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ABSTRACT
Static Worst-Case Execution Time (WCET) estimation techniques

take as input the binary code of a program and output a conserva-

tive estimate of its execution time. While compilers, and iterative

compilation, usually optimize for the average-case, previous work

such as [7, 23] has shown that it is also possible to use existing op-

timization and iterative compilation techniques to lower the WCET

estimates drastically.

In this paper, we revisit the use of iterative compilation forWCET

minimization and show that previous work can be improved both in

terms of complexity and reduction ofWCET estimates. In particular,

we found that the use of long chains of compilation flags, from a few

hundred to a few thousand, allows a significant reduction of WCET

estimates, of 35% on average, and up to 70% on some benchmarks,

compared to the best compilation level (-O0 .. -O3) applicable. These

gains are significantly better than the reductions ofWCET estimates

obtained by [7], which, on the same benchmarks and experimental

conditions, reduce the WCET estimates by 20% on average.
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1 INTRODUCTION
Obtaining safe upper bounds on the execution time of programs

(WCET, for Worst-Case Execution Time) is crucial in real-time

systems to prove that tasks are completed before their deadline.

A way to estimate this value is to use static WCET estimation

techniques [26] that provide safe upper bounds using the program’s

binary code.

Reducing WCET estimates motivates the use of optimizing com-

pilers. However, optimization passes in compilers are not designed
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for real-time systems. Some of them may complicate static WCET

estimation. For example, they can make loop-bound estimation im-

possible. Some optimizations may also worsen the WCET estimate,

whereas it improves the average-case execution time. The sequence

of optimizations that minimize theWCET estimate of a code is there-

fore not necessarily the same as the one minimizing average-case

performance [9], motivating research on WCET-oriented compila-

tion.

Compilers come with standard optimization levels (-O1 to -O3,
-O0 meaning non-optimized code). Previous work in the compiler

community has shown that better performance than the one ob-

tained with the -O3 level can be obtained by using iterative com-
pilation [2, 5, 10, 14]. Iterative compilation techniques generate

many program versions with different sequences of optimization

flags. The different program versions are then executed and their

execution time is measured to choose the sequence with the lower

execution time. The number of different optimization flags in com-

pilers (more than 100 in gcc) is large, and therefore the number of

possible optimization sequences is huge, in particular, given that the

same optimization flag can appear several times in a sequence. Meta-

heuristics (e.g., genetic algorithms) or machine-learning-based algo-

rithms, given the enormous size of the search space, are appropriate

techniques to generate sequences of optimization flags based on

previously tested sequences. Previous research on iterative compi-

lation has shown that the optimization sequences that minimize

execution time are application-dependent, making standard opti-

mization levels -O1 to -O3 sub-optimal. Moreover, an optimization

sequence well-suited to one code is not necessarily well-suited to

other types of code. Finally, the huge size of the optimization space

makes it difficult to manually introspect for optimization sequences

that are well suited to a given code.

The fundamental difference between standard (performance-

oriented) iterative compilation and WCET-oriented iterative compi-

lation is that the metric to be optimized for the latter is the WCET.

As the exact WCET of a given code is in general unknown, an upper

bound of the WCET, theWCET estimate, is produced instead. Static

WCET estimation tools have to infer flow information (e.g., loop

bounds, infeasible paths) to estimate WCETs. It may happen that

certain sequences of optimization flags while resulting in signif-

icant performance improvement, strongly affect the structure of

the code and render static WCET estimation tools unable to accu-

rately (or simply) infer flow information. WCET-oriented iterative

compilation not only determines the sequence of optimization flags

that results in the lowest WCETs, but also excludes optimization se-

quences that render the tools unable to estimate WCETs accurately

or simply estimate them.

https://doi.org/10.1145/3534879.3534899
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The use of iterative compilation for minimizing WCET estimates

instead of average execution times was extensively explored in

[7]. A new technique was proposed in [7] to generate optimization

sequences based on learning the impact of individual optimization

passes on the WCET estimate. In this paper, we propose Winston,

for Wcet mInimizatioN uSing iTerative cOmpilatioN, a new tech-

nique forWCET-oriented iterative compilation that outperforms [7]

both in terms of complexity andWCET reduction. The better behav-

ior of Winston as compared to [7] is based on: (i) the observation

that very long optimization sequences result in lower WCET esti-

mates than the ones produced by [7]; (ii) the introduction of a cache,
that avoid re-calculating the WCETs several times for the same

optimization sequences, and therefore allows to better explore the

optimization search space, for a given search time budget; (iii) the

proposal of a new algorithm for searching optimization sequences

results, well suited to the use of long optimization sequences.

