
Collaboration-Aware Graph Convolutional Network for
Recommender Systems

Yu Wang

yu.wang.1@vanderbilt.edu

Vanderbilt University

Yuying Zhao

yuying.zhao@vanderbilt.edu

Vanderbilt University

Yi Zhang

yi.zhang@vanderbilt.edu

Vanderbilt University

Tyler Derr

derr.tyler@vanderbilt.edu

Vanderbilt University

ABSTRACT
Graph Neural Networks (GNNs) have been successfully adopted

in recommender systems by virtue of the message-passing that

implicitly captures collaborative effect. Nevertheless, most of the

existing message-passing mechanisms for recommendation are

directly inherited from GNNs without scrutinizing whether the

captured collaborative effect would benefit the prediction of user

preferences. In this paper, we first analyze how message-passing

captures the collaborative effect and propose a recommendation-

oriented topological metric, Common Interacted Ratio (CIR), which

measures the level of interaction between a specific neighbor of

a node with the rest of its neighbors. After demonstrating the

benefits of leveraging collaborations from neighbors with higher

CIR, we propose a recommendation-tailored GNN, Collaboration-

Aware Graph Convolutional Network (CAGCN), that goes beyond

1-Weisfeiler-Lehman(1-WL) test in distinguishing non-bipartite-

subgraph-isomorphic graphs. Experiments on six benchmark datasets

show that the best CAGCN variant outperforms the most represen-

tative GNN-based recommendation model, LightGCN, by nearly

10% in Recall@20 and also achieves around 80% speedup. Our

code/supplementary is at https://github.com/YuWVandy/CAGCN.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Recommender systems, graph neural networks, collaborative effect

ACM Reference Format:
YuWang, Yuying Zhao, Yi Zhang, and Tyler Derr. 2023. Collaboration-Aware

Graph Convolutional Network for Recommender Systems. In Proceedings of
the ACM Web Conference 2023 (WWW ’23), May 1–5, 2023, Austin, TX, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3543507.3583229

1 INTRODUCTION
Recommender systems aim to alleviate information overload by

helping users discover items of interest [2, 47] and have been widely

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00

https://doi.org/10.1145/3543507.3583229

deployed in real-world applications [31]. Given historical user-item

interactions (e.g., click, purchase, review, and rate), the key is to

leverage the collaborative effect [3, 11, 37] to predict how likely

users will interact with items. A common paradigm for modeling

collaborative effect is to first learn embeddings of users/items capa-

ble of recovering historical user-item interactions and then perform

top-K recommendation based on the pairwise similarity between

the learned user/item embeddings.

Since historical user-item interactions can be naturally repre-

sented as a bipartite graph with users/items being nodes and inter-

actions being edges [9, 16, 37] and given the unprecedented success

of GNNs in learning node representations [12, 13, 20, 53], recent re-

search has started to leverage GNNs to learn user/item embeddings

for the recommendation. Two pioneering works NGCF [37] and

LightGCN [9] leverage graph convolutions to aggregate messages

from local neighborhoods, which directly injects the collaborative

signal into user/item embeddings. More recently, [1, 44] explore the

robustness and self-supervised learning [40] of graph convolution

for recommendation. However, the message-passing mechanisms

in all previous recommendation models are directly inherited from

GNNswithout carefully justifying how collaborative signals are cap-

tured and whether the captured collaborative signals would benefit

the prediction of user preference. Such ambiguous understanding

on how the message-passing captures collaborative signals would

pose the risk of learning uninformative or even harmful user/item

representations when adopting GNNs in recommendation. For ex-

ample, [4] shows that a large portion of user interactions cannot re-

flect their actual purchasing behaviors. In this case, blindly passing

messages following existing styles of GNNs could capture harm-

ful collaborative signals from these unreliable interactions, which

hinders the performance of GNN-based recommender systems.

To avoid collecting noisy or even harmful collaborative signals

in message-passing of traditional GNNs, existing work GTN [4]

proposes to adaptively propagate user/item embeddings by adjust-

ing the weight of edges based on items’ similarity to users’ main

preferences (i.e., the trend). However, such similarity is computed

based on the learned embeddings that still implicitly encode noisy

collaborative signals from unreliable user-item interactions. Worse

still, calculating edge weights based on user/item embeddings along

the training on the fly is computationally prohibitive and hence

prevents the model from being deployed in industrial-level rec-

ommendations. SGCN [1] attaches the message-passing with a

trainable stochastic binary mask to prune noisy edges. However,

the unbiased gradient estimator increases the computational load.

ar
X

iv
:2

20
7.

06
22

1v
4

 [
cs

.I
R

]
 2

0
Fe

b
20

23

https://github.com/YuWVandy/CAGCN
https://doi.org/10.1145/3543507.3583229
https://doi.org/10.1145/3543507.3583229

WWW ’23, May 1–5, 2023, Austin, TX, USA Wang, et al.

Despite the fundamental importance of capturing beneficial col-

laborative signals, the related studies are still in their infancy. To

fill this crucial gap, we aim to demystify the collaborative effect

captured by message-passing and develop new insights towards

customizing message-passing for recommendations. Furthermore,

these insights motivate us to design a recommendation-tailored

GNN, Collaboration-AwareGraphConvolutional Network(CAGCN),

that passes neighborhood information based on their Common In-

teracted Ratio (CIR) via the Collaboration-Aware Graph Convolu-

tion (CAGC). Our major contributions are listed as follows:

• Novel Perspective onCollaborative Effect:We demystify the

collaborative effect by analyzing how message-passing helps

capture collaborative signals andwhen the captured collaborative

signals are beneficial in computing users’ ranking over items.

• Novel Recommendation-tailored Topological Metric: We

then propose a recommendation-tailored topologicalmetric, Com-

mon Interacted Ratio (CIR), and demonstrate the capability of

CIR to quantify the benefits of the messages from neighborhoods.

• NovelConvolution beyond 1-WL forRecommendation:We

integrate CIR intomessage-passing and propose a novel Collaboration-

Aware Graph Convolutional Network (CAGCN). Then we prove

that it can go beyond 1-WL test in distinguishing non-bipartite-

subgraph-isomorphic graphs, show its superiority on real-world

datasets including two newly collected ones, and provide an

in-depth interpretation of its advantages.

Next, we comprehensively analyze the collaborative effect captured

by message-passing and propose CIR to measure whether the cap-

tured collaborative effect benefits the prediction of user preferences.

2 ANALYSIS ON COLLABORATIVE EFFECT
Let G = (V, E) be the user-item bipartite graph, where the node

set V = U ∪ I includes the user set U and the item set I. Fol-
lowing previous work [9, 19, 37], we only consider the implicit

user-item interactions and denote them as edges E where 𝑒𝑝𝑞 rep-

resents the edge between node 𝑝 and 𝑞. The network topology

is described by its adjacency matrix A ∈ {0, 1} |V |×|V |
, where

A𝑝𝑞 = 1 when 𝑒𝑝𝑞 ∈ E, and A𝑝𝑞 = 0 otherwise. Let N𝑙
𝑝 denote the

set of observed neighbors that are exactly 𝑙-hops away from 𝑝 and

S𝑝 = (VS𝑝
, ES𝑝

) be the neighborhood subgraph [43] induced in G
by Ñ1

𝑝 = N1

𝑝 ∪ {𝑝}. We use𝒫
𝑙
𝑝𝑞 to denote the set of shortest paths

of length 𝑙 between node 𝑝 and 𝑞 and denote one of such paths as

𝑃𝑙𝑝𝑞 . Note that𝒫
𝑙
𝑝𝑞 = ∅ if it is impossible to have a path between 𝑝

and 𝑞 of length 𝑙 , e.g., 𝒫1

11
= ∅ in an acyclic graph. Furthermore,

we denote the initial embeddings of users/items as E0 ∈ R(𝑛+𝑚)×𝑑0

where e0𝑝 = E0𝑝 and 𝑑𝑝 are the node 𝑝’s embedding and degree.

Following [9, 37], each node has no semantic features but purely

learnable embeddings. Therefore, we remove the nonlinear trans-

formation by leveraging LightGCN [9] as the canonical architec-

ture and exclusively explore the collaborative effect captured by

message-passing. LightGCN passes messages from user 𝑢/item 𝑖’s

neighbors within 𝐿-hops to 𝑢/𝑖:

e𝑙+1𝑢 = 𝑑−0.5𝑢

∑︁
𝑗∈N1

𝑢

𝑑−0.5𝑗 e𝑙𝑗 , e
𝑙+1
𝑖 = 𝑑−0.5𝑖

∑︁
𝑣∈N1

𝑖

𝑑−0.5𝑣 e𝑙𝑣, (1)

∀𝑙 ∈ {0, ..., 𝐿}. The propagated embeddings at all layers including

the original embedding are aggregated together via mean-pooling:

e𝑢 =
1

(𝐿 + 1)

𝐿∑︁
𝑙=0

e𝑙𝑢 , e𝑖 =
1

(𝐿 + 1)

𝐿∑︁
𝑙=0

e𝑙𝑖 , ∀𝑢 ∈ U, ∀𝑖 ∈ I (2)

In the training stage, for each observed user-item interaction (𝑢, 𝑖),
LightGCN randomly samples a negative item 𝑖− that 𝑢 has never

interacted with before, and forms the triple (𝑢, 𝑖, 𝑖−), which collec-

tively forms the set of observed training triples O. After that, the
ranking scores of the user over these two items are computed as

𝑦𝑢𝑖 = e⊤𝑢 e𝑖 and 𝑦𝑢𝑖− = e⊤𝑢 e𝑖− , which are finally used in optimizing

the pairwise Bayesian Personalized Ranking (BPR) loss [27]:

L
BPR

=
∑︁

(𝑢,𝑖,𝑖−)∈O
− ln𝜎 (𝑦𝑢𝑖 − 𝑦𝑢𝑖−), (3)

where 𝜎 (·) is the Sigmoid function, and we omit the 𝐿2 regulariza-

tion here since it is mainly for alleviating overfitting and has no

influence on the collaborative effect captured by message passing.

Under the above LightGCN framework, we expect to answer the

following two questions:

• 𝑸1: How does message-passing capture the collaborative effect

and leverage it in computing users’ ranking?

• 𝑸2: When do collaborations captured by message-passing benefit

the computation of users’ ranking over items?

Next, We address 𝑸1 by theoretically deriving users’ ranking over

items under the message-passing framework of LightGCN and ad-

dress 𝑸2 by proposing the Common Interacted Ratio (CIR) to mea-

sure the benefits of leveraging collaborations from each neighbor

in computing users’ ranking. The answers to the above two ques-

tions further motivate our design of Collaboration-Aware Graph

Convolutional Network in Section 3.

2.1 How does message-passing capture
collaborative effect?

The collaborative effect occurs when the prediction of a user’s pref-

erence relies on other users’ preferences or items’ properties [28].

