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ABSTRACT
With the rapid development of Internet of Things technologies, the
next generation traffic monitoring infrastructures are connected
via the web, to aid traffic data collection and intelligent traffic
management. One of the most important tasks in traffic is anom-
aly detection, since abnormal drivers can reduce traffic efficiency
and cause safety issues. This work focuses on detecting abnormal
driving behaviors from trajectories produced by highway video
surveillance systems.Most of the current abnormal driving behavior
detection methods focus on a limited category of abnormal behav-
iors that deal with a single vehicle without considering vehicular
interactions. In this work, we consider the problem of detecting
a variety of socially abnormal driving behaviors, i.e., behaviors
that do not conform to the behavior of other nearby drivers. This
task is complicated by the variety of vehicular interactions and
the spatial-temporal varying nature of highway traffic. To solve
this problem, we propose an autoencoder with a Recurrent Graph
Attention Network that can capture the highway driving behaviors
contextualized on the surrounding cars, and detect anomalies that
deviate from learned patterns. Our model is scalable to large free-
ways with thousands of cars. Experiments on data generated from
traffic simulation software show that our model is the only one that
can spot the exact vehicle conducting socially abnormal behaviors,
among the state-of-the-art anomaly detection models. We further
show the performance on real world HighD traffic dataset, where
our model detects vehicles that violate the local driving norms.
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1 INTRODUCTION
1.1 Motivation and challenges
Nowadays, the development of Internet of Things (IoT) technologies
has greatly advanced intelligent monitoring and management of
urban transportation systems. Sensor networks including highway
surveillance cameras and radar detectors, combined with Web of
Things (WoT) technologies, have enabled transportation authorities
to intelligently monitor traffic systems at scales and resolutions
previously out of reach [17, 43, 44]. One of the emerging tasks
in intelligent traffic management is anomaly detection, since ab-
normal drivers could have adversarial impact on the smoothness
of traffic stream, or even pose safety concerns. Yet it is infeasible
for human operators to manually inspect and analyze all of this
data, given the now massive amount of data these systems can
generate. Consequently, there is need to spot the anomalies from
terabytes of data and highlight the scenes that need further human
inspection. In this work, we tackle the task of detecting abnormal
driving behaviors, from trajectories produced by IoT highway video
surveillance systems.

The existing approaches to vehicular anomaly detection mainly
fall into two categories. The first set of approaches [4, 9, 26, 41, 52]
focus on detecting severe events that cause vehicles to stop, and turn
the problem into detecting stalled cars via computer vision from
surveillance videos. The second set of approaches [3, 16, 31, 34]
focus on single-car abnormal driving behaviors, such as speeding
and abrupt braking. Methods ranging from thresholding [8, 15] to
machine learning [31, 32, 34] are applied on data obtained from a
single car, e.g. from on-board sensors and GPS devices.

However, the above approaches only cover a subset of abnormal
driving behaviors and treat cars in isolation from each other. Vehi-
cles constantly interact with their surroundings, and traffic context
is needed for anomaly detection. For example, a car at a constant
speed of 50 mph might be perfectly normal, yet a car at 50 mph
on the inner most lane of highway is blocking all the other cars
driving at 65 mph or above, and should be considered an anomaly
on highway. As another example, abrupt braking might be consid-
ered abnormal, but if the vehicle is braking because its front car is
stalled, then we should detect the front car as abnormal, whereas
the braking car is doing what is expected. Our task is to detect such
socially abnormal behaviors that do not conform to the commonly
accepted and observed social norms, by developing a contextual
understanding of vehicle interactions.
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Moreover, most of the existing methods are rule-based [8, 15]
or supervised-learning method [16, 34], and can only detect pre-
defined types of anomalies such as stalled and speeding cars. Yet
vehicles can behave anomalously in unexpected ways, and building
a comprehensive set of rules that includes every possible occasion
could be hard. Our goal is to build a model that can identify a variety
of anomalies with unsupervised learning.

Graph neural networks (GNN) have seen rapid development in
recent years [23, 46, 49, 50], showing great advantage in modeling
the complex relationships in graph data. By representing vehicles as
nodes and their relationships as edges, interactions with neighbors
can be modeled via a GNN. Two challenges exist in developing a
GNN for detecting anomalous driving behaviors. First, given the
spatial-temporally varying nature of trajectories, we need to deal
with dynamic graphs. This is a nontrivial problem as compared
to anomaly detection on only a static graph, or only considering
time-varying signals. Second, we need to take stochasticity into
consideration, which is intrinsic in driving behaviors. Under a par-
ticular context, there could be a range of acceptable behaviors that
should all be considered normal. For example, a car can conduct
lane changing from time to time, or have some variation in speed. A
deterministic model that fails to capture such normal stochasticity
would mislabel every lane-changing car as an anomaly.

1.2 Our approach
To detect socially abnormal behaviors on large scale trajectory
data while addressing the aforementioned challenges, we develop
a model for Detecting Socially Abnormal Behaviors (DSAB) in high-
way driving via Recurrent Graph Attention Autoencoder. Graph
attention networks combined with recurrent neural networks is
used to capture the spatial-temporal pattern of vehicle trajectories,
while dynamically taking each vehicle’s neighbors into considera-
tion based on vehicle states. To facilitate scalability while capturing
anomalous driving behaviors occurring over longer periods of time,
we sample the trajectories over a relatively long-horizon and coarse-
grid time window. We further use a sparse graph where the vehicles
are only connected to close neighbors to reduce computation. An
autoencoder structure is used for anomaly detection, which can
encode and decode normal data well. To address the stochasticity
in driving behaviors, we reconstruct the probabilistic distribution
of the trajectories in decoding process. Samples with small recon-
struction probabilities are marked as anomalies.

