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ABSTRACT
Rust is an emerging programming language that aims to prevent
memory-safety bugs. However, the current design of Rust also
brings side effects which may increase the risk of memory-safety
issues. In particular, it employs OBRM (ownership-based resource
management) and enforces automatic deallocation of unused re-
sources without the garbage collector. It may therefore falsely deal-
locate reclaimed memory and lead to use-after-free or double-free
issues. In this paper, we study the problem of invalid memory deal-
location and propose SafeDrop, a static path-sensitive data-flow
analysis approach to detect such bugs. Our approach analyzes each
API of a Rust crate iteratively by traversing the control-flow graph
and extracting all aliases of each data-flow. To guarantee preci-
sion and scalability, we leverage a modified Tarjan algorithm to
achieve scalable path-sensitive analysis, and a cache-based strat-
egy to achieve efficient inter-procedural analysis. Our experiment
results show that our approach can successfully detect all existing
CVEs of such issues with a limited number of false positives. The
analysis overhead ranges from 1.0% to 110.7% in comparison with
the original compilation time. We further apply our tool to several
real-world Rust crates and find 8 Rust crates involved with invalid
memory deallocation issues.
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1 INTRODUCTION
Rust is an emerging programming language with attractive features
for memory-safety protection yet providing comparative efficiency
as C/C++. It achieves the goal by dividing Rust programming lan-
guage into safe Rust and unsafe Rust. The boundary is an ‘unsafe’
marker that confines the risks of memory-safety issues (e.g., deref-
erencing raw pointers) within unsafe code only [6]. In a narrow
sense, Rust guarantees the soundness of safe Rust with no risks
of introducing memory-safety issues [5]. Due to these advantages,
many real-world projects start to embrace Rust, such as Servo [3]
and TockOS [22]. Although the feedback of Rust’s effectiveness in
preventing memory-safety bugs is positive, there still exist large
amounts of such bugs in real-world projects [10, 28, 33].

This work studies a specific type of memory-safety bugs found
in real-world Rust crates (projects) related to RAII (resource acqui-
sition is initialization). In particular, Rust employs a novel OBRM
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(ownership-based resource management) model, which assumes
the resource should be allocated when creating an owner and deal-
located once its owner goes out of the valid scope. Ideally, this
model should be able to prevent dangling pointers [7] and memory
leakages [21], even when a program encounters exceptions. How-
ever, we observe that many critical bugs of real-world Rust crates
are associated with such automatic deallocation scheme, e.g., it may
falsely drop some buffers that are still being used and incur use-
after-free bugs (e.g., CVE-2019-16140), or may falsely drop dangling
pointers and cause double free (e.g., CVE-2019-16144).

In general, memory deallocation bugs are triggered by unsafe
code. Unsafe APIs are necessary in Rust to provide the low-level
control and abstraction over implementation details [10]. However,
misusing unsafe APIs can invalidate the soundness of ownership-
based resource management system and may cause undefined be-
haviors. For example, an unsafe API may lead to memory reclaim
of shared aliases and dropping one instance would incur dangling
pointers for the remaining aliases [12]. Moreover, the interior un-
safe [28] in Rust, allowing a function that has unsafe code only
in internal and can be called as safe function, may have potential
memory-safety issues inside. The current Rust compiler has done
little regarding the memory-safety risks of unsafe code but simply
assumes developers should be responsible for employing them. As
memory-safety is the most important feature promoted by Rust,
reducing such risks is exceedingly important if possible.

To tackle the problem, this paper proposes SafeDrop, a static
path-sensitive data-flow analysis approach for detecting memory-
safety bugs due to the automatic deallocation mechanism. Safe-
Drop analyzes each API of a Rust crate iteratively and scrutinizes
whether each drop statement in Rust MIR (mid-level intermediate
representation) is safe to launch. Since the underlying problem
of alias analysis is NP-hard if it could be decidable [19], we have
adopted several designs to improve the scalability of our approach
while not sacrificing much precision. Our approach adopts a meet-
over-paths (MOP) [1] method and extracts all valuable paths of
each function based on a modified Tarjan algorithm [11], which
is effective to eliminate redundant paths in cycles with identical
alias relationships. For each path, we extract the sets of all aliases
in a flow-sensitive manner and analyze the safety of each drop
statement accordingly. When encountering function calls, we re-
cursively perform SafeDrop on the callee, and analyze the alias
relations between arguments and return value. To avoid duplicated
analysis, we cache and reuse the obtained aliasing result of each
function.

We have implemented our approach as a query (pass) of Rust
compiler v1.52 and conducted real-world experiments on existing
CVEs of such types. Experimental results show that SafeDrop can
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successfully recall all these bugs with a limited number of false
positives. The analysis overhead ranges from 1.0% to 110.7% in
comparison with the original compilation time. We further apply
SafeDrop to several other Rust crates and find 8 crates that have
invalid memory deallocation issues previously unknown.

We summarize the contribution of this paper as follows.
• Our paper serves as the first attempt to study memory deallo-
cation bugs of Rust programs related to the side effect of RAII.
We systematically discuss the problem and extract several
common patterns of such bugs. Although our work focuses
on Rust, the problem may also exist in other programming
languages with RAII.
• We have designed and implemented a novel path-sensitive
data-flow analysis approach for detecting memory deallo-
cation bugs. It employs several careful designs in order to
be scalable while not sacrificing much precision, including a
modified Tarjan algorithm for path-sensitive analysis and a
cache-based strategy for inter-procedural analysis.
• We have conducted real-world experiments with existing
Rust CVEs and verified the effectiveness and efficiency of
our approach. Moreover, we find 8 Rust crates involved with
invalid memory deallocation issues previously unknown.

2 PRELIMINARIES
This section presents the background of the problem, including the
memory management model of Rust, the basics of Rust compiler
and the borrow checker of Rust as well as its limitations.

2.1 Memory Management of Rust
Rust introduces a novel ownership-based resource management
system to manage memory, and this model assumes each variable
has exclusive ownership for its allocatedmemory. Ownership can be
borrowed as references in eithermutable or immutablemanner with
several restrictions (lifetime rules). It requires that reference cannot
outlive its referent and the mutable reference cannot be aliased.
Rust also provides the traditional raw pointers alike references
without previous requirements. However, any operations of raw
pointers that may violate the memory-safety are deemed as unsafe
and need to be wrapped with the ‘unsafe’ marker e.g., dereferencing
raw pointers.

