Ω(log∗ n) rounds, and gave a matching
deterministic algorithm. This remains the only lower bound known when this many colors are
available. The best upper bounds known on deterministic algorithms in general graphs are
O(log2 ∆ log n) [GK21] and Õ(

√
∆) +O(log∗ n) [Bar16].

The MultiTrial technique was introduced in [SW10] and further developed in [EPS15] and
[CLP20]. Slack generation via sparsity was introduced in [EPS15] (though it traces back to
[Ree98] in graph theory), where it was used to give ultrafast algorithms for edge coloring graphs
of high degree. The shattering framework for distributed algorithms was proposed in [BEPS16].
The almost-clique decomposition was introduced to distributed computing in [HSS18] (while a
similar one was known in graph theory [MR98]), leading to an O(

√
log n)-round algorithm for

(∆ + 1)-coloring. An implementation of ACD with random sampling was proposed in [ACK19].
The best randomized (∆ + 1)-coloring algorithm known, given in [CLP20], has complexity
O(log3 log n).

For the (deg +1)-list coloring (D1LC) problem, the best bound until recently was O(log n)
of the early algorithms of [Joh99, ABI86, Lub86] and the more refined bound of O(log ∆ +
poly(log log n)) [BEPS16]. This year, the bound was improved to O(log3 log n), which drops to
O(log∗ n) when all nodes have degree Ω(log7 n) [HKNT21].

All the works above (except the recent [GK21]) were stated for the Local model, while
the O(log n)-round algorithms also run in Congest. The complexity of (∆ + 1)-list-coloring in
Congest was recently improved to O(log5 log n) rounds in [HKMT21].

For the Congested Clique, O(1)-round algorithms are known for (∆ + 1)-coloring, both
randomized [CFG+19] and deterministic [CDP20]. An earlier O(1)-round algorithm was given
for semi-linear MPC [ACK19].

(1 + ε)∆ coloring, (2∆ − 1)-edge coloring, and (1 + ε)∆2 distance-2 coloring were recently
shown to respectively admit an O(log3 log n), O(log4 log n), and O(log4 log n) rounds algorithm
in Congest [HN21]. When ∆ ≥ log1+1/ log∗ n n, the complexities drop to O(log∗ n) and the
edge-coloring algorithm can restrict itself to (1 + ε)∆ colors. The efficiency of these algorithms
at high degrees comes from a pseudorandom construct called representative set families. Such
families are built so that a random member is likely to intersect any large fraction of the space.
This allows nodes to efficiently sample up to Θ(log n) colors in O(1) rounds when given a
constant fraction of their degree as extra colors, making O(log∗ n) algorithms possible. The
technique has an important limit, however: it does not work when the colors live in a color
space much larger than the nodes’ degrees. This prevents the technique from being useful in
list-coloring settings, and when nodes have an amount of slack that is comparable to their

3

degree late in the algorithm, but much smaller than their original degree. We build on the
technique in this paper, and tackle scenarios in which representative sets could not be applied.
Obtaining this more general result requires a significant leap, as exchanging information about
and sampling from elements living in a very large universe efficiently requires a high level of
succinctness in our communication.

Distributed property testing was introduced in [BPS11] and formalized in [CHFSV19]. The
usual model is to distinguish graphs that satisfy a given property (e.g., triangle-freeness), from
those for which an ε-fraction of the edges must be removed for the property to hold. Distributed
testing algorithms were given for detecting triangles in [CHFSV19] and C4 in [FRST16], with
the best known round complexity of O(1/ε) obtained for both problems (and other cycles) in
[FO19].

2 Results

Efficient sampling and estimation. We give a communication-efficient procedure for two
parties each possessing a set to estimate how similar their sets are, and sample an element in
their intersection or their difference (Sec. 3.2). The technique also works with more parties,
allowing, e.g., a party to sample an element in the difference between her set and the union of
all her neighbors’ sets. The technique is quite general, and might find applications in problems
other than those studied in this paper.

Coloring. We bring to Congest recent Local poly(log log n)-round randomized algorithms
for coloring, at the cost of a moderate increase in complexity – our algorithm uses O(log5 log n)
Congest rounds in general, up from O(log3 log n) Local rounds. Our algorithm is an adap-
tation of a recent Local algorithm for D1LC of [HKNT21].

Theorem 1. The D1LC problem can be solved w.h.p. in O(log5 log n) rounds in the Congest
model with log n bandwidth. When all nodes have degree at least log7 n, the algorithm uses only
O(log∗ n) rounds.

This coloring algorithm uses only polynomial local computation.
The round complexity reduces to O(log3 log n) when the size of the color space C (and there-

fore, the degrees) is of order poly(log n). This, in combination with the O(log∗ n) complexity
on large degree nodes, immediately yields an O(log3 log n) algorithm for (degree +1)-coloring
(D1C). Note that this also improves on the state of the art for the (∆ + 1)-coloring (∆1C)
problem in Congest.

Corollary 1. D1C can be solved w.h.p. in O(log3 log n) rounds in the Congest model.

Uniform implementations. The implementation that follows from our main technique is
non-uniform in the sense that it requires that the nodes perform very large computations locally,
or that they have access to some advice only dependent on the size of the input (similar to how
the complexity class P/poly is enhanced compared to P). To reduce the total computational
demand to polynomial, we provide alternative uniform implementations of our main procedures
in Sec. 5.

Other results. On our way to proving our results for vertex coloring, we give an algorithm
for computing a (degree +1) almost-clique decomposition (Sec. 4.2). Our general technique
for sampling and estimation also has some immediate applications in testing for the presence
certain graph structures, e.g., triangle-rich neighborhoods (Sec. 3.3 to 3.5).

4

3 Congestion-Reducing Techniques

3.1 Representative Hash Functions

The crux of our results is a procedure for communicating parties to estimate the intersection or
difference of sets they keep and/or sample elements in that intersection or difference. We do so
through hashing, using a family of hash functions we call representative due to their statistical
properties. For a given parameter b, the family is engineered to distort the probabilities of some
events by at most exp(−Ω(b)) compared to fully random hash functions, while being of small
enough size exp(O(b)). With b chosen within a constant multiplicative factor of the available
bandwidth, i.e., b ∈ Θ(log n), this enables sending the index of a function in the family in a
constant number of Congest rounds, while only introducing a manageable distortion compared
to a fully random hash function.

Intuition. Suppose two parties have access to a shared source of randomness to pick a fully
random hash function h from a universe U to [λ], without communicating. Having access to
such a hash function offers several possibilities. In particular, the parties may now communicate
about an element x ∈ U through its image h(x). Suppose the communicating parties each
possess a subset of U , respectively X and Y . To pick a random element in X, the node
possessing X can rely on the randomness of the hash function for the selection process: set a
threshold σ, consider all the elements of X that hash to a value ≤ σ, and pick one of those
low-hashing elements at random. When sampling elements jointly, the parties can ensure that
they choose two distinct elements (x, y) ∈ X×Y, x 6= y by ensuring that h(x) 6= h(y). To sample
an element in X \ Y , it suffices to pick an element in X \ h−1(h(Y)), i.e., an element of X that
hashes to a value that no element of Y hashes to. To pick an element in the intersection X ∩Y ,
the parties may look at the intersection h(X) ∩ h(Y) and take the preimages of a hash in the
intersection. When bandwidth is limited, the parties can adapt to this constraint by adjusting
the threshold σ: σ bits suffice for each party to encode, for each value ≤ σ, whether it has an
element hashing to it.

The hash function introduces errors: the set h(X) \ h(Y) can be empty though X \ Y is
not, due to collisions; the set h(X) ∩ h(Y) might be non-empty even when X ∩ Y is; and our
elements of interest might hash to values > σ, resulting in the parties missing them. But with
the right ratios between the sizes of the sets, the size of the output space of the hash function
(λ), and the size of the observation window (σ), it can be argued that only some amount of
errors occurs with the needed probability.

To apply these ideas in Congest, it only remains for the parties to be able to sample
and communicate a random hash function, which is achieved by building a small set of hash
functions with nearly the same statistical properties as the set of all hash functions from U
to [λ].

Notations. For a set U and a number λ ∈ N, let [λ]U denote the set of all functions from U
to [λ] = {1, . . . , λ}. For a function h, sets A,B ⊆ U , and number σ, we define:

• A|≤σh = h−1([σ]) ∩A,

• A ∧≤σh B = {ψ ∈ A : h(ψ) ∈ [σ] ∩ h(B \ {ψ})},

• A ¬≤σh B = (A|≤σh) \ (A ∧≤σh B).

Intuitively, A|≤σh are the elements of A that hash to a value at most σ through h, A ∧≤σh B

is the subset of A|≤σh that is in collision with some element of B, i.e., the elements x ∈ A|≤σh
s.t. there exists a x′ ∈ B \ {x}, h(x′) = h(x). A ¬≤σh B are the elements of A that hash to a
value ≤ σ through h that no distinct element in B hashes to (note that B may contain A or a

5

subset of A). The definitions of the sets are most clear when B = A: A∧≤σh A are the elements

of A that hash to at most σ through h and collide with another element of A; A ¬≤σh A are the
elements of A that hash to at most σ through h and do not collide with another element of A.
Note that A|≤σh , A ∧≤σh B, and A ¬≤σh B are subsets of the domain of h, not its codomain.

If h were fully random, we would expect the size of A|≤σh to be within a constant factor of
σ|A|/λ w.p. 1− exp(−Ω(σ|A|/λ)). Also, with a fully random h and λ sufficiently large w.r.t. A
and B, we would expect at most |A||B|/λ elements of A to be in collision with an element of B.
Our goal is to maintain a relaxed version of these probabilistic guarantees while restricting the
space of random hash function we select from, so that communicating the index of a selected
function is feasible in O(1) messages.

h(A∧≤σh A)

h(A¬≤σh A)

U [λ]h [σ] ⊆ [λ]

A }
h(A|≤σh)
= h(A) ∩ [σ]

Figure 1: Example of our notation on a symmetric example (B = A). A|≤σh is the part of A

hashing to σ or less, A ∧≤σh A are the elements of A|≤σh that collide through h, and A ¬≤σh A is

the rest of A|≤σh .

For intuition and easier proofs later, a few elementary properties of set operators |≤σh , ∧≤σh ,

and ¬≤σh are given in Proposition 1. When σ is clear from the context, we omit the superscript
≤σ and simply write A|h, A ∧h B, and A ¬h B.

Proposition 1.

∀A :
∣∣∣h(A ∧≤σh A)

∣∣∣ ≤ ∣∣∣A ∧≤σh A
∣∣∣/2 , (1)

∀A,B s.t. A ⊆ B :
∣∣∣h(A ¬≤σh B)

∣∣∣ =
∣∣∣A ¬≤σh B

∣∣∣ , (2)

∀A,B,C s.t. B ⊆ C : (A ∧≤σh B) ⊆ (A ∧≤σh C) and thus (A ¬≤σh C) ⊆ (A ¬≤σh B) . (3)

Proof. Equation (1) follows from the fact that for each element x ∈ A ∧≤σh A, there exists an

element x′ ∈ A \ {x}, h(x′) = h(x), which by definition of A ∧≤σh A implies that x′ ∈ A ∧≤σh A.

So every hash y ∈ h(A ∧≤σh A) has at least two preimages, giving the result.

Equation (2) follows from every element of A ¬≤σh B having a unique hash value among

elements of B, of which A ¬≤σh B is a subset.
Equation (3) describes the simple fact that the set of elements in collision with elements

from a set B is smaller than (and included in) the set of elements in collision with elements
from the set C, where C is a superset of B. Conversely, any element not in collision with all
the elements of C is necessarily not colliding with any element of B.