With these designs, our model can detect the socialy abnormal
driving behaviors, and is scalable to thousands of cars over 5 miles
of highway. We show the effectiveness of our model on both simu-
lation and real-world data. First, we generate large-scale trajectory
data with ground-truth anomaly labels, via a microscopic traffic
simulator, to quantitatively evaluate the performance. Compared
with the existing state-of-the-art methods, our model is the only one
that can detect the exact vehicle with abnormal behavior, whereas
the rest models can only detect anomalous scenes We also apply
our method on the real-world highD trajectory dataset [24], where
our model detects vehicles that violate the local driving norms.

To summarize, the contribution of our works is as follows:

• We propose a new problem of detecting the exact anomalous
vehicles that violate the social interaction norms in highway

driving, and develop a model to solve it, achieving state of
the art performance.

• We develop a DSAB model based on Recurrent Graph Atten-
tion Networks. It well captures the spatial-temporal trajec-
tory dynamics, while considering both the vehicular interac-
tions and the stocasticity in driving behaviors.

• We conduct extensive experiments on both simulation and
real-world data sets, and show the ability of our model to
scale to large highway monitoring systems with thousands
of vehicles, and detect a variety of abnormal behaviors.

2 RELATEDWORK
Trajectory Modeling. The majority of trajectory modeling work
focuses on the prediction of future trajectories for humans or vehi-
cles, and in this line, modeling the interaction between the agents is
gaining interest. To aggregate information across agents, a pooling
mechanism is used in the Social LSTM [2] and the Social GAN [18],
while an attention mechanism is used in SoPhie [36], and scene con-
text fusion via convolutional neural network is used in Desire [25].
With recent development of graph convolutional networks, works
including [21, 33, 47] model the agents as nodes and their rela-
tionships as edges, and develop spatio-temporal GNN to learn the
dynamics.
Anomaly detection. Anomaly detection has been an important
task in transportation. Unexpected autonomous driving condition
detection is studied in [39, 40]. Extreme event detection in ur-
ban traffic is studied in [19, 20]. Our work detects anomalies on
graphs, and a comprehensive survey on graph anomaly detection
can be found in [30]. Common detection methods on graphs in-
clude autoencoder-based methods [5, 14], generative adversarial
learning [13], and contrastive learning [53]. However, most of
the existing works are on static graphs, whereas we need to deal
with dynamic graphs, adding the temporal dimension. The exist-
ing methods for dynamic graph anomaly detection have different
problem settings compared to ours. Specifically, NetWalk [54] and
TADDY [29] deal with unattributed graphs with no node or edge
features; AddGraph [55] and StrGNN [7] detect anomalous edges.

The most relevant work with ours is STGAE [51], where a spatio-
temporal graph autoencoder is combined with kernel density es-
timation (KDE) to detect abnormal driving behaviors. Yet while
STGAE works well in experiments with only two vehicles, the time
complexity of KDE is too high for detection in large numbers of
vehicles. Moreover, STGAE tackles a different task of detecting the
existence of anomalies among several vehicles over a stretch of road
over a specific time, which we term as abnormal scene detection.
Compared with our task of detecting the specific abnormal vehi-
cles, abnormal scene detection is an easier task, since an abnormal
vehicle can have subsequent influence on its neighbor vehicles. For
example, a slow or stalled car can cause its following cars to break
abruptly or change lanes, which could be detected as abnormal,
but should have been considered normal when looking for the root
cause. We demonstrate in our experiments that while most baseline
methods can work well on abnormal scene detection, they achieve
poor performance on abnormal vehicle detection.
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3 METHOD
In this section, we formulate the problem mathematically, then
describe the proposed DSAB model for anomaly detection on high-
ways. In an overview, we first construct the vehicle trajectories
as a spatial-temporal dynamic graph. Then we build an autoen-
coder with an encoder to compress the vehicle time series in low-
dimensional vectors, and a decoder to reconstruct the probabilistic
distribution of original input trajectories. At test time, we use the re-
construction probability as a measurement of anomalous behavior.
The overview of the model is shown in Fig 1.

We further make the following considerations to best accommo-
date large scale anomaly detection on highway driving. Unlike most
works [2, 25, 33] that works on short-term fine-grained trajectories,
e.g., 3-10 Hz over 1-5s, we choose coarser-grained sampling with
larger time window. In addition to reducing the amount of data
needed to be processed, it also captures the anomalous driving be-
haviors that are expected to occur over longer periods of time. E.g., a
vehicle that is speeding or tailgating will likely persist for more than
a few seconds. While computationally advantageous, sampling at a
more coarse timescale requires a different model to be used for lane
changing. Specifically, the continuous bi-variate Gaussian distribu-
tion, which is commonly used in trajectory modeling [2, 33, 47],
is no longer suitable to capture a discrete lane-changing motion.
Instead, we model longitudinal motions as Gaussian distribution,
and lateral lane location as categorical distribution.

3.1 Problem formulation
Our model input is the observations of a set of 𝑁 vehicles on a
highway over time window T , where 𝑁 can vary for different
time windows. For each vehicle 𝑖 at time 𝑡 ∈ T , the observation
o𝑖𝑡 = [𝑥𝑖𝑡 , 𝑦𝑖𝑡 , 𝑙𝑖𝑡 , 𝑣𝑖𝑡 , 𝑎𝑖𝑡 ] includes longitudinal position 𝑥𝑖𝑡 , lateral posi-
tion 𝑦𝑖𝑡 , driving lane id 𝑙

𝑖
𝑡 , longitudinal speed 𝑣

𝑖
𝑡 , and longitudinal

acceleration 𝑎𝑖𝑡 .
Given the vehicle observations o𝑖𝑡 , ∀𝑡 ∈ T , our major goal is to

detect the vehicles that have abnormal behavior during the time
window T . Additionally, we also report the performance of de-
tecting abnormal scenes - dividing the entire highway into short
stretches of length 𝛿𝑠 , a scene contains all cars on a stretchS during
T , and is labeled as abnormal if it contains any abnormal cars.