Therefore, to answer 𝑸1, we need to seek whether we leverage

other nodes’ embeddings in computing a specific user’s ranking

over items. In the inference stage of LightGCN, we take the inner

product between user 𝑢’s embedding and item 𝑖’s embedding after

𝐿-layers’ message-passing to compute the ranking as
1
:

𝑦𝐿𝑢𝑖 = (
𝐿∑︁
𝑙1=0

∑︁
𝑗 ∈N𝑙

1

𝑢

𝐿∑︁
𝑙2=𝑙1

𝛽𝑙2𝛼
𝑙2
𝑗𝑢
e0𝑗)

⊤ (
𝐿∑︁
𝑙1=0

∑︁
𝑣∈N𝑙

1

𝑖

𝐿∑︁
𝑙2=𝑙1

𝛽𝑙2𝛼
𝑙2
𝑣𝑖
e0𝑣), (4)

where 𝛼
𝑙2
𝑗𝑢

=
∑
𝑃
𝑙
2

𝑗𝑢
∈𝒫𝑙

2

𝑗𝑢

∏
𝑒𝑝𝑞 ∈𝑃𝑙2𝑗𝑢

𝑑−0.5𝑝 𝑑−0.5𝑞 (𝛼
𝑙2
𝑗𝑢

= 0 if 𝒫
𝑙2
𝑗𝑢

= ∅)

denotes the total weight of all paths of length 𝑙2 from 𝑗 to 𝑢, N0

𝑢 =

{𝑢} and specifically, 𝛼0𝑢𝑢 = 1. 𝛽𝑙2 is the weight measuring con-

tributions of propagated embeddings at layer 𝑙2. Thus, based on

Eq. (4), we present the answer to 𝑸1 as 𝑨1: 𝐿-layer LightGCN-
based message-passing captures collaborations between pairs of nodes
{(𝑗, 𝑣) | 𝑗 ∈ ⋃𝐿

𝑙=0
N𝑙
𝑢 , 𝑣 ∈

⋃𝐿
𝑙=0

N𝑙
𝑖
}, and the collaborative strength of

each pair is determined by 1) e0
𝑗

⊤e0𝑣 : embedding similarity between

𝑗 and 𝑣 , 2) {𝛼𝑙
𝑗𝑢
}𝐿
𝑙=0

({𝛼𝑙
𝑣𝑖
}𝐿
𝑙=0

): weight of all paths of length 𝑙 to 𝐿
from 𝑗 to 𝑢 (𝑣 to 𝑖), and 3) {𝛽𝑙 }𝐿𝑙=0: the weight of each layer.

1
Detailed derivation is attached in Appendix A.2.

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, May 1–5, 2023, Austin, TX, USA

Figure 1: In (a)-(b), 𝑗1 has more interactions (paths) with (to) 𝑢’s neighborhood than 𝑗4 and hence is more representative of 𝑢’s
purchasing behaviors than 𝑗4. In (c), we quantify CIR between 𝑗1 and 𝑢 via the paths (and associated nodes) between 𝑗1 andN1

𝑢 .

2.2 When is the captured collaborative effect
beneficial to users’ ranking?

Although users could leverage collaborations from other users/items

as demonstrated above, we cannot guarantee all of these collabo-

rations benefit the prediction of their preferences. For example, in

Figure 1(a)-(b), 𝑢’s interacted item 𝑗1 has more interactions (paths)

to𝑢’s neighborhoods than 𝑗4 and hence is more representative of𝑢’s

purchasing behaviors [1, 4]. For each user 𝑢, we propose the Com-

mon Interacted Ratio to quantify the level of interaction between

each specific neighbor of 𝑢 and 𝑢’s whole item neighborhood:

Definition 1. Common Interacted Ratio (CIR): For any item

𝑗 ∈ N1

𝑢 of user 𝑢, the CIR of 𝑗 around 𝑢 considering nodes up to

(�̂� + 1)-hops away from 𝑢, i.e., 𝜙𝐿𝑢 (𝑗), is defined as the average

interacted ratio of 𝑗 with all neighboring items of 𝑢 in N1

𝑢 through

paths of length ≤ 2�̂�:

𝜙𝐿
𝑢 (𝑗) = 1

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

𝐿∑︁
𝑙=1

𝛼2𝑙
∑︁

𝑃2𝑙
𝑗𝑖
∈𝒫2𝑙

𝑗𝑖

1

𝑓 ({N1

𝑘
|𝑘 ∈ 𝑃2𝑙

𝑗𝑖
})
, (5)

∀𝑗 ∈ N1

𝑢 ,∀𝑢 ∈ U, where {N1

𝑘
|𝑘 ∈ 𝑃2𝑙

𝑗𝑖
} represents the set of the

1-hop neighborhood of node 𝑘 along the path 𝑃2𝑙
𝑗𝑖

from node 𝑗

to 𝑖 of length 2𝑙 including 𝑖, 𝑗 . 𝑓 is a normalization function to

differentiate the importance of different paths in 𝒫
2𝑙
𝑗𝑖
and its value

depends on the neighborhood of each node along the path 𝑃2𝑙
𝑗𝑖
. 𝛼2𝑙

is the importance of paths of length 2𝑙 .

As shown in Figure 1(c), 𝜙𝐿𝑢 (𝑗1) is decided by paths of length be-

tween 2 to 2�̂�. By configuring different �̂� and 𝑓 ,
∑
𝑃2𝑙
𝑗𝑖
∈𝒫2𝑙

𝑗𝑖

1

𝑓 ({N1

𝑘
|𝑘∈𝑃2𝑙

𝑗𝑖
})

could express many graph similarity metrics [15, 17, 21, 30, 52] and

we discuss them in Appendix A.1. For simplicity, henceforth we de-

note 𝜙𝐿𝑢 (𝑗) as 𝜙𝑢 (𝑗). We next empirically verify the importance of

leveraging collaborations from neighbors with higher CIR by incre-

mentally adding edges into an initially edge-less graph according

to their CIR and visualizing the performance change. Specifically,

we consider the performance change in two settings, retraining and

pretraining, which are visualized in Figure 2 and 3, respectively. In

both of these two settings, we iteratively cycle each node and add

its corresponding neighbor according to the CIR until hitting the

budget. Here we consider variants of CIR that we later define in

Section 4.1 with further details in Appendix A.1.

Figure 2: The training loss (left) is lower and the perfor-
mance (right) is higher when adding edges according to the
variant CIR-lhn (Leicht Holme Nerman) than adding ran-
domly under the same addition budget. Detailed experimen-
tal settings andmore results are provided inAppendixA.5.1.

For the re-training setting, we first remove all observed edges in

the training set to create the edgeless bipartite graph and then in-

crementally add edges according to their CIR and retrain user/item

embeddings. In Figure 2, we evaluate the performance on the newly

constructed bipartite graph under different edge budgets. Clearly,

the training loss/performance becomes lower/higher when adding

more edges because message-passing captures more collaborative

effects. Furthermore, since edges with higher CIR connect neigh-

bors with more connections to the whole neighborhood, optimizing

embeddings of nodes incident to these edges pull the whole neigh-

borhood closer and hence leads to the lower training loss over neigh-

borhoods’ connections, which causes the overall lower training loss

in Figure 2(a). In Figure 2(b), we observe that under the same adding

budget, adding according to CIRs achieves higher performance than

adding randomly. It is because neighbors with higher interactions

with the whole neighborhood are more likely to have higher in-

teractions with neighbors to be predicted (We empirically verify

this in Table 5.). Then for each user, maximizing its embedding

similarity to its training neighbors with higher CIR will indirectly

improve its similarity to its to-be-predicted neighbors, which leads

to lower population risk and higher generalization/performance.

WWW ’23, May 1–5, 2023, Austin, TX, USA Wang, et al.

Figure 3: The performance of adding edges according to CIR
variants generally increases faster than adding randomly af-
ter pre-training. See Appendix A.5.2 for more results.

For the pre-training setting, we first pre-train user/item em-

beddings on the original bipartite graph and then propagate the

pre-trained embeddings on the newly constructed bipartite graph

under different edge budgets. This setting is more realistic since

in the real world, with the exponential interactions streamingly

coming in [36] while the storage space is limited, we are forced to

keep only partial interactions and the pre-trained user/item embed-

dings. Figure 3 demonstrates that under the same adding budget,

keeping edges according to CIR leads to higher performance than

keeping randomly, which further verifies the effectiveness of CIR in

quantifying the edge importance. An interesting observation is that

adding more edges cannot always bring performance gain as shown

in Figure 3(a) when the ratio of added edges is between 0%-20%. We

hypothesize there are two reasons. From network topology, only

when edges are beyond a certain level can the network form a giant

component so that users could receive enough neighborhood infor-

mation. Secondly, from representation learning, more nodes would

have inconsistent neighborhood contexts between the training and

the inference when only a few edges are added. Such inconsistent

neighborhood context would compromise the performance and

will be alleviated when more edges are added as shown later in

Figure 3(a). Furthermore, different CIR variants cause different in-

creasing speeds of performance. For example, sc is faster on Loseit

in Figure 3(a) while lhn is faster on Amazon in Figure 3(b). Except

for the cn, jc/sc/lhn lead to faster improvement than the random

one, which highlights the potential of CIR in devising cost-effective

strategies for pruning edges in the continual learning [35].

From the above analysis, we summarize the answer 𝑨2 to 𝑸2 as:
Leveraging collaborations from 𝑢’s neighboring node 𝑗 with higher
CIR 𝜙𝑢 (𝑗) would cause more benefits to 𝑢’s ranking.

3 COLLABORATION-AWARE GRAPH
CONVOLUTIONAL NETWORKS

The former section demonstrates that passing messages according

to neighbors’ CIR is crucial in improving users’ ranking. This moti-

vates us to propose a new graph convolution operation, Collaboration-

Aware Graph Convolution(CAGC), which passes node messages

based on the benefits of their provided collaborations. Furthermore,

we wrap the proposed CAGC within LightGCN and develop two

CAGC-based models.

3.1 Collaboration-Aware Graph Convolution
The core idea of CAGC is to strengthen/weaken themessages passed

from neighbors with higher/lower CIR to center nodes. To achieve

this, we compute the edge weight as:

𝚽𝑖 𝑗 =

{
𝜙𝑖 (𝑗), if A𝑖 𝑗 > 0

0, if A𝑖 𝑗 = 0

,∀𝑖, 𝑗 ∈ V (6)

where 𝜙𝑖 (𝑗) is the CIR of neighboring node 𝑗 centering around 𝑖 .

