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ABSTRACT
Multimodal electronic health record (EHR) data are widely used in
clinical applications. Conventional methods usually assume that
each sample (patient) is associated with the unified observed modal-
ities, and all modalities are available for each sample. However,
missing modality caused by various clinical and social reasons is
a common issue in real-world clinical scenarios. Existing meth-
ods mostly rely on solving a generative model that learns a map-
ping from the latent space to the original input space, which is
an unstable ill-posed inverse problem. To relieve the underdeter-
mined system, we propose a model solving a direct problem, dubbed
learning with Missing Modalities in Multimodal healthcare data
(M3Care). M3Care is an end-to-end model compensating the miss-
ing information of the patients with missing modalities to perform
clinical analysis. Instead of generating raw missing data, M3Care
imputes the task-related information of the missing modalities in
the latent space by the auxiliary information from each patient’s
similar neighbors, measured by a task-guided modality-adaptive
similarity metric, and thence conducts the clinical tasks. The task-
guided modality-adaptive similarity metric utilizes the uncensored
modalities of the patient and the other patients who also have the
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same uncensored modalities to find similar patients. Experiments
on real-world datasets show that M3Care outperforms the state-
of-the-art baselines. Moreover, the findings discovered by M3Care
are consistent with experts and medical knowledge, demonstrating
the capability and the potential of providing useful insights and
explanations. 1
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1 INTRODUCTION
Multimodal data can provide complementary information from var-
ious modalities that reveal the fundamental characteristics of real-
world subjects [6, 8, 21, 52, 53]. Thus, many clinical applications,
such as disease diagnosis andmortality prediction [21, 39, 44, 53, 59],
require multimodal electronic health record (EHR) data to achieve
good diagnostic or prognostic results. Conventional approaches
usually assume that each sample is associated with the unified
uncensored modalities, and all modalities are available for each
sample [40, 58]. However, missing modality is a common issue
1published as a conference paper in ACM SIGKDD 2022 (modified a few mistakes)
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Figure 1: Left: missing features; right: missing modalities.
Each row refers to a patient. In the left figure, each column
refers to a feature (𝑓𝑛). In the right figure, each group of
columns refers to a modality (𝑀𝑛), meaning that a modality
contains many features. These features have high correla-
tions, since they belong to the same modality (e.g., medical
images, medical notes, etc.). The boxes in gray indicate the
features exist, and others in black represent missing ones.

in real-world clinical scenarios [23]. For example, different types
of examinations are usually conducted for different patients [58].
Also, patients may lack some specific modalities due to patient
dropout [45], sensor damage, data corruption [9], safety consider-
ations [47, 60] and high cost [16]. Formally, we define modality-
missing in EHR data as, for a sample, data for at least one modality
is missing. The absence of a modality means that all features in
this modality are missing. Moreover, the modality-missing patterns
(i.e., combinations of available modalities) make it more complex
for the data with more modalities [58].

Thus, some pioneering research works are proposed to handle
the modality-missing issue. Some researchers drop the incomplete
samples [44, 51] and achieve some improvements. However, this
approach cannot be applied in areas where data is scarce and con-
tains rigid requirements, such as healthcare. Also, it will escalate
the small-sample-size issue and over-fitting [9, 45].

The complementary way to dropping methods is the imputation-
based method. As shown in the left part of Figure 1, some meth-
ods assume that the entries of the data matrix are missing at ran-
dom (or some more specific assumption on the matrix space, e.g.,
incoherence, confer [14] for a survey), and the missingness can
be imputed via modeling correlations between the columns (fea-
tures) [35]. Whereas, as illustrated in the right part of Figure 1,
missing modalities manifest themselves by column-wise consec-
utive missingness, where the most correlated information inside
the same modalities is missing entirely. On the other hand, the
features inside the same modality are naturally more correlated
than thereof in different modalities, exhibiting a coherent behavior
in the matrix space. Thus the traditional imputation methods do
not work well [51]. Additionally, block-wise missingness [54], such
as image [22] or geosensory data [54], often assumes a sample re-
alization is from the matrix space, such that the row vectors in a
matrix are not permutable. Different from that, the rows in missing
modalities refer to the samples, which are permutable. This results
in the prior spatial (or spatio-temporal) correlations required to
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Figure 2: Intuition: For a patient with missing modalities,
we utilize the other uncensored modalities of the patient
and the other patients who also have the same uncensored
modalities to find similar patients and estimate the missing
information.

complete the block-wise missingness are not present in the miss-
ing modalities. In a word, conceptually, there is a gap between
the missing modalities (column-wise consecutive missingness) and
the existing imputation-based methods for random or block-wise
missingness.

In methodology, some deep generative methods [8, 33, 43, 45]
are proposed for missing modalities. Essentially, such methods are
usually based on the manifold assumption: the probability mass of
real-world objects is supported on low-dimensional manifolds [1].
In terms of EHR data imputation, the manifold assumption can be
interpreted as the low-rankness and stability of the feature covari-
ance matrix. In other words, there exist a set of low-dimensional
basis vectors and a deterministic mapping T subject to: (a) the
basis vectors span the pre-image of the mapping T , (b) and the
observed EHR feature vectors live on the image of the mapping
T . Existing EHR generative-based completion methods tackle the
problem by solving a generative model which learns a mapping
from a latent space (spanned by basis vectors) to the original input
space [8, 33, 43, 45]. Solving such mapping is essentially an ill-posed
inverse problem (low- to high-dimensional underdetermined sys-
tem [13]), whose solution is often non-unique and unstable [26].
On the other hand, such complex auxiliary models may introduce
extra noise, which has negative impacts [9, 15, 51]. To this end, the
problem of completing missing modalities requires a different way.