In type system, Rust divides types into two mutex kind of trait:
Copy trait for stack-only data and Drop trait [14] for others. These
traits are important to manage memory and determine how Rust
processing rvalues to generate lvalues in assignments, as well as
parameter passing and value returning. If the rvalue has Copy trait,
Rust will duplicate (copy) it in the stack and the older variable is
still usable. Otherwise, it will transfer (move) the ownership from
rvalue to lvalue and the older variable is no longer available.

The memory management idea of Rust shares many similarities
with the intelligent pointers of C++, and it benefits Rust in realizing
automatic RAII, i.e., resources are bounded with valid scopes [29].
In particular, each drop-trait variable or temporary is associated
with a fixed drop scope1. When an initialized variable or temporary
goes out of the drop scope, the destructor will recursively drop its
fields in order.
1https://doc.rust-lang.org/reference/destructors.html
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Figure 1: Procedures of the Rust compiler.

Because Rust intentionally manages the ownership of each drop-
trait instance at each program point, it can free unused resources
without garbage collection by automatically running their destruc-
tors once control-flow leaves the drop scope.

2.2 Basics of Rust Compiler
Rust compiler defines a query system to perform demand-driven
compilation, which is different from traditional pass-based sys-
tems [31]. Figure 1 presents several main steps for compiling Rust
programs, and the key design for detecting memory-safety viola-
tions is based on MIR. The syntax of MIR is in SSA (single static
assignment) form, which is similar to the traditional LLVM IR (inter-
mediate representation) [20]. For simplicity, Listing 1 presents the
unique syntax of Rust MIR that lays the foundation for achieving
ownership-based resource management, and the full syntax system
is available in rfcs#12112.

According to the syntax, a basic block is composed of several
statements and a single terminator. The statements mainly consist
of three forms: assignment, storage-live statement, and storage-
dead statement. The assignment assigns the value of RValue to
LValue in different ways. In particular, move LValue means trans-
ferring the ownership of LValue to RValue; & mut LValue means
borrowing LValue as a mutable reference; and * LValuemeans cre-
ating an immutable raw pointer towards LValue. The storage-live
statement and storage-dead statement respectively represent the
start and the end of a live range for the storage of a variable. The ter-
minator of each basic block describes how it connects to subsequent
blocks. Drop(Value, BB0, BB1)means invoking the destructor of
Value once Value goes out of its drop scope. To achieve automatic
resource deallocation when encountering exceptions, the termina-
tors that may incur exceptions are common in Rust MIR, i.e., an
extra exception handling block BB1 is added for taking over the
stack unwinding process. In particular, SwitchInt() is a special
terminator that we will discuss in Section 4.

2.3 Borrow Checker of Rust
Rust MIR introduces a borrow (reference) checker based on lifetime
inference. Non-lexical lifetime (NLL) can save much programmers’
effort for tediously specifying the lifetime in a fine-grained manner

2https://rust-lang.github.io/rfcs/1211-mir.html
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Listing 1: Core syntax of Rust MIR.
BasicBlock := {Statement} Terminator

Statement := LValue = RValue | StorageLive(Value)

| StorageDead(Value) | ...

LValue := LValue | LValue.f | *LValue | ...

RValue := LValue | move LValue

| & LValue | & mut LValue

| * LValue | * mut LValue

| ...

Terminator := Goto(BB) | Panic(BB)

| Return | Resume | Abort

| If(Value, BB0, BB1)

| LVALUE = (FnCall, BB0, BB1)

| Drop(Value, BB0, BB1)

| SwitchInt(Value, BB0, BB1, BB2, ...)

| ...

and it determines whether a reference is valid to use. The mecha-
nism is officially documented in rfcs#20943, and we highlight the
key idea as below. NLL extracts a set of constraints based on the
considerations of liveness, subtyping, and reborrowing require-
ments. Liveness constraint means a reference should be valid from
declaration to last use; subtyping constraint means the lifetime
of a reference should not exceed its referent; reborrow constraint
means the lifetime of a reference, that is created from the instance
by dereferencing other references, should not exceed its referent.
Rust compiler then solves the constraints established by NLL and
computes the minimal lifetime of each reference via fixed-point
iteration. In this way, it can generate an optimized solution. Thus,
the borrow checker can detect memory-safety violations that are
infringing the lifetime rules previously made for references, i.e.,
the reference outlives its referent. Based on these information, the
safety of references can be guaranteed in Rust compiler.

2.4 Soundness Limitations of Rust Compiler
Now, we introduce the memory management model and the borrow
checker in Rust. As shown in Figure 1, Rust compiler strips ‘unsafe’
markers before lowering the code to MIR, thus the borrow checker
is valid for both safe Rust and unsafe Rust. However, this system
exists several drawbacks. The sound lifetime inference and bor-
row checker ensure the safety of references only. Any unsafe code
interacted with raw pointers can breach the safety promise and
may lead to memory reclaim. Moreover, the memory management
model cannot discriminate the alias relationship between multiple
drop-trait instances, because it only associates every instance with
a fixed drop scope. Since there is no such algorithm for ensuring
the safety of raw pointers and memory reclaim, this is the primary
reason that leads to the memory deallocation bugs studied in this
paper.

3 PROBLEM STATEMENT
3.1 Motivating Example

Rust enforces RAII and releases unused resources automatically.
In practice, this mechanism may falsely drop some buffers and
is prone to memory-safety issues. Based on the occurrence of a
buggy Drop() terminator, we categorize such problems into two
3https://rust-lang.github.io/rfcs/2094-nll.html

situations: invalid drop in normal execution path and invalid drop
in exception handling path.

3.1.1 Invalid Drop of Normal Execution. Such a bug happens
if the culpriting Drop() terminator locates in a normal execution
path, and the parameter of Drop() is not safe to launch. We use
Figure 2a as a proof-of-concept (PoC) example to demonstrate such
cases.