3.2 Graph construction for vehicle trajectories
We first construct a dynamic graph for the vehicle trajectories
during timewindowT , denoted as𝐺 (T ) = {(V, E1) , (V, E2) , . . . ,
(V, E𝑇 )} for discrete time steps 𝑡 ∈ T = {1, 2, . . . ,𝑇 }. The node set
V includes all the vehicles on highway during the time window T .
The number of nodes 𝑁 = |V| is fixed for the graph of a specific
time window, but can vary for graphs of different time windows1
At each time step 𝑡 , the vehicle observations are summarized into a
raw observation matrix O𝑡 ∈ R𝑁×𝑑 . O𝑡 includes the observation
o𝑖𝑡 = [𝑥𝑖𝑡 , 𝑦𝑖𝑡 , 𝑙𝑖𝑡 , 𝑣𝑖𝑡 , 𝑎𝑖𝑡 ] for all vehicles 𝑉𝑖 ∈ V . There is an edge
𝑒
𝑖 𝑗
𝑡 ∈ E𝑡 if vehicle 𝑖 and 𝑗 are close at time 𝑡 , that is, the two
vehicles are less than 𝛿𝑥 feet apart longitudinally, and less than
𝛿𝑙 lanes apart laterally. This is based on the consideration that in

1We explain in implementation details in Section 4.3 how we deal with vehicles that
are not present in the highway during the entire time window.
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Figure 1: DSAB model overview. We construct a spatial-
temporal dynamic graph to represent vehicles. An encoder
compresses the dynamic graph into a low-dimensional en-
code vector, and a decoder reconstructs the input vehi-
cle states, based on Recurrent Graph Attention Network
(RGAT). In the encoder, X𝑡 , E𝑡 denotes the node feature ma-
trix and edge set respectively. In the decoder, X̂𝑡 is the node
reconstructionmatrix, ET is the union of all input edge sets.

reality, the vehicles are most influenced by their close neighborhood
vehicles. Thus we limit the neighbor range to reduce storage and
computational requirements.

3.3 Encoder
In this subsection, we explain howwe use Recurrent Graph Attention
Network (RGAT) to encode the spatial-temporal vehicle trajectories.
We adopt an RNNwhich has proven to workwell on time series data.
Furthermore, to consider the dynamic influence of each vehicle’s
neighbors, we integrate the graph attention network with RNN.

Specifically, we adopt the GRU [10, 11] variant of RNN, which is
capable of learning long range dependencies in time via a gating
mechanism. Furthermore, similar to the practice of [27, 38], we
substitute the matrix multiplications in the original GRUwith graph
convolutions denoted as ∗G , to operate on the input and hidden
states and capture neighborhood interactions:

z𝑡 = 𝜎 (W𝑥𝑧 ∗G X𝑡 +Wℎ𝑧 ∗G H𝑡−1 + b𝑧),
r𝑡 = 𝜎 (W𝑥𝑟 ∗G X𝑡 +Wℎ𝑟 ∗G H𝑡−1 + b𝑟 ),
H̃𝑡 = tanh(W𝑥ℎ ∗G X𝑡 +Wℎℎ ∗G (r𝑡 ⊙ H𝑡−1 + bℎ)),
H𝑡 = z𝑡 ⊙ H𝑡−1 + (1 − z𝑡 ) ⊙ H̃𝑡 ,

(1)

whereH𝑡 ∈ R𝑁×𝑑ℎ is the hidden state, z𝑡 ∈ R𝑁×𝑑ℎ and r𝑡 ∈ R𝑁×𝑑ℎ

are the update gate and the reset gate respectively, with hidden
dimension 𝑑ℎ . The weights W𝑥𝑧 , Wℎ𝑧 , W𝑥𝑟 , Wℎ𝑟 , W𝑥ℎ , Wℎℎ and
biases b𝑧 , b𝑟 , bℎ are trainable parameters. 𝜎 is the sigmoid function,
and ⊙ is element-wise multiplication. X𝑡 ∈ R𝑁×𝑑𝑓 is the input
at time step 𝑡 , derived from the raw observation input O𝑡 , and
consists of numerical observations of position, speed, and acceler-
ation [𝑥𝑡 , 𝑦𝑡 , 𝑣𝑡 , 𝑎𝑡 ] ∈ R𝑁×4 , concatenated with lane embeddings
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hlane𝑡 ∈ R𝑁×𝑑𝑙 for categorical observations of driving lane IDs l𝑡 .
Thus, the input feature dimension 𝑑𝑓 = 4 +𝑑𝑙 . Each driving lane ID
is mapped to a corresponding embedding vector with dimension 𝑑𝑙 .
The entries of the lane embedding vectors are initialized at random
and learned during training.

In terms of the graph convolution operator ∗G , instead of the
Chebyshev spectral graph convolutional operator [12] adopted
by [38], which uses pre-defined edge weights, we adopt graph
convolutions based on graph attention mechanism [6, 46], which
determines the relevance of the vehicle’s neighbors dynamically
based on the vehicle states. Next we introduce the graph attention
based convolution W ∗G X𝑡 operated on the input observation
matrix X𝑡 , whereasW ∗G H𝑡 follows the same process on hidden
states H𝑡 with corresponding weights. Denoting x𝑖𝑡 ∈ R𝑑𝑓 as the
entry for vehicle 𝑖 in X𝑡 , N𝑖

𝑡 as the set of neighbors of node 𝑖 at 𝑡 ,
W ∗G X𝑡 works as follows:

x′𝑖𝑡 = W ∗G X𝑡 B 𝛼𝑖,𝑖Wx𝑖𝑡 +
∑︁
𝑗 ∈N𝑖

𝑡

𝛼𝑖, 𝑗Wx𝑗𝑡 , (2)

where x′𝑖𝑡 ∈ R𝑑ℎ is the output node embedding,W ∈ R𝑑ℎ×𝑑𝑓 is the
weight matrix. The term 𝛼𝑖, 𝑗 is the attention score calculated as:

𝑒𝑖, 𝑗 =

(
a⊤LeakyReLU

(
[Wx𝑖𝑡 ∥Wx𝑗𝑡 ]

))
,

𝛼𝑖, 𝑗 = softmax(𝑒𝑖, 𝑗 ) =
exp(𝑒𝑖, 𝑗 )∑

𝑘∈N𝑖
𝑡
exp(𝑒𝑖,𝑘 )

,
(3)

where ∥ is the concatenate operator, and a ∈ R2𝑑ℎ is a train-
able weight vector. In (2) and (3), first every node input feature
goes through a linear transformation parameterized byW. Then,
the attention coefficients 𝑒𝑖, 𝑗 are calculated by concatenating the
transformed node features, followed by a non-linear activation
(LeakyReLU), and a linear transformation with parameter a. Then,
for each node, the attention coefficients of all its neighbors are
normalized by a softmax operator to reach the attention scores
𝛼𝑖, 𝑗 . Finally, the output node embedding is calculated as the linear
combination of its neighbor transformed feature vectors, weighted
by the attention scores.

Compared with works [33, 51] that pre-define edge weights as a
function of physical distances, the attention mechanism we use has
more expressive power, and can comprehensively determine the
neighbor relevance based on observation information. Furthermore,
the real influence of vehicles in front of and behind an ego car
is asymmetric (e.g., you must slow down immediately for slow-
moving cars in front of you, but not for slow cars behind you), and
the attention formulation in (3) can achieve such asymmetry. In
comparison, when using a function of distance as edge weights [33,
51], the same importance is assigned to cars that are close to a
vehicle, regardless if they are in front or behind the ego vehicle.

Moreover, multi-head attention is used to attend to different
aspects of the neighborhood information, similar to [45, 46]. Specif-
ically, 𝐾 independent heads is used following (2), and the final
results of the heads are averaged:

x′𝑖𝑡 =
1
𝐾

𝐾∑︁
𝑘=1

©«𝛼𝑘𝑖,𝑖W𝑘x𝑖𝑡 +
∑︁
𝑗 ∈N𝑖

𝑡

𝛼𝑘𝑖,𝑗W
𝑘x𝑗𝑡

ª®®¬ . (4)

The hidden states for all vehicles are updated at every time step
by (1), (2) and (3). The final hidden state H𝑇 is used as the encoded
vector embedding.

3.4 Decoder
The decoder works in the same way as the encoder, using the
RGAT structure. To avoid the computation burden of re-calculating
the edge set thresholded by the reconstructed vehicle position at
every step, we use the union of all edge sets at encoding time steps,
ET = E1 ∪ E2 ∪ · · · ∪ E𝑇 . The edge set only limits the range of
neighbors each node attends to, while the importance of neighbors
are calculated dynamically with attention mechanism. The decoded
hidden state Ĥ𝑡 ∈ R𝑁×𝑑ℎ further goes through a fully connected
layer to produce the output vehicle state reconstruction X̂𝑡 . The
details of X̂𝑡 will be explained in Section 3.5. Then, the output X̂𝑡 is
used as input for the next recurrent step. We decode the time series
from time 𝑇 backwards, since the encoder vector is most relevant
to the states at time 𝑇 , which is most recently encoded. The initial
input into the decoder GAT-RNN is the vehicle states at time 𝑇 .

3.5 Loss function
For each vehicle 𝑖 at time 𝑡 , we assume its longitudinal position 𝑥𝑖𝑡 ,
speed 𝑣𝑖𝑡 , and acceleration 𝑎𝑖𝑡 each follows an univariate Gauss-
ian distribution. That is, 𝑥𝑖𝑡 ∼ N

(
𝜇𝑥𝑖𝑡

, 𝜎𝑥𝑖𝑡

)
, 𝑣𝑖𝑡 ∼ N

(
𝜇𝑣𝑖𝑡
, 𝜎𝑣𝑖𝑡

)
,

𝑎𝑖𝑡 ∼ N
(
𝜇𝑎𝑖𝑡

, 𝜎𝑎𝑖𝑡

)
. Further, we assume the lateral lane position 𝑙𝑖𝑡 is

a discrete choice among 𝐿 lanes, with an underlying categorical dis-
tribution

{
𝑝1𝑖𝑡

, . . . , 𝑝𝐿𝑖𝑡

}
. The Gaussian distribution and categorical

distribution parameters are estimated by decoder output X̂. That
is, x̂𝑖𝑡 =

[
𝜇𝑥𝑖𝑡

, �̂�𝑥𝑖𝑡
, 𝜇𝑣𝑖𝑡

, �̂�𝑣𝑖𝑡
, 𝜇𝑎𝑖𝑡

, �̂�𝑎𝑖𝑡
, 𝑝1𝑖𝑡

, . . . , 𝑝𝐿𝑖𝑡

]
estimates the mean

and variance of position, speed, and acceleration, as well as the
probability of being in each lane.

Denoting the estimated probability density function of posi-
tion, speed, and acceleration as 𝑞

(
𝑥𝑖𝑡 |𝜇𝑥𝑖𝑡 , �̂�𝑥𝑖𝑡

)
, 𝑞

(
𝑣𝑖𝑡 |𝜇𝑣𝑖𝑡 , �̂�𝑣𝑖𝑡

)
, and

𝑞

(
𝑎𝑖𝑡 |𝜇𝑎𝑖𝑡 , �̂�𝑎𝑖𝑡

)
respectively, we aim to minimize the negative log-

likelihoods as follows:

L𝑥𝑖𝑡 = −log
(
𝑞

(
𝑥𝑖𝑡 |𝜇𝑥𝑖𝑡 , �̂�𝑥𝑖𝑡

))
,

L𝑣𝑖𝑡 = −log
(
𝑞

(
𝑣𝑖𝑡 |𝜇𝑣𝑖𝑡 , �̂�𝑣𝑖𝑡

))
,

L𝑎𝑖𝑡 = −log
(
𝑞

(
𝑎𝑖𝑡 |𝜇𝑎𝑖𝑡 , �̂�𝑎𝑖𝑡

))
.