Note that given the huge size of the search space of optimization

sequences, Winston is a best-effort algorithm. Winston does not

guarantee finding the optimal optimization sequence, which would

require an exhaustive search space traversal.

The contributions of this paper are the following:

• We show that the use of long chains of compilation options,

from a few hundred to a few thousand, allows a significant

reduction of WCET estimates. These long chains of compi-

lation flags can afterward be shortened by safely removing

useless flags.

• We show that using a cache of previously analyzed optimiza-

tion sequences speeds up the search for the sequence that

results in the lower WCET estimate.

• We present a new algorithm, named Winston, for Wcet

mInimizatioN uSing iTerative cOmpilatioN, that iteratively

generates long and varied optimization sequences.

• We give an extensive performance evaluation ofWinston,

using the same experimental setup as in [7] (benchmark

suites, WCET estimation tool – aiT [22] –, target proces-

sor – LEON3). Experimental results show a reduction of

WCET estimates of 35% on average and up to 70% on some

benchmarks, compared to the best compilation level appli-

cable. These gains are far better than the WCET reductions

obtained by [7], which, on the same benchmarks and exper-

imental conditions, reduce the WCET estimate by 20% on

average.

The outline of this paper is as follows. Section 2 first presents

the general workflow of WCET minimization using iterative compi-

lation as defined and implemented in [7]. Section 3 presents prelim-

inary findings, in particular the fact that long optimization chains

allow for a drastic reduction of WCET estimates for some codes.

We present in Section 4 Winston, a new iterative compilation

algorithm that aims at reducing WCET estimates based on these

preliminary findings. An experimental evaluation ofWinston is

presented in Section 5. We compareWinston to related work in

Section 6 and give concluding remarks in Section 7.

2 BACKGROUND ONWCET-ORIENTED
ITERATIVE COMPILATION

The typical workflow of WCET-oriented iterative compilation, as

defined and used in [7], is depicted in Figure 1. Given a program

in a high-level language and a compiler (LLVM) for the target ar-

chitecture (LEON3), the approach first compiles the program and

analyzes it with a WCET estimation tool (the industry-standard

WCET estimation tool aiT [22]). Subsequently, a new optimization

sequence is generated. The program is then recompiled and ana-

lyzed, resulting in a new WCET estimate. This iterative process is

repeated until a given number of calls to the WCET estimation tool

aiT has been made.

In [7], no flow information is manually given to aiT to aug-

ment the precision of WCET estimation. This choice was taken

because compiler optimizations modify flow information. There-

fore, manually-provided flow information could be incorrect unless

a traceability mechanism such as the one proposed in [15], which

unfortunately is not available in standard compilers, is used. Thus,

someWCET estimatesmay not be as precise as if manual annotation

of flow information was provided.
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Figure 1: Iterative WCET-oriented compilation workflow
(from [7])

The aiT WCET estimation tool uses a parameter named virtual
unrolling factor to trade off WCET estimation precision with anal-

ysis complexity. The virtual unrolling factor defines the number

of contexts used to analyze loops. The higher the virtual unrolling

factor, the more precise the WCET estimate. On the other hand, the

higher the virtual unrolling factor, the longer the analysis time and

consumed memory. In [7], the following process is used to select

the unrolling factor for each benchmark: for each benchmark, we

start from a low value and increase it as long as the analysis runs in

a reasonable time (less than 30 seconds) and as long as it increases

the precision (see [7] for details).

Four techniques are presented in [7] to generate sequences of

optimization passes:

• Association: this technique is based on a ranking of the im-

pact of individual optimization passes in a sequence on the

WCET estimate (as positive, negative, neutral). This ranking
is obtained by analyzing previously generated optimization

sequences. More precisely, the technique uses a lattice of the

sets of optimization passes, with set inclusion as partial order

in the lattice. A new optimization flag in a long sequence is

evaluated (as positive, negative, neutral within the sequence)
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by comparing the estimated WCET of the long sequence

with the largest subset of previously evaluated sequences of

the lattice. The classification of a flag impacts the probability

of selecting it in future generated sequences, promoting flags

with positive rankings over flags with neutral or negative

rankings. By construction, by using sets to represent opti-

mization sequences, [7] disregards the ordering of flags in

the optimization sequence and the multiple occurrences of a

given flag in a sequence.

• Cleaning: this technique, based on Association removes from

the execution sequence generated by Association the opti-

mization passes that do not improve the WCET estimate.