U [λ]h [σ] ⊆ [λ]

A

B

h(A∧≤σh B)

h(A¬≤σh B)

}
h(A|≤σh)
= h(A) ∩ [σ]

Figure 2: Example of our notation on an asymmetric example (B 6= A). A∧≤σh B and A¬≤σh B

are the natural non-symmetric generalizations of A ∧≤σh A and A ¬≤σh A where we focus on
collisions between elements of A and B instead of within A. A and B can overlap arbitrarily.

6

We now show the existence of a small (compared to [λ]U) family of hash function such that
a random element from this family behaves similar to a fully random hash function w.r.t to
the sets A ¬≤σh B, A ∧≤σh B, and A ¬≤σh B, for all A and B in a given size range. The proof
is of the probabilistic method type, and bears resemblance to other arguments in the field of
pseudorandomness or more generally aimed at reducing the amount of random bits used in
a task, such as Newman’s theorem [New91] and recent efforts to bring ultrafast distributed
coloring algorithms in Congest [HN21]. This construction is the basis of our algorithms for
efficiently estimating and sampling in Congest, EstimateSimilarity (Alg. 1) and Multi-
Trial (Alg. 4). Note that using simpler objects like k-wise independent hash functions would
not suffice here. Indeed, such hash functions do not ensure the required statistical properties
with sufficient probability when k is low, and increasing k to the number of elements we gener-
ally need to hash (max(∆, log n)) to get the needed probability prohibitively increases the cost
of describing a hash function in Congest.

Lemma 1 (Representative hash functions). Let α, β, ν ∈ (0, 1) and λ ∈ N be s.t. α ≤ β
and λ ≥ max(45α−1, 3α−1β−2) ln(12/ν), and let U be a finite set. There exists a family of
F = Θ

(
βλν−1 log|U|

)
hash functions {hi}i∈[F] ⊆ [λ]U and σ ≤ λ, σ ∈ Θ

(
β−2α−1 log(1/ν)

)
,

such that for every A,B ⊆ U with |A|, |B| ∈ [0, βλ], at least (1 − ν)F of the hash functions h
satisfy∣∣∣A|≤σh ∣∣∣ ∈ σ|A|

λ
· [1− β, 1 + β] and

∣∣∣A ∧≤σh B
∣∣∣ ≤ 2σ|A|

λ
β when |A| ≥ αλ ,∣∣∣A|≤σh ∣∣∣ ≤ σα · (1 + β) and

∣∣∣A ∧≤σh B
∣∣∣ ≤ 2σαβ when |A| < αλ .

To prove Lemma 1, we first prove the following claim. We only consider sets A,B ⊆ U
satisfying |A|, |B| ∈ [0, βλ]. A hash function is (A,B)-good if it satisfies the requirement of the
lemma for a given pair (A,B). We bound the probability that a random function is (A,B)-good,
for a fixed pair (A,B).

Claim 1. Let h ∈ [λ]U be chosen uniformly at random. Then Pr[h is (A,B)-good] ≥ 1− ν/2.

Proof. We prove the result when |A| ≥ αλ, the case when |A| < αλ being analogous.
For x ∈ A, let Xx, Yx be indicator r.v.’s such that Xx = 1 iff h(x) ∈ [σ], and Yx = 1 iff

h(x) ∈ [σ] and ∃x′ ∈ B \ {x}, h(x) = h(x′). Let X =
∑

x∈AXx and Y =
∑

x∈A Yx. Note that

X =
∣∣∣A|≤σh ∣∣∣ and Y =

∣∣∣A ∧≤σh B
∣∣∣. We have:

E[Xx] = σ/λ and E[Yx] = (σ/λ) ·
(

1− (1− 1/λ)|B|−τ
)
,

where τ = 1 if x ∈ B and τ = 0 otherwise. Thus, letting µ = E[X], we have µ = σ|A|/λ ≥ ασ.
Using the inequality 1− kx ≤ (1− x)k (for n ∈ Z+, x ∈ [0, 1]), we have:

(1− 1/λ)|B|−τ ≥ 1− (|B| − τ)/λ ≥ 1− β ,

which implies that E[Yx] ≤ β E[Xx], and hence E[Y] ≤ βµ.
Note that h being (A,B)-good corresponds to |X − E[X]| ≤ βµ and |Y | ≤ 2βµ – where

2βµ ≥ 2E[Y]. We argue that both hold with sufficient probability through concentration
inequalities.

For the first inequality, the independence of the Xx r.v.’s implies that we can apply Chernoff
(Lemma 7). Thus:

Pr[|X − E[X]| > βµ] ≤ 2 exp(−β2µ/3) .

It suffices that µ ≥ 3β−2 ln(8/ν) for |X − E[X]| ≥ βµ to hold w.p. ≥ 1 − ν/4. As we
assumed |A| ≥ αλ, we have µ = σ|A|/λ ≥ ασ. Therefore, σ ≥ 3β−2α−1 ln(8/ν), i.e., σ ∈
Θ(β−2α−1 log(1/ν)), suffices for the first inequality to hold w.p. 1− ν/4.

7

For the second inequality, as |B| ≤ βλ, notice that h(B) covers less than a β fraction of the
hash space below σ in expectation.

By the same analysis as the one we did just above with A (applying Lemma 7) we obtain

that at most 3
√

2βσ elements of B hash to a value ≤ σ, i.e.,
∣∣∣B|≤σh ∣∣∣ ≤ 3

√
2βσ, w.p. 1−ν/12, when

σ ≥ 45β−1 ln(12/ν) (we use (3
√

2−1)−2 ≤ 15). We condition on this event, as well as on at most
3
√

2|A|σ/λ elements of A hashing to ≤ σ, which holds w.p. 1− ν/12, when σ ≥ 45α−1 ln(12/ν).
More precisely, we fix the subsets B′ = B|≤σh ⊆ B and A′ = A|≤σh ⊆ A of respective size at
most 3

√
2βσ and 3

√
2|A|σ/λ containing the elements hashing to values less than σ (and excluding

those hashing higher).
We now analyze Y =

∑
x∈A Yx under this conditioning. For each x ∈ A \ A′, we now have

that Yx = 0 w.p. 1, so Y =
∑

x∈A′ Yx. Under the conditioning, the value h(x) of an element
x ∈ A′ is now picked uniformly at random in [σ] independently of other elements’ values. Hence,
for an element x ∈ A′, Yx = 1 w.p. ≤ 3

√
2β even conditioned on arbitrary random choices for

the other h(y), y ∈ (B′ ∪ A′) \ {x}. Therefore, E[Y] ≤ 3
√

2β|A′| ≤ 3
√

4β|A|σ/λ, and by the
martingale inequality (Lemma 9),

Pr[Y > 2β|A|σ/λ] ≤ exp(−(
3
√

2− 1)2 3
√

4β|A|σ/(3λ)) ≤ 1− ν/12 ,

where the last step follows from assuming σ ≥ 45α−1β−1 ln(12/ν). Taking into account the
previous conditioning of probability 1− ν/6 (setting A′ and A′), Pr[Y > 2β|A|σ/λ] holds w.p.
1− ν/4.

Putting everything together, the two inequalities hold simultaneously, i.e., h is (A,B)-good,
w.p. ≥ 1− ν/2. Note that throughout the analysis, σ ≤ λ was assumed, which constrains λ in
terms of α, β, and ν, as in the statement of the lemma.

Proof of Lemma 1. Let h1, . . . , hF ∈ [λ]U be F functions, chosen independently and uniformly
at random. For fixed sets A,B, let Xi = 1 if hi is not (A,B)-good, otherwise Xi = 0; by
the claim above, Pr[Xi] ≤ ν/2. By Chernoff (Lemma 7), the probability that more than νF

of them fail to be (A,B)-good is Pr
[∑

i∈[F]Xi ≥ νF
]
≤ e−νF/6. There are at most |U|βλ+1

choices for each of the subsets A and B, so at most |U|2βλ+2 choices for the pair (A,B). By
the union bound, the probability that there are νF functions that are not (A,B)-good for some
pair (A,B) is at most |U|4βλe−νF/6 < 1, assuming F > (24βλ/ν) log |U|. Thus, there is a family
of F hash functions such that for every pair (A,B), at least (1− ν)F hash functions from the
family are (A,B)-good.

3.2 Estimation and Sampling of Set Intersection, Union, Difference

Representative hash function immediately give an efficient way for two nodes u and v possessing
two sets Su and Sv to estimate the size of the intersection |Su∩Sv| with an accuracy ε|Su∩Sv|,
as long as Su∩Sv is a large enough fraction of Su∪Sv. At a high level, the idea is quite natural:
estimate the size of the intersection |Su∩Sv| through the size of the intersection |h(Su)∩h(Sv)|,
which itself is approximated by the subset |h(Su) ∩ h(Sv) ∩ [σ]|. This, of course, omits a few
details, and we give the formal statement in Lemma 2 and its proof. The same idea can be used
to sample elements in the intersection rather than estimating its size, by having nodes pick as
elements the preimages of a random element in h(Su) ∩ h(Sv) ∩ [σ] (see Lemma 3).

8

Algorithm 1 EstimateSimilarity(ε), for edge e = uv, with sets Su, Sv

1: if min(|Su|, |Sv|) = 0 then return 0
2: Let k = d96ε−3 ln(12/ν)/max(|Su|, |Sv|)e.
3: if k > 1 then replace Su and Sv by their scaled up versions Su × [k] and Sv × [k].
4: Let H be a representative family of hash functions with parameters λ = 8 max(|Su|, |Sv|)/ε,
β = ε/4, α = ε2/8. Let F = |H| be its size, and let us index its elements: H = (hi)i∈[F].

5: u and v jointly pick a random number ie ∈ [F], use h = hie ∈ Hλ as shared hash function.
6: u sends h(Tu) to v, v sends h(Tv) to u, where Tu = Su ¬h Su and Tv = Sv ¬h Sv.
7: return |h(Tu) ∩ h(Tv)|λ/(σ · k)

Lemma 2. EstimateSimilarity(ε) outputs a value within εmax(|Su|, |Sv|) of |Su ∩Sv|, w.p.
1− ν. It uses O(1) messages of O

(
ε−4 log(1/ν) + log log|U|+ log max(|Su|, |Sv|)

)
bits.

Proof. Step 3 ensures that the parameters we set in step 4 satisfy the hypotheses of Lemma 1,
i.e., λ ∈ Ω(ε−4 ln(1/ν)), by making the sets artificially bigger if needed. This is done by
replacing the original sets by their Cartesian products with a simple set of size k: S′u = Su× [k]
and S′v = Sv × [k], living in the bigger universe U × [k]. Clearly, |S′u ∩ S′v| = k · |Su ∩ Sv|
and max(|S′u|, |S′v|) = k · max(|Su|, |Sv|), so if s is an estimate for |S′u ∩ S′v| accurate up to
εmax(|S′u|, |S′v|) then s/k is an estimate for |Su ∩ Sv| accurate up to εmax(|Su|, |Sv|). As k is
at most O(ε−3 ln(1/ν)), messages describing an element from the representative hash function
family remain of order O(log(1/ε) + log(1/ν) + log log|U|+ log(max(|Su|, |Sv|)) even as we scale
up the sets. From now on, we ignore k, i.e., assume its value to be 1.

With λ = 8 max(|Su|, |Sv|)/ε, β = ε/4, α = ε2/8, we have that |Su∪Sv| ≤ 2 max(|Su|, |Sv|) ≤
βλ.

We first show that the estimate we get is a good approximate lower bound on the intersection,
and then show it is a good approximate upper bound.