Note that unlike the symmetric graph convolution D−0.5AD−0.5

used in LightGCN, here 𝚽 is unsymmetric. This is rather inter-

pretable: the interacting level of node 𝑗 with 𝑖’s neighborhood is

likely to be different from the interacting level of node 𝑖 with 𝑗 ’s

neighborhood. We further normalize 𝚽 and combine it with the

LightGCN convolution:

e𝑙+1𝑖 =
∑︁
𝑗 ∈N1

𝑖

𝑔(𝛾𝑖
𝚽𝑖 𝑗∑

𝑘∈N1

𝑖
𝚽𝑖𝑘

, 𝑑−0.5𝑖 𝑑−0.5𝑗)e𝑙𝑗 ,∀𝑖 ∈ V (7)

where 𝛾𝑖 is a coefficient that varies the total amount of messages

flowing to node 𝑖 and controls its embedding magnitude [24]. 𝑔 is a

function combining the edge weights computed based on CIR and

LightGCN. We could either simply set 𝑔 as the weighted summation

of these two propagated embeddings or learn 𝑔 by parametrization.

Next, we prove that for certain choices of 𝑔, CAGC can go beyond

1-WL in distinguishing non-bipartite-subgraph-isomorphic graphs.

First, we prove the equivalence between the subtree-isomorphism

and the subgraph-isomorphism in bipartite graphs:

Theorem 1. In bipartite graphs, two subgraphs that are subtree-
isomorphic if and only if they are subgraph-isomorphic2.

Proof. We prove this theorem in two directions. Firstly (=⇒),

we prove that in a bipartite graph, two subgraphs that are subtree-

isomorphic are also subgraph-isomorphic by contradiction. Assum-

ing that there exists two subgraphs S𝑢 and S𝑖 that are subtree-

isomorphic yet not subgraph-isomorphic in a bipartite graph, i.e.,

S𝑢 �𝑠𝑢𝑏𝑡𝑟𝑒𝑒 S𝑖 and S𝑢 �𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ S𝑖 . By definition of subtree-

isomorphism, we trivially have e𝑙𝑣 = e𝑙
ℎ (𝑣) ,∀𝑣 ∈ VS𝑢

. Then to

guarantee S𝑢 �𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ S𝑖 and also since edges are only allowed

to connect𝑢 and its neighborsN1

𝑢 in the bipartite graph, there must

exist at least an edge 𝑒𝑢𝑣 between𝑢 and one of its neighbors 𝑣 ∈ N1

𝑢

such that 𝑒𝑢𝑣 ∈ ES𝑢
, 𝑒ℎ (𝑢)ℎ (𝑣) ∉ ES𝑖

, which contradicts the as-

sumption that S𝑢 �𝑠𝑢𝑏𝑡𝑟𝑒𝑒 S𝑖 . Secondly (⇐=), we can prove that in

a bipartite graph, two subgraphs that are subgraph-isomorphic are

also subtree-isomorphic, which trivially holds since in any graph,

subgraph-isomorphism leads to subtree-isomorphism [43]. □

Since 1-WL test can distinguish subtree-isomorphic graphs [43],

the equivalence between these two isomorphisms indicates that

in bipartite graphs, both of the subtree-isomorphic graphs and

subgraph-isomorphic graphs can be distinguished by 1-WL test.

Therefore, to go beyond 1-WL in bipartite graphs, we need to pro-

pose a novel graph isomorphism, bipartite-subgraph-isomorphism

in Definition 2, which is even harder to be distinguished than the

subgraph-isomorphism by 1-WL test.

2
Definitions of subtree-/subgraph-isomorphism are in Supplementary B.4[43].

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, May 1–5, 2023, Austin, TX, USA

Definition 2. Bipartite-subgraph-isomorphism:S𝑢 andS𝑖 are
bipartite-subgraph-isomorphic, denoted as S𝑢 �𝑏𝑖−𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ S𝑖 , if
there exists a bijective mapping ℎ : Ñ1

𝑢 ∪ N2

𝑢 → Ñ1

𝑖
∪ N2

𝑖
such

that ℎ(𝑢) = 𝑖 and ∀𝑣, 𝑣 ′ ∈ Ñ1

𝑢 ∪ N2

𝑢 , 𝑒𝑣𝑣′ ∈ E ⇐⇒ 𝑒ℎ (𝑣)ℎ (𝑣′) ∈ E
and e𝑙𝑣 = e𝑙

ℎ (𝑣) , e
𝑙
𝑣′ = e𝑙

ℎ (𝑣′) .

Lemma 1. If 𝑔 is multilayer perceptron (MLP), then we have that
𝑔({(𝛾𝑖 �̃�𝑖 𝑗 , e𝑙𝑗) | 𝑗 ∈ N1

𝑖
}, {(𝑑−0.5

𝑖
𝑑−0.5
𝑗

, e𝑙
𝑗
) | 𝑗 ∈ N1

𝑖
}) is injective.

Proof. If we assume that all node embeddings share the same

discretization precision, then embeddings of all nodes in a graph

can form a countable set H . Similarly, for each edge in a graph, its

CIR-based weight �̃�𝑖 𝑗 and degree-based weight 𝑑−0.5
𝑖

𝑑−0.5
𝑗

can also

form two different countable setsW1,W2 with |W1 | = |W2 |. Then
P1 = {�̃�𝑖 𝑗e𝑖 |�̃�𝑖 𝑗 ∈ W1, e𝑖 ∈ H},P2 = {𝑑−0.5

𝑖
𝑑−0.5
𝑗

e𝑖 |𝑑−0.5𝑖
𝑑−0.5
𝑗

∈
W2, e𝑖 ∈ H} are also two countable sets. Let 𝑃1, 𝑃2 be two multi-

sets containing elements from P1 and P2, respectively, and |𝑃1 | =
|𝑃2 |. Then by Lemma 1 in [43], there exists a function 𝑠 such that

𝜋 (𝑃1, 𝑃2) =
∑
𝑝1∈𝑃1,𝑝2∈𝑃2 𝑠 (𝑝1, 𝑝2) is unique for any distinct pair of

multisets (𝑃1, 𝑃2). Since the MLP-based g is a universal approxima-

tor [45] and hence can learn 𝑠 , we know that 𝑔 is injective. □

Theorem 2. Let M be a GNN with sufficient number of CAGC-
based convolution layers defined by Eq. (7). If 𝑔 is MLP, then M is
strictlymore expressive than 1-WL in distinguishing subtree-isomorphic
yet non-bipartite-subgraph-isomorphic graphs.

Proof. We prove this theorem in two directions. Firstly (=⇒),

following [43], we prove that the designed CAGC here can distin-

guish any two graphs that are distinguishable by 1-WL by contra-

diction. Assume that there exist two graphs G1 and G2 which can

be distinguished by 1-WL but cannot be distinguished by CAGC.

Further, suppose that 1-WL cannot distinguish these two graphs in

the iterations from 0 to 𝐿 − 1, but can distinguish them in the 𝐿th

iteration. Then, there must exist two neighborhood subgraphs S𝑢
and S𝑖 whose neighboring nodes correspond to two different sets

of node labels at the 𝐿th iteration, i.e., {e𝑙𝑣 |𝑣 ∈ N1

𝑢 } ≠ {e𝑙
𝑗
| 𝑗 ∈ N1

𝑖
}.

Since 𝑔 is injective by Lemma 1, for S𝑢 and S𝑖 , 𝑔 would yield two

different feature vectors at the 𝐿th iteration. This means that CAGC

can also distinguish G1 and G2, which contradicts the assumption.

Secondly (⇐=), we prove that there exist at least two graphs

that can be distinguished by CAGC but cannot be distinguished by

1-WL. Figure 11 in Supplementary B.4 presents two of such graphs

S𝑢 ,S′
𝑢 , which are subgraph isomorphic but non-bipartite-subgraph-

isomorphic. Assuming𝑢 and𝑢 ′ have exactly the same neighborhood

feature vectors e, then directly propagating according to 1-WL or

even considering node degree as the edge weight as GCN [13] can

still end up with the same propagated feature for𝑢 and𝑢 ′. However,
if we leverage JC to calculate CIR as introduced in Appendix A.1,

then we end up with {(𝑑𝑢𝑑 𝑗1)−0.5e, (𝑑𝑢𝑑 𝑗2)−0.5e, (𝑑𝑢𝑑 𝑗3)−0.5e} ≠

{(𝑑−0.5
𝑢′ 𝑑−0.5

𝑗 ′
1

+˜𝚽𝑢′ 𝑗 ′
1

)e, (𝑑−0.5
𝑢′ 𝑑−0.5

𝑗 ′
2

+˜𝚽𝑢′ 𝑗 ′
2

)e, (𝑑−0.5
𝑢′ 𝑑−0.5

𝑗 ′
3

+˜𝚽𝑢′ 𝑗 ′
3

)e}.
Since 𝑔 is injective by Lemma 1, CAGC would yield two different

embeddings for 𝑢 and 𝑢 ′. □

Theorem 2 indicates that GNNs whose aggregation scheme is

CAGC can distinguish non-bipartite-subgraph-isomorphic graphs

that are indistinguishable by 1-WL.

3.2 Model Architecture and Complexity
Following the principle of LightGCN that the designed graph con-

volution should be light and easy to train, except for the message-

passing component, all other components of our proposed CAGC-

basedmodels is exactly the same as LightGCN including the average

pooling and the model training, which have already been covered in

Section 2. We provide the detailed time/space complexity compari-

son between our models and all other baselines in Appendix A.3.

We visualize the architecture of CAGC-based models in Figure 4.

Based on the choice of 𝑔, we have two specific model variants. For

the first variant CAGCN, we calculate the edge weight solely based

on CIR in message-passing by setting 𝑔(𝐴, 𝐵) = 𝐴 in Eq.(7) and

set 𝛾𝑖 =
∑
𝑟 ∈N1

𝑖
𝑑−0.5
𝑖

𝑑−0.5𝑟 to ensure that the total edge weights for

messages received by each node are the same as the one in Light-

GCN. For CAGCN*, we set 𝑔 as the weighted summation and set

𝛾𝑖 = 𝛾 as a constant controlling the trade-off between contributions

from message-passing by LightGCN and by CAGC. We term the

model variant as CAGCN(*)-jc if we use Jaccard Similarity (JC) [17]

to compute 𝚽. The same rule applies to other topological metrics

listed in Appendix A.1. Concrete equations of CAGCN and CAGCN*

are provided in Appendix A.4.2.

Figure 4: The architecture of the proposed CAGCN(*).

4 EXPERIMENTS
In this section, we conduct experiments to evaluate CAGCN(*).

4.1 Experimental Settings
4.1.1 Datasets. Following [9, 37], we validate the proposed ap-

proach on Gowalla, Yelp, Amazon, and Ml-1M, the details of

which are provided in [9, 37]. Moreover, we collect two extra

datasets to further demonstrate the superiority of our proposed

model in even broader user-item interaction domains: (1) Loseit:
This dataset is collected from subreddit loseit - Lose the Fat3 from
March 2020 to March 2022 where users discuss healthy and sus-

tainable methods of losing weight via posts. To ensure the quality

of this dataset, we use the 10-core setting [8], i.e., retaining users

and posts with at least ten interactions. (2) News: This dataset
includes the interactions from subreddit World News4 where users
share major news around the world via posts. Similarly, we use the

10-core setting to ensure the quality of this dataset. We summarize

the statistics of all six datasets in Table 2.