Cleaning is shown in [7] to outperform Association. Cleaning
results in an average reduction of WCET estimates of 20%

compared to the best optimization level applicable.

• Random and Genetic as baselines that naively generate opti-

mization sequences. Genetic was shown in [7] to outperform

Random.

Since the impact of a given optimization pass depends on which

pass was applied previously in the optimization sequence, a se-

quence in [7] may contain multiple occurrences of the same pass.

The work presented in [7] used four different benchmark suites.

The first one is the Mälardalen benchmark suite [11] which is a

reference for WCET estimation techniques
1
. The second one is the

Polybench suite [21], which contains a lot of linear algebra codes.

Few benchmarks also come from the MiBench suite[12] and the

PolyMage suite[19].

3 PRELIMINARY FINDINGS
Two preliminary findings, respectively presented in Sections 3.1

and 3.2, allowed us to outperform [7]: the fact that long optimization

sequences result in lower WCET estimates as compared to shorter

sequences, and the use of a cache solution to speed-up the iterative

compilation process.

3.1 Longer optimization chains result in lower
WCET estimates

To evaluate the impact of the length of sequences, we run the Ran-
dom andGenetic algorithms of [7], bothwith sequences ofmaximum

sizes 50 and 1000. We compared them on a subset of the Polybench

benchmark suite that runs in a reasonable time (which is the full

set of the Polybench suite, except 3mm, fdtd-2d, gesummv, jacobi-1d,
and jacobi-2d). We performed these preliminary experiments on

the Polybench benchmarks because they are the largest programs

analyzed in [7] (much larger than those in the Mälardalen/Heptane

benchmark suite) and also because they contain mainly loop nests

and, as such, are more sensitive to loop optimization than bench-

marks from the Mälardalen/Heptane suite.

Results show that long sequences lead to lower WCET estimates

than when using short sequences, with an average decrease of 10%.

Sometimes, there are cases where the WCET estimate is signifi-

cantly lower than the usual WCET estimation found. Let us take the

example of the benchmark 2mm, and let us denote byWCETbestopt

1
The actual source code used is the benchmark suite coming with the Heptane static

WCET analysis tool [13], very close to the Mälardalen benchmark suite. This code will

be named Mälardalen/Heptane in the following.

the WCET estimate when the best optimization level is used. The

WCET estimate of 2mm when using long sequences was 40% of

WCETbestopt , whereas when using small sequences it was 90%

of WCETbestopt . Even by removing these few outliers where the

WCET estimate is significantly better, on average, it is still better,

however by only 2% of the WCET estimate of the best optimization

applicable.

We analyzed the compilation sequence resulting in the lower

WCET, for each algorithm on each benchmark. As already observed

in [7], a lot of options in generated large sequences are useless.

To eliminate these useless options, we tested each option in the

optimization sequence one by one. If removing the option results

in a WCET estimate lower or equal than when the option is in

the sequence, this one is removed. Otherwise, it is kept. We obtain

a "minimal" sequence of options by iterating this process. The

minimal sequence we obtain from the algorithms that use large

sequence ranges from 20 to 30 options, which is far longer than

minimal sequences obtained by the same algorithms with small

sequences of options that range from 5 to 10.

In summary, generating long sequences of optimizations, even if

most of them are useless and can be safely removed, result in lower

WCET estimates than when using shorter sequences and longer

minimal sequence that will not be found otherwise.

One may wonder why long sequences work better if only 30

flags of them are sufficient to obtain the same result. Our intuition is

that out of all sequences of size below 50, few result in a significant

reduction of the WCET estimate (few is relative to the number of

options), so they are incredibly hard to find. Besides, inserting new

flags in the sequence has minor impact on the WCET estimate: if a

sequence of size 50 works well, then inserting random flags, even

if we insert 1000 flags, rarely damages the WCET. So by testing a

sequence of 1000 flags, we are actually testing if one of the sub-

sequences of size 50 works well. Hence, testing sequences of size

1000 test largely more sequences than testing sequences of size

50, therefore, statistically we will often find a sequence of size 50

hidden in a sequence of size 1000 that works well.

Moreover, it seems that classical search algorithms cannot find

these short sequences that work well because the neighbors of a

good solution are not systematically good solutions (also, these

neighbors are very rare and hard to find), however, this is not the

case for long sequences because most flags are useless. This may

also explain why meta-heuristic algorithms work better when they

use long sequences and why it seems hard to design an algorithm

to find the rare sequences of size below 50 that works very well.