In fact, for missing modalities, solving the generative model is
not necessary. By assuming the low-rankness and the stability of the
covariance matrix of EHR features, the locally similar row vectors
(patients with similar features from some uncensored modalities)
in a sub-matrix imply globally similar row vectors (those patients
should have similar missing features) in the data matrix. Moreover,
if a local row vector𝑋 falls in a convex hull spanned by a set of local
row vectors, then the global row vector corresponding to𝑋 is likely
to fall into the convex hull spanned by the particular set of global
row vectors. Thus, instead of solving the inverse problem of the low-
to high-dimensional mapping, we can solve a less underdetermined
problem: comparing similarities of local row vectors and impute
the missing entries in a row by referring to the uncensored entries
of locally similar rows. The similarity comparison can be conducted
in the original input space with a sophisticated metric on data
manifolds, or in a learned latent space with a more straightforward
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metric. More importantly, modeling the similarity relationship in
the low-dimensional latent space is a direct (or forward, namely)
problem of solving a mapping from a high-dimensional space to a
low-dimensional space, which is less complicated than the inverse
problem of solving a generative model.

On the other hand, this intuition is also in agreement with the
real-world clinical practice, i.e., how doctors use the relationships
between patients to assist the clinical analysis2. If two patients are
similar in one clinical modality, they are more likely to be similar
in another one [18, 19, 25, 32]. Thus, as shown in Figure 2, for a
patient with missing modalities, we can utilize the other complete
modalities of the patient (local row vector) and other patients who
also have these modalities (local uncensored row vectors), to find
similar patients. Although seeming straightforward, applying this
intuition to clinical tasks will face the following challenges:

Challenge 1. Which space can be used to perform imputa-
tion? There are at least two options: the original input space or
a learned latent space. Existing methods usually estimate missing
data in the original input space [8, 33, 43]. However, the probabil-
ity distribution in the original input space contains task-relevant
and task-irrelevant information. Imputation in the original input
space treats task-irrelevant information equally, weakening the
task-specific information conveyed in EHR data. This results in an
indiscriminate loss of task-relevant and task-irrelevant information,
leading to inferior performance.

Challenge 2. What metric(s) should be used to model the
similarity relation? T-LSTM [7] uses autoencoders to generate
patient representations, based on which the similarity is obtained.
SMIL [40] uses multivariate Gaussian to assign similarity weights.
However, they did not associate the connotation of similarity with
clinical tasks. In different clinical tasks (e.g., mortality prediction
and disease diagnosis), the patient characteristics that need atten-
tion are different, so two patients considered similar in one clinical
task may be considered not so similar in another [57]. More impor-
tantly, the similarity metric might vary for different modalities. The
manifolds in different modalities in the original input spaces are
naturally equipped with different metrics. A learned deterministic
mapping from the original input spaces to the learned latent space
is not guaranteed to result in a unified metric for different mapped
modalities in the latent space.

Challenge 3. How to infer the local-to-global similarities
of patients?Metrics computing the similarities between local row
vectors is not sufficient to describe the similarities of global row
vectors. Thence modeling the intra- and inter-correlations of fea-
tures from various modalities is challenging but indispensable to
aggregate the information from different modalities.

By jointly considering the above issues, we propose a model
learning with Missing Modalities in Multimodal healthcare data
(M3Care), an end-to-end inductive learning model to compensate
for the missing modalities and perform clinical tasks. In summary,
our main contributions are summarized as follows:
• We propose M3Care to compensate for the modality-missing pa-
tient in the latent space and perform clinical tasks with EHR data.

2We also substantiate this intuition by mining the real-world clinical datasets, please
refer to the Intuition discovery experiments in Appendix.

Since the latent representations are highly compressed and task-
supervised, this results in less loss of task-relevant information
and is thus more beneficial for subsequent tasks in an end-to-end
learning schema (Response to Challenge 1).

• Methodologically, (a) M3Care uses task-guided deep kernels in
the latent space of each modality as the metric to compute patient
similarities (Response to Challenge 2). (b) M3Care captures intra-
correlations within each modality and inter-correlations between
modalities by a self-attentive multi-modal interaction module so
that the local metrics are aggregated to calculate the similarities
of global row vectors. (Response to Challenge 3).

• Extensive experiments show that M3Care outperforms all state-
of-the-art models under multiple levels of incompleteness in
different evaluation metrics. Besides, the findings discovered by
M3Care are in accord with experts and medical knowledge, which
shows it can provide useful insights and explanations.

2 RELATEDWORK
Multimodal learning for healthcare. With the advancement of
medical technology, comprehensive healthcare is burgeoning to
meet the demands of patients. This has allowed for multiple medical
modalities (e.g., medical image, clinical notes, etc.) to be analyzed
to offer patients with feedback, as well as physicians with insights
on clinical applications [17, 21, 37, 44, 53].

To this end, multimodal learning for healthcare has attracted
the interest of researchers. For example, RAIM [53] is proposed
for jointly analyzing continuous monitoring data (e.g., ECG, heart
rate) and discrete clinical events (e.g., intervention, lab test) to
predict patient decompensation. Gao et al. [17] utilize a multimodal
inference model to jointly encode trial criteria text and patient EHR
tabular data for patient-trial inference. Huang et al. [24] develop
and compare different multimodal fusion architectures to classify
Pulmonary Embolism (PE) cases. Ma et al. [38] and Hoang et al.
[21] develop distillation frameworks to leverage the multimodal
EHR data to enhance the prognosis. Although the methods above
work well, one common drawback is that they can only handle
samples with complete modalities. Limitations exist while modeling
multimodal interactions with the presence of missing modalities.
Methods for missing modalities. Currently, there have been re-
search interests in handling missing modalities, which are mainly
divided into two types: deleting incomplete samples or imputing
missing modalities. For the first type, FitRec [44] performs workout
profile forecasting based on multimodal user data, which discards
samples with missing modalities. Wang et al. [51] propose a knowl-
edge distillation framework on samples with complete modalities,
while distilling the supplementary information from the incom-
plete ones. However, such methods can not handle the samples in
need with missing modalities and have limitations to be applied
in rigid demand domains like healthcare. Besides, such methods
dramatically reduce training data and result in over-fitting of deep
learning models [9, 45], especially when there are many modalities
and many different missing combination patterns3.