3
https://www.reddit.com/r/loseit/

4
https://www.reddit.com/r/worldnews/

WWW ’23, May 1–5, 2023, Austin, TX, USA Wang, et al.

Table 1: Performance comparison of CAGCN(*) with baselines. The best and runner-up results are in bold and underlined.

Model Metric MF NGCF LightGCN UltraGCN CAGCN CAGCN*
-jc -sc -cn -lhn -jc -sc -lhn

Gowalla

Recall@20 0.1554 0.1563 0.1817 0.1867 0.1825 0.1826 0.1632 0.1821 0.1878 0.1878 0.1857

NDCG@20 0.1301 0.1300 0.1570 0.1580 0.1575 0.1577 0.1381 0.1577 0.1591 0.1588 0.1563

Yelp2018

Recall@20 0.0539 0.0596 0.0659 0.0675 0.0674 0.0671 0.0661 0.0661 0.0708 0.0711 0.0676

NDCG@20 0.0460 0.0489 0.0554 0.0553 0.0564 0.0560 0.0546 0.0555 0.0586 0.0590 0.0554

Amazon

Recall@20 0.0337 0.0336 0.0420 0.0682 0.0435 0.0435 0.0403 0.0422 0.0510 0.0506 0.0457

NDCG@20 0.0265 0.0262 0.0331 0.0553 0.0343 0.0342 0.0321 0.0333 0.0403 0.0400 0.0361

Ml-1M

Recall@20 0.2604 0.2619 0.2752 0.2783 0.2780 0.2786 0.2730 0.2760 0.2822 0.2827 0.2799

NDCG@20 0.2697 0.2729 0.2820 0.2638 0.2871 0.2881 0.2818 0.2871 0.2775 0.2776 0.2745

Loseit

Recall@20 0.0539 0.0574 0.0588 0.0621 0.0622 0.0625 0.0502 0.0592 0.0654 0.0658 0.0658
NDCG@20 0.0420 0.0442 0.0465 0.0446 0.0474 0.0470 0.0379 0.0461 0.0486 0.0484 0.0489

News

Recall@20 0.1942 0.1994 0.2035 0.2034 0.2135 0.2132 0.1726 0.2084 0.2182 0.2172 0.2053

NDCG@20 0.1235 0.1291 0.1311 0.1301 0.1385 0.1384 0.1064 0.1327 0.1405 0.1414 0.1311

Avg. Rank Recall@20 9.83 9.17 7.33 4.17 4.67 4.33 8.83 6.17 1.67 1.50 3.33

NDCG@20 9.50 9.17 5.83 6.00 3.67 4.00 8.33 5.00 2.50 2.50 5.17

jc-Jacard Similarity, sc-Salton Cosine Similarity, cn-Common Neighbors, lhn-Leicht-Holme-Nerman

Table 2: Basic dataset statistics.

Dataset # Users # Items # Interactions Density
Gowalla 29, 858 40, 981 1, 027, 370 0.084%

Yelp 31, 668 38, 048 1, 561, 406 0.130%

Amazon 52, 643 91, 599 2, 984, 108 0.062%

Ml-1M 6, 022 3, 043 895, 699 4.888%

Loseit 5, 334 54, 595 230, 866 0.08%

News 29, 785 21, 549 766, 874 0.119%

*Yelp: Yelp2018; *Amazon: Amazon-Books;*Ml-1M: Movielens-1M.

4.1.2 Baseline methods. We compare our model with MF, NGCF,

LightGCN, UltraGCN, GTN [4, 9, 19, 27, 37]. Details of them are

clarified in Appendix A.4.1. Since here the purpose is to evaluate the

effectiveness of CAGC-based message-passing, we only compare

with baselines that focus on graph convolution (besides the classic

MF) including the state-of-the-art GNN-based recommendation

models (i.e., UltraGCN and GTN). Note that our work could be fur-

ther enhanced if incorporating other techniques such as contrastive

learning to derive self-supervision but stacking these would side-

track the main topic of this paper, graph convolution, so we leave

them as one future direction.

4.1.3 Evaluation Metrics. Two popular metrics: Recall and Nor-

malized Discounted Cumulative Gain(NDCG) [37] are adopted for

evaluation.We set the default value of K as 20 and report the average

of Recall@20 and NDCG@20 over all users in the test set. During

inference, we treat items that the user has never interacted with in

the training set as candidate items. All models predict users’ prefer-

ence scores over these candidate items and rank them based on the

computed scores to further calculate Recall@20 and NDCG@20.

4.2 Performance Comparison
We first compare our proposed CAGCN-variants with LightGCN.

In Table 1, CAGCN-jc/sc/lhn achieves higher performance than

LightGCN because we aggregate more information from nodes with

higher CIR(jc, sc, lhn) that bring more beneficial collaborations as

justified in Section 2.2. CAGCN-cn generally performs worse than

LightGCN because nodes having more common neighbors with

other nodes tend to have higher degrees and blindly aggregating

information more from these nodes would cause false-positive link

Table 3: Performance comparison of CAGCN* with GTN.

Model Metric GTN CAGCN*
-jc -sc -lhn

Gowalla

Recall@20 0.1870 0.1901 0.1899 0.1885

NDCG@20 0.1588 0.1604 0.1603 0.1576

Yelp2018

Recall@20 0.0679 0.0731 0.0729 0.0689

NDCG@20 0.0554 0.0605 0.0601 0.0565

Amazon

Recall@20 0.0450 0.0573 0.0575 0.0520

NDCG@20 0.0346 0.0456 0.0458 0.0409

prediction. Since different datasets exhibit different patterns of 2
nd
-

order connectivity, there is no fixed topological metric that performs

the best among all datasets. For example, CAGCN-jc performs better

than CAGCN-sc on Yelp and News, while worse on Gowalla, Ml-1M.

Then, we compare CAGCN*-variants with other baselines. We

omit CAGCN*-cn here due to the worse performance of CAGCN-cn

than LightGCN. We can see that CAGCN*-jc/sc almost consistently

achieves higher performance than other baselines except for Ultra-

GCN on Amazon. This is because UltraGCN allows multiple nega-

tive samples for each positive interaction, e.g., 500 negative samples

here on Amazon
5
, which lowers the efficiency as we need to spend

more time preparing a large number of negative samples per epoch.

Among the baselines, UltraGCN exhibits the strongest performance

because it approximates the infinite layers of message passing and

constructs the user-user graphs to capture 2
nd
-order connectivity.

LightGCN and NGCF perform better than MF since they inject the

collaborative effect directly through message-passing.

To align the setting with GTN, we increase the embedding size

𝑑0 to 256 following [4]
6
and observe the consistent superiority of

our model over GTN in Table 3. This is because in GTN [4], the

edge weights for message-passing are still computed based on node

embeddings that implicitly encode noisy collaborative signals from

unreliable interactions. Conversely, our CAGCN* directly alleviates

the propagation on unreliable interactions based on its CIR value,

which removes noisy interactions from the source.

5
UltraGCN negative samples: 1500/800/500/200 on Gowalla/Yelp2018/Amazon/Ml-1M.

6
As the user/item embedding is a significant hyperparameter, it is crucial to ensure the

same embedding size when comparing models; thus, we separately compare against

GTN using their larger embedding size.

https://github.com/xue-pai/UltraGCN
https://github.com/wenqifan03/GTN-SIGIR2022

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 4: Efficiency comparison of CAGCN* with Light-
GCN. For fair comparison, we track the first time CAGCN*
achieves the best performance of LightGCN.
Model Stage Gowalla Yelp Amazon Ml-1M Loseit News
LightGCN Training 16432.0 28788.0 81976.5 18872.3 39031.0 13860.8

CAGCN*

Preprocess 167.4 281.6 1035.8 33.8 31.4 169.0

Training 2963.2 1904.4 1983.9 11304.7 10417.7 1088.4

Total 3130.6 2186.0 3019.7 11338.5 10449.1 1157.4

Improve Training 82.0% 93.4% 97.6% 40.1% 73.3% 92.1%

Total 80.9% 92.4% 96.3% 39.9% 73.2% 91.6%

Figure 5: Training time (s) of different models.

4.3 Efficiency Comparison
As recommendation models will be eventually deployed in user-

item data of real-world scale, it is crucial to compare the efficiency

of the proposed CAGCN(*) with other baselines. To guarantee a

fair comparison, we use a uniform code framework implemented

ourselves for all models and run them on the same machine with

Ubuntu 20.04 system, AMD Ryzen 9 5900 12-Core Processor (3.0

GHz), 128 GB RAM and GPU NVIDIA GeForce RTX 3090. We report

the Recall@20 on Yelp and NDCG@20 on Loseit achieved by the

best CAGCN(*) variant based on Table 1. We track the performance

and the training time per 5 epochs. Complete results are included

in Supplementary B.5. In Figure 5(a)-(b), CAGCN achieves higher

performance than LightGCN in less time. We hypothesize that for

each user, its neighbors with higher interactions with its whole

neighborhood would also have higher interactions with its inter-

acted but unobserved neighbors. Then as CAGCN aggregate more

information from these observed neighbors that have higher inter-

actions with the whole neighborhood, it indirectly enables the user

to aggregate more information from its to-be-predicted neighbors.

To verify the above hypothesis, we define the to-be-predicted

neighborhood set of user 𝑢 in the testing set as N̂1

𝑢 and for each

neighbor 𝑗 ∈ N1

𝑢 , calculate its CIR 𝜙
𝐿
𝑢 (𝑗) with nodes in N̂1

𝑢 . Then

we compare the ranking consistency among CIRs calculated from

training neighborhoods (i.e., 𝜙𝑢 (𝑗)), from testing neighborhoods

(i.e., 𝜙𝑢 (𝑗)) and from full neighborhoods (we replace N̂1

𝑢 withN1

𝑢∪
N̂1

𝑢 in Eq. (5)). Here we respectively use four topological metrics

(JC, SC, LHN, and CN) to define 𝑓 and rank the obtained three lists.

Then, we measure the similarity of the ranked lists between Train-

Test and between Train-Full by Rank-Biased Overlap (RBO) [42].

The averaged RBO values over all nodes 𝑣 ∈ V on three datasets

are shown in Table 5. It is clear that the RBO values on all these

datasets are beyond 0.5, which verifies our hypothesis. The RBO

value between Train-Full is always higher than the one between

Train-Test because most interactions are in the training set.