In addition, in section 5.2 we explain that the compiler sometimes

generates incorrect code when we use long sequences. Maybe the

same phenomenon is involved, one could also probably isolate a

sequence of size below 50 that generates incorrect code too, yet

taking randomly 50 options rarely produces incorrect code while

taking 1000 options does this with a higher probability.

Further observations on the impact of long sequence lengths
on WCET estimates.

Further observations on the impact of long sequences of opti-

mizations on WCET estimates are given below and are illustrated

in Figure 2. Two sequences of optimizations were generated. The
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first one, named SO1 in the following, is of length 250 and is used

in Figures 2a and 2b. The second one, named SO2, is of length 6000,

and is used in Figure 2c. Both sequences were obtained by a varia-

tion of the Random algorithm, which appends random sequences

of options to the best optimization sequence already found (and

rotates the best optimization sequence used to avoid being blocked

in a local minimum like [4]). The benchmark under analysis in the

Figure is qurt.
Figure 2a first depicts the evolution of theWCET estimates when

only the first x optimizations of SO1 are applied, with x in the

interval [0..250]. The figure shows that these short optimization

chains may result in modifications of the WCET in non-significant

ways or even make the WCET analysis fails, which is represented

by a value of -1 and depicted by red crosses in the figure. However,

after applying several options from SO1, some options significantly

reduce the WCET estimate. This shows that some optimizations,

although not decreasing theWCET estimate themselves, allow other

optimizations placed further in the sequence to decrease the WCET

estimate significantly. This Figure shows that not only the set of

optimization matters but also their ordering in the optimization

chain.

Figure 2b further illustrates the impact of the optimizations se-

quence order. The figure depicts the impact on the estimated WCET

when applying x options (from index 150 to 150 + x in SO1) to a

program that was at first compiled with -O0. In contrast to Figure 2a,
which applied options from indices 0 to 149 before applying the x
optimizations, Figure 2b shows that applying the x optimizations

results in a bad WCET estimate, even worse than when compiled

with -O0. These results show that long optimization chains may

be required to allow further optimizations in the sequence to be

effective.

Finally, Figure 2c shows the evolution of WCET estimates when

only the first x optimizations of SO2 are applied, with x in the

interval [0..6000]. The graph is similar to the first one, lousy WCET

estimates are found along the way, and once the minimum is found,

the WCET estimate does not vary much. This effect is observed

with large sequences in general, independently of their size.

These observations show that long options sequences may sig-

nificantly allow further optimizations to decrease WCET estimates.

Most papers on iterative compilation take for granted that the list

of options to be explored is short. The observations reported in this

section show the opposite.

3.2 Caching WCET estimates helps
To speed up the search for the optimization sequence resulting in

the lower WCET estimate, we used a cache. This cache stores for
each optimization sequence the resulting WCET estimate. It, there-

fore, maps strings, which represent an optimization flag sequence,

to integers, which represent the WCET estimates. Each time an

optimization sequence is evaluated, the resulting WCET estimate

is stored in the cache. If the same sequence is evaluated again, then

the WCET estimate cached by the first evaluation is used, avoiding

compiling the code and calling the WCET estimation tool.

We observed that when using Random selection of optimization

sequences, the cache has a negligible impact since the probability

wcet (3).png

(a) Evolution of the WCET estimate when only the first x op-
tions are taken (optimization sequence SO1 of size 250).

wcet (2).png

(b) Evolution of the WCET estimate when only the options
from index 150 to 150+x are taken (optimization sequence
SO1 of size 250).

wcet (1).png

(c) Evolution of the WCET estimate when the first x option
are taken (optimization sequence SO3 of size 6000).

Figure 2: Impact of number of optimizations and position
in optimization chain on the WCET estimate. A value of -1
means the analyzer fails to provide a WCET estimate.



Winston: Revisiting iterative compilation for WCET minimization RTNS ’22, June 7–8, 2022, Paris, France

Figure 3: Impact of the cache on Winston

of evaluating the same sequence several times is very low. How-

ever, for the algorithms that may explore over and over the same

solutions, for instance, the Genetic algorithm, it has, on average, on

all benchmarks with a cache of unbounded size, 10% of cache hits.

This 10% of cache hits enlarge the search space of optimizations by

10% and for a fixed number of calls to the WCET estimation tool

allows further WCET estimate reductions.