Suppose |Su ∩ Sv| ≥ αλ = εmax(|Su|, |Sv|). Then, by Lemma 1, |(Su ∩ Sv) ¬h (Su ∪ Sv)| ≥
(1− β)σ|Su ∩ Sv|/λ w.p. 1− ν. Since (by Eq. (3)):

(Su ∩ Sv) ¬h (Su ∪ Sv) ⊆ (Su ∩ Sv) ¬h Su ⊆ Su ¬h Su (4)

and (Su ∩ Sv) ¬h (Su ∪ Sv) ⊆ (Su ∩ Sv) ¬h Sv ⊆ Sv ¬h Sv (5)

it holds that

(Su ∩ Sv) ¬h (Su ∪ Sv) ⊆ (Su ¬h Su) ∩ (Sv ¬h Sv) = Tu ∩ Tv ,

and |h(Tu) ∩ h(Tv)| ≥ |Tu ∩ Tv|, so |h(Tu) ∩ h(Tv)| ≥ (1 − β)σ|Su ∩ Sv|/λ. Hence, when
|Su ∩ Sv| ≥ αλ, the estimate we give is at most β|Su ∩ Sv| ≤ εmax(|Su|, |Sv|)/4 lower than the
true value, w.p. 1 − ν. When |Su ∩ Sv| ≤ αλ, the estimate cannot be lower than |Su ∩ Sv| −
εmax(|Su|, |Sv|) ≤ 0, since the estimate is always positive, so is within εmax(|Su|, |Sv|) of the
true value.

For the other direction, notice that there are at most as many elements in the intersection
of h(Tu) and h(Tv) as there are elements in Su ∩ Sv plus elements in Su ∪ Sv in collision with
another element of Su ∪ Sv:

|h(Tu) ∩ h(Tv)| ≤ |(Su ∩ Sv)|h| + |(Su ∪ Sv) ∧h (Su ∪ Sv)|

When |Su ∩Sv| ≥ αλ, this gives that |h(Tu)∩h(Tv)| ≤ (1 +β)|Su ∩Sv|σ/λ+β|Su ∪Sv|σ/λ,
hence that the estimate overestimates the result by at most 2β|Su ∪ Sv| ≤ 4βmax(|Su|, |Sv|) ≤
εmax(|Su|, |Sv|). The same holds when |Su ∩ Sv| ≤ αλ.

The communication cost is obtained by adding the cost σ of sending h(Tu) and h(Tv) (as
they are subsets of [σ]), and the cost logF of sending the index of a representative hash function
in the family.

9

As evoked before, almost the same algorithm can be used by the nodes u and v to jointly
sample elements from the intersection of their sets by selecting a random element y in h(Tu) ∩
h(Tv) and (respectively) outputting the single element in Su ∩ h−1(y) and Sv ∩ h−1(y). Since
when Su∩Sv is large – at least αλ – a large fraction of the elements of h(Tu)∩h(Tv) are images
of elements of Su ∩ Sv, u and v are likely to sample elements from Su ∩ Sv this way.

Algorithm 2 JointSample(ε), for edge e = uv, with sets Su, Sv

1: if min(|Su|, |Sv|) = 0 then return 0
2: Let k = d96ε−3 ln(12/ν)/max(|Su|, |Sv|)e.
3: if k > 1 then replace Su and Sv by their scaled up versions Su × [k] and Sv × [k].
4: Let H be a representative family of hash functions with parameters λ = 8 max(|Su|, |Sv|)/ε,
β = ε/4, α = ε2/8. Let F = |H| be its size, and let us index its elements: H = (hi)i∈[F].

5: u and v jointly pick a random number ie ∈ [F], use h = hie ∈ Hλ as shared hash function.
6: Let J = |h(Tu) ∩ h(Tv)|. if J = 0 then return nothing.
7: u and v jointly pick a random number je ∈ [J].
8: return h−1(je) ∩ Tu on u’s side, h−1(je) ∩ Tv on v’s side.

Lemma 3. When |Su ∩ Sv| ≥ εmax(|Su|, |Sv|), two nodes u and v running JointSample(ε)
output the same element at the end of the algorithm, w.p. 1− 5ε/4− ν.

Proof. The result follows naturally from h(Tu) ∩ h(Tv) containing at least (1 − ε/4)|Su ∩ Sv|
elements of h(Su ∩ Sv), and h(Tu) ∩ h(Tv) being of size at most (1 + ε)|Su ∩ Sv|, w.p. 1− ν, as
argued in the proof of Lemma 2.

The nodes can even sample multiple elements from the intersection of their sets by pick-
ing multiple indices instead of a single one in step 7. This takes the same number of Con-
gest rounds. The only caveat is that some sampled elements might be duplicates when
k = d96ε−3 ln(12/ν)/max(|Su|, |Sv|)e > 1.

While JointSample shows some of the ideas we will use later to try multiple colors in
a single round, the fact that it only involves two parties means that the procedure may have
been designed in a simpler manner, invoking Newman’s theorem [New91]. The way we use
representative hash functions later to sample random colors is however very multiparty, and may
not be derived from statements about public vs private randomness in 2-party communication
complexity.

3.3 Application: Sparsity

A number of recent algorithms for distributed coloring and other problems treat nodes differently
depending on a measure called sparsity. Intuitively, sparsity measures the number of missing
edges in a node’s neighborhood. Depending on the problem, two definitions of sparsity are in
use.

Definition 1. For any subset of the nodes S ⊆ V , let m(S) := |E[S]| be the number of edges
between nodes of S. The global sparsity of a node v is defined as:

ζ [∆]
v =

1

∆

((
∆

2

)
−m(N(v))

)
=

∆− 1

2
− 1

2∆

∑
u∈N(v)

|N(u) ∩N(v)|

The local sparsity of a node v is defined as:

ζ [d]
v =

1

dv

((
dv
2

)
−m(N(v))

)
=
dv − 1

2
− 1

2dv

∑
u∈N(v)

|N(u) ∩N(v)|

10

The global sparsity is the definition of sparsity generally used in algorithms that solve a
coloring problem in which each node can select its own color from ∆ + 1 colors. The local
sparsity is the definition generally used when nodes have only deg +1 colors to choose from.

EstimateSimilarity immediately gives an efficient way to estimate both definitions of
sparsity – under an assumption for the local sparsity. We give the analysis for the global
sparsity, and later explain the caveat with local sparsity.

Algorithm 3 EstimateSparsity(ε), for v (for global sparsity)

1: for all u ∈ N(v) do
2: v runs EstimateSimilarity(ε/2) with u to get an estimate of su = |N(u) ∩N(v)|.
3: end for
4: v outputs ∆−1

2 − 1
2∆

∑
u su as estimate for its sparsity.

Lemma 4. EstimateSparsity(ε) outputs an estimate of ζ [∆]
v that is ε∆-close to the true value,

w.p. 1− (ν∆)ε∆/2.

Proof. For the estimate to be off by ε∆ or more, at least ε∆/2 neighbors of v must give an
estimate su that is at least ε∆/2 off. For a subset of ε∆/2 neighbors of v, the probability that
they all give a bad estimate is at most νε∆/2. So the probability that such an all-failing subset
exists is at most: (

∆

ε∆/2

)
νε∆/2 ≤ (ν∆)ε∆/2 .

Note that this means EstimateSparsity works w.h.p. when ν ∈ 1/ poly(n), as well as
when ν ∈ 1/ poly(∆) and ε∆ ∈ Ω(log n/ log logn).

Estimating local sparsity. Local sparsity can be similarly estimated, with a caveat. The
accuracy of EstimateSimilarity depends on the sizes of the sets we are dealing with. For
global sparsity, i.e., in the ∆ + 1 setting, the global bound of ∆ on the degrees of all nodes
implies that EstimateSimilarity(ε) gives an estimate of |N(u)∩N(v)| within ε∆ of the true
value.

The difficulty with local sparsity comes from higher degree neighbors. If we could guarantee
that each estimate su of |N(u) ∩ N(v)| for u ∈ N(v) was accurate up to εdv w.p. 1 − ν, we
would only need to replace ∆ by dv in the formula at the end of Alg. 3, i.e., output dv−1

2 −
1

2dv

∑
u su, to get an estimate of the local sparsity within εdv w.p. (νdv)

εdv/2. Unfortunately,
EstimateSimilarity(ε) only gives an estimate of |N(u) ∩ N(v)| within εmax(du, dv) of the
true value, which might be completely off if du � dv, e.g., with du ≥ dv/ε. We hence only claim
that we are able to estimate the local sparsity of nodes which do not have too many neighbors
of much higher degree.

Lemma 5. Let a node v have less than εdv/3 neighbors of degree ≥ 2dv. EstimateSparsity(ε)
can be tweaked to output an estimate of ζ [d]

v that is εdv-close to the true value, w.p. 1−(νdv)
εdv/3.

Proof. εdv/3 nodes can contribute at most εdv/3 to the sparsity, so estimating the number of
missing edges within the rest of v’s neighborhood with precision 2εdv/3 suffices to get a εdv-
accurate estimate of v’s local sparsity. Since the rest of v’s neighborhood has degree at most
2dv, we can run EstimateSparsity(ε/3) on the subgraph it induces to get an 2εdv/3 estimate
of v’s sparsity in this subgraph, giving the result.

3.4 Application: Local Triangle Finding

In standard property testing, the goal is to detect with constant probability if a graph is far from
satisfying a property. For example, the task may be to distinguish with constant probability

11

whether a graph contains no triangle vs whether an ε-fraction of the edges needs to be deleted
for the graph to contain no triangle. The task is solved distributedly but is global in several
ways: the notion of distance between graphs takes into account the whole graph and the goal
is only for one node of the graph to detect the property. Our EstimateSimilarity primitive
allows us to solve a related but more local task: make every edge involved in many triangles
detect that it is so.

Theorem 2. There exists an O(ε−4)-round randomized Congest algorithm that, for each edge,
detects w.h.p. when it is part of ε∆ triangles.

Proof. On each edge uv, estimate the size of the intersection |N(u) ∩N(v)|.

Compared to the usual property testing setting, we solve a harder problem in that we
solve the problem with high probability instead of constant probability, and solve it on each
edge instead of globally. However our condition for detection is incomparable with that of the
property testing setting: our algorithm works whenever a single edge is part of ε∆ triangles,
while property testing typically assumes ε-farness, i.e., that ε|E| edges have to be deleted from
the graph to make it triangle-free. The two are incomparable, since our condition being satisfied
on some edge only implies that the graph is (ε∆/|E|)-far from being triangle-free, while in an
ε-far graph, it can be the case that each edge is only part of at most one triangle while ∆ ∈ Θ(n).

3.5 Application: Local 4-Cycle Finding

Our technique also allows us to detect 4-cycle locally in Congest, with the same tradeoff as in
the detection of triangles compared to standard property testing. Our result is stronger in that
we detect occurrence of the pattern locally instead of globally, and we have a higher success
probability, but on the other end the two settings are incomparable in that an ε-far graph might
not satisfy our local threshold for detection anywhere in any meaningful sense and vice-versa.

Theorem 3. There exists an O(ε−4)-round Congest algorithm that, for each pair of edges
incident on the same vertex, detects w.h.p. when they are part of ε∆ 4-cycles.

Proof. Let v be a vertex of the graph. v picks a random representative hash function h and sends
it to all its neighbors u ∈ N(v), who answer with N(u)¬≤σh N(u). For each pair of neighbors u, u′

of v, v then estimates |N(u)∩N(u′)| with these hashes, as is done in EstimateSimilarity.

4 Ultrafast Coloring in Congest

The techniques we presented allow us to implement all steps of a recent D1LC algorithm in
Congest. The correctness of the algorithm is in [HKNT21]. We give a succinct but complete
description of the algorithm in Appendix E for reference.

Theorem 1. The D1LC problem can be solved w.h.p. in O(log5 log n) rounds in the Congest
model with log n bandwidth. When all nodes have degree at least log7 n, the algorithm uses only
O(log∗ n) rounds.

The algorithm as a whole is bandwidth-efficient, but a larger bandwidth is assumed in four
places. Two particularly stand out, and are the focus of the upcoming Sec. 4.1 and 4.2. We
sketch how to adapt the rest of the algorithm in Sec. 4.3, with the rigorous treatment of these
last minor modifications deferred to Appendix D.