The genvec() function is an interior unsafe constructor that
creates vector v based on a raw pointer ptr. In this PoC, the string
s and the vector v are sharing the same memory space. After the
automatic deallocation of the string, the vector will contain a dan-
gling pointer pointing to the released buffer, and using this vector
later in the main function will incur use-after-free. As long as the
vector is no longer used and the control-flow goes out of its drop
scope, it will be dropped automatically and incur double free. There
are many such bugs found in practice, such as CVE-2019-16140,
which is use-after-free, and CVE-2018-20996 and CVE-2019-16144,
which are double free.

Figure 2b shows the equivalent description in MIR syntax. _1 in
bb0 creates a new string and the returned vector _0 in bb5 is created
based on _1with an alias propagation chain 1->5->4->3->2->8->0.
Therefore, _0 contains an alias pointer of _1. Namely, dropping _1
incurs dangling pointers of _0 and dropping _0 later in the main
function incurs double free.

Why cannot borrow checker add the support for raw pointers
to detect such issues? The problem lies in the trade-off design for
dealing with function calls. For example, _2 is created by calling
deref_mut(move _5), and its parameter _5 is a mutable alias of
_1. For simplicity, Rust assumes that each parameter should either
transfer its ownership to the callee for the drop-trait variable or
duplicate a deep copy for the copy-trait variable, and the return
value would no longer share the ownership with the alive variables
remained. Such assumptions save the borrow checker from the com-
plex inter-procedural analysis. As a trade-off, it leaves the holes
for raw pointers in unsafe Rust. Note that from_raw_parts() is
an unsafe function, and it is the culprit that leads to the memory
reclaim in this example. However, the ‘unsafe’ marker has been
stripped away after lowering the code to MIR, and the Rust com-
piler cannot differentiate the safety boundary anymore. Moreover,
the current Rust compiler does not add the alias checking support
for raw pointers and not to mention a more complex data struc-
ture. Therefore, the problem cannot be fixed easily in the current
framework.

3.1.2 Invalid Drop of ExceptionHandling. In some real-world
bugs, memory deallocation issues only exist in the exception han-
dling path, as the program panics and enters into the unwinding
process. For example, CVE-2019-16880 and CVE-2019-16881 have
double-free issues if the program panics; CVE-2019-15552 and CVE-
2019-15553 may drop uninitialized memory in exception handling.
Figure 2 presents this PoC to demonstrate the problem.

Suppose developers have fixed the bug by adding mem::forget()
to the code in Figure 2a which prevents drop(_1) in bb6 in Fig-
ure 2b. They may also add more statements (e.g., retrieving the con-
tent of the vector) between creating v and calling mem::forget().
In this way, these additional statements are still vulnerable pro-
gram points. If the program panics in these points, according to
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fn genvec() -> Vec<u8> {

let mut s = String::from("a␣tmp␣string");

let ptr = s.as_mut_ptr();

let v;

unsafe{

v = Vec::from_raw_parts(

ptr, s.len(), s.len());

}

// mem::forget(s); // do not drop s

// otherwise, s is dropped before return

return v;

}

fn main() {

let v = genvec();

// use v -> use after free

// drop v before return -> double free

}

(a) Source code of dropping aliases.

_1 = <String as From<&str>>::from(const "a_tmp_string") -> bb1;bb0:

_5 = &mut _1;
_4 = <String as DerefMut>::deref_mut(move _5) -> [return: bb2, unwind: bb9];bb1:

_3 = &mut (*_4);
_2 = core::str::<impl str>::as_mut_ptr(move _3) -> [return: bb3, unwind: bb9];bb2:

_8 = _2;
_10 = &_1;
_9 = String::len(move _10) -> [return: bb4, unwind: bb9];

bb3:

Real-world Programs could have more code here, and it may panic the program.

_12 = &_1;
_11 = String::len(move _12) -> [return: bb5, unwind: bb9];bb4:

_0 = Vec::<u8>::from_raw_parts(move _8, move _9, move _11) -> [return: bb6, unwind: bb9];bb5:

drop(_1) ->  bb7; // calling mem::forget(s) can remove this drop statementbb6:

return;bb7:

drop(_1) -> bb10;

drop(_0) -> bb9;

resume;
bb10:

bb9:

bb8:

Invalid Drop of 
Exception Handling

Invalid Drop of 
Normal Execution

drop(_0)

main:

(b) MIR form and CFG of Figure 2a.

struct Foo{

vec : Vec<i32>,

}

impl Foo {

pub unsafe fn read_from(src: &mut Read) -> Foo{

let mut foo = mem::uninitialized::<Foo>();

let s = slice::from_raw_parts_mut(

&mut foo as *mut _ as *mut u8,

mem::size_of::<Foo>());

src.read_exact(s);

foo

}

}

(c) Source code of dropping uninitialized memory.

_0 = const std::mem::uninitialized::<Foo>() -> bb2;bb0:

_6 = &mut _0;
_5 = &raw mut (*_6);
_4 = _5;
_3 = move _4 as *mut u8 (Misc);
_7 = const std::mem::size_of::<Foo>() -> [return: bb3, unwind: bb4];

bb2:

_2 = const std::slice::from_raw_parts_mut::<u8>(move _3, move _7)
-> [return: bb5, unwind: bb4];bb3:

_9 = &mut (*_1);
_10 = &mut (*_2);
_8 = const <dyn std::io::Read as std::io::Read>::read_exact(move _9, move _10)
-> [return: bb6, unwind: bb4];   // panic before the buffer has been fully initialized

bb5:

drop(_8) -> [return: bb7, unwind: bb4];bb6:

return;bb7:

drop(_0) -> bb1;

resume;

bb1:

bb4:

Invalid Drop of 
Exception Handling

(d) MIR form and CFG of Figure 2c.

Figure 2: Motivating example of memory-safety issues incurred by automatic deallocation.

the principle of RAII, Rust should deallocate resources during stack
unwinding by continuously calling Drop(). Due to the existance of
aliasing drop-trait instances, dropping these variables would lead
to double free issues. Moreover, mem::forget(s) takes the entire
ownership of the string s, it is generally used as late as possible so
that other statements can still use the string.