Figure 3 details how the introduction of a cache impacts the

WCET estimates found byWinston, the iterative compilation al-

gorithm we propose, and detail in Section 4. These experiments

were performed by applying Winston on all benchmarks used in

the evaluation ofWinston, given in Table 1, with a number of calls

to aiT set to 1000, and no limit on the cache size
2
. The figure shows

the histogram of the gain brought by the caching mechanisms on

the WCET estimates for a fixed number of calls to the WCET es-

timation tool (the cache allows a larger exploration of the space

of optimization sequences by avoiding useless WCET estimations.

When there is enough locality in the search (7 experiments out of

42, i.e., 17%), the same sequence is explored several times, and the

WCET estimate is decreased (by up to 25%). When the search does

not have locality, there is no improvement of the WCET estimate

(but also almost no overhead, the time overhead for accessing the

cache is negligible compared to the WCET estimation delay).

Globally, caching optimization sequences WCET estimates help

to reduce the futureWCET estimation, at least for search algorithms

that exhibit some locality in their search.

4 WINSTON: ITERATIVE COMPILATION
WITH LONG OPTIMIZATION SEQUENCES

Winston is inspired by the work presented in [18] which per-

forms iterative compilation with the Nelder–Mead method [20].

The Nelder–Mead technique is a heuristic technique, often used

2
This choice of not limiting the cache size was motivated by the selected number

of calls to the WCET estimation tool aiT (1000), which was low enough to have a

reasonable number of entries in the cache and consequently fast lookup.

in nonlinear optimization problems, that finds the minimum of

an objective function in a multidimensional space. The concept of

simplex in [18] is a geometrical figure consisting of n+1 points in

n-dimensions (in our case a simplex is a sequence of optimization

flags). Through a sequence of geometric transformations (reflec-
tion, expansion, contraction, shrink as defined in [18]), the initial

simplex moves towards minimum and away from maximum. The

idea behind [18] is that the geometric transformations proposed

in the Nelder–Mead technique will give better results than those

of genetic algorithms that use randomly generated values when

performing mutation and cross-over.

Our adaptation of [18] to long optimization sequences inWin-

ston makesWinston very similar to a genetic algorithm [6] that

would only do cross-over operations and no mutation. Indeed, since

we aim at generating large sequences of varied compilation options,

the mutation operator of the genetic algorithm does not seem ap-

propriate to our case because it would have an insignificant impact

in the context of long optimization sequences. In the same way,

trying to understand which option contributes to the lower WCET

estimate like the best algorithm of [7] would be too time-consuming

as there are too many compilation options. Moreover, the idea de-

scribed in [18] was interesting and it seemed to work with a large

sequence of options, it creates new points to explore from previous

ones, and no knowledge is required about them, which is exactly

what we are dealing with.

More precisely,Winston first creates a few random solutions by

choosing a sequence length between 10 and 1000, and then picks

optimization flags within the sequence randomly. The selected

random sequences form the initial pool of known good solutions.

Then, at each iteration,Winston takes two random solutions from

this pool, combines them to create a new one, and similarly to [18]

adds it to the pool if the resulting WCET estimate is lower. The

process of combining two sequences to form a new one executes

one of the following procedures with equal probability:

• Concatenation of two sequences. For instance the concatena-

tion of "-loop-rotate -sink" and "-inline -sink" is "-loop-rotate

-sink -inline -sink", with "-sink" now being duplicated.

• Intersection of two sequences: the result is the first sequence,

where each element that is not on the second sequence is

removed. For instance the intersection of "-loop-rotate -sink"

and "-inline -sink" is "-sink". This can result in an empty

optimization sequence.

• Concatenation of two subsets of two sequences. To pick a

subset of options, we pick two indexes randomly between

0 and the sequence size. For instance the concatenation of

"-loop-rotate -sink" and "-inline -sink" is "-loop-rotate -sink

-sink", or "-sink -inline -sink".

There is no limit on the size of sequences, hence many ones

are explored. We tried to fine-tune the probabilities to select the

combination procedure, but it makes only a tiny difference (or no

difference at all).

Note that similarly to [7] and as shown in the examples above,

an optimization sequence may contain multiple occurrences of the

same optimization flag.
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5 EXPERIMENTAL EVALUATION
Our experimental setup, largely inspired from [7] is presented in

Section 5.1. Section 5.2 then compares theWCET estimates obtained

usingWinston to those obtained by the state-of-the-art iterative

compilation techniques, and details the results on the benchmarks

we have analyzed.

5.1 Experimental setup
Our experimental setup is, unless otherwise stated, the same as in

[7]. The target processor is a 32-bit RISC LEON3 processor, with

separate 16 KB 2-way instruction and data caches. Programs are

compiled with the same compiler as in [7]: LLVM 4.0 for the SPARC

architecture, usingGaisler BCC 2.0.5 implementation [1]. The LLVM

optimizer opt was applied separately, and all its 53 optimizations

passes were used in the experiments.