The most challenging step to implement in Congest is a method for sampling and “trying”
a set of colors, called “MultiTrial”. We detail its implementation in Sec. 4.1. Another non-trivial
step of computing an almost-clique decomposition is dealt with in Sec. 4.2.

12

4.1 MultiTrial

When breaking down recent ultrafast (O(log∗ n) rounds for graphs with large enough degrees)
algorithms, all of them contain a step that stands out in the amount of information it requires.
Intuitively, in those algorithms, some nodes try up to Θ(log n) colors over the course of the
algorithm, with the idea that if each color succeeds with constant probability, then the nodes
get colored w.h.p. by trying that many colors. However, log n arbitrary colors take at least
Θ(log ∆ log n) bits to describe (and possibly much more when nodes are given lists of colors
instead of using [deg +1] or [∆+1]), which would require Ω(log ∆) rounds in Congest. A more
communication-efficient procedure following the same idea needs to compromise on some front,
which we do here by compromising on the randomness and accuracy of the colors that nodes
try, using representative hash functions.

We give a procedure – MultiTrial – that within bandwidth b allows a node v to try x
random colors from its palette, where x can be as large as Θ(b). While trying Θ(b) colors in
a single round is straightforward in Local, a näıve implementation in Congest would take
Ω(log|C|) rounds for a color space C. We achieve similar results in Congest by replacing
the random sampling of colors by a pseudorandom one. While the x colors tried are not as
random as x independent random samples, enough randomness is used so that one of those
colors succeeds w.p. 1 − exp(−Ω(x)) − exp(−Ω(b)), essentially the same probability as if they
were independent. With bandwidth b ∈ Θ(log n), this allows up to Θ(log n) colors to be tried
in a single round, and for a node to be colored with probability 1− 1/poly(n). Previously, this
was only known to be possible in the very restricted setting of locally sparse graphs [HN21].

To get an intuitive understanding of our approach, let us assume that each node v can
sample and communicate to its neighbors a random hash function hv : C → [λ] = {1, . . . , λ}
for a number λ of its choice. To have all nodes try x colors, on each edge uv, node v sends
to u the hash values of the color it tries through hu (and vice versa). If v tries a color ψ that
hashes to a value different from all the hash values it received, v can safely color itself with ψ.
To make the procedure more efficient, we have v pick random colors among those with a hash
value ≤ σ = O(log n) through hv. With this restriction, the neighbors of v only need to tell v
about the colors they try that hash to a value ≤ σ through hv. This uses σ = O(log n) bits of
communication using a σ-size bitstring.

For this to work, the hash function must satisfy three properties: first, enough colors must
hash to a value ≤ σ = O(log n); second, collisions must be rare enough for a unique hash to be
sampled; and third, it should be possible to communicate a hash function in O(log n) bits so
the process takes O(1) rounds. Increasing λ reduces the number of collisions, but reduces how
many elements hash to a value ≤ σ = O(log n), so a balance must be found. This balance is
found at λ ∈ Θ(|Ψv|).

Using families of representative hash functions, whose existence we proved in Lemma 1, we
show how to implement MultiTrial efficiently in Congest (Alg. 4 and Lemma 6).

The pseudocode of MultiTrial is presented in Alg. 4. Let α = 1/12, β = 1/3, and for
each λ ∈ N, let νλ = max(n−c, 12 exp(−αλ/45)) and σλ ∈ Θ

(
β−2α−1 log(1/νλ)

)
, for a constant

c > 3 (hence, even for n2 events of probability νλ, when λ ∈ ω(log n), none occurs w.h.p.).
We assume that all the nodes know, for each λ ∈ [2β−1∆] = [6∆], a common family of hash

functions Hλ = (h
(λ)
i)i∈[F] ⊆ [λ]C and value σλ with the properties of Lemma 1. This could be

achieved, e.g., by having each node compute the lexicographically first such pair of family and
parameter, for each λ. Note that σλ ∈ O(log n) for all λ, and that this parameter can be chosen
to be the same σ = Θ(log n) for all values of λ ∈ ω(log n).

13

Algorithm 4 MultiTrial(x), for node v

1: Let λv ← 6|Ψv|, pick a random hv = h
(λv)
iv
∈ Hλv , broadcast λv, iv to N(v).

2: Xv ← x independently chosen random colors in Ψv ¬hv Ψv.
3: for all u ∈ N(v) and all i ∈ [σλu] do
4: if ∃ψ ∈ Xv, hu(ψ) = i then bv→u[i]← 1 else bv→u[i]← 0
5: end for
6: Send bv→u and receive bu→v to/from u, for all u ∈ N(v).
7: if ∃ψ ∈ Xv s.t. ∀u ∈ N(v), bu→v[hv(ψ)] = 0 then
8: Adopt some such ψ as permanent color and broadcast to N(v).
9: end if

Lemma 6. For every node v, if x ≤ |Ψv|/2|N(v)|, then an execution of MultiTrial(x) colors
v with probability 1− (7/8)x − 2ν, where ν ≤ e−Θ(|Ψv |) + n−Θ(1), even when conditioned on any
particular combination of random choices of the other nodes.

Proof. Consider Yv =
⋃
u∈N(v)Xu, the set of colors tried by neighbors of v. Note that |Yv| ≤

x|N(v)| ≤ |Ψv|/2 ≤ λv/12 (recall λv = 6|Ψv|), and its composition is independent from v’s
choice of random colors. Letting Tv = Ψv \ Yv and Pv = Ψv ∪ Yv, we have |Pv|, |Tv|, |Ψv| ∈
[λv/12, λv/3], and so, the triplets (λv, Pv, Tv) and (λv, Pv,Ψv) satisfy Lemma 1 with our param-
eters α, β, ν. Let σ = σλv . The lemma implies that w.p. 1−ν,

∣∣Ψv ¬hv Ψv

∣∣ ≤ (1+β)·σ|Ψv|/λv ≤
2σ/9, and similarly, w.p. 1 − ν,

∣∣Tv ¬hv Pv∣∣ ≥ (1 − 2β) · σ|Tv|/λv ≥ σ/36. Since additionally
(Tv¬hvPv) ⊆ (Ψv¬hvPv) ⊆ (Ψv¬hvΨv), we conclude that Tv¬hvPv forms a (σ/36)/(2σ/9) = 1/8
fraction of Ψv ¬hv Ψv, and any color randomly picked in Ψv ¬hv Ψv is in Tv ¬hv Pv w.p. at least
1/8. Hence, conditioned on the 1− 2ν probability event that |Tv ¬hv Pv| ≥ |Ψv ¬hv Ψv|/8, the x
colors randomly picked by v in Ψv ¬hv Ψv all miss Tv ¬hv Pv w.p. at most (7/8)x. As any color
found in Tv ¬hv Pv will be successful for v, v gets colored w.p. 1 − (7/8)x, conditioned on an
event of probability 1− 2ν.

4.2 Almost-Clique Decomposition

Almost-clique decompositions are commonly defined and computed according to a relation that
classifies two connected nodes as friends if they share most of their neighborhoods. Nodes
whose neighborhood is almost all friends have dense neighborhoods, i.e., most pairs of nodes
in their neighborhood are connected by an edge, and are mostly adjacent to nodes of similar
degree. Reciprocally, nodes with few friends are either uneven, i.e., adjacent to many nodes of
much higher degree, or have a sparse neighborhood, i.e., a large fraction of their neighbors are
not directly connected.

Definition 2 ([AA20]). Let ε ∈ [0, 1]. An edge uv is

• ε-balanced iff min(du, dv) ≥ (1− ε) max(du, dv),

• ε-friend iff it is ε-balanced and |N(u) ∩N(v)| ≥ (1− ε) min(du, dv).

Computing ε-Friend predicates exactly would be too costly in many models of computation
where almost-clique decompositions are relevant. Fortunately, this much accuracy is not needed:
in Congest, it suffices to have access to a procedure ε-Buddy that distinguishes between an
edge being ε-friend and it being far from it, i.e., not c·ε-friends for some constant c > 1 (see, e.g.,
Appendix B in [HKMN20] for details). The idea of computing almost-clique decompositions
using a sampling-based approach originated in [ACK19]. This can be done easily by testing
whether du and dv are approximately equal and then running EstimateSimilarity if this is
the case, which works w.h.p. with bandwidth log n.

14

4.3 Final Minor Modifications

While the bulk of adapting the Local algorithm of [HKNT21] for D1LC to Congest is figuring
out how to efficiently try up to Θ(log n) colors (MultiTrial) and compute an almost-clique
decomposition (ComputeACD) within the O(log n) bandwidth constraint, a few additional
minor modifications are required. We defer their rigorous treatment to Appendix D, and sketch
here the essence of those changes.

Leader selection. In the original Local algorithm, a node is chosen as leader in each almost-
clique based on a quantity called slackability (see Appendix C for its definition). As the slacka-
bility of a node is entirely determined by its neighborhood (palettes included), finding the node
of minimum slackability within each almost-clique is trivial in Local, and only takes O(1)
rounds. This is no longer the case in Congest. This is circumvented by arguing that it suffices
to identify a node of low but not necessarily minimal slackability within each almost-clique, and
that the slackability can be estimated with the needed accuracy efficiently in Congest. The
details of these two arguments are given in Appendix D.1.

Coloring put-aside sets. In the D1LC algorithm we are adapting to Congest, almost-
cliques and their nodes are dealt with differently depending on whether their sparsity is above
or below some threshold. Very dense almost-cliques are dealt with by putting aside a subset of
its nodes to color later, in order to provide temporary slack to the rest of the almost-cliques. To
color those nodes at the end of the algorithm, information about their palettes and how they
are connected is centralized. How all this information can be centralized in Congest is not as
simple as in Local, and requires in particular more control on the sizes of the put-aside sets.
The adaptation of this part of the algorithm is detailed in Appendix D.2.

Handling large colors. An important aspect of list-coloring problems in models with a
bandwidth constraint is that colors may live in a color space bigger than 2Θ(b), i.e., too big
for the nodes to send a color in a constant number of rounds. Our procedure MultiTrial
circumvents this, in the case of trying multiple colors, by hashing. This is fortunately possible
in other parts of the algorithm, e.g., whenever nodes need to inform their neighbors of their
newly adopted color, or need to inform another node of the color it should try. We show that
color spaces of size up to exp(nΘ(1)) can be handled without increasing the complexity of the
algorithm. How this is done is explained in Appendix D.3.

5 Uniform Implementation

Lemma 1 – on the existence of representative hash functions – does not give an explicit con-
struction. Hence, an algorithm relying on their existence either needs to assume that the nodes
receive a common family of such hash functions “for free” at the beginning, or have the nodes
find a common family of representative hash functions themselves. This second option requires
extensive computational resources, as it involves exploring the space of F -element subsets of
[λ]C , performing expensive statistical tests on each subset.

In this section, we show how our subroutines that use representative hash functions can
be modified to not rely on them. With these new implementations, the nodes only have to
perform computations polynomial in n and ∆ in our algorithm. We leave as an open question
the explicit construction of families of representative hash functions.

In our new uniform implementations of MultiTrial and Buddy, a key idea is to introduce
and exploit some asymmetry between the parties. By having one of the parties partially choose
a hash function instead of taking it fully at random, this party can ensure that not too many
collisions occur between the elements it knows of. To remove the reliance on representative hash

15

functions, we make use of other objects with explicit constructions: pairwise-independent hash
functions, representative multisets (constructed from averaging samplers), and error-correcting
codes. Subroutines other than MultiTrial and Buddy do not rely on representative hash
functions, and as such do not need to be modified for the algorithm to be uniform.

5.1 MultiTrial

The core properties of MultiTrial are twofold: first, MultiTrial is able to describe up to
Θ(b) colors in a single b-sized Congest message; second, those colors are sufficiently random
that it is as if they each had a constant probability of success, i.e., when trying k colors, at least
one succeeds w.p. 1− exp(−Ω(k)).