(5)

As for lane classification, we aim to minimize the cross entropy
loss as follows:

L𝑙𝑖𝑡 = −
𝐿∑︁
𝑙=1

1𝑙𝑖𝑡
log

(
𝑝𝑙𝑖𝑡

)
, (6)

where 1𝑙𝑖𝑡 = 1 if vehicle 𝑖 is in lane 𝑙 at time t and 0 otherwise. The
final loss is a weighted sum of the negative log-likelihood losses
and the cross entropy loss across all agents and all times:
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L𝑖𝑡 = 𝜆𝑥L𝑥𝑖𝑡 + 𝜆𝑣L𝑣𝑖𝑡 + 𝜆𝑎L𝑎𝑖𝑡 + 𝜆𝑙L𝑙𝑖𝑡 ,

L =

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

L𝑖𝑡 ,
(7)

The weights are set as 𝜆𝑥 = 1 , 𝜆𝑣 = 1 , 𝜆𝑎 = 2 and 𝜆𝑙 = 2 empirically.

3.6 Anomaly detection
For abnormal vehicle detection, the anomaly score for vehicle 𝑖
over time window T is calculated by averaging the loss over all
time steps:

𝛼𝑖T =
1
𝑇

𝑇∑︁
𝑡=1

L𝑖𝑡 , (8)

where 𝑇 is the length of time window T . For abnormal scene de-
tection, we aggregate the loss of all the vehicles that appear in the
stretch S during T as the stretch anomaly score:

𝛼ST = max(L𝑖𝑡 ),∀(𝑖, 𝑡) that 𝑥𝑖𝑡 ∈ S. (9)

The maximum aggregation is used instead of the mean for abnormal
scene detection, so that the score is more sensitive to the existence
of anomalies, and not averaged out by normal vehicles. Appendix C
conducts a detailed comparison between maximizing and averaging.

4 EXPERIMENTS
In this section, we use two data sources to evaluate the performance
of our method. First, simulation data is used to quantitatively com-
pare the performance of our method with the baselines, where we
have the ground truth anomaly labels. Second, highD dataset [24]
is used to qualitatively show our method works on real-world tra-
jectories. The code is publicly available on GitHub2.

4.1 Datasets
The detailed information of the two datasets is as follows.

4.1.1 Simulation data. TransModeler is a microscopic traffic simu-
lator that generates vehicle trajectories mimicking human driving
behavior and interactions. In this work, we generate a set of record-
ings at 1Hz on a 5-mile stretch of a 4-lane highway. The recordings
have different traffic flows and vehicle type distribution to include
different traffic conditions and abnormal scenarios. Specifically, we
include the following scenarios:

• Normal traffic. A standard car following model, Modified
General Motors [1] is used, which has been demonstrated
to correlate well with field traffic data. The desired speed
of the vehicles follows a typical distribution found in real-
world traffic, with around 5% speeding vehicles and 5% slow
vehicles. We include both free flow and congested conditions
with varying traffic demands.

• Speeding. The abnormal speeding cars drive at least 15 mph
faster than the other vehicles when it is possible to do so.

• Slow. The abnormal slow cars drive at least 15 mph slower
than the other vehicles when it is possible to do so.

2https://github.com/yuehu9/DSAB-Detecting-Socially-Abnormal-Drving-Behaviors

• Tailgating. The tailgating vehicle’s headway is less than 0.5s
from the lead car. We simulate tailgating cars via a Constant
Time Gap car-following model, where drivers can keep a
constant desired headway from the leading vehicle [48].

• Stalled car. A vehicle randomly stops on the road for a period.
• Comprehensive scenario. We include all the above abnormal
scenarios, i.e., speeding, slow, tailgating and stalled vehi-
cles are all present in a single scenario, to comprehensively
evaluate model detection performance.

We include both common anomalies (e.g., speeding, tailgating
and stalled vehicles [3, 4, 31, 34]) as well as those that are not
commonly studied (e.g., slow driving). Slow driving can create
moving bottlenecks with adverse impacts on traffic, but are difficult
to identify using existing single-vehicle approaches, demonstrating
the importance of developing an interaction-based detector.

The detailed experimental settings and distributions can be found
in the Appendix. We adjust the percentages in each abnormal sce-
nario, so that the abnormal behaving cars consist of around 3%-5%
of total cars, randomly distributed on the road. The actual anom-
aly rate has some variation across different recordings because of
simulation randomness. A total of 180 min of normal traffic is used
for training. The recordings of speeding, slow, tailgating, stalled
car and comprehensive scenarios are used for testing, each lasting
10 min. The training data has 7,886 cars in total, producing 920,311
trajectories when segmented into 15s windows at 1s stride. The test-
ing sets together have a total of 5,067 cars and 630,718 trajectories.
Detailed statistics can be found in the Appendix.

We note that our training dataset is not perfectly clean, but
contains a small portion of abnormal data (e.g., speeding and slow
cars). This is intentionally done to simulate the real-world situation
where we may not have a clean labeled training set that is known
to be free of anomalous vehicles. Experiments excluding training
anomalies can be found in Appendix D, which shows similar results.

4.1.2 Real-world data. The HighD dataset [24] contains high accu-
racy vehicle trajectories extracted from video recordings captured
via unmanned aerial vehicles over various stretches of German
highways, each stretching approximately 1300 feet long. We select
a total of approximately 350 minutes of recordings on three-lane
highways as our training data, which covers both light and heavy
traffic conditions, with traffic flow varying from 1200 to 3600 ve-
hicles/lane/hour. Then, we test on an unseen 15-min recording
with a flow of 2300 vehicles/lane/hour. The training data has 42,106
cars in total, producing 459,187 trajectories when segmented into
10s windows at 1s stride. The testing sets together has 1,795 cars
and 21,840 trajectories. For the HighD data, we do not have the
ground truth anomaly labels. Thus, we qualitatively examine the
top anomalies detected by our model.