Timing analysis is carried out by AbsInt aiT [22] version 19

targeting the LEON3 architecture (the version of absInt aiT is there-

fore a slightly more recent version than used in [7]). Similarly to

[7], sequences that make the compiler crash or infinitely loop are

disregarded. The same process as in [7] is used the virtual unrolling
factor used by aiT (see Section 2).

One slight difference with the experimental setup used in [7]

is the introduction of a correctness check of compiled programs.

This check is motivated by the observation that some programs are

compiled successfully but produce incorrect results, probably due

to untested long sequences of optimization passes. The correctness

check is performed by comparing the program’s output with the

one obtained without optimization flags. For the sake of simplicity

and efficiency, we compile the LLVM IR on the processor of the

machine running the experiment, which therefore compiles the

LLVM IR to x86, instead of executing a LEON3 interpreter to get

the output of the program. The correctness check is performed

on the input data provided with the code of the benchmarks. As

further discussed in Section 5.3, this very simple correctness check

does not capture all incorrectly generated code. A more complex

correctness check (targeting LEON3 code and exploring varied

input data) would have to be performed on the solutions with the

lower WCET estimates, in order to remove the ones with incorrect

code (if any). Winston was evaluated on the benchmarks listed in

Table 1. They come from the Mälardalen WCET benchmark suite

as modified for their use in the Heptane static WCET analysis tool

[13], and the Polybench benchmark suite [21] for linear algebra,

physics and statistics. The benchmarks we have evaluated are a

large subset of those used in [7]
3
.

5.2 Experimental results
We now compare Winston to the best algorithm of [7] (named

Cleaning in the original publication), to a Random algorithm operat-

ing on sequences of maximum size 1000, and to a Genetic algorithm
operating with sequences of maximum size 1000. Based on our pre-

liminary findings, Random and Genetic are configured to generate

longer sequences than in [7], in which a maximum sequence length

of 50 was used. The Cleaning algorithm operates on sequences of

3
We manually removed some benchmarks when we found out after the entire experi-

ment that the results were incorrect due to a mistake we made in the logging of the

output of programs

size 50, and Winston, by construction, has no limit on the size

of sequences it manipulates. All algorithms, except the Cleaning
algorithm, have a cache implemented, as previously described in

section 3.2. All techniques iterate until the WCET estimation tool

aiT is called 1000 times.

The results are given in Figure 4, which represents the evolution

of the results of Random, Genetic, Cleaning and Winston over the

1000 iterations. The x-axis of the figure is the number of non-cached

calls to the WCET estimation tool aiT. The y-axis of the figure is

the geometric mean over the benchmarks of the ratio between the

estimated WCET, with the technique under consideration, over

the estimated WCET with the best optimization level applicable

(-O0..-O3). A value lower than 1 therefore means that the estimated

WCET is improved. Only the very first iterations may result in

WCET estimates worst than the best optimization level applicable.

The geometric mean is used as it is employed in [7], and also because

it amplifies the effect of benchmarks where a significant reduction

of the WCET estimate is found.

Figure 4 shows that Winston provides better WCET estimates

than all other algorithms of the state-of-the-art, even better than

a naive random/genetic algorithm that uses a large sequence too.

The fact that both the random and genetic algorithms outperform

the state-of-the-art is due to the use of long sequences. We tried

to test the cleaning algorithm with large sequences to provide a

better comparison but it does not work well as it tries to learn which

options work best, which is unpractical when 1000 options are used,

and it tries to clean the sequence from unnecessary options, which

is also unpractical with large sequences.

The runtime of Winston is very similar to the one reported

in [7] (around 10000 seconds on average on all the benchmarks).

Notwithstanding that some methods have more overhead than

others (especially when it comes to the time-consuming task of

compiling the code with large sequences of options), the WCET

estimation time is always longer than the compilation time, and

computing theWCET estimate in parallel to other operations would

reduce all overheads to a negligible value.

An important remark aboutWinston (that also applies to the

state-of-the-art algorithms Winston is compared with) if that it is

an anytime algorithm: the longer it runs, the better the results. As

shown in Figure 4 major improvements appear with a low number

of iterations in the iterative compilation process. The number of

iterations can then be tuned to match the complexity of the code

under optimization, and make Winston and similar techniques

applicable to real-world code and not only benchmarks.