Let Hλpwi be a set of ε-almost pairwise-independent hash functions from C to λ (see, e.g.,
Problem 3.4 in [Vad12]). When selecting a hash function from such a family,

Pr
h
R←Hλpwi

[h(x1) = y1 and h(x2) = y2] ≤ 1 + ε

λ2
, ∀x1, x2 ∈ C, y1, y2 ∈ [λ] with x1 6= x2 .

There exist explicit such families of size poly(λ, log|C|, 1/ε), such that sampling an element
from the family only requires to pick (log λ+ log log|C|+ log(1/ε)) random bits.

We sketch the argument showing that a MultiTrial procedure that only relies on explicit
constructs (and thus, does not rely on representative hash functions at the moment) is possible.
We give pseudocode of this procedure below. Its core idea is to have each node v select a hash
function that has few collisions in its palette. As a result, the image of v’s palette through the
hash function it picked is almost of the same size as the palette itself. Let us now consider the
images of the colors tried by v’s neighbor through this hash function. If the total number of
colors tried by the neighbors of v is less than half the number of colors in v’s palette, then a
constant fraction of the image of v’s palette is necessarily not the image of any color tried by a
neighbor of v. Therefore, by sampling x hashes from the image of its palette using an explicit
representative multiset over the space of hashes ([HN21], and Appendix B), v can succeed in
securing a random color w.p. 1− exp(−Ω(x))− exp(−Ω(b)).

Algorithm 5 Uniform MultiTrial(x), for node v

1: Let λv ← 6|Ψv|, pick a random hv = h
(λv)
iv
∈ Hλvpwi with at most λv/3 collisions in Ψv,

broadcast λv, iv to N(v).
2: Let σv = min(b, λv), pick a random representative multiset Sv of size σv, subset of [λv]. Let

Sv = {s(v)
1 , . . . s

(v)
σv }.

3: Xv ← x random elements of Ψv ∩ h−1
v (Sv), picked uniformly at random.

4: for all u ∈ N(v) and all i ∈ [σu] do

5: if ∃ψ ∈ Xv, hu(ψ) = s
(u)
i then bv→u[i]← 1 else bv→u[i]← 0

6: end for
7: Send bv→u and receive bu→v to/from u, for all u ∈ N(v).
8: if ∃ψ ∈ Xv s.t. ∀u ∈ N(v), bu→v[hv(ψ)] = 0 then
9: Adopt some such ψ as permanent color and broadcast to N(v).

10: end if

5.2 Almost-Clique Decomposition

Similar ideas to those that enable a uniform implementation of MultiTrial allow for a uniform
implementation of ε-Buddy. Again, we provide pseudocode of the procedure below, and sketch
the argument for its correctness.

The algorithm takes place between two nodes u and v. They first test whether their degrees
differ significantly. If they do, the algorithm stops: the edge is not ε-Buddy. Otherwise, one of

16

the nodes chooses an almost pairwise-independent hash function with few collisions between the
IDs of its neighborhood. Then, the nodes pick a random representative multiset over the space
of hashes, and compute the sampled hashes that are the image of a single of their neighbors.

If the nodes have few hashes in common, they declare the edge non-ε-Buddy, as having few
hashes in common is only likely when the nodes’ neighborhoods do not mostly intersect.

When the nodes share a lot of hashes, however, two causes are possible: they either share
a large part of their neighborhoods, or the hash function that was picked has many collisions
between the two neighborhoods. The rest of the algorithm is devoted to distinguishing the two.

To do so, the nodes apply an error-correcting code to the ID of each of their neighbors. As
a result, distinct IDs now differ in a constant fraction of their bits. The nodes then each build a
bitstring by concatenating the preimages of the hashes they found to have in common. The two
resulting bitstrings are guaranteed to be of small Hamming distance if the nodes genuinely share
many neighbors, but must differ in a large fraction of indices if the hashes that the nodes found
in common were due to collisions. The nodes sample random indices of these bitstrings using
representative multisets, exchange the bits at those indices, estimate the Hamming distance
between their bitstrings from those bits, and conclude. The idea of using an error-correcting
code to increase the Hamming distance between distinct bitstrings has been used previously in
communication-focused models, for example [Amb96].

In the following pseudocode, “ ” represents an empty bitstring, enc is the encoder of an
error correcting code, xu.enc(w) is the concatenation of bitstrings xu and enc(w). The error
correcting code is chosen to have parameter, e.g., [3b, b, b/2], where b ∈ Θ(log n) is the number
of bits used to write IDs in the graph, meaning that IDs initially written on b get expanded to
3b bits, and that two distinct IDs differ by at least b/2 bits after the encoding.

Algorithm 6 Uniform ε-Buddy, for edge uv

1: if du > dv/(1− ε) or dv > du/(1− ε) then return false

2: Let λ ← 6 max(du, dv)/ε. v chooses an hash function h = h
(λ)
i ∈ Hλpwi such that at most

εdv/3 elements in N(v) are involved in a collision, and sends (λ, i) to u.
3: Let σ = min(b, λ), u and v pick a random representative multiset S of size σ, subset of [λ].

Let S = {s1, . . . , sσ}.
4: for all i ∈ [σ] do
5: if ∃!w ∈ N(u), h(w) = si then bu[i]← 1 else bu[i]← 0
6: if ∃!w ∈ N(v), h(w) = si then bv[i]← 1 else bv[i]← 0
7: end for
8: u and v exchange bu and bv
9: if |{i : bu[i] · bv[i] = 1}| ≤ (1− 3ε)σ then return false

10: xu ← “ ”, xv ← “ ”
11: for all i ∈ [σ] s.t. bu[i] · bv[i] = 1 do
12: xu ← xu.enc(w) where w is the unique w ∈ N(u) s.t. h(w) = si
13: xv ← xv.enc(w) where w is the unique w ∈ N(v) s.t. h(w) = si
14: end for
15: Let ` = length(xu), σ′ = min(b, `), u and v pick a random representative multiset S of size

σ′, subset of [`].
16: if |{i ∈ [σ′] : xu[i] 6= xv[i]}| ≥ εσ′ then return false else return true

Acknowledgements

This project was supported by the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement no. 755839 and by Icelandic Research Fund grants no. 174484
and 217965. Part of the work was done while T. Tonoyan was with the CS Department of the

17

Technion, Israel.

References

[AA20] Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆ + 1) vertex col-
oring. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM), volume 176 of LIPIcs, pages 6:1–
6:22, 2020.

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized paral-
lel algorithm for the maximal independent set problem. Journal of Algorithms,
7(4):567–583, 1986.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) ver-
tex coloring. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 767–786, 2019.

[Amb96] Andris Ambainis. Communication complexity in a 3-computer model. Algorithmica,
16(3):298–301, 1996.

[Bar16] Leonid Barenboim. Deterministic (∆+1)-coloring in sublinear (in ∆) time in static,
dynamic, and faulty networks. Journal of the ACM, 63(5):47:1–47:22, 2016.

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The lo-
cality of distributed symmetry breaking. Journal of the ACM, 63(3):20:1–20:45,
2016.

[BJKS93] Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben J. M.
Smeets. On families of hash functions via geometric codes and concatenation.
In Advances in Cryptology - CRYPTO, volume 773 of LNCS, pages 331–342, 1993.

[BPS11] Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques.
Distributed Computing, 24(2):79–89, 2011.

[CDP20] Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-
round coloring in the congested clique. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), page 309–318, 2020.

[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng.
The complexity of (∆+1) coloring in congested clique, massively parallel compu-
tation, and centralized local computation. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC), pages 471–480, 2019.

[CHFSV19] Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev.
Fast distributed algorithms for testing graph properties. Distributed Computing,
32(1):41–57, 2019.

[CLP20] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆ + 1)-coloring via
ultrafast graph shattering. SIAM Journal on Computing, 49(3):497–539, 2020.

[Doe20] Benjamin Doerr. Probabilistic Tools for the Analysis of Randomized Optimization
Heuristics, pages 1–87. Springer International Publishing, Cham, 2020.

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

18

[EPS15] Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆−1)-edge-coloring is much easier
than maximal matching in the distributed setting. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 355–370, 2015.

[FO19] Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. ACM Trans-
actions on Parallel Computing (TOPC), 6(3):1–20, 2019.

[FRST16] Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing
of excluded subgraphs. In International Symposium on Distributed Computing,
pages 342–356. Springer, 2016.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic
network decomposition. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2021.

[GK21] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Sim-
pler, faster, and without network decomposition. In Proceedings of the Symposium
on Foundations of Computer Science (FOCS), 2021.

[HKMN20] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin. Color-
ing fast without learning your neighbors’ colors. In Proceedings of the International
Symposium on Distributed Computing (DISC), pages 39:1–39:17, 2020.

[HKMT21] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Effi-
cient randomized distributed coloring in CONGEST. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 2021.

[HKNT21] Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan.
Near-optimal distributed degree+1 coloring. CoRR, abs/2112.00604, 2021.

[HN21] Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST
via efficient color sampling. In Proceedings of the International Colloquium on
Structural Information and Communication Complexity (SIROCCO), 2021.

[HNT21] Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Ultrafast dis-
tributed coloring of high degree graphs. CoRR, abs/2105.04700, 2021.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[HSS18] David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-
coloring in sublogarithmic rounds. Journal of the ACM, 65:19:1–19:21, 2018.

[Joh99] Öjvind Johansson. Simple distributed ∆ + 1-coloring of graphs. Inf. Process. Lett.,
70(5):229–232, 1999.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Com-
puting, 21(1):193–201, 1992.

[Lub86] M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 15:1036–1053, 1986.

[MR98] Michael Molloy and Bruce A. Reed. Colouring graphs whose chromatic number is
almost their maximum degree. In Proceedings of the Latin American Symposium
on Theoretical Informatics (LATIN), volume 1380 of LNCS, pages 216–225, 1998.

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Inf.
Process. Lett., 39(2):67–71, 1991.

19

[Ree98] Bruce A. Reed. ω, ∆, and χ. J. Graph Theory, 27(4):177–212, 1998.

[SW10] Johannes Schneider and Roger Wattenhofer. A new technique for distributed sym-
metry breaking. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 257–266. ACM, 2010.

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–
336, 2012.

A Concentration Bounds

Lemma 7 (Chernoff bounds). Let {Xi}ri=1 be a family of independent binary random variables
with Pr[Xi = 1] = qi, and let X =

∑r
i=1Xi. For any δ > 0, Pr[|X − E[X]| ≥ δ E[X]] ≤

2 exp(−min(δ, δ2)E[X]/3).

Lemma 8 (Hoeffding’s inequality [Hoe63]). Let X1 . . . Xn be n independent random variables
distributed in [ai, bi], X :=

∑n
i=1Xi their sum. For t > 0:

Pr[|X − E[X]| > t] ≤ 2 exp

(
− 2 · t2∑

i(bi − ai)2

)
.

We use the following variants of Chernoff bounds for dependent random variables. The first
one is obtained, e.g., as a corollary of Lemma 1.8.7 and Thms. 1.10.1 and 1.10.5 in [Doe20].

Lemma 9 (Martingales [Doe20]). Let {Xi}ri=1 be binary random variables, and X =
∑

iXi. If
Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1] ≤ qi ≤ 1, for all i ∈ [r] and x1, . . . , xi−1 ∈ {0, 1} with
Pr[X1 = x1, . . . , Xr = xi−1] > 0, then for any δ > 0,

Pr[X ≥ (1 + δ)

r∑
i=1

qi] ≤ exp

(
−min(δ, δ2)

3

r∑
i=1

qi

)
.

If Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1] ≥ qi, qi ∈ (0, 1), for all i ∈ [r] and x1, . . . , xi−1 ∈ {0, 1}
with Pr[X1 = x1, . . . , Xr = xi−1] > 0, then for any δ ∈ [0, 1],

Pr[X ≤ (1− δ)
r∑
i=1

qi] ≤ exp

(
−δ

2

2

r∑
i=1

qi

)
.

A function f(x1, . . . , xn) is c-Lipschitz iff changing any single xi affects the value of f by
at most c, and f is r-certifiable iff whenever f(x1, . . . , xn) ≥ s for some value s, there exist
r · s inputs xi1 , . . . , xir·s such that knowing the values of these inputs certifies f ≥ s (i.e., f ≥ s
whatever the values of xi for i 6∈ {i1, . . . , ir·s}).

Lemma 10 (Talagrand’s inequality [DP09]). Let {Xi}ni=1 be n independent random variables
and f(X1, . . . , Xn) be a c-Lipschitz r-certifiable function; then for t ≥ 1,

Pr
[
|f − E[f]| > t+ 30c

√
r · E[f]

]
≤ 4 · exp

(
− t2

8c2rE[f]

)
.

Lemma 11 (Lemma 24 in [HKNT21]). Let {Xi}ni=1 be n independent random variables. Let

{Aj}kj=1 and {Bj}kj=1 be two families of events that are functions of the Xi’s. Let f =
∑

j∈[k] IAj ,
g =

∑
j∈[k] IAj∩Bj ,

1 and h = f − g be such that f and g are c-Lipschitz and r-certifiable w.r.t.

the Xi’s, and E[h] ≥ αE[f] for some constant α ∈ (0, 1). Let δ ∈ (0, 1). Then for E[h] large
enough:

Pr[|h− E[h]| > δ E[h]] ≤ exp(−Ω(E[h])) .
1I denotes the indicator random variable of an event.

20

B Explicit Representative Multisets

For completeness, we give an explicit construction of representative multisets in this section.
Intuitively, a sampler for a domain of size M is a function that takes some number N

of perfect random bits as input and outputs t elements z1, . . . , zt in [M]. A hitting sampler
gives the guarantee that the sampled outputs hit any large enough subset of [M] with some
probability, while an averaging sampler gives the guarantee that for any function f with output
in [0, 1], the average value of f on the sampled elements is close to the average value of f over
the whole domain [M].

Definition 3 (Averaging Samplers). A function Samp : [N] → [M]t is a (δ, ε)-averaging
sampler if for every function f : [M]→ [0, 1], we have:

Pr
(zi)ti=1←Samp(U[N])

1

t

t∑
i=1

f(zi)−
1

M

∑
x∈[M]

f(x) > ε

 ≤ δ .
Averaging samplers are relevant to our setting in the following way: let a node v of palette

Ψv in a color space C of size ∈ [∆, 2∆] have slack at least 4ε|C| for some constant ε ∈ (0, 1).
Let its uncolored neighbors try a total of at most 2ε|C| colors in a given round. Let S be the
set of colors in Ψv that is not tried by any of its neighbors, of size at least 2ε|C|. Let f be the
indicator function for S. Then, if we use a (δ, ε)-averaging sampler over C to sample t elements,
then with probability at least 1 − δ, at least εt of the sampled elements are in S. This means
that v trying any of the sampled colors succeeds with probability at least 1− ε, conditioned on
an event of probability 1−δ. If we furthermore assume that the palette of v has size comparable
to its slack, e.g., at most 8ε|C|, and condition on the event that the random sampler does not
over-sample elements from Ψv by more than ε, then having v try a random sampled color that
is in its palette succeeds with constant Ω(1) probability (i.e., independent of ε).

Used that way, a averaging sampler replaces representative sets in most use cases. It may
be interpreted as being a family of multisets, by considering the output of an averaging sampler
on all possible choices of random bits. Taking δ = 1/poly(n) and ε ∈ Θ(1), there exists explicit
averaging samplers that use N = Θ(log n) random bits as input and sample t = Θ(log|C|+log n)
elements.

C Definitions Related to Almost-Clique Decompositions

Definition 4 (Sparsity). The (local) sparsity ζv of node v is defined as 1
dv
·
[(
dv
2

)
−m(N(v))

]
.

Node v is ζ-sparse if ζv ≥ ζ, and ζ-dense if ζv ≤ ζ.

Definition 5 (Disparity, Discrepancy & Unevenness). The disparity of u towards v is defined
as η̄u,v = |Ψu \ Ψv|/|Ψu|. The discrepancy of node v is defined as η̄v =

∑
u∈N(v) η̄u,v, and its

unevenness is defined as ηv =
∑

u∈N(v)
max(0,du−dv)

du+1 . Node v is η̄-discrepant if η̄v ≥ η̄, η-uneven
if ηv ≥ η.

Definition 6 ((deg +1) ACD [AA20]). Let G = (V,E) be a graph and εac, εsp ∈ (0, 1) be
parameters. A partition V = V sparse t V uneven t V dense of V , with V dense further partitioned
into V dense =

⊔
C∈Sac

C, is an almost-clique decomposition (ACD) for G if:
1. Every v ∈ V sparse is εspdv-sparse ,
2. Every v ∈ V uneven is εspdv-uneven ,
3. For every C ∈ Sac and v ∈ C, dv ≤ (1 + εac)|C| ,
4. For every C ∈ Sac and v ∈ C, (1 + εac)|NC(v)| ≥ |C| .

The slackability of an almost-clique is defined as σ̄C = minv∈C σ̄v. As we deal with nodes
of degree between log7 ∆ and ∆, we set a threshold ` = log2.1 ∆ and declare almost-clique of
lower slackability to be low-slack, and almost-clique of higher slackability to be high-slack.

21

D Final Details of the Algorithm for (Degree+1)-List-Coloring
in CONGEST

We give here the remaining details of the implementation of a (deg +1)-list-coloring algorithm
in Congest. We explain how to find good enough “leaders” of almost-cliques in Appendix D.1,
and compute “put-aside” sets in Appendix D.2, and finally how to deal with large color values
in Appendix D.3. We first give an informal description of the D1LC algorithm of [HKNT21].

Algorithm overview. The D1LC algorithm of [HKNT21] consists of up to O(log∗ n) phases
in which all the nodes whose degree falls within a range of the form [log7 x, x] get colored,
w.h.p. Each phase takes at most poly(log log n) rounds to complete, but a phase dealing only
with nodes of degree log7 n or higher can achieve its task in merely O(log∗ n) rounds, resulting
in an O(log∗ n) algorithm when given a graph of minimum degree log7 n.

Each phase starts with computing an almost-clique decomposition, which partitions the
nodes in uneven, sparse, and dense vertices. Dense vertices are themselves partitioned into
almost-cliques, highly connected (clique-like) subgraphs of diameter at most 2. See Appendix C
for formal definitions of V uneven, V sparse, V dense, and of almost-clique decompositions. Our
primitive EstimateSimilarity can be directly used to compute such a decomposition, in a
process which we was explained in Sec. 4.2.

Within each phase, the algorithm first deals with all the sparse and uneven nodes, then all
the dense nodes. In both cases, slack is generated by first having each node try a random color
of its palette with some constant probability. The only possible difficulty in implementing this
part in Congest is that the nodes may have to communicate colors whose description does not
fit in O(log n) bits. We explain how we can deal with a color space of size up to exp(nΘ(1)) in
Appendix D.3. From there, the algorithms differ between the dense and the non-dense case.

When dealing with sparse and uneven nodes, the algorithm identifies a set V start, consisting
of sparse nodes for which GenerateSlack might not generate permanent slack but which can
get temporary slack by being colored early. Instead of identifying this set before slack generation
as in the Local algorithm, which might be hard to do in Congest, we simply let the success
of the slack generation process guide our partitioning. More precisely, we let each node v join
V start if it received less than ε̂dv permanent slack but is adjacent to at least ε̂dv uncolored nodes
that did. A node that neither received permanent slack nor is adjacent to many nodes that
did is added to a set BAD, which is either empty or shattered due to the probability of success
of slack generation. Indeed, while this process may fail at providing the needed slack to some
nodes, Proposition 2 (from [HKNT21]) shows that this happens to a node with probability
dω(1) when we consider nodes of degree in the range [log7 d, d]. This probability is low enough
w.r.t. d that all nodes receive the slack they need w.h.p. when they are all of degree log7 n or
more. It is also low enough w.r.t. d that when considering nodes of lower degree, the subgraph
induced by nodes that do not receive the slack they need is shattered, i.e., has poly(log n)-sized
connected components which can be efficiently colored with by a deterministic algorithm later.
Our process may add some extra nodes to V start (in the unlikely event that a node supposed to
get permanent slack does not obtain it) and remove some nodes from it (in the event that a node
of V start gets some permanent slack) compared to the original, fixed definition of V start as a set
of nodes adjacent to many nodes likely to get permanent slack, but it guarantees nonetheless
what matters, that every node gets slack (temporary or permanent) with probability 1−d−ω(1).

Proposition 2. [Proposition 1 in [HKNT21]] Assume all nodes have degree at least s ≥ C ·ln2 ∆
for some universal constant C. There is an O(1)-round procedure that identifies a subset V start ⊆
V sparse such that after running GenerateSlack in the subgraph induced by V sparse ∪ V uneven:

1. Each node v in V start has Ω(dv) uncolored neighbors in V \ V start w.p. 1− exp(−Ω(dv)),
and

2. Each node v in V uneven ∪ V sparse \ V start has slack Ω(dv), w.p. 1− exp(−Ω(
√
s)).

22

For each node, the probability bounds hold even when conditioned on arbitrary random choices
outside its 2-hop neighborhood.

Sparse and uneven nodes then run a procedure SlackColor that, given nodes each with
slack sv ∈ Ω(dv) and sv ≥ smin, where smin is a lower bound of the slack of every par-
ticipating nodes known by all of them, colors them in O(log∗ smin) rounds with probability

1− exp(−sΩ(1)
min)−∆ exp(−Ω(smin)). The procedure directly works in Congest if we can give a

Congest implement of its main subroutine, MultiTrial, which was done in Sec. 4.1. In Lo-
cal, this subroutine simply consists of each node trying x random colors from its palette, which,
when the nodes have the needed slack, results in each node getting colored w.p. 1− exp(−Ω(x))
(as if each color had an independent constant success probability). The Congest subroutine
we give achieves essentially the same performance using representative hash functions, which
allow us to (imperfectly) communicate x colors in less than the näıve x log|C| bits.

Dense nodes follow a more involved algorithm. In the original Local algorithm, each almost-
clique elects a leader according to a metric called slackability, which combines two measures:
sparsity and discrepancy (a measure of how much one’s palette differs from those of one’s
neighbors). To adapt this step to Congest, we instead elect the leader through a different
process which leverages the relative uniformity of sparsity inside each almost-clique and the
fact that discrepancy can be estimated by its contribution to a node’s slack. We give details of
the leader selection process in Appendix D.1. The almost-clique is then partitioned into inliers
(direct neighbors of the leader, sharing many of its neighbors, and of not too high degree) and
outliers (other nodes). This partitioning is easily done in Congest, as it only requires nodes to
announce whether they are directly connected to the leader, count how many of their neighbors
are direct neighbors of the leader, send this count and their degree to the leader, and let the
leader pick its inliers according to the O(log ∆)-bit information it received from each of its
in-clique neighbors.

Almost-cliques in which the leader has small slackability (below a threshold related to the
degree range) compute so-called “put-aside” sets, which provide temporary slack for the re-
maining nodes of the almost-clique. These put-aside sets are sampled by a simple procedure:
each inlier joins the put-aside set of its almost-clique according to a biased coin flip, and leaves
it if one of its neighbors in another almost-clique also had a positive coin flip. This is readily
implemented in Congest.