Likewise, dropping uninitialized memory is also a popular issue
during exception handling. Figure 2c and 2d demonstrate a PoC
that applies an uninitialized buffer first and initializes it afterwards.
However, if the program panics before the buffer has been fully
initialized, the stack unwinding process would drop those unini-
tialized memory, which is similar to use-after-free if the buffer has
pointers.

3.2 Problem Definition
We formalize the problem as follows. Supposing a programming
language supporting RAII would automatically deallocate unused
memory based on some static strategies. Due to the limitations of

static analysis, such deallocations may cause memory-safety bugs.
In particular, there are two types of invalid memory deallocations.

Definition 3.1 (Dropping buffers in use). If the algorithm falsely
deallocates some buffers that will be accessed later, it would incur
dangling pointers that are vulnerable to memory-safety issues,
including use-after-free and double-free.

Definition 3.2 (Dropping invalid pointers). If the invalid pointer
is dangling, dropping the pointer would incur double free; if the in-
valid pointer points to an uninitialized memory containing pointer
types, dropping the pointer may drop its nested pointers recursively
and incur invalid memory access.

The problem of invalid drop should be a common issue for pro-
gramming languages that enforce RAII, such as C++ and Rust. How-
ever, it is more severe in Rust due to two reasons. Firstly, Rust
emphasizes much more on memory safety, and such security issues
are less tolerable. Secondly, since Rust has no garbage collector,
it is very aggressive in resource recycling and memory-leakage
prevention.
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Listing 2: Typical patterns checked for invalidmemory deal-
location in SafeDrop. (UAF: use after free; DF: double free;
IMA: invalid memory access)
Pattern 1: GetPtr() -> UnsafeConstruct() -> Drop() -> Use() => UAF

Pattern 2: GetPtr() -> UnsafeConstruct() -> Drop() -> Drop() => DF

Pattern 3: GetPtr() -> Drop() -> UnsafeConstruct() -> Use() => UAF

Pattern 4: GetPtr() -> Drop() -> UnsafeConstruct() -> Drop() => DF

Pattern 5: GetPtr() -> Drop() -> Use() => UAF

Pattern 6: Uninitialized() -> Use() => IMA

Pattern 7: Uninitialized() -> Drop() => IMA

Functions

Fn1 MIR

Fn2 MIR ···

SafeDrop

Path Extraction

Alias Analysis

Invalid Drop
Detection

Source Code

Rust Complier

MIR Forms

Dangling 
Pointer

Use After Free

Double Free

Warning Info

Invalid Memory 
Access

Input Output

Cached
Callee Alias

Cached
Rule Flags

Figure 3: Overall framework of SafeDrop.

3.3 Typical Patterns
We illustrate several typical patterns of such bugs. Note that

since the data-flow approaches for normal execution paths and
exception handling paths are similar, we do not further differen-
tiate them in these patterns. Listing 2 summarizes 7 typical pat-
terns of invalid memory deallocation from the view of statement
sequences. Pattern 1 and pattern 2 corresponds to our PoC of Fig-
ure 2b that incurs use-after-free (UAF) or double-free (DF). We
employ GetPtr() as a general representation for obtaining a raw
pointer to a drop-trait instance, and employ UnsafeConstruct()
to denote unsafe function calls for constructing new aliasing in-
stances (e.g., from_raw_part()). Pattern 3 and pattern 4 are similar
but switch the order of UnsafeConstruct() and Drop(). Pattern 5
has no UnsafeConstruct() but uses the dangling pointer directly
and incurs use-after-free. Pattern 6 and pattern 7 correspond to
our PoC of Figure 2d that relates to uninitialized memory. We em-
ploy Uninitialized() to represent the constructor of drop-trait
instance without initialization. Either using uninitialized memory
or dropping it directly would be vulnerable to invalid memory
access (IMA).

4 APPROACH
In this section, we describe our approach for detecting invalid
memory deallocation problems described in Section 3.

4.1 Overall Framework
We tackle the problem with a path-sensitive data-flow analysis ap-
proach and integrate it into the compiler, named SafeDrop. Figure 3
overviews the framework of our approach. It inputs the MIR of
each function and outputs warnings of potential invalid memory

deallocation issues along with the buggy code snippets. We discuss
the key steps of SafeDrop as follows.
• PathExtraction: SafeDrop adopts ameet-over-pathsmethod
to achieve path-sensitivity. Since the paths of a function
could be infinite, we employ a novel method based on Tarjan
algorithm to merge redundant paths and generate the span-
ning tree. This step traverses this tree and finally enumerates
all valuable paths.
• Alias Analysis: SafeDrop is field-sensitive. This step ana-
lyzes the alias relationship among the variables and the fields
of the composite types for each data-flow. SafeDrop is also
inter-procedural with context-insensitivity. It caches and
reuses the obtained alias relationships of the callees between
return value and arguments.
• Invalid DropDetection: Based on the alias sets established
before, this step searches vulnerable drop patterns for each
data-flow and records the suspicious code snippets.

In the following subsections, we will expand these steps by ex-
plaining more details.

4.2 Path Extraction
SafeDrop adopts a meet-over-paths method to improve the preci-
sion rather than using the traditional semi-lattice scheme [15]. It
traverses the control-flow graph of a function and enumerates all
valuable paths. In SafeDrop, the concept of a valuable path has two
criteria: 1) a valuable path should be a unique set of code blocks
with a start node (function entrance) and an exit node, and 2) the
set of a valuable path should not be the subset of any other valuable
paths. If there are conflicting paths for the second criterion, we only
select the path with more unique blocks. In this way, we do not have
to traverse over cycles repeatedly but only need to consider the
maximum set of cycled blocks (as a strongly connected component).
The validity can be self-explained according to the alias analysis
rules for the code of SSA form [2].

Our approach leverages a modified Tarjan algorithm [11] to re-
move the redundant paths. The details of the main algorithm can be
found in Algorithm 1. The algorithm firstly uses a modified Trajan
algorithm to generate a spanning tree of the graph (line 1-6) and
then traverses this spanning tree to access all valuable paths (line
7). The traditional Tarjan algorithm is used to decompose strongly
connected components (SCC) of the graph and removes the cycle
succinctly (line 2). Therefore, SafeDrop can shrink the strongly
connected components into points and generate a spanning tree of
this graph (line 3). Ideally, the spanning tree enumerates all valu-
able paths without repeated traversal over cycles. However, such a
coarse-grained approach may lead to incorrect analysis results due
to some particular Rust statements. For example, Rust introduces
a critical design towards the enumeration types that makes the
traditional Tarjan algorithm less accurate, thus we should make
some modifications. Figure 4 demonstrates such an exceptional case
and our corresponding solution.