The second type is generating the missing modalities at first [8,
40, 45]. However, the incompleteness of modalities leads to column-
wise consecutive missingness of features, which makes traditional

3e.g., five modalities can result in 25 − 1 = 31 missing patterns.
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methods like matrix completion can not be used [51]. Some ad-
vanced generative methods such as autoencoders [33, 43] and gen-
erative adversarial networks (GAN) [8, 45] have been proposed.
These solutions, however, may introduce unwanted extra noise [9].
Especially when the size of samples with complete modalities is
small, yet the number of modalities is large, the modalities imputed
by such methods may have a negative effect [15, 51]. Moreover,
while facing data with many modalities or missing patterns, the
number of generators required is also large, which is difficult to
train. Chen and Zhang [9] propose a method to enable multimodal
fusion of incomplete data and get good performance. However, the
method is transductive and needs pre-training, indicating difficulty
in applying it when a new sample comes. Therefore, in this pa-
per, we propose a new inductive framework to tackle the above
limitations in an end-to-end schema.

3 PROBLEM FORMULATION
In this section, we define the input data and the modeling problem
in this paper. Besides, the necessary notations used in the paper
are listed in Table 1 for ease of understanding.
Definition 1 (Patient multimodal EHR data). In multimodal
EHR data, each patient can be represented as a collection of ob-
servations from multiple modalities (data sources), e.g., medical
images, clinical notes, lab tests, etc. Suppose 𝑀 is the number of
modalities, 𝑁 is the number of patients (samples), and let 𝑛 be the
subscript referring to a specific patient, the patient multimodal EHR
dataset can be denoted as: X = {X𝑛}𝑁𝑛=1 = {(x1𝑛, x2𝑛, ..., x𝑀𝑛 )}𝑁

𝑛=1.
Definition 2 (Patient data withmissingmodalities). For a spe-
cific patient, as mentioned in Section 1, various clinical and social
reasons cause the absence of some modalities. Thus, the observed
data of a patient are represented as: X𝑛 = {x1𝑛, x2𝑛, ..., x𝑀

′

𝑛 }, where
0 < 𝑀

′
< 𝑀 . It should be noted that, we used the most relaxed set-

ting, i.e., the modality missingness is irregular across patients. In all
the training and test (validation) sets, each modality is potentially
missing, but at least one modality is present for each patient.
Problem 1 (Disease diagnosis). Given a patient’s multimodal
EHR data X𝑛 with some missing modalities, we formulate the dis-
ease diagnosis task as a binary ormulti-label classification problem,
which is diagnosing the disease y ∈ {0, 1} |𝐶 | of the patient, where
|𝐶 | is the number of the unique number of disease categories.

Table 1 shows the notations used in the paper.

4 METHODOLOGY
4.1 Overview
Figure 3 and Figure 4 show the architecture of M3Care. It consists
of two main sub-models. The first one is used to compensate for
the missing information in the latent space (Corresponding to Fig-
ure 3). The other utilizes the processed representations to perform
the clinical tasks (Corresponding to Figure 4). Specifically, M3Care
includes the following detailed components:
• TheUnimodal Representation Extractionmodule maps the original
input features of a patient in each modality to the latent space by
encoders with various backbones. The backbones are different
due to different input modalities (Left part in Figure 3).

Table 1: Notations for M3Care

Notation Definition
y ∈ {0, 1} |𝐶 | Ground truth of the classification target
ŷ ∈ [0, 1] |𝐶 | Classification result

X The multimodal EHR dataset
X𝑛 ∈ X The 𝑛-th patient in the dataset
x𝑚𝑛 Modality𝑚’s raw data of the 𝑛-th patient

h𝑚𝑛 ∈ R𝑁ℎ Learned representation of modality𝑚 of patient 𝑛
H𝑚 ∈ R𝐵×𝑵ℎ Learned representations of modality𝑚 for the patient batch
Ĥ𝑚 ∈ R𝐵×𝑵ℎ Modality𝑚’s auxiliary information representation

aggregated from similar patients
H̄seq ∈ R𝑁seq×𝑵ℎ Representations of a sequential modality with positional

encoding added
𝛿 ∈ (0, 1) Parameter to control learnable kernel
Π𝑚 ∈ R𝐵×𝐵 The patient similarity matrix for modality𝑚

mask𝑚 ∈ R𝐵×𝐵 Matrix of booleans that determines each element of the associated
value is valid or not (i.e., similarity for missing modality is invalid)

Λ ∈ R A learnable threshold to filter out dissimilar pairs
Π̃ ∈ R𝐵×𝐵 The comprehensive similarity matrix across all modalities

z𝑙 The output representations of the 𝑙-th layer in the model
z̃𝑙 The middle representations inside the 𝑙-th layer in the model

𝛼𝑚 ∈ R𝐵×1 The importance of self-information H𝑚

𝛽𝑚 ∈ R𝐵×1 The importance of similar patients information Ĥ𝑚

• The Similar Patients Discovery and Information Aggregation mod-
ule computes patient similarities of each modality with learned
task-guided deep kernels. The similarities induce patient graphs.
With graph information propagation, the information from simi-
lar patients is aggregated (Middle and right parts in Figure 3)

• The Adaptive Modality Imputation module imputes the missing
modality in the latent space with the aggregated information,
and fuses the existing modality and the auxiliary information to
enhance the representation learning (Right part in Figure 3).

• The Multimodal Interaction Capture module takes the intra- and
inter-modality dynamics into consideration to perform the final
clinical tasks (Figure 4).

4.2 Unimodal Representation Extraction
For a specific patient 𝑛, it is hard to model the interactions among
the raw data, since his/her data X𝑛 is high-dimensional and in-
consistent with respect to different data structures in different
modalities [9]. Therefore the unimodal representation extraction
models are in need to extract the task-relevant feature latent rep-
resentation in the latent space of each modality. Here, suppose
𝑓𝑚 (·;𝚯𝑚) be the modality𝑚’s unimodal representation extraction
model with learnable parameter Θ𝑚 . For modality𝑚’s raw input,
the corresponding latent representation can be obtained via:

h𝑚𝑛 = 𝑓𝑚
(
x𝑚𝑛 ;𝚯𝑚

)
, (1)

where h𝑚𝑛 ∈ R𝑁ℎ and 𝑁ℎ is the dimension of the representation for
modality𝑚. We use the lowercase letter x𝑚𝑛 to denote a modality
for a single patient 𝑛.