Table 5: Average Rank-Biased Overlap (RBO) of the ranked
neighbor lists between training (i.e.,N1

𝑢) and testing/full (i.e.,
N̂1

𝑢 and N1

𝑢∪ N̂1

𝑢 , respectively) dataset over all nodes 𝑢 ∈ U.
Metric

Gowalla Yelp Ml-1M

Train-Test Train-Full Train-Test Train-Full Train-Test Train-Full

JC 0.604±0.129 0.902±0.084 0.636±0.124 0.897±0.081 0.848±0.092 0.978±0.019
SC 0.611±0.127 0.896±0.084 0.657±0.124 0.900±0.077 0.876±0.077 0.983±0.015
LHN 0.598±0.121 0.974±0.036 0.578±0.100 0.976±0.029 0.845±0.082 0.987±0.009
CN 0.784±0.120 0.979±0.029 0.836±0.100 0.983±0.023 0.957±0.039 0.995±0.006

Moreover, by combining two views of propagations, one from

CAGC and one from LightGCN, CAGCN* achieves even higher

performance with even less time. This is because keeping aggregat-

ing more information from neighbors with higher CIR (as CAGCN

does) would prevent each user from aggregating information from

his/her other neighbors. In addition, we report the first time that

our best CAGCN* variant achieves the best performance of Light-

GCN on each dataset in Table 4. We also report the preprocessing

time for pre-calculating the CIR matrix 𝚽 for our model to avoid

any bias. We could see that even considering the preprocessing

time, it still takes significantly less time for CAGCN* to achieve the

same best performance as LightGCN, which highlights the broad

prospects to deploy CAGCN* in real-world recommendations.

4.4 Further Probe
4.4.1 Performance grouped by node degrees. Here we group nodes

by degree and visualize the average performance of each group.

Comparing non-graph-based models (e.g., MF), graph-based mod-

els (e.g., LightGCN, CAGCN(*)) achieve higher performance for

lower degree nodes [0, 300) while lower performance for higher

degree nodes [300, Inf). Since node degree follows the power-law
distribution [32], the average performance of graph-based models

is still higher than MF. On one hand, graph-based models leverage

neighborhood to augment the weak supervision for low-degree

nodes. On the other hand, they introduce noisy interactions for

higher-degree nodes. It is also interesting to see the opposite per-

formance trends under different evaluation metrics: NDCG prefers

high-degree nodes while recall prefers low-degree nodes. This indi-

cates that different evaluation metrics have different sensitivity to

node degrees and an unbiased node-centric evaluator is desired.

0.0

0.2

0.4

0.6

N
D

C
G

@
20 MF

NGCF
LightGCN CAGCN-jc CAGCN*-jc

0.00

0.05

0.10

0.15

R
ec

al
l@

20

[0, 100)
[100, 200)

[200, 300)
[300, 400)

[400, 500)
[500, 600)

[600, Inf)

Degree Group

0.00

0.05

0.10

0.15

C
IR

-s
c

0

5

10 C
ou

nt
 (L

og
)

Figure 6: Performance w.r.t. node degree on Gowalla. A sim-
ilar trend is seen on Yelp in Supplementary B.2.

WWW ’23, May 1–5, 2023, Austin, TX, USA Wang, et al.

Figure 7: In (a)-(b), the performance first increases since we capture higher-layer neighborhood information and higher-hop
topological interaction in calculating CIR as 𝐿, �̂� increase from 1 to 3. However, the performance decreases in (a) as 𝐿 increases
due to over-smoothing. In (c)-(d), we add the global top edges directly (rather than cycle each node) according to their CIR.
More details are provided in Appendix A.5.2.
4.4.2 Impacts of propagation layers 𝐿 and neighborhood hops �̂�.
Figure 7(a)-(b) visualize the performance of CAGCN* and Light-

GCN when the propagation layer 𝐿 in Eq. (2) and the neighborhood

hop �̂� in Eq. (5) increase. In (a), the performance first increases as 𝐿

increases from 1 to 3 due to the incorporation of high-layer neigh-

borhood information and then decreases due to over-smoothing.

More importantly, our CAGCN* is always better than LightGCN

at all propagation layers. In (b), the performance consistently in-

creases as the number of neighborhood hops increases because we

are allowed to consider even more higher topological interactions

among each node’s neighborhood in computing CIR.

4.4.3 Adding edges globally according to CIR.. Figure 7(c)-(d) visu-
alize the performance change when we add edges randomly and

according to CIR. Unlike Figure 2-3 where we add edges by cycling

each node, here we directly select the global top edges regardless

of each center node according to their CIR and then evaluate the

LightGCN with the pre-trained user-item embeddings. In the first

stage, we observe a similar trend that adding edges according to JC,

SC, and LHN leads to faster performance gain. However, since we

don’t cycle over each node, we would keep adding so many edges

with larger CIR to the same node, which fails to bring performance

gain anymore and hence cannot maximize our performance benefit

under the node-centric evaluation metric.

5 RELATEDWORK
Collaborative Filtering & Recommendation. Collaborative fil-
tering (CF) predicts users’ interests by utilizing the preferences of

other users with similar interests [5]. Early CF methods used Matrix

Factorization techniques [14, 26, 27, 33] to capture CF effect via

optimizing users/items’ embeddings over historical interactions.

Stepping further, Graph-based methods either leverage topological

constraints or message-passing to inject the CF effect into user/item

embeddings [9, 37]. ItemRank and BiRank [6, 10] perform label prop-

agation and compute users’ ranking based on structural proximity

between the observed and the target items. To make user prefer-

ences learnable, HOP-Rec [46] combines the graph-based method

and the embedding-based method. Yet, interactions captured by

random walks there do not fully explore the high-layer neighbors

and multi-hop dependencies [39]. By contrast, GNN-based meth-

ods are superior at encoding higher-order structural proximity in

user/item embeddings [9, 37]. Recent work [1, 4, 34] has demon-

strated that not all captured collaborations improve users’ ranking.

[1] proposes to learn binary mask and impose low-rank regular-

ization while ours propose novel topological metric CIR to weigh

neighbors’ importance. [4] smooths nodes’ embeddings based on

degree-normalized embedding similarity, while ours adaptively

smooth based on topological proximity(CIR). [34] denoises interac-

tions/preserve diversity based on 1-layer propagated embeddings

and hence cannot go beyond 1-WL test, while ours keep neighbors

and does not focus on diversity issues.

Link Prediction. As a generalized version of recommendation,

link prediction finds applications in predicting drug interactions

and completing knowledge graphs [22, 29]. Early studies adopt

topological heuristics to score node pairs [15, 21, 52]. Furthermore,

latent-based/deep-learning methods [25, 48] are proposed to char-

acterize underline topological patterns in node embeddings via ran-

dom walks [7] or regularizing [25]. To fully leverage node features,

GNN-based methods are proposed and achieve unprecedented suc-

cess owing to the use of the neural network to extract task-related

information and the message-passing capture the topological pat-

tern [23, 49, 51]. Recently, efforts have been invested in developing

expressive GNNs that can go beyond the 1-WL test [18, 43, 50]

for node/graph classification. Following this line, our work devel-

ops a recommendation-tailored graph convolution with provably

expressive power in predicting links between users and items.

6 CONCLUSION
In this paper, we find that the message-passing captures collabora-

tive effect by leveraging interactions between neighborhoods. The

strength of the captured collaborative effect depends the embedding

similarity, the weight of paths and the contribution of each propaga-

tion layer. To determine whether the captured collaborative effect

would benefit the prediction of user preferences, we propose the

Common Interacted Ratio (CIR) and empirically verify that leverag-

ing collaborations from neighbors with higher CIR contributesmore

to users’ ranking. Furthermore, we propose CAGCN(*) to selectively

aggregate neighboring nodes’ information based on their CIRs.

We further define a new type of isomorphism, bipartite-subgraph-

isomorphism, and prove that our CAGCN* can be more expres-

sive than 1-WL in distinguishing subtree(subgraph)-isomorphic yet

non-bipartite-subgraph-isomorphic graphs. Experimental results

demonstrate the advantages of the proposed CAGCN(*) over other

baselines. Specifically, CAGCN* outperforms the most representa-

tive graph-based recommendation model, LightGCN [9], by around

10% in Recall@20 but also achieves roughly more than 80% speedup.

In the future, we will explore the imbalanced performance improve-

ment among nodes in different degree groups as seen in Figure 6,

especially from the perspective of GNN fairness [38, 41].

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] Huiyuan Chen, Lan Wang, Yusan Lin, Chin-Chia Michael Yeh, Fei Wang, and

Hao Yang. 2021. Structured graph convolutional networks with stochastic masks

for recommender systems. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 614–623.

[2] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[3] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for

recommendation systems. In The 41st international ACM SIGIR conference on
research & development in information retrieval. 515–524.

[4] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022.

Graph Trend Filtering Networks for Recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 112–121.

[5] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. 1992. Using

collaborative filtering to weave an information tapestry. Commun. ACM 35, 12

(1992), 61–70.

[6] Marco Gori, Augusto Pucci, V Roma, and I Siena. 2007. Itemrank: A random-walk

based scoring algorithm for recommender engines.. In IJCAI, Vol. 7. 2766–2771.
[7] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[8] Ruining He and Julian McAuley. 2016. VBPR: visual bayesian personalized

ranking from implicit feedback. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 30.

[9] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[10] Xiangnan He, Ming Gao, Min-Yen Kan, and Dingxian Wang. 2016. Birank: To-

wards ranking on bipartite graphs. IEEE Transactions on Knowledge and Data
Engineering 29, 1 (2016), 57–71.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[12] Yue Hu, Ao Qu, and Dan Work. 2022. Detecting extreme traffic events via a

context augmented graph autoencoder. ACM Transactions on Intelligent Systems
and Technology (TIST) 13, 6 (2022), 1–23.

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[14] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[15] Elizabeth A Leicht, Petter Holme, and Mark EJ Newman. 2006. Vertex similarity

in networks. Physical Review E 73, 2 (2006), 026120.

[16] Xin Li and Hsinchun Chen. 2013. Recommendation as link prediction in bipartite

graphs: A graph kernel-based machine learning approach. Decision Support
Systems 54, 2 (2013), 880–890.

[17] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for

social networks. Journal of the American society for information science and
technology 58, 7 (2007), 1019–1031.

[18] Meng Liu, Haiyang Yu, and Shuiwang Ji. 2022. Your Neighbors Are Communi-

cating: Towards Powerful and Scalable Graph Neural Networks. arXiv preprint
arXiv:2206.02059 (2022).

[19] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.

2021. UltraGCN: Ultra Simplification of Graph Convolutional Networks for

Recommendation. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 1253–1262.

[20] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel.

2020. Social-stgcnn: A social spatio-temporal graph convolutional neural network

for human trajectory prediction. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 14424–14432.

[21] Mark EJ Newman. 2001. Clustering and preferential attachment in growing

networks. Physical review E 64, 2 (2001), 025102.

[22] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.

A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1

(2015), 11–33.