To elaborate, Figure 4 employs a specific kind of terminator
SwitchInt(), which is the culprit. The parameter of SwitchInt()
is an enumeration, and the variants of the enumeration determine
the control-flow e.g., node 3 in Figure 4a. After shrinking SCCs into
points, the branches connected with SwitchInt() in Figure 4a are
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(a) Control-flow graph example with SwitchInt() terminator.
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(b) The final spanning tree generated for Figure 4a.

Figure 4: An example of the SwitchInt() control-flow and the final-generated spanning tree by usingmodified Tarjan algorithm.
Variant A and variant B are themutex variants towards the same enumeration and the terminator of node 3 is SwitchInt(). The
final-generated spanning tree prunes the unreachable branches and establishes the independent branch for different variants
while not affecting other kinds of terminators.

Algorithm 1:Main Algorithm of SafeDrop.

Data: cfg: the control-flow graph of the analyzing function;
data: the struct of the entire storage data in SafeDrop
including alias relationships, type filter and taint sets;
res: the analysis results of the invalid drop detection
flags and the alias relationship between arguments
and return value;

1 res← false;
2 sccs← Tarjan(cfg); // extract all strongly

connected components based on Tarjan algorithm

3 st← GenerateTree(cfg, sccs); // derive spanning

tree

4 foreach node in st do
5 if st.ContainsConflict(node) then
6 st← ResolveConflict(st, node);

7 Traverse(data, res, st.root);
8 PrintWarning(res); // output the warnings

9 Cache(res); // cache the result

/* recursive traversal over the spanning tree */

10 Function Traverse(data, res, node)
11 AnalyzeAlias(data, node); // in section 4.3

12 DetectUnsafeDrop(data, node); // in section 4.4

13 children← GetChildren(node);
14 if children.IsNone() then
15 Merge(res); /* meet over paths */

16 return

17 foreach child in children do
18 Traverse(data, res, child); // backup - recover

mutually exclusive, as variant A and variant B are mutex. SafeDrop
therefore pinpoints the successive𝑘 SwitchInt() towards the same
enumeration parameters which contains 𝑛 possible variants (line
5), and then enumerate each variant once for all terminators to
resolvemutex conflict (line 4-6). It prunes the unreachable paths and
constructs independent paths for different variants (upper branch
of node 1 in Figure 4b) without affecting other terminators (inferior
branch of node 1 in Figure 4b). This method finally reduces the time
complexity from 𝑂 (𝑛𝑘 ) to 𝑂 (𝑛) in this issue.

The traversal over the spanning tree will extract all valuable
paths for SafeDrop. Since SafeDrop achieves a meet-over-paths
scheme, it distributes the independent traversal state for each path.
It backs up the state when meeting multi-branch nodes, and the
state will be recovered when returning from the recursion (line
18). This operation promises the consistency of the traversal state
when facing branches. Although we leverage a modified Tarjan
algorithm to remove the redundant path, the path explosion is not
fully inevitable. The unsettled path explosion is mainly generated
from the nested conditional statements rather than cycles, so we
set a large threshold value for it. If the counter exceeds the upper
limit, SafeDrop will perform the traditional semi-lattice scheme
and this is a trade-off between the precision and the speed.

4.3 Alias Analysis
SafeDrop performs alias analysis for each path and establishes the
alias sets for each program point (line 11). In this subsection, we
first discuss the basic rules for alias analysis and then present how
we perform inter-procedural alias analysis.

4.3.1 Basic Rules for Alias Analysis. Not all aliases are our in-
terest. Since memory deallocation bugs are generally triggered by
Drop trait, SafeDrop introduces a type filter to skip the analysis
towards the Copy trait (stack-only) variables and omit to analyze
the statements with the filtered types. Listing 3 extracts irrelevant
types that can be ignored in this procedure. The Rust primitives
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Listing 3: The type filter in alias analysis. The composite
types with an asterisk will be filtered if and only if all their
fields are filtered in a recursive manner and these types
should implement Copy trait at the same time.

Value := Type::Bool : The primitive boolean type.

| := Type::Char : The primitive character type.

| := Type::Int : The primitive signed-integer type.

| := Type::UInt : The primitive unsigned-integer type.

| := Type::Float : The primitive floating-point type.

| := Type::Array *: The homogeneous product types.

| := Type::Structure *: The named product types.

| := Type::Tuple *: The anonymous product types.

| := Type::Enumeration *: The tagged union types.

| := Type::Union *: The untagged union types.

Listing 4: The criteria of alias relationship and the match-
ing operations to RValue in assignments. SafeDrop adopts a
zero-overhead design for Move assignment because it will
transfer the ownership of RValue as well as the alias re-
lationship. SafeDrop constructs a map towards variables
(fields) before analysis and transfers the map from RValue
to LValue when meeting Move assignments.

LValue := Use::Copy(RValue) => e.g. _2 = _1 Use Copy Trait

| := Use::Move(RValue) * => e.g. _2 = move _1 Use Drop Trait

| := Cast::Copy(RValue) => e.g. _2 = _1 as i32 Cast Types

| := Cast::Move(RValue) * => e.g. _2 = move _1 as i32

| := Ref(RValue) => e.g. _2 = &mut _1 Create Reference

| := AddressOf(RValue) => e.g. _2 = *mut _1 Create Raw Pointer

which are Copy trait would be simply filtered i.e. i32. As an excep-
tion, it deletes slice, reference and raw pointer types in the filter
due to their precise transmission of alias relationship, even if they
are Copy trait. SafeDrop expands the filter to the composite types
and checks each field recursively i.e. Box<T>. For each composite
type, it will be filtered as long as all its components are checked as
filtered and it should implement Copy trait at the same time.