Three types of 𝑓𝑚 (·;𝚯𝑚) are taken into consideration in this
paper: 1) ResNet [20] for embedding image modalities; 2) Trans-
former Encoder [50] for embedding sequential modalities, such as
time-series data like patient laboratory test, medication, and free
texts like clinical notes; and 3) multi-layer perceptron (MLP) for
embedding vector-based modalities, such as demographic informa-
tion. As shown in the left part in Figure 3, the black boxes denote
the missing information.
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Figure 3: Framework of M3Care, the black boxes denote missing.
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Figure 4: Multimodal Learning Model for Clinical Tasks.
Continued from the bottom right corner in Figure 3.

4.3 Similar Patients Discovery and Information
Aggregation

The above section describes how to deal with a single sample, and
now we focus on a group of samples. Given a batch of patients, the
representations of modality𝑚 for them are denoted as:

H𝑚 = [h𝑚1 , h
𝑚
2 , . . . , h

𝑚
𝐵 ]⊺ ∈ R𝐵×𝑁ℎ ,

where 𝐵 is the batch size. For sequential modalities, we select
the representation of the last timestamp as the one.

For a specific patient with missing modalities, as shown in Fig-
ure 1, the representations from the missing modalities cannot be
obtained, which results in a lack of modality information. As dis-
cussed in Section 1, we can compare similarities of local patient data
and impute the missing modalities of the patient by referring to the
uncensored modalities of locally similar patients. There is thus a
problem with similar patient discovery: What metric(s) should be
used to model the similarity relation? In practical applications, one
often adopted strategy is to try different kinds of similarity mea-
sures on the learned representations in each modality space, such

as Cosine, Euclidean distance, and so on, and then select the best
similarity measure [28]. However, this approach is time-consuming,
and even if one tries different similarity metrics, it is found that
those traditional similarity metrics often fail to consider the local
environment of data points, and may learn incomplete and inac-
curate relationships. In this case, it is unlikely that the traditional
similarity function will be adequate to capture the local manifold
structure precisely [27]. Moreover, complex relationships such as
higher-order statistics are failed to capture in that way [27].

To this end, we extend this idea to kernel spaces and select the
RBF kernel. Given two samples h𝑚

𝑖
and h𝑚

𝑗
, the similarity calculated

from the RBF kernel is defined as:

𝑘 (h𝑚𝑖 , h𝑚𝑗 ) = exp(−
∥h𝑚

𝑖
− h𝑚

𝑗
∥22

2𝜎2
), (2)

where 𝜎 is the bandwidth to control the extent to which similarity of
small distances is emphasized over large distances. Following [12],
we set 𝜎 as a fraction of the mean distance between examples.
Expanding the exponential via Taylor series, we can see that the
RBF kernel implies an infinite dimension mapping, capturing the
higher-order statistics.

Furthermore, as mentioned in Challenge 2, since the data are
in multiple modalities, M3Care is required to calculate similarities
in each modality space and associate the connotation of similarity
with clinical tasks. Thus, a task-guided modality-semantic-adaptive
similarity metric is needed. We extend the standard RBF kernel
to deep kernel [36] to build an adaptive kernel with a learnable
network to fit the representations in a modality data-driven way.
Specifically, the kernel is denoted as:

𝑘𝜔𝑚
(h𝑚𝑖 , h𝑚𝑗 ) = [(1−𝛿𝑚)𝑘 (𝜙𝜔𝑚

(h𝑚𝑖 ), 𝜙𝜔𝑚
(h𝑚𝑗 ))+𝛿𝑚]𝑞(h𝑚𝑖 , h𝑚𝑗 ),

(3)
where 𝜙𝜔𝑚

is a network with parameters 𝜔𝑚 for modality𝑚. 𝑘 and
𝑞 are different RBF kernels with different 𝜎 . The 𝛿𝑚 ∈ (0, 1) is a
learnable safeguard to preventing the learned kernel from going
extremely far-away from the right direction.

Now, back to the batch of patient representations, the pairwise
similarities with respect to each modality are calculated as (i.e., the
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No.1 arrow in Figure 3):

Π𝑚 = 𝑘𝜔𝑚
(H𝑚,H𝑚), (4)

where Π𝑚 ∈ R𝐵×𝐵 is the patient similarity matrix for modality
𝑚. Meanwhile, to ensure the stability of the similarity measure
and prevent collapse, we restrict the norm of the difference be-
tween the deep representation and the original representation as
the optimization objective:

Lstab =

𝑀∑︁
𝑚=1

��∥𝜙𝜔𝑚
(H𝑚)∥𝐹 − ∥H𝑚 ∥𝐹

�� , (5)

where the outer |·| means the absolute value, and the inner ∥ · ∥𝐹 is
the Frobenius norm.

Because of the characteristic of the kernel method,Π𝑚 is a totally
positive symmetric matrix, and each cell Π𝑚

𝑖,𝑗
in Π𝑚 ranges from

0 to 1, denoting the similarity between the 𝑖-th patient and 𝑗-th
patient for modality𝑚. However, in this way, all the patients are
considered similar since the positive similarity. There should be
dissimilar ones to be filtered out. A straightforward way is setting
a threshold, and the similarities below the threshold are considered
dissimilar. Nevertheless, in the early training phase, we notice that
when the model is not convergent and the representations are
not fully learned, all similarities are unstable. The threshold may
filter out some similar patients and lead to inferior performance.
Moreover, the determination of the value of the threshold is not
trivial. Thus, we utilize a more flexible learnable threshold here. By
comprehensively considering similarity from each modality, the
filtered similarity matrix can be obtained as:

Π̃ =

∑𝑀
1 Π𝑚 ·mask𝑚∑𝑀
1 mask𝑚 + 𝜖

(6)

Π̃𝑖, 𝑗 =

{
Π̃𝑖, 𝑗 if Π̃𝑖, 𝑗 > Λ

0 if Π̃𝑖, 𝑗 ≤ Λ
(7)

where Λ is the learnable threshold to filter out dissimilar pairs and
𝜖 is used to prevent unstable division by zero. mask𝑚 ∈ R𝐵×𝐵 is
the mask matrix of booleans that determines whether each element
of the associated value is valid or not (i.e., similarity for missing
modality is invalid). For example, in modality𝑚, if both the data of
the 𝑖-th sample and 𝑗-th sample exist, mask𝑚𝑖,𝑗 = 1, and otherwise
mask𝑚𝑖,𝑗 = 0, which masks the invalid similarity cell.