4.2 Baselines and Metrics
4.2.1 Baselines. We compare our method with simple heuristic
methods as well as state-of-the-art methods for anomaly detection
on trajectory data. The baselines include: i) Linear temporal inter-
polation (LTI) implemented by [51] that uses a linear interpolation
between the first and last position of the vehicle to reconstruct
the trajectory; ii) Constant Velocity Model (CVM) [37] that assumes
constant speed as recorded at the first observation time step to

https://github.com/yuehu9/DSAB-Detecting-Socially-Abnormal-Drving-Behaviors
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reconstruct the trajectory; iii) Robust tensor Recovery (RTR) [20]
model that captures spatial-temporal correlations via low-rank ten-
sor decomposition, and detects sparse outliers that deviates from
the normal patterns; iv) Seq2Seq model [42] that encodes and de-
codes the time series with two LSTM networks, and uses Mean
Square Error (MSE) as the reconstruction loss; v) Spatio-temporal
graph auto-encoder (STGAE) [51] that uses convolutional networks
temporally and graph convolutional networks spatially, and uses
bi-variate Gaussian reconstruction error to build autoencoder to
derive anomaly score3; vi) DSAB-biv, which is the variant of our
model, that uses the same RGAT structure, but uses the bi-variate
Gaussian loss as in [33, 51]. Each of the baseline methods produces
an anomaly score for the vehicles in each time step within a time
window, and the same process is used following Eq (8) and (9) to
calculate the vehicle and scene anomaly scores.

Out of all the baselines, Seq2Seq, RTR, CVM and LTI consider
only each vehicle’s own trajectory, and STGAE considers the re-
lationships between vehicles. The heuristic models CVM and LTI
are able to detect non-free-flow scenarios where the vehicle speed
changes dramatically. The tensor PCA can capture linear correla-
tions among trajectories, and the neural-network methods Seq2seq
and STGAE can further capture non-linear patterns.

4.2.2 Metrics. We follow the practice used in the anomaly detec-
tion works [13, 28, 35], and include the following standard metrics:
i) ROC-AUC score, which is widely used for anomaly detection. ii)
Average precision, which summarizes the precision-recall curve
into a single value. iii) Precision@k. In settings where one is only
able to e.g., manually verify a fixed number of anomalies, Preci-
sion@k measures the relevance of the samples we check.

4.3 Implementation details
The model setting for DSAB is as follows. For simulated data: For
graph construction, the distance threshold 𝛿𝑥 is 0.1 miles, and the
lane threshold 𝛿𝑙 = 1, i.e., vehicles only attend to its own and imme-
diate neighboring lanes within 0.1 miles upstream and downstream.
The window size 𝑇 is 15s, and sampling interval is 1s. The model
hidden size𝑑ℎ = 5, the number of attention heads𝐾 = 3. In training,
the model is trained for 500 epochs, with a batch size of 64. The
initial learning rate is 0.05, and decreases by half every 50 epochs.
Gradient clipping is used to avoid exploding gradients, with max
norm of 1. For abnormal scene detection, the stretch length 𝛿𝑠 is
set to 0.15 miles. For the highD data: The window size𝑇 is 10s. The
distance threshold 𝛿𝑥 is 0.2 mile. The batch size is set to 256. All
other configurations are the same as the simulation data above.

Our model requires a constant number of vehicles in a single
time window. For vehicles with incomplete trajectories, due to
vehicles entering or leaving the observed stretch, two approaches
can be used: i) discard the vehicles with incomplete trajectories; or
ii) linearly extrapolate the trajectories assuming constant velocity
dynamics, and thenmask the extrapolated part when calculating the
loss. The first approach is used for simulation data on long stretches
with a small portion of incomplete trajectories. the second approach

3We use the STGAE-biv variant from the paper, since the version with KDE is compu-
tationally too expensive. With 𝑛 trajectories in the training set, and𝑚 trajectories in
the testing set, the KDE complexity is𝑂 (𝑚𝑛) . The KDE did not complete given two
days of computation time.

Table 1: Abnormal vehicle detection performance on the test
set of comprehensive scenario, where all abnormal behav-
iors exist on the highway. Our model is the only one that
can identify anomalous cars in traffic.

Pre@100 Pre@200 Pre@500 Avg Pre AUC

LTI 0.21 0.205 0.210 0.093 0.623
CVM 0.15 0.140 0.142 0.089 0.617
RTR 0.16 0.190 0.228 0.109 0.598
Seq2seq 0.56 0.435 0.310 0.132 0.770
STGAE 0.18 0.180 0.178 0.093 0.641
DSAB-biv 0.15 0.150 0.114 0.062 0.655
DSAB (Ours) 0.82 0.775 0.726 0.381 0.900

Table 2: Abnormal scene detection performance.While iden-
tifying abnormal scene is an easier task than identifying spe-
cific abnormal cars, andmostmethod can performwell, ours
is still the best in performance, with an increase of 0.1 in
ROC-AUC score and average precision.

Pre@100 Pre@200 Pre@500 Avg Pre AUC

LTI 0.89 0.860 0.834 0.690 0.726
CVM 0.67 0.625 0.640 0.662 0.714
RTR 0.89 0.895 0.864 0.769 0.744
Seq2seq 0.87 0.870 0.860 0.742 0.745
STGAE 0.82 0.740 0.776 0.666 0.678
DSAB-biv 0.73 0.665 0.610 0.470 0.551
DSAB (Ours) 0.93 0.950 0.912 0.859 0.841

is used for real-world highD data with short stretches, and a large
fraction of incomplete trajectories.

4.4 Results and analysis
In this section, we quantitatively compare our method with the
baselines on simulation data. We also conduct ablation studies to
see the influence of each model component on performance.