Listing 4 summarizes 5 kinds of statements that contribute to
alias relationships. These statements are assignments with the dif-
ferent operations to RValue. After applying the type filter to the
variables, the matching statements would establish the alias rela-
tionship for RValue and LValue. In SafeDrop, we use union-find
disjoint sets to store the alias relationship. Set A and set B will be
merged if one element in set A has an alias relationship with the
element in set B. We provide an example of this alias establish-
ment. If both LValue and RValue in an assignment are not filtered
and the assignment matches the form of LValue:= Ref(RValue),
SafeDrop would establish the alias relationship and merge the sets.

SafeDrop is also a field-sensitive approach because the field-
insensitive strategy will incur a bunch of false positives into Safe-
Drop. Since it applies the union-find disjoint sets to represent the
alias relationship, it is far less accurate and is prone to merge irrele-
vant sets if we consider the whole composite-type variable as a unit
instead of splitting its fields. Therefore, SafeDrop identifies whether
LValue and RValue in one assignment is a field of a composite-type
variable and establishes the alias set for the field independently.
This method is also valid for parameter passing and value returning
in the inter-procedural alias analysis as follows.

4.3.2 Inter-Procedural Alias Analysis. The basic rules for alias
analysis is an intro-procedural approach. It analyzes each statement
flow-sensitively and stores the alias relationships as disjoint sets
for each program point. However, this analysis could be unsound
due to function calls. If a path contains function calls, we should
perform inter-procedural analysis to obtain the alias relationship
between parameters and return value.

Callee Analysis. The call chain of a program is embedded in the
terminator of each basic block, containing parameters, return value,
and the internal callee ID. As the arrival of a function call, SafeDrop
invokes a query to ask the compiler for the final-optimized MIR of
the callee through its internal ID. SafeDrop then traverses this MIR
and establishes the alias sets for its variables. The alias analysis
of callee finally returns a result containing the alias relationship
between arguments and return value to its caller.

Recursion Refinement. SafeDrop adopts a fixed-point itera-
tion method to solve the recursive invocation problem. It maintains
a call stack to ensure the rule that each function ID can only appear
once in this stack. As a function first arriving and pushing its ID
into the call stack, SafeDrop will set default alias relationship (false)
between return value and arguments, and abort to prevent infinite
recursion. Considering the recursive invocation would generally
exit and the alias relationship may change at the same time, the
analyzer should re-execute SafeDrop to the function in the stack
with the updated alias results until the final alias relationship is
reaching the fixed-point.

Cache Refinement. Since SafeDrop is a meet-over-paths ap-
proach, the alias result between arguments and return value is the
union of all valuable paths (line 15). Namely, one argument has
the alias relationship with the return value as long as it has such a
relationship at least one path. SafeDrop only needs to analyze once
towards the given function. After traversing the function for the
first time, the analysis result will be cached into the hash table (line
9), and the analyzer can get the result directly when encountering
this function again.

4.4 Rules for Invalid Drop Detection
The safety of one deallocation generally depends on the alias sets.
For each path, SafeDrop detects each memory deallocation flow-
sensitively to confirm whether it would incur memory-safety issues
(line 12). If a memory deallocation bug is detected, SafeDrop will
record the kind of this issue as well as the related source code, then
merge the result at the end of the path (line 15).

SafeDrop maintains a taint set to record the deallocated buffers,
as well as returned dangling pointers. It adds the dropping variable
into the taint set and marks it as the taint source when finding
Drop() in the terminator. As for a composite-type variable, Safe-
Drop will add each drop-trait field into the taint set rather than
the entire variable. The taint source propagates in the alias set and
pollutes other aliases. SafeDrop then iteratively checks the alias
relationship between the using variable and all elements in the
taint set at each program point. As an exception, we insert the vari-
able constructed from uninitialized() to taint set as the time of
declaration, and remove this variable if it is initialized later.

According to the typical patterns in section 3, we summarize
four rules for the memory-safety issues caused by invalid memory
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Figure 5: A corner case example of renewing after dropping
in cycle. The refinement of such issue regards the dealloc-
tion in node 10 as a safe drop in the path 1-(2-3-4-5-6-7-8-9)-
10.

deallocation, and all of these rules would be applied for normal
execution and exception handling path as follows.

• Use After Free: The taint set contains the alias of the using
variable in a statement or passing this variable to a function.
• Double Free: The taint set contains the alias of the dropping
variable in a Drop() terminator.
• Invalid Memory Access: The taint set contains an unini-
tialized variable at the time of using and dropping.
• Dangling Pointer: The taint set contains the alias of the
returned pointer. Although it loses the using context, this
pointer is actually buggy and highly unsafe to use.

SafeDrop employs independent flags for these rules. The true
flag means the existence of the specific memory-safety issue inside
this function. These flags are cached into the hash table as part of
the analysis result after the inter-procedural analysis (line 9). For
each path, these flags will be merged as well as the alias relationship
between arguments and return value, when SafeDrop completes
the traversing over the selected path (line 15).

4.5 Corner Case Handling
The modified Tarjan algorithm generates a spanning tree to extract
valuable path that removes the redundant traversal over cycles.
However, there exists one kind of corner case that introduces a
bunch of false positives and we use Figure 5 as an example. In
Figure 5, _1 is initialized and dropped in SCC (2-3-4-5-6-7-8-9).
The deallocation of node 10 in the path 1-2-3-4-5-6-10 is safe, and
is regarded as an invalid drop in path 1-(2-3-4-5-6-7-8-9)-10. The
second path is indeed a false positive due to _1 is renewed in node 4,
but we omit traversing twice from node 2 to node 6. Thus we make
the refinement that SafeDrop records the definition block of the
variables and verifies whether the branch targeted to the repeated
drop towards the same variable is between the definition block and
deallocation block in SCC. The correctness of the refinement is
based on the monotonic property of the alias relationship merging
in alias analysis.

5 EVALUATION
5.1 Implementation
We implement our approach as a query in Rust MIR considering
that MIR desugars most of Rust’s surface representation, leaving
a simpler form for type-checking, translation, and safety analysis.
This query will be invoked after running all optimization passes in
MIR and can be triggered as needed during compilation to check
the whole functions in each crate. SafeDrop is integrated into the
Rust compiler v1.52 and can be used by the command line tools
such as rustc and cargo.