Our aim is to impute the modality-missing sample by incorpo-
rating auxiliary information from the similar patients. Thus, to
aggregate the information from the similar ones, we formulate the
batch of patients’ representations as a graph in each modality, with
the similarity matrix Π̃ as the graph adjacency matrix (i.e., the No.2
arrow in Figure 3). Then the graph convolutional layers (GCN) [31]
are applied to enhance the representation learning by leveraging
the structural information:

Ĥ𝑚 = [ĥ𝑚1 , ĥ
𝑚
2 , . . . , ĥ

𝑚
𝐵 ]⊺ = GCN(H𝑚, Π̃)

= ReLU(Π̃ ReLU(Π̃H𝑚𝑊 0)𝑊 1),
(8)

where Ĥ𝑚 is the aggregated auxiliary information from similar
patients in the space of modality𝑚.𝑊 0 and𝑊 1 ∈ R𝑁ℎ×𝑁ℎ are the
projection matrices. We ignore the bias term here and after.

4.4 Adaptive Modality Imputation
Now we obtain two different representations for the batch of pa-
tients in each modality: H𝑚 and Ĥ𝑚 . The former focuses on the
patients themselves for modality𝑚, while the latter refers to the
information aggregated from similar patients. For a specific patient
𝑖 , if the data of modality 𝑚 are missing, we can directly impute
the representation with the auxiliary information aggregated from
similar patients. While for a patient whose modality𝑚 is complete,
such auxiliary information can also be fused into the original repre-
sentation, making the representation smoother to reduce noise, thus
enhancing the representation learning. Here, we use an attention
fusion to adaptively extract the proper amount of information from
them (i.e., H𝑚 and Ĥ𝑚). Specifically, two weights 𝛼𝑚, 𝛽𝑚 ∈ R𝐵×1
are introduced to determine the importance of the above two rep-
resentations, which are obtained by fully connected layers:

𝛼𝑚 = Sigmoid(H𝑚𝑊𝑜 ), 𝛽𝑚 = Sigmoid(Ĥ𝑚𝑊𝑠 ), (9)

where𝑊𝑜 ,𝑊𝑠 ∈ R𝑁ℎ×1 are the weight matrices. 𝛼 and 𝛽 indicate
the importances of self-information and information of similar
patients. We add a constraint 𝛼 + 𝛽 = 1 by calculating 𝛼 = 𝛼

𝛼+𝛽 ,
𝛽 = 1 − 𝛼. The final imputed and enhanced representations can be
obtained as (i.e., the No.3 arrow in Figure 3):

h𝑚𝑖 =

{
ĥ𝑚
𝑖

if modality𝑚 of sample 𝑖 is missing
𝛼𝑚
𝑖

· h𝑚
𝑖
+ 𝛽𝑚

𝑖
· ĥ𝑚

𝑖
otherwise

(10)
where h𝑚

𝑖
and ĥ𝑚

𝑖
are the 𝑖-th sample of H𝑚 and Ĥ𝑚 , respectively.

4.5 Multimodal Interaction Capture
Back to a specific patient, so far, the representations of the missing
modalities have been imputed through the above sections. These
representations are used to perform the clinical tasks. Thus, we need
to consider complex correlations among multimodal EHR, includ-
ing intra-correlations within each modality and inter-correlations
between modalities. Inspired by Akbari et al. [2], Kim et al. [30],
a context-aware multimodal interaction capture is built. Specifi-
cally, for sequential modalities, the internal positional encoding is
added: H̄seq =

[
h
seq
1 , h

seq
2 , . . . , h

seq
𝑁seq

]
+ PEseq, where PEseq is the

positional encoding for sequential modality seq and 𝑁seq is the
length of the sequence. Next, the representations are added with
the corresponding modality type embeddings and concatenated to
form the input:

z0 = [H̄1 + TE1; H̄2 + TE2; ...; H̄𝑀 + TE𝑀 ], (11)

where TE𝑚 is the corresponding type embedding to identify each
modality. And the multimodal interactions are captured through:

z̃𝑙 = LayerNorm(z𝑙−1 +MHSA(z𝑙−1)),

z𝑙 = LayerNorm(z̃𝑙 + FFN(z̃𝑙 )),
(12)

where 𝑙 = 1, ..., 𝐿 refers to the number of such stacked layers. MHSA
refers to the Multi-Head Self-Attention [50], FFN refers to a feed-
forward network and LayerNorm is the layer normalization [4].
The predictor is built via:

ŷ𝑖 = Sigmoid(z𝐿0𝑊𝑓 𝑖𝑛𝑎𝑙 ), (13)
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where𝑊𝑓 𝑖𝑛𝑎𝑙 ∈ R𝑁ℎ×1 is the weight matrix. The Sigmoid function
is used to turn the output into the probability. In this case, the
cross-entropy loss is used as the prediction loss function:

Lpre = − 1

𝐵

𝐵∑︁
𝑖=1

(y⊺
𝑖
log(ŷ𝑖 ) + (1 − y𝑖 )⊺ log(1 − ŷ𝑖 )), (14)

where 𝐵 is the batch size. ŷ𝑖 ∈ [0, 1] |𝐶 | is the predicted probability,
and y𝑖 ∈ {0, 1} |𝐶 | is the ground truth. The overall loss function is:

L = Lpre + 𝜆Lstab, (15)
where 𝜆 is the hyperparameter to control the loss. For ease of
understanding, we summarize M3Care in Algorithm 1 in Appendix.

5 EXPERIMENT
We evaluate M3Care on the following datasets: Ocular Disease In-
telligent Recognition (ODIR) Dataset and Ophthalmic Vitrectomy
(OV) Dataset. The model code is provided in 4.