4.4.1 Model comparison. We first benchmark the methods on the
test set of the comprehensive scenario, where all abnormal behav-
iors exist on the highway. The result for abnormal vehicle detection
is shown in Table 1. We can see that our model is the only one that
can identify the specific car that behaves abnormally in the traffic.
The precision scores at different k vales are constantly above 0.7 in
our method. For the other methods, the precision score are around
0.2 most of the time, and are never higher than 0.6. Our average
precision is also around 0.3 higher than the second best method.
The ROC-AUC score for our method is 0.9, which is more than 0.1
higher than the second best method. This shows that without con-
sideration of neighboring vehicles, Seq2Seq, RTR, CVM and LTI are
unable to detect the social anomalies. Meanwhile, although STGAE
and DSAB-biv both model the neighboring vehicle interactions via
graph neural networks, they use bi-viariate Gaussian trajectory
loss and cannot well capture the discrete lane-changing behaviors,
and have similarly poor results.
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Table 3: Abnormal car detection performance on each individual anomaly scenario. Ourmethod is the only one that can detect
slow and stalled car in traffic, and is also the best at detecting speeding cars.

slow speeding tailgating stalled

Pre@100 Avg Pre AUC Pre@100 Avg Pre AUC Pre@100 Avg Pre AUC Pre@100 Avg Pre AUC

LTI 0.00 0.023 0.443 0.82 0.512 0.877 0.02 0.161 0.835 0.00 0.030 0.010
CVM 0.01 0.023 0.432 0.67 0.472 0.871 0.06 0.177 0.840 0.00 0.030 0.010
RTR 0.00 0.030 0.466 0.61 0.365 0.655 0.08 0.102 0.400 0.00 0.046 0.410
Seq2seq 0.02 0.046 0.668 0.85 0.549 0.923 0.18 0.091 0.709 0.03 0.056 0.676
STGAE 0.01 0.048 0.573 0.83 0.335 0.712 0.01 0.055 0.491 0.00 0.025 0.454
DSAB-biv 0.00 0.025 0.465 0.29 0.092 0.600 0.05 0.043 0.436 0.13 0.066 0.696
DSAB (Ours) 0.97 0.246 0.841 1.00 0.907 0.995 0.33 0.148 0.747 0.98 0.148 0.762
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Figure 2: Influence of different parameters. Themodel benefits from havingmore than one attention head, and is not sensitive
to the number of heads and hidden dimensions otherwise. On spatio-temporal graph construction, when attention distance
threshhold equals zero, a car does not attend to any neighbor, and the performance significantly drops. Otherwise, the model
is not sensitive to the window size and sample frequency, allowing us flexibility to choose parameters.

We also report the performance of abnormal scene detection for
all method, shown in Table 2. We can see that the performance of all
methods have a significant improvement. This is because detecting
abnormal scenes is easier task than detecting the specific abnormal
vehicles. For example, a slow or stalled car can cause its following
cars to brake abruptly, which baseline models like CVM are able to
detect. Moreover, when aggregating a group of vehicles over space
and time, the abnormal rate is higher, and the methods work much
better on a balanced dataset. Nonetheless, our method is still the
best, with an increase of 0.1 in AUC score and average precision.

4.4.2 Performance on individual anomaly scenarios. Next, we inves-
tigate the model performance on each individual anomaly scenario.
The result is shown in Table 3. We can see that our method is the
only one that can detect slow and stalled cars in traffic, with Pre-
cision@100 score above 0.9, compared with scores constantly less
than 0.1 for other methods. While all methods perform relatively
well at detecting speeding cars, our method is the best, with an
improvement of 0.1 in Precision@100, and a ROC-AUC score near
1. Our method is relatively less effective in detecting tailgating cars,
yet the Precision@100 is still the highest among all methods, and
no method is constantly better than ours in every metric. We note
that baseline methods can detect tailgating cars, because they have
different car-following dynamics as described in section 4.1.

4.4.3 Ablation study. In this section, we examine the influence of
different components of the model, as well as model sensitivity to
the configurations of the spatio-temporal graph data.

First, we study the influence of the model parameters, with re-
sults shown in Fig 2a and 2b. The influence of number of attention
heads is shown in Fig 2a. We can see that the model benefits from
having more than one attention head, while being not sensitive
when the number of heads is larger than one. Meanwhile, Fig 2b
indicates that the model is not sensitive to the hidden dimension.
Thus we choose 5 as hidden dimension for a smaller model size.

Next, we study the influence of spatio-temporal graph parame-
ters, with results shown in Fig 2c, 2e and 2d. Spatially, the threshold
of attention distance determines how far away in distance one vehi-
cle attends to as its neighboring car. A threshold of zero means a car
do not attend to any neighbor, and consequently the spatial graph is
not used. We can see in Fig 2c that when the threshold equals zero,
the performance significantly drops by 0.3 in Precision@100. When
threshold is larger than 0.05 miles, the performance is not sensitive
to the threshold value. The result indicates that the neighboring
vehicles within 0.05 miles around the ego vehicle is the most impor-
tant. Temporally, we study the influence of the time window size
and the sample frequency. We first fix the sampling interval at 1s
and vary the window size from 2s to 20s, then fix the window size
at 15s and vary the sampling interval from 1s to 4s. Fig 2e and Fig 2d
show the results. We can see that the model performs best when
interval is less or equal to 3s, and is not sensitive to the window
size and sample frequency otherwise. This allows us flexibility to
choose a larger window size and coarser sampling frequency to aid
computational efficiency.
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4.5 Qualitative Results
In this section, we qualitatively show the performance of our model
on real-world HighD data. The traffic in this data has unique char-
acteristics, and our model is able to learn the norms and capture
the anomalies that deviates from the norm.