In addition to using SlackColor as previously with sparse and uneven nodes, dense nodes
use a procedure SynchColorTrial in which the leader randomly distributes colors from its
palette to uncolored inliers (not in the put-aside set). The only obstacle in Congest is possibly
the size of colors, which is treated in Appendix D.3. In the final step of the randomized part of
the algorithm, the leader of each almost-clique with a put-aside set learns enough of the palettes
of the put-aside elements to color them. Learning enough colors from each palette is done using
other nodes of the almost-clique as relays, which we explain in Appendix D.2.

Finally, a part of our randomized algorithm that deals with nodes of degree o(log n) will likely
fail at coloring some nodes. Such nodes are colored with a deterministic algorithm, following the
standard shattering framework [BEPS16]. To deal with large colors in this last phase (the post-
shattering phase), we compute a network decomposition and have each component compute a
hash function without any collision in each node’s palette to reduce the space of colors. This
allows us to apply a deterministic algorithm whose runtime depends on the size of the space of
colors. We explain this in Appendix D.3.

A full pseudocode description of the algorithm is available in Appendix E for completeness.

D.1 Leader Selection

The original Local algorithm takes as leader of an almost-clique C the node w := arg minv∈C σ̄v
of minimum slackability within C. In addition, it defines the slackability σ̄C of an almost-clique

23

C as the slackability of this minimal node. Both selecting the leader properly and estimating its
slackability accurately are important for the algorithm, as the leader has unique duties within
the clique that not all nodes of the clique are fitted for, and cliques are assigned different
behaviors depending on their slackability.

Computing the slackability of a node exactly would be too expensive in Congest, as would
computing the slackabilities of all the nodes to find the node with the minimum value. The
slackability might also be hard to estimate accurately in low-slackability almost-cliques (in very
much the same way that our procedure EstimateSparsity does not give accurate results for
nodes of sublinear sparsity).

Fortunately, taking as leader the node of minimum slackability is not necessary. What
is necessary is selecting a leader whose slackability is of the same order of magnitude or less
than the amount of slack nodes in the almost-clique later have when running SlackColor.
This suffices as the number of nodes staying uncolored after SynchColorTrial is bounded
by the slackability of the leader, in expectation. As nodes get slack from a different source
depending on whether they are in a low- or high-slack almost-clique, what constitutes a good
leader differs slightly between the two types of almost-cliques. It is also important that almost-
cliques estimate their slackability sufficiently well so that a very low-slack almost-clique does
not consider itself high-slack, or vice-versa.

In low-slack almost-cliques (σ̄C ≤ ` = log2.1 ∆), it suffices that we select a leader of slack-
ability O(`). This leader might be significantly worse than the true leader w at coloring the
almost-clique when running SynchColorTrial. However, it will bring down the number of
uncolored nodes to O(`), which is sufficient, as put-aside sets provide Ω(`) slack in low-slack
almost-cliques. Second, in almost-cliques of higher slack, it suffices that the leader we pick
has slackability of order O(σ̄C) instead of exactly σ̄C . As in the low-slack case, the leader will
be worst at coloring the almost-clique during SynchColorTrial, but a leader of slackability
O(σ̄C) preserves that SynchColorTrial likely colors all but O(σ̄C) nodes of the almost-clique,
which guarantees that the nodes have slack linear in their uncolored degree.

We show that good-enough leader can be selected through a combination of three metrics:
anti-degree, external-degree, and a quantity we call chromatic slack.

Definition 7 (Chromatic slack). Let v be a dense node in an almost-clique C. Its (in-clique)
chromatic slack κv is defined as the number of v’s neighbors that adopted a permanent color
outside of v’s original palette Ψv during GenerateSlack.

Our method for selecting a good-enough leader is summarized in Lemma 12.

Lemma 12. For an almost-clique C, let it pick as leader the node x: x = arg minv∈C(ev +av +
κv). Then:

• If C is high-slack, x has slackability σ̄x ∈ O(σ̄C), w.p. 1− exp(−Ω(σ̄C)).

• If C is low-slack, x has slackability σ̄x ∈ O(`), w.p. 1− exp(−Ω(`)).

We prove Lemma 12 through the combination of two structural results from previous works
(Lemmas 13 and 14) and a statement on the distribution of chromatic slack.

Lemma 13 (Lemma 2 in [HKNT21]). There is a constant ce = ce(εac) such that ev ≤ ce · σv
holds for every node v in an almost-clique C.

Lemma 14 (Lemma 3 in [HKNT21]). There is a constant ca = ca(εac) such that av ≤ ca · σv
holds for any dense node v.

Let the in-clique discrepancy of a node v be defined as η̄C
v :=

∑
u∈NC(v) η̄u,v =

∑
u∈NC(v)|Ψu\

Ψv|/|Ψu|.

24

Lemma 15. Consider a node v ∈ C and µL, µH such that µL ≤ η̄C
v ≤ µH . During Gen-

erateSlack, v gets chromatic slack κv ∈ O(µH) w.p. 1 − exp(−µH), and κv ∈ Ω(µL) w.p.
1− exp(−µL).

Proof. Let pg be the (constant) probability that a node tries a color during GenerateSlack.
Let us define the random variables Xu, Yu, Zψ and their sums X, Y , Z as follows:

• For each u ∈ NC(v), Xu corresponds to the event that u tries a color outside v’s palette.
• For each u ∈ NC(v), Yu is the same event as Xu, with the addition that u gets to keeps

the color it tries as permanent color.
• For each ψ ∈ C \Ψv, Zψ is the event that a unique node in NC(v) tries ψ and keeps it as

permanent color.
• X =

∑
u∈NC(v)Xu, Y =

∑
u∈NC(v) Yu, and Z =

∑
u∈C\Ψv Zu.

The upper bound follows directly from κv = Y and E[Y] ≤ E[X] = pgη̄
C
v ≤ pgµH . Since the

events Xu are all independent, by Chernoff, κv ∈ O(µH) w.p. 1− exp(−Ω(µH)).
For the lower bound, we relate the chromatic slack to Z. First κv = Y ≥ Z simply by

definition, and E[Z] ∈ Ω(E[X]) as each color try has an Ω(1) chance of being successful and
unique within C. Since E[X] = pgη̄

C
v ≥ pgµL, E[Z] ∈ Ω(µL). By Lemma 11, as Z is the

difference of two O(1)-Lipschitz and O(1)-certifiable random quantities, Z ∈ Ω(E[Z]) w.p.
1− exp(−Ω(E[Z])). Hence, κv ∈ Ω(µL) w.p. 1− exp(−Ω(µL)).

Proof of Lemma 12. By definition, ex + ax + κx ≤ ew + aw + κw, where w is the node of
minimum slackability within C. Lemmas 13 and 14 imply (ew + aw) ∈ O(σ̄C). By Lemma 15,
since η̄C

w ≤ σ̄w = σ̄C by definition, κw ∈ O(`) w.p. 1−exp(−Ω(`)) when C is low-slack (σ̄C ≤ `),
and κw ∈ O(σ̄c) w.p. 1 − exp(−Ω(σ̄C)) when C is high-slack. This implies overall that for the
leader x selected:

• (ex + ax + κx) ∈ O(`) w.p. 1− exp(−Ω(`)) if C is low-slack,
• (ex + ax + κx) ∈ O(σ̄C) w.p. 1− exp(−Ω(σ̄C)) if C is high-slack.
From now on, let us focus on the high-slack case, the low-slack case being similar. We have

(ex +ax + ew +aw) ∈ O(σ̄C), which means that x’s and w’s neighborhood may not significantly
differ, i.e., |N(x) 4 N(w)| ∈ O(σ̄C). Their sparsities therefore only differ by O(σ̄C). Their
discrepancies also only differ by O(σ̄C), as κx ∈ O(σ̄C) means that η̄C

x ∈ O(σ̄C), as a larger
in-clique discrepancy would have likely resulted in much higher chromatic slack by Lemma 15,
and other differences in discrepancy must come from difference in neighborhoods, which we
have shown to be bounded by O(σ̄C).

It only remains for the almost-clique to estimate its slackability with enough accuracy to
categorize itself as either high- or low-slack. The aggregate (ex + ax + κx) we used to pick a
leader gives us some idea of the slackability of the almost-clique, in that it is upper-bounded
by O(max(`, σ̄C)) as we have seen in the proof of Lemma 12. However, it does not measure
in-clique sparsity. For instance, the aggregate could even be 0 in a high-slack almost-clique C:
it suffices that C’s slackability is mostly due to sparsity, and that it contains a node v ∈ C that
is connected to all other nodes of C, has no external neighbor, and has a palette containing the
palettes of other nodes in C.

To estimate the sparsity of the almost-clique, we approximate the sparsity of the leader x by
counting the number of edges in its in-clique neighborhood. This is easily done in Congest by
having each node tell their neighbors whether they are adjacent to x, and having each neighbor
of x count and transmit to x to how many neighbors of x it is connected.

Lemma 16. Let m̂ = m(NC(x)) = 1
2

∑
u∈NC(x) |N(u) ∩ NC(x)| count the number of edges

in x’s in-clique neighborhood. Then ζ̂x = 1
dx

(
(
dx
2

)
) − m̂ satisfies ζ̂x ∈ [ζx, ζx + ex], and so

(ex + ζ̂x + κx) ∈ Ω(σ̄C), w.p. 1− exp(−Ω(σ̄C)).

25

Proof. The sparsity of x corresponds to the number of missing edges in its neighborhood, divided
by dx. As m̂ only counts edges in x’s in-clique neighborhood, it undercounts the number of
edges in N(x) by ex ·dx or less, i.e., m̂ ∈ [m(N(x))− ex ·dx,m(N(x))]. In turn, this means that
the estimate ζ̂x of x’s sparsity is in the range [ζx, ζx + ex].

The discrepancy of x is the sum of the contribution of its in-clique neighbors and that of its
external neighbors, that is, η̄x ∈ [η̄C

x , η̄
C
x + ex].

The slackability of x is defined as σ̄x = ζx+η̄x. If ζx ≥ σ̄x/3 or ex ≥ σ̄x/3, then (ex+ζ̂x+κx) ∈
Ω(σ̄x) trivially. Otherwise, η̄C

x ≥ η̄x − ex ≥ σ̄x/3, which implies by Lemma 15 that κx ∈ Ω(σ̄x)
w.p. 1 − exp(−Ω(σ̄x)). The statement can be reformulated with σ̄C instead of σ̄x as σ̄x ≥ σ̄C
by definition of σ̄C .

Putting everything together, we get that (ex + ζ̂x + κx) ∈ Θ(σ̄C) w.p. 1 − exp(−Ω(σ̄C))
in high slack almost-cliques, and that (ex + ζ̂x + κx) ∈ O(`) w.p. 1 − exp(−Ω(`)) in low-slack
almost-cliques, which is sufficient for our purposes.

D.2 Coloring the Put-Aside Sets

The coloring of the put-asides sets PC is the only step of the algorithm for dense nodes (Alg. 9)
that remains to be explained. In this step of the algorithm, the nodes in each put-aside set PC
transmit the content of their palettes and the topology of G[PC] to their leader xC . Provided
with this information, the leader can then assign each node of PC a color from its individual
palette that does not conflict with the color of its neighbors. Without any adjustment, this
process has each node from a put-aside PC send Θ(|PC |(log |C|+ log n)) bits to its leader, which
on a single communication link would be too costly in Congest. We adapt this part of the
algorithm to Congest through three avenues. First, we have nodes send colors to their leader
by using a hash function chosen by said leader. This solves the bandwidth requirements that
sending very large colors presents, as explained in Appendix D.3. Second, we reduce the size
of the put-aside sets to just the size that is needed to get sufficient slack. Finally, we use other
nodes of the almost-clique as relays to increase the bandwidth between the leader and each node
of the put-aside.