5.2 Experimental Setup
This section presents our experimental setting for evaluating the
effectiveness, applicability and efficiency of SafeDrop. Specifically,
we focus on the questions as follows.

RQ1: Can SafeDrop recall existing CVEs of such memory deal-
location bugs? How many false positives incurred?

RQ2: Is SafeDrop applicable for helping users to alert memory
deallocation bugs? Is the number of warning manageable?

RQ3: How much overhead does SafeDrop introduce and slow
down the compilation process?

To answer RQ1, we collect a dataset with all related CVEs for
evaluation [33], including 2 use-after-free issues, 3 double-free
issues, and 4 invalid memory access issues. These 9 CVEs are from
8 different Rust crates.

To answer RQ2, we evaluate 24 real-world Rust crates from
GitHub and apply SafeDrop to find invalid memory deallocation
issues.

To answer RQ3, we measure the compilation time of the CVE
crates with SafeDrop and calculate the overhead compared with
the original compiler.

Our experiments are done on a 2.00GHZ Intel processor with the
18.04.1-Ubuntu operating system (Linux kernel version 5.4). The
time measured in the experiment is the average of 3 runs.

5.3 Results and Analysis
5.3.1 Effectiveness. We perform SafeDrop towards the reported
CVEs to testify whether our approach is effective to locate the
invalid memory deallocation bugs. Table 1 lists a series of related
CVEs containing invalid memory deallocation issues. For each
crate, we collect the analysis results and classify warnings into
true positives and false positives. SafeDrop can recall all related
vulnerabilities of the reported CVEs listed in Table 1 that represents
the effectiveness of SafeDrop.

The classification of thewarnings depends on the rules for invalid
drop detection introduced in Section 4. We manually check the
output to enhance the accuracy of this classification. The count of
true positives and false positives are mostly based on these rules,
but some memory-safety issues in callee will intensify its caller.
This scenario is common for dangling pointers e.g., if the callee
returns a dangling pointer, using or dropping this pointer in its
caller will incur use-after-free or double-free bugs. Therefore, the
classification is not confined to the CVE type.

The effectiveness evaluation does not calculate the false positive
rate due to SafeDrop only detecting the invalid deallocation bugs



SafeDrop: Detecting Memory Deallocation Bugs of Rust Programs via Static Data-Flow Analysis arxiv, 2021,

Table 1: Experimental results of the vulnerabilities reported in CVEs. These CVEs are containing four kinds of bugs including
use-after-free (UAF), double-free (DF), dangling pointer (DP), and invalidmemory access (IMA). The results have been collected
and classified with manually checking. The bugs reported are classified as True Positive/False Positive (TP/FP) in the table
(using dash to simplify the representation of 0/0), and we also count the number of themethods and the code lines to represent
the crate scale.

Crate CVE CVE-Type SafeDrop Report (TP/FP) Recall Methods Lines
UAF DF DP IMA Total

isahc 2019-16140 UAF - 0/1 1/0 - 1/1 100% 89 1304
open-ssl 2018-20997 UAF 1/2 - 0/1 - 1/3 100% 1188 20764
linea 2019-16880 DF - 1/0 - 10/0 11/0 100% 1810 24317
ordnung 2020-35891 DF 0/1 - 3/0 - 3/1 100% 145 2546

smallvec 2018-20991 DF - - 1/2 1/0 100% 187 22972019-15551 DF 2/2

crossbeam 2018-20996 IMA - 0/1 - 2/0 2/1 100% 221 4184
generator 2019-16144 IMA - - - 1/0 1/0 100% 158 2608
linkedhashmap 2020-25573 IMA - - - 1/0 1/0 100% 137 1974

Table 2: Experimental results of the applicability.We select a
series of crates with the usage of unsafe constructor and per-
form SafeDrop to evaluate these crates. The collection and
classification is same as Table 1. These new issues previously
unknown are from 8 different crates.

Crate SafeDrop Report (TP/FP)

UAF DF DP IMA Total

wasm-gb - - 20/0 - 20/0
bzip2 - - 2/1 - 2/1
rust-poker - 1/0 - - 1/0
wasm-integration - - 2/0 - 2/0
array - - 1/0 - 1/0
teardown-tree - 0/2 1/0 - 1/2
apres-bindings - - 14/0 - 14/0
rust-workshop - - 2/0 - 2/0

incurred by OBRM that has a relatively low cardinal. The result
demonstrates the quantity of false positives is limited in SafeDrop.
Moreover, the program with a large scale does not tend to trigger
more false positives as shown in Table 1. The code lines of crate
open-ssl is ninefold larger than crate smallvec. However, the
number of false positives differs in 1 only. Therefore, the quantity of
false positives is manageable, and the programmer can easily locate
the innermost function and make corrections based on warning
info.

5.3.2 Applicability. We perform SafeDrop to detect the invalid
memory deallocation bugs in some real-world Rust crates. The
prototype of SafeDrop is a static analysis pass of the compiler.
Ideally, it can print warnings to be applicable for users to find the
potential bugs with false positives as few as possible. Therefore,
developers can manually check the buggy snippets, then make
some corrections, and finally re-compile the whole crate through
SafeDrop to verify whether the warning is eliminated.

#Real-world Bug Found by SafeDrop // from crate: apres_bindings

pub extern fn get_ppqn(midi_ptr: *mut MIDI) -> u16 { // interior unsafe

- let mut midi = unsafe { Box::from_raw(midi_ptr) }; // unsafe constructor of Box<T>

+ let midi = unsafe {mem::ManuallyDrop::new(Box::from_raw(midi_ptr))}; // Bug Fixed

+ // use smart pointer mem::ManuallyDrop<T> to avoid being dropped

let output = midi.get_ppqn(); // double-free occurs if unwinding here

- Box::into_raw(midi); // transfer to raw pointer to avoid being dropped

output

}

Figure 6: An example of the new bug found by Safe-
Drop. This example accords with the definition of dropping
buffers in use introduced in Section 3. It is an invalid drop
of exception handling and matches pattern 2 in List 2.