5.1 Data Description and Task Formulation
We use the following datasets and tasks to evaluate our model.
• OcularDisease IntelligentRecognition (ODIR)Dataset comes
from an ophthalmic database, which is meant to represent real-
life set of patients collected from hospitals [34]. 3,500 patients
are extracted to construct this dataset to diagnose ocular dis-
eases. This dataset contains the following modalities (incomplete
modalities exist): demographic information, clinical text for both
eyes, and fundus images for both eyes. The detailed statistics are
presented in Table 7 in Appendix.
Task. The ocular diseases diagnosis task on this dataset is defined
as a multi-label classification task. Following existing works [5,
55], we assess the performance using micro-averaged of the area
under the receiver operating characteristic curve (i.e., micro-
AUC), macro-AUC, and the average test loss value. We divide the
dataset into the training set, validation set, and test set with a
proportion of 0.8 : 0.1: 0.1, and report the performance with the
standard deviation of bootstrapping for 1,000 times.

• Ophthalmic Vitrectomy (OV) Dataset comes from an oph-
thalmic hospital5. In clinical practice, after vitrectomy, the in-
traocular pressure (IOP) may increase abnormally. This symptom
cannot be predicted by doctors. We collect 832 patients to predict
whether the IOP will increase abnormally. This dataset contains
six modalities (incomplete modalities exist): demographic, clini-
cal notes, medications, admission records, discharge records, and
surgical consumables. The detailed statistics are presented in
Table 7.
Task. The task on the dataset are binary classification tasks. Fol-
lowing existing works [21, 57], we assess performance using
the area under the precision-recall curve (AUPRC), the area un-
der the ROC curve (AUROC), and accuracy (ACC). AUPRC is
the most informative and primary evaluation metric, especially
while dealing with skewed real-world data [11, 14, 57]. Due to
the size of the dataset, we employ 10-fold cross-validation to
assure the consistency of the performance and report the average
performance with standard deviations.

4https://github.com/choczhang/M3Care
5This study was approved by the Research Ethical Committee.

5.2 Experimental Setup and Baselines
To conduct the experiment, we use the Adam optimization algo-
rithm in Pytorch 1.5.1. More details are in the Appendix. We include
these state-of-the-art models as our baseline models:
• MFN [56] captures view-specific and cross-view interactions,
and summarizes them with a multi-view gated memory module.

• MulT [49] utilizes directional pairwise cross-modal transformers
to attend to interactions between multimodal data.

• ViLT [30] commissions the transformer module to extract and
process all the multimodal features simultaneously.

• CM-AEs [43]: The cross-modal autoencoders, which generate
missing modalities first and make predictions.

• SMIL [40] approximates the missing modality using a weighted
sum of manually definedmodality priors learned from the dataset.

• HGMF [9] fuses incomplete multimodal data within a heteroge-
neous graph structure, and we modify it to an inductive version.
The following ablation studies are also conducted:

• M3Care1− does not use the task-guided deep kernels of each
modality. It directly calculates similarity via cosine similarity.

• M3Care2− does not consist of the Information Aggregation and
the Adaptive Modality Imputation module. It directly computes
the mean similarity from each modality and approximates the
missing-modality representations via the similar patients.
It should be noted that some of the above models’ embedding

networks of raw data are a little bit weak. Thus, to perform a fair
comparison, we upgrade their embedding layers to the same ones
as ours (e.g., Transformer Encoder [50] and ResNet18 [20]) and we
do not include any pre-trained parameters.

5.3 Experimental Results
As shown in Table 2 and 3, we can see that M3Care can outperform
all the baselines in terms of different evaluation metrics6.

Table 2: Results on the ODIR Dataset

ODIR Dataset (Multi-label Classification)
Methods micro-AUC ↑ macro-AUC ↑ test loss ↓
MFN [56] 0.7877 (0.030) 0.7766 (0.029) 0.1772 (0.020)
MulT [49] 0.7944 (0.028) 0.8032 (0.026) 0.2339 (0.019)
ViLT [30] 0.7966 (0.031) 0.7624 (0.029) 0.1731 (0.016)

CM-AEs [43] 0.8028 (0.030) 0.7672 (0.027) 0.1878 (0.031)
SMIL [40] 0.8092 (0.032) 0.7978 (0.025) 0.2278 (0.032)
HGMF [9] 0.8080 (0.030) 0.8103 (0.031) 0.1810 (0.022)
M3Care1− 0.8130 (0.031) 0.8059 (0.032) 0.1781 (0.020)
M3Care2− 0.8030 (0.031) 0.8138 (0.029) 0.1631 (0.018)
M3Care 0.8490∗∗ (0.025) 0.8245∗∗ (0.026) 0.1543∗∗ (0.018)

Specifically, on the ODIR Dataset, the number in () denotes
the standard deviation of bootstrapping for 1,000 times. The re-
sults show that, compared with the best baseline method, M3Care
achieves relative improvements of 4.9% in micro-AUC. On the OV
Dataset, the number in () denotes the standard deviation of 10-fold
cross-validation. We can see that, compared with the best baseline
method, M3Care achieves relative improvements of 6.1% in AUPRC
and 6.0% in AUROC. Among these baseline methods, some ones
6∗∗ : 𝑝 < 0.01, ∗ : 𝑝 < 0.05

https://github.com/choczhang/M3Care
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Table 3: Results on the OV Dataset

OV Dataset (Binary Classification)
Methods AUPRC ↑ AUROC ↑ ACC ↑
MFN [56] 0.6456 (0.038) 0.6789 (0.032) 0.6627 (0.032)
MulT [49] 0.6814 (0.047) 0.6891 (0.043) 0.6988 (0.031)
ViLT [30] 0.6987 (0.051) 0.7245 (0.048) 0.6627 (0.033)

CM-AEs [43] 0.6891 (0.031) 0.6927 (0.040) 0.6747 (0.029)
SMIL [40] 0.7109 (0.045) 0.7041 (0.033) 0.6867 (0.032)
HGMF [9] 0.7037 (0.050) 0.7544 (0.027) 0.7100 (0.032)
M3Care1− 0.6849 (0.054) 0.7472 (0.052) 0.7080 (0.064)
M3Care2− 0.7110 (0.044) 0.7562 (0.057) 0.7234 (0.072)
M3Care 0.7549∗∗ (0.065) 0.7998∗∗ (0.049) 0.7438∗∗ (0.058)
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Figure 5: Attention weight visualization for two patients
with abnormally increased intraocular pressure in the test
set of the OV dataset. Best viewed in color.

like CM-AEs [43], SMIL [40], HGMF [9] use various mechanisms to
handle the missing modalities, and thus they achieve relative higher
performance. However, the performance boost demonstrates the
effectiveness of M3Care. Besides, it is worth mentioning that the
OV Dataset only contains the multimodal EHR data of 832 patients
yet has six modalities, demonstrating that M3Care performs well
on a small dataset while the number of modalities is large, which is
suitable for the real-world scenario, where data has a large number
of modalities or missing patterns.