[23] Liming Pan, Cheng Shi, and Ivan Dokmanić. 2021. Neural Link Prediction with

Walk Pooling. arXiv preprint arXiv:2110.04375 (2021).
[24] Dongmin Park, Hwanjun Song, Minseok Kim, and Jae-Gil Lee. 2020. TRAP:

Two-level regularized autoencoder-based embedding for power-law distributed

data. In Proceedings of The Web Conference 2020. 1615–1624.
[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings

of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452–461.
[27] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[28] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recom-

mender systems handbook. In Recommender systems handbook. Springer.
[29] Benedek Rozemberczki, Charles Tapley Hoyt, Anna Gogleva, Piotr Grabowski,

Klas Karis, Andrej Lamov, Andriy Nikolov, Sebastian Nilsson, Michael Ughetto,

Yu Wang, et al. 2022. ChemicalX: A Deep Learning Library for Drug Pair Scoring.

arXiv preprint arXiv:2202.05240 (2022).
[30] Gerard Salton. 1989. Automatic text processing: The transformation, analysis,

and retrieval of. Reading: Addison-Wesley 169 (1989).

[31] Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Kumar, and Xiquan Cui.

2022. M2TRec: Metadata-aware Multi-task Transformer for Large-scale and

Cold-start free Session-based Recommendations. In Proceedings of the 16th ACM
Conference on Recommender Systems. 573–578.

[32] Andrew T Stephen and Olivier Toubia. 2009. Explaining the power-law degree

distribution in a social commerce network. Social Networks 31, 4 (2009), 262–270.
[33] Yi Tay, LuuAnh Tuan, and Siu CheungHui. 2018. Latent relational metric learning

via memory-based attention for collaborative ranking. In WWW. 729–739.

[34] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. 2022.

Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering.

In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 122–132.

[35] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. 2022. Lifelong

graph learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 13719–13728.

[36] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neu-

ral networks via continual learning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1515–1524.

[37] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[38] Yu Wang. 2022. Fair Graph Representation Learning with Imbalanced and Biased

Data. In Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining.

[39] Yu Wang and Tyler Derr. 2021. Tree Decomposed Graph Neural Network. In

Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 2040–2049.

[40] Yu Wang, Wei Jin, and Tyler Derr. 2022. Graph neural networks: Self-supervised

learning. Graph Neural Networks: Foundations, Frontiers, and Applications (2022).
[41] Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler

Derr. 2022. Improving fairness in graph neural networks via mitigating sensi-

tive attribute leakage. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1938–1948.

[42] William Webber, Alistair Moffat, and Justin Zobel. 2010. A similarity measure

for indefinite rankings. ACM TOIS 28, 4 (2010), 1–38.
[43] Asiri Wijesinghe and Qing Wang. 2021. A New Perspective on" How Graph

Neural Networks Go Beyond Weisfeiler-Lehman?". In ICLR.
[44] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,

and Xing Xie. 2021. Self-supervised graph learning for recommendation. In

Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 726–735.

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[46] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.

HOP-rec: high-order proximity for implicit recommendation. In Proceedings of
the 12th ACM Conference on Recommender Systems. 140–144.

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD. 974–983.
[48] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-lehman neural machine for link

prediction. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining. 575–583.

[49] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. Advances in neural information processing systems 31 (2018).
[50] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. 2021. From Stars to

Subgraphs: Uplifting Any GNN with Local Structure Awareness. In International
Conference on Learning Representations.

[51] Tong Zhao, Gang Liu, DahengWang,Wenhao Yu, andMeng Jiang. 2022. Learning

from counterfactual links for link prediction. In International Conference on
Machine Learning. PMLR, 26911–26926.

[52] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. 2009. Predicting missing links via

local information. The European Physical Journal B 71, 4 (2009), 623–630.

[53] Zixu Zhuang, ShengWang, Liping Si, Kai Xuan, Zhong Xue, Dinggang Shen, Lichi

Zhang, Weiwu Yao, and Qian Wang. 2022. Local Graph Fusion of Multi-view MR

Images for Knee Osteoarthritis Diagnosis. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 554–563.

WWW ’23, May 1–5, 2023, Austin, TX, USA Wang, et al.

A APPENDIX
A.1 Graph Topological Metrics for CIR
Here we demonstrate that by configuring different 𝑓 and �̂�, 𝜙𝐿𝑢 (𝑗)
can express many existing graph similarity metrics.

𝜙𝐿𝑢 (𝑗) =
1

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

𝐿∑︁
𝑙=1

𝛽2𝑙
∑︁

𝑃2𝑙
𝑗𝑖
∈𝒫2𝑙

𝑗𝑖

1

𝑓 ({N1

𝑘
|𝑘 ∈ 𝑃2𝑙

𝑗𝑖
})

(8)

• Jaccard Similarity (JC) [17]: The JC score measures the simi-

larity between neighborhood sets as the ratio of the intersection

of two neighborhood sets to the union of these two sets:

JC(𝑖, 𝑗) =
|N1

𝑖
∩ N1

𝑗
|

|N1

𝑖
∪ N1

𝑗
|

(9)

Let �̂� = 1 and set 𝑓 ({N1

𝑘
|𝑘 ∈ 𝑃2

𝑗𝑖
}) = |N1

𝑖
∪ N1

𝑗
|, then we have:

𝜙1

𝑢 (𝑗) = 1

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

𝛽2
∑︁

𝑃2
𝑗𝑖
∈𝒫2

𝑗𝑖

1

|N1

𝑖
∪ N1

𝑗
|
=

𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

|N1

𝑖
∩ N1

𝑗
|

|N1

𝑖
∪ N1

𝑗
|
=

𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

JC(𝑖, 𝑗) (10)

• SaltonCosine Similarity (SC) [30]: The SC score measures the

cosine similarity between the neighborhood sets of two nodes:

SC(𝑖, 𝑗) =
|N1

𝑖
∩ N1

𝑗
|√︃

|N1

𝑖
∪ N1

𝑗
|

(11)

let �̂� = 1 and set 𝑓 ({N1

𝑘
|𝑘 ∈ 𝑃2

𝑗𝑖
}) =

√︃
|N1

𝑖
∪ N1

𝑗
|, then we have:

𝜙1

𝑢 (𝑗) = 1

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

𝛽2
∑︁

𝑃2
𝑗𝑖
∈𝒫2

𝑗𝑖

1√︃
|N1

𝑖
∪ N1

𝑗
|
=

𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

|N1

𝑖
∩ N1

𝑗
|√︃

|N1

𝑖
∪ N1

𝑗
|
=

𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

SC(𝑖, 𝑗)

(12)

• Common Neighbors (CN) [21]: The CN score measures the

number of common neighbors of two nodes and is frequently

used for measuring the proximity between two nodes:

CN(𝑖, 𝑗) = |N1

𝑖 ∩ N1

𝑗 | (13)

Let �̂� = 1 and set 𝑓 ({N1

𝑘
|𝑘 ∈ 𝑃2

𝑗𝑖
}) = 1, then we have:

𝜙1

𝑢 (𝑗) = 1

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

𝛽2
∑︁

𝑃2
𝑗𝑖
∈𝒫2

𝑗𝑖

1 =
𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

|N1

𝑖 ∩ N1

𝑗 | =
𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

CN(𝑖, 𝑗) (14)

Since CN does not contain any normalization to remove the bias

of degree in quantifying proximity and hence performs worse

than other metrics as demonstrated by our recommendation

experiments in Table 1.

• Leicht-Holme-Nerman (LHN) [15]: LHN is very similar to SC.

However, it removes the square root in the denominator and is

more sensitive to the degree of node:

LHN(𝑖, 𝑗) =
|N1

𝑖
∩ N1

𝑗
|

|N1

𝑖
| · |N1

𝑗
|

(15)

Let �̂� = 1 and set 𝑓 ({N1

𝑘
|𝑘 ∈ 𝑃2

𝑗𝑖
}) = |N1

𝑖
| · |N1

𝑗
|, then we have:

𝜙1

𝑢 (𝑗) = 1

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

𝛽2
∑︁

𝑃2
𝑗𝑖
∈𝒫2

𝑗𝑖

1

|N1

𝑖
| · |N1

𝑗
|
=

𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

|N1

𝑖
∩ N1

𝑗
|

|N1

𝑖
| · |N1

𝑗
|
=

𝛽2

|N1

𝑢 |

∑︁
𝑖∈N1

𝑢

LHN(𝑖, 𝑗)

(16)

We further emphasize that our proposed CIR is a generalized ver-

sion of these four existing metrics and can be delicately designed

toward satisfying downstream tasks and datasets. We leave such

exploration on the choice of 𝑓 as one potential future work.

A.2 Derivation of Eq. (4)
The matrix form of computing the ranking of user 𝑢 over item 𝑖

after 𝐿-layer LightGCN-based message-passing:

𝑦𝐿𝑢𝑖 = (
𝐿∑︁
𝑙1=0

𝛽𝑙1E
𝑙1
𝑢)⊤ (

𝐿∑︁
𝑙1=0

𝛽𝑙1E
𝑙1
𝑖
) = (

𝐿∑︁
𝑙1=0

𝛽𝑙1A
𝑙1E0)⊤𝑢 (

𝐿∑︁
𝑙1=0

𝛽𝑙1A
𝑙1E0)𝑖 .

(17)

where 𝛽𝑙1 is the layer contribution and LightGCNusesmean-pooling,

i.e.,
1

𝐿
in Eq. (2). For the propagated embedding at a specific layer

𝑙1, we have:

E𝑙1𝑢 = (A𝑙1E0)𝑢 =
∑︁
𝑗 ∈V𝑙

1

𝑢

𝛼
𝑙1
𝑗𝑢
e0𝑗 , (18)

where 𝛼
𝑙1
𝑗𝑢

=
∑
𝑃
𝑙
1

𝑗𝑢
∈𝒫𝑙

1

𝑗𝑢

∏
𝑒𝑝𝑞 ∈𝑃𝑙1𝑗𝑢

𝑑−0.5𝑝 𝑑−0.5𝑞 (𝛼
𝑙1
𝑗𝑢

= 0 if 𝒫
𝑙1
𝑗𝑢

= ∅).

V𝑙1
𝑢 is the set of all nodes having paths of length 𝑙1 to 𝑢 and can be

expressed as:

V𝑙1
𝑢 =

𝑙1⋃
𝑙2=0

N𝑙2
𝑢 · 1[(𝑙1 − 𝑙2)%2 = 0], (19)

where

N𝑙2
𝑢 · 1[(𝑙1 − 𝑙2)%2 = 0] =

{
N𝑙2
𝑢 , (𝑙1 − 𝑙2)%2 = 0

∅, (𝑙1 − 𝑙2)%2 ≠ 0

. (20)

Substituting Eq. (19) into Eq. (18), we have:

E
𝑙
1

𝑢 = (A𝑙1 E0)𝑢 =
∑︁

𝑗∈V𝑙
1

𝑢

𝛼
𝑙
1

𝑗𝑢
e0
𝑗
=

∑︁
𝑗∈⋃𝑙

1

𝑙
2
=0

N𝑙
2

𝑢 ·1[(𝑙
1
−𝑙
2
)%2=0]

𝛼
𝑙
1

𝑗𝑢
e0
𝑗
=

𝑙
1∑︁

𝑙
2
=0

∑︁
𝑗∈N𝑙

2

𝑢 ·1[(𝑙
1
−𝑙
2
)%2=0]

𝛼
𝑙
1

𝑗𝑢
e0
𝑗
.