Table 2 shows the applicability of SafeDrop and lists the finding
issues previously unknown caused by invalid memory dealloca-
tion. We collect 24 crates from Github with the criteria of using
unsafe constructor. After running SafeDrop to these crates, there
are 8 crates having such issues as listed in Table 2. For each crate,
we collect the analysis results and classify them like the effective-
ness evaluation. The results demonstrate that the quantity of the
reported false positives is still at a low-level and invalid memory
deallocation issues are common in unsafe Rust. In particular, Safe-
Drop introduces 0 false positive in 75% of these crates and produces
no more than 2 false positives in other crates. Therefore, SafeDrop
has good applicability for developers to find and locate such bugs
during compilation time.

Figure 6 shows an example of new bugs found by SafeDrop
and this bug is confirmed by the developer in Github. In the buggy
snippet, there is a vulnerable program point midi.get_ppqn() that
is between Box::from_raw() and Box::into_raw(). Unwinding
at this point will incur a double-free bug. This bug is similar to the
first motivating example and matches pattern 2 in Section 3. In fact,
the issues in Figure 6 are generally be triggered in the unwind path,
because glibc fasttop [24] can detect double free when running
programs after compilation. That motivates the developers to find
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Figure 7: Experimental results of the efficiency. We com-
pare the compilation time between the original compiler
and SafeDrop towards all CVE crates. The overhead will not
exceed 2× to the original compiling time in general. Crate
ordnung has an apparently large overhead due to amounts
of successive SwitchInt() nodes with the changing variants
in the control-flow graph. It will produce more branches in
the spanning tree that enlarges the analyzing time.

the buggy code and makes such normal execution bugs rare to find.
However, the exception handling bugs are hard to make corrections
and we advise using ManuallyDrop<T> to this scenario as shown
in Figure 6.

5.3.3 Efficiency. SafeDrop is a query integrated into the Rust
compiler. Ideally, it should not drag much compilation time. We
evaluate the overhead in comparison with the original compiler.

The compilation time is composed of the evaluated crates as
well as their dependencies crates. Therefore, it is equivalent to
involve the dependencies to represent the whole compilation time
without affecting the overhead ratio. Figure 7 shows the efficiency
evaluation results of 8 CVE crates. The overhead ranges from 1.2%
to 110.7% and the average overhead is in the region (0%,120%]. We
can conclude that the overhead introduced by SafeDrop would not
exceed 2× to the original compiling time in general and SafeDrop
emerges an excellent efficiency towards the different scales of the
crates. Moreover, the results demonstrate the irrelevance between
the scale and the overhead ratio. As shown in Figure 7, the overhead
ratio of crate open-ssl and smallvec differs in 1.6%, which are
5.2% and 6.8% respectively. The scale of open-ssl is ninefold larger
along with a lower overhead ratio that proves our conclusion.

5.4 Discussion
5.4.1 False Positives. The inter-procedural alias analysis heavily
relies on the query optimized_mir to obtain MIR of the callees.
However, SafeDrop cannot capture some MIR such as specific trait
implementations due to the internal design of the compiler. After
running the type filter, our approach then establishes the alias rela-
tionships between unfiltered arguments and return value. We adopt

this operation to pursue the soundness of alias recognition that
would lead to some false positives rather than losing alias relation-
ships. Since these cases are not pervasive and the type filter discerns
most of the evident errors, the false positives are manageable in
SafeDrop. In particular, we remove the alias established from Clone
trait [14], because the return value of the function clone() is a
deep copy to the original variable.

5.4.2 FalseNegatives. Rust adopts several tricky designs to some
inline functions that may incur false negatives. The query can suc-
cessfully get MIR towards these functions but containing empty
information. Thus SafeDrop will lose some alias relationships. Ad-
ditionally, SafeDrop does not provide the support for primitive
array type, closure, raw pointer offset, and function pointer that
will introduce false negatives.

6 RELATEDWORK
In this section, we will introduce some related work and compare
them with SafeDrop to discuss the significance of our approach.

In the past few years, the existing work towards Rust program-
ming language mainly focus on formal verification [4, 32] and
unsafe code use [18] through dynamic [9] or static approaches.
RustBelt [13] is the first formal tool for verifying the safe encapsu-
lation of unsafe code in Rust. XRust [23] is a heap allocator that
isolates the memory of unsafe Rust and prevents any cross-region
memory corruption. RustBelt, XRust and other researchs [8] based
on them separate processing safe Rust and unsafe Rust to enhance
memory safety. However, SafeDrop merges this separation in MIR
and checks the validity of each deallocation to enhance safety.

Rust Miri [25] is an experimental interpreter for Rust MIR, which
can run binaries, test suites of cargo projects and detect some unde-
fined behaviors. The functionality of Miri is wider than SafeDrop
and Miri supports the checking of out-of-bounds memory accesses,
insufficient aligned memory accesses and violations of some basic
type invariants in addition. However, Miri is a dynamic analysis
approach and cannot track all valuable paths of a program that
is not capable of unwinding analysis and library analysis. On the
contrary, SafeDrop is a static approach that can analyze all valuable
path of each function in compile-time .

There are numerous work proposed to detect memory-safety
issues [16, 17, 27, 34]. Most of these work are based on the specified
programming language, we list several generic tools as follows.
Valgrind (Memcheck) [26] is an instrumentation framework that
can automatically detect many memory management bugs. Ad-
dressSanitizer [30] is another efficient memory error detector based
on LLVM. Since Valgrind and AddressSanitizer are dynamic anal-
ysis approaches like Rust Miri, the analysis of SafeDrop is in the
compile-time and will not affect the running speed of the program.

7 CONCLUSION
In this paper, we proposed SafeDrop, a novel compiler-integrated
path-sensitive data-flow approach to detect memory deallocation
violations in Rust. We implemented SafeDrop, applied it to the Rust
compiler, and conducted a thorough evaluation with existing Rust
CVEs and real-world Rust crates to show its value for memory deal-
location bugs detection. Our results demonstrated the effectiveness,
applicability and efficiency of SafeDrop. Moreover, our application
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of SafeDrop identified 8 Rust crates involved with invalid memory
deallocation issues previously unknown. We believe the method of
SafeDrop can be used for the specific kind of security detections,
including use-after-free, double-free, dangling pointer, and invalid
memory access caused by automatic memory deallocation in other
RAII systems.
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