The superior performance of M3Care than the M3Care1− (i.e.,
calculating similarity via cosine similarity) verifies the efficacy
of the task-guided deep kernels. Moreover, M3Care outperforms
M3Care2−, which demonstrates the superiority of the Information
Aggregation and the Adaptive Modality Imputation module.

5.4 Further Analysis
We conduct several further experiments. Due to the limitation of
pages, some of the experiments are in the Appendix.

5.4.1 Clinical implications. To intuitively show the implication of
M3Care, we visualize the attention weights of the prediction pro-
cess. Due to the limitation of pages, we report two cases in the test
set here. As shown in Figure 5, the intraocular pressure (IOP) of the
two patients increase abnormally and M3Care successfully predicts
the outcome. The rows and columns show the Query and Key mul-
timodal records, which are the abbreviations of each modality, i.e.,

demographic information, clinical notes, medications, admission
records, discharge records, and surgical consumables, respectively.

We notice that M3Care gives strong focus onMed0 andMed2 (i.e.,
the first and third medications) of patient 𝑎, and Med0 of patient
𝑏. In all these medications, the patients received the two drugs:
Tropicamide Phenylephrine Eye Drops (Mydrin-P) and Prednisolone
Acetate Ophthalmic Suspension (Pred Forte). These drugs are used
for ophthalmologic examinations, prior to ocular surgery [42] or
treat eye swelling caused by allergy, infection, injury, or other
conditions [48]. Our model discovers that these two drugs may have
a strong relationship with the abnormally increased intraocular
pressure. This is highly consistent with medical literature [3, 29, 41,
46] and clinician experience, which confirm that the two drugs can
lead to adverse reactions like elevation of IOP and should be used
with caution for specific patients in clinical practice.

6 CONCLUSIONS
In this paper, we propose M3Care, an end-to-end model to com-
pensate for the missing information of the patients with missing
modalities and perform clinical prediction as well as analysis. For
a patient with missing modalities, M3Care finds similar patients
with a task-guided modality-adaptive similarity metric. Instead
of generating raw missing data, M3Care imputes the hidden rep-
resentations of the missing modalities in the latent space by the
auxiliary information from these similar ones, and conducts the
clinical tasks. Experiments show that M3Care outperforms all base-
line models. Besides, the findings are in accord with experts and
medical knowledge, which shows it can provide useful insights.
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A INTUITION DISCOVERY EXPERIMENT
In each dataset, for each modality, we first take the samples con-
taining the complete modality data and divide them into training,
validation, and test sets. Then we use a unimodal classifier (e.g.,
multilayer perceptron, transformer encoder) to classify the data
for each modality. We take the best model from the validation set,
apply it to the test set, and collect the representations in the latent
space of each modality for each sample. Next, we compute pair-wise
similarity matrix Π𝑚 between samples in each modality, where𝑚
is the corresponding modality.

We want to justify the intuition in our datasets: if two patients
are similar in one modality, they are more likely to be similar in
another modality with regard to the clinical task. We call intuition
the cross-modal transfer of sample similarity. Given modalities 𝑎 and
𝑏, the intuition holds if their difference of the pair-wise similarity
matrix ∥Π𝑎 − Π𝑏 ∥norm is small enough, where norm is a type of
matrix norm. In this experiment, we try different similarity metrics
such as normalized Euclidean distance, cosine similarity and RBF
kernel. And we also try different norms as metrics of difference,
such as Frobenius norm, 2-norm and mean value of all entries in
∥Π𝑎 − Π𝑏 ∥.

For comparison, we add noise to the representations in the latent
space in one modality (we select modality 𝑏 here), and calculate
the difference ∥Π𝑎 − Π

′

𝑏
∥norm. If the intuition holds, the differ-

ence should be bigger than the above original ∥Π𝑎 − Π𝑏 ∥norm. We
perform this experiment 1,000 times and calculate the average dif-
ference to avoid chance.

Furthermore, we also shuffle the representations in the latent
space in one modality (we select modality 𝑏 here), and calculate
the difference ∥Π𝑎 − Π

′′

𝑏
∥norm. If the intuition holds, the difference

should also be bigger than the first original ∥Π𝑎 − Π𝑏 ∥norm. In the
same way, we perform this experiment 1,000 times and calculate
the average difference to avoid chance. The results are shown in
Table 4 and 5.

As shown in Table 4, the original difference of the pair-wise
similarity matrices in the two modalities is smaller than both the
Noise and Shuffle ones with regard to different similarity metrics
and different norms. This justifies that if two patients are similar in
one modality, they are more likely to be similar in another modality
in different view. To this end, we come up with our intuition, i.e.,

Table 4: Intuition observation results for two modalities: ad-
mission records and clinical notes, on the OV Dataset

Metric Norm Original Noise Shuffle
Normalized
Euclidean
Distance

Frobenius 183.35 403.23 207.27
2 153.97 385.21 173.73

Mean 0.2334 0.4871 0.2724

Cosine
similarity

Frobenius 402.96 462.59 452.72
2 336.31 365.02 376.69

Mean 0.5081 0.5821 0.5908

RBF
kernel

Frobenius 176.35 261.05 199.60
2 147.51 196.10 166.46

Mean 0.2241 0.3024 0.2623
the cross-modal transfer of sample similarity. In another pair, as
shown in Table 5, the same conclusion can be drew.

B ALGORITHM
Algorithm 1 shows the algorithm of M3Care.