(21)

Then the aggregation of all 𝐿 layers’ embeddings of user 𝑢 is ex-

pressed as:

𝐿∑︁
𝑙1=0

𝛽𝑙1E
𝑙1
𝑢 =

𝐿∑︁
𝑙1=0

𝛽𝑙1

𝑙1∑︁
𝑙2=0

∑︁
𝑗 ∈N𝑙

2

𝑢 ·1[(𝑙1−𝑙2)%2]

𝛼
𝑙1
𝑗𝑢
e0𝑗 . (22)

Eq. (22) means that for each length 𝑙1 ∈ {0, 1, ..., 𝐿}, for each node

𝑗 ∈ V𝑙1
𝑢 that has path of length 𝑙1 to 𝑢, we propagate its embed-

ding over each path 𝑃
𝑙1
𝑗𝑢

∈ 𝒫
𝑙1
𝑗𝑢

with the corresponding weight

coefficient

∏
𝑒𝑝𝑞 ∈𝑃𝑙1𝑗𝑢

𝑑−0.5𝑝 𝑑−0.5𝑞 .

Since nodes that are 𝑙1-hops away from 𝑢 cannot have paths of

length less than 𝑙1, we reorganize Eq. (22) by first considering the

hop of each node and then considering the length of each path,

which leads to:

𝐿∑︁
𝑙
1
=0

𝛽𝑙
1
E𝑙1𝑢 =

𝐿∑︁
𝑙
1
=0

𝛽𝑙
1

𝑙
1∑︁

𝑙
2
=0

∑︁
𝑗∈N𝑙

2

𝑢 ·1[(𝑙
1
−𝑙
2
)%2]

𝛼
𝑙
2

𝑗𝑢
e0𝑗 =

𝐿∑︁
𝑙
1
=0

∑︁
𝑗∈N𝑙

1

𝑢

𝐿∑︁
𝑙
2
=𝑙
1

𝛽𝑙
2
𝛼
𝑙
2

𝑗𝑢
e0𝑗 ,

(23)

where 𝛼
𝑙2
𝑗𝑢

=
∑
𝑃
𝑙
2

𝑗𝑢
∈𝒫𝑙

2

𝑗𝑢

∏
𝑒𝑝𝑞 ∈𝑃𝑙2𝑗𝑢

𝑑−0.5𝑝 𝑑−0.5𝑞 (𝛼
𝑙2
𝑗𝑢

= 0 if 𝒫
𝑙2
𝑗𝑢

= ∅).
Then by substituting Eq. (23) into Eq. (17), we end up with:

𝑦𝐿𝑢𝑖 = (
𝐿∑︁
𝑙1=0

∑︁
𝑗 ∈N𝑙

1

𝑢

𝐿∑︁
𝑙2=𝑙1

𝛽𝑙2𝛼
𝑙2
𝑗𝑢
e0𝑗)

⊤ (
𝐿∑︁
𝑙1=0

∑︁
𝑣∈N𝑙

1

𝑖

𝐿∑︁
𝑙2=𝑙1

𝛽𝑙2𝛼
𝑙2
𝑣𝑖
e0𝑣), (24)

where N0

𝑢 = {𝑢} and specifically, 𝛼0𝑢𝑢 = 1. 𝛽𝑙2 is the weight mea-

suring contributions of propagated embeddings at layer 𝑙2.

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, May 1–5, 2023, Austin, TX, USA

A.3 Complexity Comparison and Analysis
Let |V|, |E |, |F | be the total number of nodes, edges, and feature

dimensions (assuming feature dimensions stay the same across all

feature transformation layers). Let 𝐿 be the propagation layer for

all graph-based models using message-passing. Let 𝑟 be the total

number of negative samples per epoch per positive pair and 𝐾

be the number of 2
nd
-order neighbors. For 𝑟 , all baselines use 1

per epoch per positive pair and hence can be omitted (aside from

UltraGCN using a larger number). Then the complexity of each

model is summarized in Table 6. For CAGCN, since we only con-

sider 2-hops away connections to compute CIR in Eq. (5), the main

computational load would be computing the power of adjacency

matrix, which takes O(|V|3). Note that for both of our CAGCN

and UltraGCN, we can apply Strassens’s Algorithm to further re-

duce the O(|V|3) to O(|V|2.8). In Table 4 in Section 4.3, we report

the preprocessing time for each dataset. Clearly, compared with

the time used for training, the time for preprocessing is minor,

which even demonstrates the superior efficiency of CAGCN since

it significantly speeds up the training as justified in Section 4.3.

Table 6: Complexity of the pre-procession and the forward
pass of CAGCN and different baselines.

Model MF NGCF LightGCN

Extra Hyper-parameters / / 1

Preprocess

Space / O(|E | + |V |) O (|E | + |V |)
Time / O(|E | + |V |) O (|E | + |V |)

Training

Space O(|V |𝐹) O (𝐿 |V |𝐹 + |E | + 𝐿𝐹 2) O (𝐿 |V |𝐹 + |E |)
Time O(|E |𝐹) O (𝐿 (|E |𝐹 + |V |𝐹 2)) O (𝐿 |E |𝐹 + 𝐿 |V |𝐹)

Model GTN UltraGCN CAGCN

Extra Hyper-parameters 1 7 2

Preprocess

Space O(|E | + |V |) O (|E | + |V |) O (|E | + |V |)
Time O(|E | + |V |) O (|V |3) O (|V |3)

Training

Space O(𝐿 |V |𝐹 + |E |) O (|V |𝐹 + |V |𝐾) O (𝐿 |V |𝐹 + |E |)
Time O(𝐿 |E |𝐹 + 𝐿 |V |𝐹) O (𝑟 (|E | + |𝑉 |𝐾)𝐹) O (𝐿 |E |𝐹 + 𝐿 |V |𝐹)

A.4 Experimental Setting
A.4.1 Baselines. We compare our proposed CAGCN(*) with the

following baselines: MF [27]: Most classic collaborative filtering

method equipped with the BPR loss; NGCF [37]: The first GNN-
based collaborative filtering model; LightGCN [9]: The most pop-

ular GNN-based collaborative filtering model, which removes fea-

ture transformation and nonlinear activation;UltraGCN [19]: The
first model approximating regularization weights by infinite layers

of message passing, and leveraging higher-order user-user rela-

tionships; GTN [4]: This model leverages a robust and adaptive

propagation based on the trend of the aggregated messages to avoid

unreliable user-item interactions.

A.4.2 CAGCN(*)-variants. For CAGCN, 𝛾𝑖 =
∑
𝑟 ∈N1

𝑖
𝑑−0.5
𝑖

𝑑−0.5𝑟 to

ensure that the total edge weights for messages received by each

node are the same as LightGCN. Therefore, Eq. (7) becomes:

e𝑙+1𝑖 =
∑︁
𝑗 ∈N1

𝑖

((
∑︁
𝑟 ∈N1

𝑖

𝑑−0.5𝑖 𝑑−0.5𝑟)
𝚽𝑖 𝑗∑

𝑘∈N1

𝑖
𝚽𝑖𝑘

)e𝑙𝑗 ,∀𝑖 ∈ V . (25)

For CAGCN*, 𝛾𝑖 = 𝛾 as a constant controlling the trade-off between

contributions from message-passing according to LightGCN and

according to CAGC. Eq. (7) becomes:

e𝑙+1𝑖 =
∑︁
𝑗 ∈N1

𝑖

(𝛾
𝚽𝑖 𝑗∑

𝑘∈N1

𝑖
𝚽𝑖𝑘

+ 𝑑−0.5𝑖 𝑑−0.5𝑗)e𝑙𝑗 ,∀𝑖 ∈ V, (26)

where we search 𝛾 in {1, 1.2, 1.5, 1.7, 2.0}.

A.5 Additional Experiments
A.5.1 Adding edges according to local CIRs. Given the user-item

bipartite graph for training, we calculate the CIR-variants and use

them to rank the neighborhood for each center node. During con-

struction, we first remove all edges and then iteratively cycle over

each node and add its corresponding neighbor based on the ranking

until hitting the budget. Figure 8(a) contains an example with users

𝑢1, 𝑢2 and a budget of three edges, where 𝑢1 and 𝑢2 both first get

an edge, but then only 𝑢1 gets a second edge.

Figure 8: (a) The procedure of adding edges according to
CIR of neighbors around each node. (b)-(c) The performance
change of adding edges on Gowalla and Yelp.

Similar to what we observed in Figure 3, the performance in-

creases as we add more edges on Gowalla and Yelp (Figure 8(b) and

(c), respectively). Furthermore, except for cn, adding edges accord-

ing to CIR-variants is more effective in increasing the performance,

which demonstrates the effectiveness of CIR in measuring the edge

importance.

A.5.2 Adding edges according to global CIRs. Here we introduce
how we add edges globally according to CIRs. Given the user-item

interactions for training, we first construct the user-item bipartite

graph and calculate the different variants of CIR including jc, sc,

cn, lhn as stated in Appendix A.1. Then, we directly rank all edges

according to the computed CIR. In the construction stage, we first

remove all edges in the bipartite graph. Then we select the top

edges according to the ranking based on our budget. Figure 9(a)

contains an example with users 𝑢1, 𝑢2 and a budget of three edges,

where we directly select the top-3 edges from all users’ neighbors.

Figure 9: (a) The procedure of adding edges according to CIR
globally. (b)-(c) The performance change of adding edges on
Amazon and Yelp.

In the first stage, we observe a similar trend that adding edges ac-

cording to CIRs lead to faster performance gain as Figure 8, which

demonstrate the effectiveness of CIR in measuring the edge im-

portance globally. However, since we don’t cycle over each node

and add its corresponding edge as we do in Appendix A.5.1, we

would keep adding so many edges with larger CIR to the same node,

which may not maximize our performance benefit when the metric

is calculated by averaging over all nodes.

WWW ’23, May 1–5, 2023, Austin, TX, USA Wang, et al.

B SUPPLEMENTARY
B.1 Hyperparamters
We follow the procedure of hyperparameter tuning in [9, 37] and

list the hyperparameters as follows:

• LightGCN. Propagation layers: 𝐿 = 3; Pooling layer: Meaning

pooling;

• NGCF. Propagation layers: 𝐿 = 3; Slope of LeakyRelu: 0.2; Pool-

ing layer: Concatenation

• UltraGCN. For Gowalla, Yelp, Amazon and Ml-1M, we use ex-

actly the same hyperparameter configurations provided here. For

Loseit and News, the hyperparamters are as follows:

(1) Loseit: Training epochs 2000; Learning rate 1𝑒−3; batch size

512; Loss weights𝑤1 = 1𝑒−6,𝑤2 = 1,𝑤3 = 1𝑒−6,𝑤4 = 1; the num-

ber of negative samples per epoch per positive pair 20; negative

weight 20; weight of 𝑙2 regularization 𝛾 = 1𝑒−4, 2nd-constraining
loss coefficient 𝜆 = 5𝑒−4.
(2) News: Training epochs 2000; Learning rate 1𝑒 − 3; batch size

1024; Loss weights 𝑤1 = 1𝑒−8,𝑤2 = 1,𝑤3 = 1,𝑤4 = 1𝑒−8; the
number of negative samples per epoch per positive pair 1000;

negative weight 200; weight of 𝑙2 regularization 𝛾 = 1𝑒−4, 2nd-
constraining loss coefficient 𝜆 = 5𝑒−4.