The detailed results by benchmarks can be found in Figures 5

(for the Mälardalen/Heptane benchmarks) and 6 (for the Polybench

benchmarks). Again in these figures, the x-axis is the number of

non-cached computations of the WCET estimate. Except for a few

benchmarks,Winston provides the lower WCET estimate. More-

over, Winston often significantly reduces it compared to the other

algorithms.

The likeliness for Winston to find a significant improvement

in the WCET estimate varies with the benchmark considered. For

instance, for jacobi-1d one is found approximately 60% of the time

over the 1000 iterations, whereas on small benchmarks, like qurt, it
is way rarer to find a significant reduction of the WCET estimate
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Table 1: Benchmarks used in the experimental evaluation

Collection Benchmarks

Mälardalen/Heptane crc, des, duff, expint, fdct, jfdctint, ludcmp, matmult, ns, nsich-

neu, qurt, statemate

Polybench 2mm, 3mm, adi, atax, bicg, covariance, durbin, fdtd-2d, floyd-

warshall, gemm, gemver, gesummv, heat-3d, jacobi-1d, jacobi-

2d, lu, mvt, symm, syr2k, syrk, trisolv, trmm

Figure 4: Result of Winston, against various algorithms of the state-of-the-art [7]. A geometrical mean over the benchmarks
is used to represent the ratio between the estimatedWCET, with the technique under consideration, over the estimatedWCET
with the best optimization level applicable (-O0..-O3).
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(approximately 5% of the time). Overall the best improvements are

found in the Polybench suite.

These significant improvements are not found for all benchmarks.

For instance, with the covariance benchmark,Winston does not

obtain a significant reduction of the WCET estimate, whereas other

algorithms do.

As a final remark, all algorithms, Winston and all the other

algorithmsWinston is compared with, start with a set of randomly

selected solutions. For this reason, all the algorithms are sensitive

to the set of initial solutions, albeit in a different way. For the sake

of reproducibility, the seed of the random number generator was

set to the same value when evaluating all algorithms, which there-

fore start with the same set of initial solutions. It may happen that

a good solution is found "by chance" because of the initial seed,

minimizing the observed difference between algorithms. We addi-

tionally observed that changing the seed can (although marginally)

change the solution found by each algorithm. A deeper comparison

between the algorithms would require an exploration of the seed

values. Such an exploration is hard to achieve due to the run-time

of iterative compilation (hours for the more complex benchmarks).

5.3 Discussion
Some interesting problems arose with the use of large optimization

sequences. First, the time it takes to compile benchmarks can be

long, and on a few benchmarks it turns out to be much longer than

the time taken by the WCET analysis tool. This could be improved

by parallelizing the overall iterative compilation process (compiling

a benchmark while the WCET analysis is run on another one). But

overall, using large sequences can make the algorithm significantly
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Figure 5: Detailed results per benchmark - Mälardalen/Heptane
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longer to execute, especially for real-world programs where the

compilation is already an expensive process. Because Winston

can sometimes multiply by over 10 the compilation time (due to

the long sequence of options used), it may be impractical to use

Winston for real-world programs where the compilation already

takes a few minutes/hours. In the process of designingWinston

we have experimented the cleaning of optimization sequences after

a number of iterations. We observed that too frequent cleaning

reduces the benefits of using long sequences. Defining the best

frequency of cleaning is left for future work.

Second, we observed that sometimes the compiled code is in-

correct. This is due to bugs in llvm/opt when applying too many

optimizations passes. While it rarely happens with short sequences
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Figure 6: Detailed results per benchmark - Polybench
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of options, it was sufficiently frequent in our experiments to moti-

vate a correctness check of the compiled code. To do so, we compiled

the intermediate code to the assembly code of the host machine

(x86) and executed it on one input: the code prints the result so

we can compare it with the result when no optimization is applied.

The result of this process is sometimes strange. For instance, it can

have a finite WCET estimate, but when executed on our machine,

it has an infinite loop (or an abnormally long execution time). Also,

as already observed in [7], sometimes llvm/opt crashes when it

tries to apply optimization passes. All in all, it seems quite difficult

to be sure of an optimization list that will not break the program.

All sequences resulting in incorrect code are safely ignored in our
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experiments. Generating correct code with complex and long opti-

mization chains looks like an interesting area for future research,

but is outside this paper’s scope.

One interesting observation is that a significant reduction of

WCET estimates happensmainly on the Polybench benchmark suite.