The leader restricts the size of PC to Θ(`), which is a sufficient amount of slack for the
parts of the algorithm that rely on slack from the put-aside sets (invoking SlackColor).
Recall that IC ⊆ NC(xC). The leader enumerates the nodes in IC and allocates each node
v ∈ PC a contiguous interval of 2|PC | + 1 indices, corresponding to a set Rv of nodes. Since
|IC | ≥ 2|PC |2 + |PC |, the nodes receive disjoint intervals. Each node v ∈ PC has av = O(σC) =
O(`) ≤ |PC | non-neighbors in C, and hence it has at least |Rv| − av ≥ |PC | neighbors in Rv.
Now v can send |N(v)∩PC |+1 colors from its palette to xC in O(1) rounds, via the relay nodes
in N(v) ∩Rv. The topology of PC can similarly be transmitted. The leader can then properly
color PC locally and forward the colors to the nodes.

D.3 Large Colors

We have implicitly assumed until now that sending a color over an edge, as nodes do when
broadcasting their permanent color to their neighbors, only takes O(1) rounds. This is possible
if the color space C is of size |C| ∈ nO(1). In Lemma 1, the dependency of t in |C| is only log|C|,
meaning that sending a representative hash function still takes only O(1) rounds even when
|C| ∈ exp(nΘ(1)). Can we tolerate such a large color space in other parts of the algorithm? We
resolve this in the affirmative.

Pre-shattering phase. For all parts of the algorithm except the post-shattering phase, we
achieve this using a family H of 1 + ε-approximately universal hash functions, i.e., a set of hash
functions h : [N] → [M] such that for all x1 6= x2, Prh←H[h(x1) = h(x2)] ≤ (1 + ε)/M . There

26

exists small enough families of such hash functions so that specifying an element in the family
only takes O(log logN + logM + log(1/ε)) bits ([BJKS93], or Problem 3.4 in [Vad12]). Set
ε = 1 and let us hash to M = Θ(nd) values, where d ∈ Θ(1). Under these assumptions, sending
a hash value only takes O(1) rounds, and sending an element of H takes O(dlog log C/ log ne)
rounds – in particular, O(1) if colors are written on poly(n) bits. Let each node v pick and
broadcast a random 1 + ε-approximately universal hash function hv from H at the start of our
algorithms. Whenever a node u was previously sending a color ψ to a node v in our algorithms,
we now have u send hv(ψ) to v. Granted no collision occurs in any neighborhood, these hash
values perfectly replace the actual colors wherever nodes were previously using the exact colors
of their neighbors, such as when updating their palettes, computing their chromatic slack, and
when a leader in an almost-clique sends colors to the inliers – each inlier looks for a color that
hashes to the hash sent by the leader, and then tries that color by hashing it using its neighbors’
hash functions.

With log n bandwidth, we ensure no collision occurs in any neighborhood w.h.p., by taking
d appropriately large. Consider a node v and its neighborhood. There are at most (∆ + 1)2

distinct colors in the palettes of v∪N(v). The probability that a collision occurs in these colors

with a random hash function from H is bounded by
(

(∆+1)2

2

)
· n−d ≤ n−d+4. So, w.p. at least

1− n−d+5, there are no collisions in all neighborhoods. Setting d ≥ 6, this holds w.h.p.

Post-shattering phase. For the post-shattering phase, unlike in the Local model, in general
we may not directly use one of the recent deterministic algorithms of Ghaffari and Kuhn [GK21],
as the complexity of their algorithm in Congest depends on the size of the color space C. In-
deed, their two Congest algorithms use either log2 ∆ log n rounds of ∆ log|C| bits or log2|C| log n
rounds of log|C| bits (note that n and ∆ are the parameters of the shattered connected compo-
nent, but C is the original color space). When |C| ∈ poly(log n) (and therefore, all the degrees of
the graph as well) we get an O(log3 log n) algorithm, but handling a larger color space requires
additional work.

We handle larger color spaces by computing a network decomposition on the shattered
graph in O(log5 log n) rounds [GGR21], and coloring each cluster of each color class by first
computing a color space reduction before using the deterministic algorithm of [GK21]. The
color space reduction simply consists of finding a function that maps each color from C to
a poly(log n) number such that no collision occurs in any node’s palette. This is achieved
through derandomizing the random selection of such a function with the method of conditional
expectation.

Lemma 17 (Lemma 3.19 in [HKMN20] (full version)). Let N ∈ logO(1) n be the size of the
subgraph on which we compute a network decomposition of diameter D. Consider one cluster C
of the network decomposition and let Ψ(u) be the palette of vertex u ∈ C of size L ≤ N . There
is a deterministic D · logN round algorithm that computes a colorspace reduction f : C → N10

such that |f(Ψ(u))| = |Ψ(u)| for all u ∈ C. The colorspace reduction f can be described with
O(log log n) bits.

E Full Statement of (Degree+1)-List-Coloring Algorithm

E.1 Broad Structure

As explained in the algorithm overview in Appendix D, nodes are dealt with in degree ranges
of the form [log7 x, x]. The full algorithm simply consists of O(log∗ n) call to Alg. 7, which
assumes the degrees of nodes in the graph to be within such a degree range.

27

Algorithm 7 Randomized D1LC Algorithm (∀v, dv ∈ [log7 ∆,∆])

1: ComputeACD.
2: Apply Alg. 8 to sparse nodes.
3: Apply Alg. 9 to dense nodes.

The algorithm for a given degree range (Alg. 7) itself calls two procedures: one that colors
the sparse nodes (Alg. 8), and one that colors the dense nodes (Alg. 9). Before that, it computes
an almost-clique decomposition, which we explained how to do in Congest in Sec. 4.2.

Algorithm 8 Main Procedure for Coloring Sparse Nodes

1: Identify the set V start ⊂ V sparse

2: GenerateSlack in G[V sparse ∪ V uneven].
3: SlackColor V start.
4: SlackColor V sparse \ V start and V uneven.

Algorithm 9 Main Procedure for Coloring Dense Nodes

1: Compute the leader xC and outliers OC of each almost-clique C. Let O = ∪COC .
2: GenerateSlack.
3: PC ← PutAside(C) in each low-slack almost-clique C. Let P = ∪CPC .
4: SlackColor O.
5: SynchColorTrial V dense \ P .
6: SlackColor V dense \ P .
7: For each low-slack C, let xC collect the palettes in PC and color the nodes locally.

Approaching the D1LC problem by giving two separate algorithms for sparse and dense
nodes is natural. Indeed, splitting the problem in that manner results in two D1LC instances
of similar degree ranges (more generally, the problem is self-reducible), and the all-sparse and
all-dense cases are possible inputs that need to be considered anyway.

E.2 Subroutines

We now detail the subroutines referred to in Alg. 8 and 9 above.

Trying colors and slack generation. GenerateSlack simply consists of each node
trying a random color in its palette, with some constant probability. What is trying a color
formally means is described in Alg. 12, in particular what it means to try a color when some
nodes have priority over other nodes. How trying a color can be done in Congest even when
the color space is of order exp(nΘ(1)) is explained in Appendix D.3.

Algorithm 10 GenerateSlack(probability pg)

1: S ← sample each v ∈ G into S independently w.p. pg = 1/10.
2: for all v ∈ S in parallel do TryRandomColor(v).

Algorithm 11 TryRandomColor (vertex v)

1: Pick ψv u.a.r. from Ψv.
2: TryColor(v, ψv)

28

A more refined version gives priority to some nodes over others: for each node v, we partition
its neighborhood N(v) into N+(v) – the nodes whose colors conflict with v’s – and N−(v) =
N(v) \ N+(v). For correctness of TryColor, u ∈ N−(v) → v ∈ N+(u) should hold for each
edge uv.

Algorithm 12 TryColor (vertex v, color ψv)

1: Send ψv to N(v), receive the set T+ = {ψu : u ∈ N+(v)}.
2: if ψv /∈ T+ then permanently color v with ψv.
3: Send/receive permanent colors, and remove the received ones from Ψ(v).

Leader, inliers, and outliers of an almost-clique. Once the leader x of an almost-clique
C is chosen, the outliers OC of this almost-clique are chosen to be:

1. the max(dx, |C|)/3 nodes in C with the fewest common neighbors with x,
2. the |C|/6 nodes of largest (original) degree, and
3. the anti-neighbors Ax of x.
The inliers IC are the rest of the almost-clique, IC = C \OC . Recall that ` = log2.1 ∆. How

the leader selection process is adapted to work in Congest is explained in Appendix D.1.

Put-aside sets. The construction of put-aside sets is a simple random sample (Alg. 13). How
these sets are colored at the end of the procedure for dense nodes in Congest is explained in
Appendix D.2.

Algorithm 13 PutAside(C)

1: SC ← each node v ∈ IC is sampled independently w.p. ps = `2/(48∆C).
2: return PC ← {v ∈ SC : Ev ∩ S = ∅}, where S = ∪C′SC′

Synchronized color trials within almost-cliques. An important subroutine of the al-
gorithm for dense nodes is SynchColorTrial, in which the leader of each almost-clique C
randomly gives a unique color from its palette to the uncolored non-put-aside inliers of C. The
only possible issue in Congest is that the colors may be too large to send efficiently. How to
overcome this hurdle is explained in Appendix D.3.

Algorithm 14 SynchColorTrial, for almost-clique C

1: xC randomly permutes its palette Ψ(xC), sends each neighbor u ∈ IC a distinct color ψu.
2: Each u ∈ IC calls TryColor(u, ψu) if ψu ∈ Ψ(u)

Coloring with slack. Finally, we give the pseudocode for SlackColor, an important
subroutine in all randomized algorithms that achieve complexity O(log∗ n) for graphs of large
enough degree without increasing the number of colors polynomially as in Linial’s algorithm.
This subroutine has nodes with slack linear in their degree try increasing numbers of colors
through O(log∗ n) iterations. How to implement in Congest its main building block, Multi-
Trial, is explained in Sec. 4.1. The nodes can also readily compute their slack in Congest
with the techniques for handling large colors described in Appendix D.3, making the whole
procedure implementable in Congest.

κ ∈ (1/smin, 1] is a parameter, a ↑↑ b denotes tetration (a ↑↑ 0 = 1, a ↑↑ (b+ 1) = aa↑↑b).

29

Algorithm 15 SlackColor(smin), for node v

1: for O(1) rounds do TryRandomColor(v).
2: if s(v) < 2d(v) then terminate.

3: Let ρ← s
1/(1+κ)
min

4: for i from 0 to log∗ ρ do
5: xi ← 2 ↑↑ i
6: MultiTrial(xi) 2 times.
7: if d(v) > s(v)/min(2xi , ρκ) then terminate.
8: end for
9: for i from 1 to d1/κe do

10: xi ← ρi·κ

11: MultiTrial(xi) 3 times.
12: if d(v) > s(v)/min(ρ(i+1)·κ, ρ) then terminate.
13: end for
14: MultiTrial(ρ).

30

	1 Introduction and Related Work
	1.1 Related Work

	2 Results
	3 Congestion-Reducing Techniques
	3.1 Representative Hash Functions
	3.2 Estimation and Sampling of Set Intersection, Union, Difference
	3.3 Application: Sparsity
	3.4 Application: Local Triangle Finding
	3.5 Application: Local 4-Cycle Finding

	4 Ultrafast Coloring in Congest
	4.1 MultiTrial
	4.2 Almost-Clique Decomposition
	4.3 Final Minor Modifications

	5 Uniform Implementation
	5.1 MultiTrial
	5.2 Almost-Clique Decomposition

	A Concentration Bounds
	B Explicit Representative Multisets
	C Definitions Related to Almost-Clique Decompositions
	D Final Details of the Algorithm for (Degree+1)-List-Coloring in CONGEST
	D.1 Leader Selection
	D.2 Coloring the Put-Aside Sets
	D.3 Large Colors

	E Full Statement of (Degree+1)-List-Coloring Algorithm
	E.1 Broad Structure
	E.2 Subroutines