Algorithm 1: Algorithm of M3Care
Input:
Multimodal EHR dataset X
Output:
Prediction for the patient ŷ
Training:

1 Initialize weights;
2 while training is not convergence do
3 for each batch of patient do
4 Extract h𝑚𝑛 of each modality𝑚 via Eq. 1;
5 Form the batch-wise representation matrices H𝑚 ;
6 Compute patient similarity matrix Π𝑚 in each

modality space via Eq. 4;
7 Compute comprehensive similarity Π̃ via Eq. 6, 7;
8 Form the similar patient graph with H𝑚 as nodes

and Π̃ as adjacency matrix;
9 Compute the aggregated information Ĥ𝑚 via Eq. 8

in the space of each modality𝑚;
10 for each patient in the batch do
11 if missing modalities exist then
12 Impute the missing modalities via Eq. 10
13 end
14 else
15 Enhance the representations via Eq. 9-10;
16 end
17 Model the multimodal dynamics via Eq. 11-12;
18 Make prediction via Eq. 13;
19 end
20 Update the parameters by optimizing Eq. 15;
21 end
22 end

Table 5: Intuition observation results for two modalities:
medications and surgical consumables information, on the
OV Dataset

Metric Norm Original Noise Shuffle
Normalized
Euclidean
Distance

Frobenius 152.96 159.02 370.39
2 131.37 145.77 360.48

Mean 0.2021 0.2289 0.5588

Cosine
similarity

Frobenius 384.57 406.01 404.89
2 326.61 353.72 367.75

Mean 0.4984 0.5328 0.5671

RBF
kernel

Frobenius 168.85 173.56 203.48
2 144.43 157.96 188.48

Mean 0.2081 0.2260 0.2825
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Table 6: Micro-AUC on ODIR Dataset under different addi-
tional synthesizing multimodal missing rates.

Methods 30% 40% 50% 60%
MFN [56] .7625 (.03) .7334 (.03) .7260 (.03) .7166 (.03)
MulT [49] .7768 (.02) .7637 (.03) .7480 (.03) .7348 (.03)
ViLT [30] .7601 (.03) .7583 (.03) .7492 (.03) .7355 (.02)

CM-AEs [43] .7846 (.03) .7707 (.00) .7648 (.03) .7477 (.03)
SMIL [40] .7702 (.02) .7595 (.02) .7485 (.03) .7396 (.03)
HGMF [9] .7831 (.03) .7711 (.03) .7585 (.03) .7427 (.02)
M3Care .8119∗∗ (.02) .7927∗∗ (.03) .7795∗∗ (.03) .7715∗∗ (.02)
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Figure 6: Attention weight visualization for two patients in
the test set of OV dataset.

C FURTHER ANALYSIS
C.1 Multiple levels multimodal incompleteness
To consider more realistic various settings and verify the generaliz-
ability of M3Care, experiments on multimodal data with multiple
levels of multimodal incompleteness are conducted. We evaluate
the influences of missing modalities by attaching additional synthe-
sizing multimodal incompleteness rates on ODIR Dataset from 30%
to 60% with an intermittent 10%. The experiments are repeated test
with bootstrapping for 1,000 times, and the results (micro-AUC) are
in Table 6.

We can see that all the models’ micro-AUCs decrease as the
missing rate increases, and M3Care still outperforms all baselines.
When the missing rate is the biggest of all settings (60%), M3Care
also demonstrated significantly better performance than the best
baselines CM-AEs [43] and HGMF [9]. Specifically, M3Care achieves
a micro-AUC of 0.7715, while the baseline models CM-AEs [43]
and HGMF [9] achieve 0.7477 and 0.7427, showing 3.2% and 3.8%
relative improvement, respectively.

C.2 Clinical implications
To intuitively show the implication of M3Care, similar to Section 5.4.1,
we further visualize the attention weights of the prediction process
for another two cases. As shown in Figure 6, the first case has a
positive label, and the second one is negative. For the first one,
M3Care gives a strong focus on Med0 and Med1. In both these med-
ications, the patients received not only the drug mentioned above

in Section 5.4.1: Tropicamide Phenylephrine Eye Drops (Mydrin-P),
which have been proved by medical literature [3, 29] and clinician
experience that they can lead to adverse reactions like elevation of
IOP. The patients also received Tobramycin Dexamethasone Eye
Drops (Tobradex), which is highly consistent with medical liter-
ature [10] and clinician. The drugs can lead to adverse reactions
and have the tendency to increase intraocular pressure [10]. For
the second one, a healthy patient with a negative label, M3Care
gives relatively even attention to each data of each modality of the
patient, which indicates that M3Care does not discover significant
signs of elevation of IOP and finally makes a right prediction.

D DETAILS OF EXPERIMENTAL SETTINGS
D.1 Statistics of the Datasets
• OcularDisease IntelligentRecognition (ODIR)Dataset con-
tains the following modalities (incomplete modalities exist): de-
mographic information, clinical text for both eyes, and fundus
images for both eyes. The detailed statistics are presented in
Table 7.

• Ophthalmic Vitrectomy (OV) Dataset contains six modali-
ties (incomplete modalities exist): demographic, clinical notes,
medications, admission records, discharge records, and surgical
consumables. The detailed statistics are presented in Table 7.

Table 7: Statistics of the Datasets

Dataset Statistic Value

Ocular Disease
Intelligent
Recognition
(ODIR) Dataset

# patients 3,500
# modalities 3
% missing per modality [0%, 48.34%, 0%]
% positive labels [0.061, 0.060, .0046]
% female .461

Ophthalmic
Vitrectomy
(OV) Dataset

# patients 832
# modalities 6
% missing per modality7 [0%, 0.60%, 15.38%,

10.33%, 10.33%, 4.08%]
% positive labels 41.7%
% female .456

D.2 Model Implementation
The experiment environment is a machine equipped with CPU:
Intel Xeon E5-2630, 256GB RAM, and GPU: Nvidia RTX8000. The
code is implemented based on Pytorch 1.5.1. The hyper-parameter
setting of the proposed M3Care is as follows: We set the embedding
dimension and hidden dimension as 128/256 for Ocular Disease In-
telligent Recognition (ODIR) / Ophthalmic Vitrectomy (OV) dataset,
respectively. Since the clinical notes modality in OV dataset is too
long per patient, and the number of samples is small (832 patients),
we set the batch size as 32 while conducting experiments on OV
dataset. For ODIR dataset, we set the batch size as 512.

7The order of the missing rates are corresponding to the above data description.
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