• GTN. For Gowalla, Yelp, Amazon, we directly report the result

provided here. In the following, we introduce the hyparameme-

ters we used for our CAGCN(*)-variants. With specification, the

number of training epochs is set to be 1000; the learning rate

0.001; 𝑙2 regularization 1𝑒−4; number of negative samples 1; em-

bedding dimenstion 64; batch size 256; �̂� = 1.

• CAGCN-jc. (1) Gowalla: 𝛾 = 1; (2) Yelp: 𝛾 = 1.2; (3) Amazon:

𝛾 = 1; (4) Ml-1M: 𝛾 = 2; (5) Loseit: 𝛾 = 1; (6) News: 𝛾 = 1.

• CAGCN-cn. (1) Gowalla: 𝛾 = 1; (2) Yelp: 𝛾 = 1.2; (3) Amazon:

𝛾 = 1; (4) Ml-1M: 𝛾 = 1; (5) Loseit: 𝛾 = 1; (6) News: 𝛾 = 1.

• CAGCN-sc. (1) Gowalla:𝛾 = 1; (2) Yelp:𝛾 = 1; (3) Amazon:𝛾 = 1;

(4) Ml-1M: 𝛾 = 2; (5) Loseit: 𝛾 = 1; (6) News: 𝛾 = 1.

• CAGCN-lhn. (1) Gowalla: 𝛾 = 1.2; (2) Yelp: 𝛾 = 1; (3) Amazon:

𝛾 = 1; (4) Ml-1M: 𝛾 = 2; (5) Loseit: 𝛾 = 1, 𝐿 = 1; (6) News: 𝛾 = 1.5.

• CAGCN*-jc. (1) Gowalla: 𝛾 = 1.2, 𝑙2-regularization 1𝑒 − 3; (2)

Yelp: 𝛾 = 1.7, 𝑙2-regularization 1𝑒−3; (3) Amazon: 𝛾 = 1.7, 𝑙2-

regularization 1𝑒−3; (4) Ml-1M: 𝛾 = 1, 𝑙2-regularization 1𝑒−3; (5)
Loseit: 𝛾 = 1, 𝐿 = 2; (6) News: 𝛾 = 1, 𝐿 = 2.

• CAGCN*-sc. (1) Gowalla: 𝛾 = 1.2, 𝑙2-regularization 1𝑒−3; (2)
Yelp: 𝛾 = 1.7, 𝑙2-regularization 1𝑒−3; (3) Amazon: 𝛾 = 1.7, 𝑙2-

regularization 1𝑒−3; (4) Ml-1M: 𝛾 = 1, 𝑙2-regularization 1𝑒−3; (5)
Loseit: 𝛾 = 1, 𝐿 = 2; (6) News: 𝛾 = 1, 𝐿 = 2.

• CAGCN*-lhn. (1) Gowalla: 𝛾 = 1, 𝑙2-regularization 1𝑒−3; (2)
Yelp: 𝛾 = 1, 𝑙2-regularization 1𝑒−3; (3) Amazon: 𝛾 = 1.5, 𝑙2-

regularization 1𝑒−3; (4) Ml-1M: 𝛾 = 1, 𝑙2-regularization 1𝑒−3;
(5) Loseit: 𝛾 = 0.5, 𝐿 = 2; (6) News: 𝛾 = 1, 𝐿 = 2.

B.2 Performance Interpretation
To demonstrate the generality of our observation in Figure 6, we fur-

ther perform exactly the same analysis on Yelp (shown in Figure 10)

and derive almost the same insights: 1) Graph-based recommen-

dation models achieve higher performance than non-graph-based

ones for lower degree nodes; 2) the opposite performance trends be-

tween NDCG and Recall indicates that different evaluation metrics

have different levels of sensitivity to node degrees.

0.00

0.25

0.50

0.75

N
D

C
G

@
20 MF

NGCF
LightGCN CAGCN-sc CAGCN*-sc

0.00

0.02

0.04

0.06

R
ec

al
l@

20

[0, 100)
[100, 200)

[200, 300)
[300, 400)

[400, 500)
[500, 600)

[600, 700)
[800, Inf)

Degree Group

0.00

0.05

0.10

C
IR

-s
c

0

5

10 C
ou

nt
 (L

og
)

Figure 10: Performance of model w.r.t. node degree on Yelp.

B.3 Thorough Complexity Analysis
Generally compared with the very basic MF, the main computa-

tional issue of LightGCN comes from the message-passing which

takes O(𝐿 |E |𝐹) time and O(𝐿 |V|𝐹) space to save the intermediate

node representations. For NGCF, the extra complexity comes from

the nonlinear transformation, which takes O(𝐿 |V|𝐹 2) time and

O(𝐿𝐹 2) space to save the transformation weights. For UltraGCN,

the main bottleneck comes from computing the user-user connec-

tions, which involves the power of adjacency matrix and hence

O(|V|3). Furthermore, as it samples hundreds of negative samples

and the optimization is also performed on the user-user connec-

tions, then its time complexity would be O(𝑟 (|E | + |V|𝐾)𝐹). For
CAGCN, since we only consider 2-hops away connections to com-

pute CIR in Eq. (5)(essentially for each center node, we count the

number of paths of length 2 from each of its neighbors to its whole

neighborhood), the main computational load would be computing

the power of adjacency matrix, which takes O(|V|3). Note that for
both of our CAGCN and UltraGCN, we can apply Strassens’s Algo-

rithm to further reduce the O(|V|3) to O(|V|2.8) for computing

the power of adjacency matrix.

B.4 Graph Isomorphism
We review the concepts of subtree/subgraph-isomorphism [43].

Definition 3. Subtree-isomporphism: S𝑢 and S𝑖 are subtree-

isomorphic, denoted as S𝑢 �𝑠𝑢𝑏𝑡𝑟𝑒𝑒 S𝑖 , if there exists a bijective
mapping ℎ : Ñ1

𝑢 → Ñ1

𝑖
such that ℎ(𝑢) = 𝑖 and ∀𝑣 ∈ Ñ1

𝑢 , ℎ(𝑣) =

𝑗, e𝑙𝑣 = e𝑙
𝑗
.

Definition 4. Subgraph-isomporphism:S𝑢 andS𝑖 are subgraph-
isomorphic, denoted as S𝑢 �𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ S𝑖 , if there exists a bijective
mapping ℎ : Ñ1

𝑢 → Ñ1

𝑖
such that ℎ(𝑢) = 𝑖 and ∀𝑣1, 𝑣2 ∈ Ñ1

𝑢 , 𝑒𝑣1𝑣2 ∈
ES𝑢

𝑖 𝑓 𝑓 𝑒ℎ (𝑣1)ℎ (𝑣2) ∈ ES𝑖
and e𝑙𝑣1 = e𝑙

ℎ (𝑣1) , e
𝑙
𝑣2

= e𝑙
ℎ (𝑣2) .

Corresponding to the backward(⇐=) proof of Theorem 2, here

we show two of such graphs S𝑢 ,S′
𝑢 , which are subgraph isomor-

phic but non-bipartite-subgraph-isomorphic. Assuming 𝑢 and 𝑢 ′

have exactly the same neighborhood feature vectors e, then directly

https://github.com/xue-pai/UltraGCN
https://github.com/wenqifan03/gtn-sigir2022

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, May 1–5, 2023, Austin, TX, USA

propagating according to 1-WL or even considering node degree

as the edge weight as GCN [13] can still end up with the same

propagated feature for 𝑢 and 𝑢 ′. However, if we leverage JC to

calculate CIR as introduced in Appendix A.1, then we would end

up with {(𝑑𝑢𝑑 𝑗1)−0.5e, (𝑑𝑢𝑑 𝑗2)−0.5e, (𝑑𝑢𝑑 𝑗3)−0.5e} ≠ {(𝑑−0.5
𝑢′ 𝑑−0.5

𝑗 ′
1

+
˜

𝚽𝑢′ 𝑗 ′
1

)e, (𝑑−0.5
𝑢′ 𝑑−0.5

𝑗 ′
2

+ ˜

𝚽𝑢′ 𝑗 ′
2

)e, (𝑑−0.5
𝑢′ 𝑑−0.5

𝑗 ′
3

+ ˜

𝚽𝑢′ 𝑗 ′
3

)e}. Since 𝑔 is in-
jective by Lemma 1, CAGCN would yield two different embeddings

for 𝑢 and 𝑢 ′.

Figure 11: An example showing two neighborhood subgraph
S𝑢 ,S𝑢′ that are subgraph-isomorphic but not bipartite-
subgraph-isomorphic.

B.5 Efficiency Comparison
Here we use exactly the same setting introduced in Section 4.3 and

keep track the performance/training time per 5 epochs for Gowalla,

Yelp2018, Ml-1M, and Loseit in Figure 12. Clearly, CAGCN* achieves

extremely higher performance in significantly less time because the

collaboration-aware graph convolution leverages more beneficial

collaborations from neighborhoods. Specifically, in Figure 12(c), we

observe the slower performance increase of CAGCN* and Light-

GCN on Ml-1M. We ascribe this to the higher density of Ml-1M

as in Table 2 that leads to so much noisy neighboring information.

One future direction could be to leverage the CIR to prune the

graph of these noisy connections in an iterative fashion as either a

preprocessing step or even used throughout training when paired

with an attention mechanism (although the latter would come at a

significantly longer training time).

WWW ’23, May 1–5, 2023, Austin, TX, USA Wang, et al.

Figure 12: Comparing the training efficiency of each model under R@20 and N@20.

	Abstract
	1 Introduction
	2 Analysis on Collaborative Effect
	2.1 How does message-passing capture collaborative effect?
	2.2 When is the captured collaborative effect beneficial to users' ranking?

	3 Collaboration-Aware Graph Convolutional Networks
	3.1 Collaboration-Aware Graph Convolution
	3.2 Model Architecture and Complexity

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison
	4.3 Efficiency Comparison
	4.4 Further Probe

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Graph Topological Metrics for CIR
	A.2 Derivation of Eq. (4)
	A.3 Complexity Comparison and Analysis
	A.4 Experimental Setting
	A.5 Additional Experiments

	B Supplementary
	B.1 Hyperparamters
	B.2 Performance Interpretation
	B.3 Thorough Complexity Analysis
	B.4 Graph Isomorphism
	B.5 Efficiency Comparison