It seems that benchmarks where significant reductions are found,

maybe the ones where polyhedral optimizations find significant

improvements, if so, the more complex the code, the better we can

optimize the WCET. We also tried to lower the virtual unrolling

factor, and significant reductions were no longer found, which may

indicate that the simpler the program the less opportunity for these

significant reductions to be found.

Unsurprisingly, the sequence of options that work best on a

benchmark cannot in general be re-used elsewhere. What works

best for a benchmark does not give a good result to others. The

sequence of options resulting in the lower WCET estimate for

each benchmark is also very different, we could not find obvious

similarities between them, even when looking at cleaned sequences

that contain only 20 to 30 options.

Another situation where this algorithm finds significant reduc-

tion is the qurt example from the Mälardalen benchmark. In this

example, one function calls another one three times, and it seems

the significant reduction of the WCET comes from optimizations

that delete the first two calls, as their results are never used. This

shows that our method discovers compilation sequences that are

able to remove aggressively dead code, whereas traditional compiler

options specialized in dead code elimination are unable to remove

it.

On one instance of the Polybench benchmarks, the way the result

was logged was wrong: only the first element of the result array

was logged instead of the whole array. Our algorithm finds in this

example a sequence of options that safely delete all the code that

was not dealing with this first element. Although, in this example, a

large amount of dead code was introduced by mistake, this situation

shows that our algorithm is able to perform aggressive dead code

elimination, which is a significant improvement over a single -O3
optimization flag that rarely eliminates a large amount of dead code.

6 RELATEDWORK
Iterative compilation techniques aim at minimizing an objective

(most of the time the average-case performance) by searching the

huge space of compilation options as efficiently as possible. To do

so, meta-heuristic algorithms are usually used, which are high-level

heuristics that work well for a wide range of optimization problems

[8]. Therefore, the literature about meta-heuristic algorithms is

very developed, it goes from the genetic algorithm [6, 24] that we

used in this work to more exotic algorithms [4, 18], which inspired

us when we createdWinston. Some of these meta-heuristic algo-

rithms have been used for iterative compilation, for example, the

genetic algorithm in [7], or the algorithm derived from the simplex

method in [18]. Based on our observation that long optimization

sequences significantly reduce WCET estimates, we have designed

Winston, which uses the meta-heuristics well-suited to derive long

optimization chains.

The iterative compilation has been an actively researched topic

for decades [2, 5, 10, 14], however, to the best of our knowledge,

none of these works tried to use a tremendous amount of opti-

mization options. Our work differs from these in the sense that

algorithms described in this paper find optimization sequences that

are impossible to find by hand.

Many techniques have been developed to determine safe and

as precise as possible WCET estimates [26]. While research on

WCET estimation led to a large amount of research, optimizing

code for WCET minimization comparatively received less attention.

Existing techniques for WCET-oriented optimization may optimize

the usage of the memory hierarchy [16, 25] branch predictors [3],

or perform WCET-aware loop transformations [17]. In contrast

to these approaches, we take benefit from the full set of compiler

optimizations from mainstream compilers, designed for average-

case performance, to automatically select the ones that minimize

WCET estimates. The research about iterative compilation and

WCET is reduced to [7, 23]. Our main finding as compared to [7,

23] is that long optimization sequences allow larger reductions of

WCET estimates.

Finally, our method, in opposite to [23], compiles the whole

source code with the same sequence of options instead of using a

different set of options per function. While this reduces the search

space, it may give a better result to use a fine-grain approach, as

options that work best for certain benchmarks do not work for

others, and therefore using a different set of options for a different

part of the code seems appropriate.

7 CONCLUSION
In this work, we have discovered the counter-intuitive observation

that using long sequences of optimization passes helps lowerWCET

estimates. Based on that observation, we designed an algorithm

namedWinston, suited to the generation of long sequences. This

algorithm performs significantly better than [7], allowing a reduc-

tion of WCET estimates of 35% on average, as compared to the 20%

of [7] using the same benchmarks and experimental conditions.

In future work, we will refine Winston to behave more consis-

tently on the benchmarks, as there are still some benchmarks on

which more naive methods perform better than Winston. We will

also consider cleaning optimization sequences to reduce compila-

tion time while not altering the positive impact of long sequences.

Another direction for future work would be to optimize different

portions of the code from a given application using different opti-

mization flags to better adapt the optimization flags to that portion,

with the pitfall of further enlarging the search space. Finally, an

open question we would like to answer is whether large sequences

are useful when the average-case is considered instead of the worst-

case. Answering this question may lead to interesting discoveries

and new algorithms for iterative compilation. .
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