Specifically, the speed limit for German highways is very loose,
at least 75 mph, or no speed limits in some parts. And it is not
uncommon to observe speeds larger than 80 mph. Thus, speeding
is not ranked among the largest anomalies. On the other hand, the
typical traffic speed varies significantly by lane, as shown in Fig 3a.
From leftmost to rightmost lane, the average speed are 76, 69 and 56
mph respectively, calculated from training data. That is to say, the
faster the car, the more to the left the car tends to be. Accordingly,
the vehicle with much higher speed than its corresponding lane is
detected as abnormal, even though the speed is absolutely normal
when lanes are not considered. We manually inspect the vehicles
with top anomaly scores, and found them to be abnormal either be-
cause of aggressive driving with dramatic acceleration/deceleration,
or because of speed range violation with respect to the lane.

We show some of the top anomalies in Fig 3. Each line denotes
the trajectory of a single car, with a dot denoting the starting point
and triangle the end point. We add small perturbations laterally to
aid visualization. The speed, acceleration and vehicle anomaly score
at the corresponding time are shown. The reconstruction shows the
trajectories with the largest probability. Fig 3b shows the vehicle
with largest anomaly score. The abnormal vehicle 1 is cutting in
front of vehicle 2, while having dramatic deceleration, forcing the
other car to change lane as well. Fig 3c shows the vehicle with
second largest anomaly score. The abnormal vehicle 1 is driving
too fast with respect to the lane it is in – 20 mph larger than the
typical speed in rightmost lane. The reconstruction actually puts
vehicle 1 in the middle lane which has larger typical speed.

While we presented the top two anomalies as identified by DSAB,
with more examples in Appendix E, the result illustrates that the
method is applicable to real world datasets.

5 CONCLUSION
Advanced connectivity and sensing will continue to transform in-
telligent traffic management. In this work, we tackle an important
problem of abnormal driving behavior detection, using trajectories
produced by IoT highway video surveillance systems. Specifically
we detect the exact anomalous vehicles considering the vehicular
interaction with DSAB, an autoencoder based on Recurrent Graph
Attention Networks. The results demonstrate the method captures
the spatial-temporal trajectory dynamics, while considering both
the neighbor interactions and the stocasticity in driving behaviors.
Extensive experiments on both simulation and real-world data sets
show the ability of our model to scale to large highway monitor-
ing systems with thousands of vehicles, and detect a variety of
abnormal behaviors. The performance on identifying single vehicle
anomalies is state of the art, indicating potential to pinpoint specific
problematic vehicles in a large traffic stream.
Acknowledgments This work is supported by the National Sci-
ence Foundation (NSF) under Grant No. CIS-2033580 and the US-
DOT Dwight D. Eisenhower Fellowship program under Grant No.
693JJ322NF5201.
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(a) Normal traffic condition. The typical speed varies by lane. From leftmost
to rightmost lane, the average speed are 76, 69 and 56 mph respectively,
calculated from training data

(b) Vehicle with largest anomaly score. The abnormal vehicle 1 is cutting in
front of vehicle 2, while having dramatic deceleration, forcing vehicle 2 to
change lane as well.

(c) Vehicle with second largest anomaly score. The abnormal vehicle 1 is
driving too fast with respect to the lane it is in. The reconstruction actually
puts vehicle 1 in the middle lane which has larger typical speed.

Figure 3: Qualitative study of real-world HighD traffic data
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Table 4: Dataset statistics

Car count Trajectory count

Simulation

training 7,886 920,311
comprehensive 1,281 147,254
slow 636 75,809
speeding 583 65,685
tailgating 645 78,600
stalled 1,922 263,370

HighD training 42,106 459,187
Testing 1,795 21,840

A DATA DETAILS
We describe the detailed settings for simulation data, then provide
the data statistics for both simulation and highD data.

• Normal traffic. A standard car following model, Modified
General Motors [1] is used, which has been demonstrated to
correlate well with field traffic data. The desired speed of the
vehicles follows a typical distribution found in real-world
traffic, with the majority between 65-80 mph, only 5% above
85 mph and 5% below 60 mph. Recordings of varying traffic
demands from 500 to 1600 vehicles/lane/hour are included,
covering both free flow and congested conditions.

• Speeding scenario. We set 70% of the vehicles drive at a
desired speed of 65 mph, and 30% above 85 mph. The traffic
demand is 500 veh/l/hr.

• Slow scenario. We set 98% of the vehicles drive at a desired
speed of 65 mph, and 2% below 50 mph. The traffic demand
is 500 veh/l/hr.

• Tailgating scenario. We set 46.80% cars to follow a Constant
Time Gap model and only a proportion of them could be
tailgaters according to traffic conditions. The traffic demand
is 500 veh/l/hr.

• Stalled car scenario. We randomly select 15 cars, each stop-
ping for 5 minutes. The traffic demand is 1500 veh/l/hr.

• Comprehensive scenario. We set 89% of the vehicles drive
at a desired speed of 65 mph, 10% at 85 mph, and 1% at 50
mph. In addition, we set 46.80% cars following Constant Time
Gap model and only a proportion of them could be tailgaters
according to traffic condition. We set 2 cars to each stall for
3 min. The traffic demand is 1000 veh/l/hr.

Cars are labeled anomaly only when it is actually behaving
anomalously (e.g., when a car with desired speed of 85 mph can
only drive at 65 mph because of traffic conditions, it is not an
anomaly at the corresponding time).

Table 4 shows the statistics of car count, and the total trajectory
count when divided into 10-15s time windows with 1s stride. We
note that in simulation data, the traffic flow in stalled car and
comprehensive scenarios are higher, because we want to check if
we can detect the source anomaly car even if the stalled car causes
upstream congestion.

B DESCRIPTION OF METRICS
In this section, we describe the evaluation metrics.

i) area under the receiver operating characteristic curve (ROC-
AUC) score. The ROC curve plots the true positive rate (TPR) against
the false positive rate (FPR), and the ROC-AUC score calculates
the area under the ROC curve. An ROC-AUC score of 0.5 means
the model is not able to discriminate anomalies, and an ROC-AUC
score of 1 means perfect anomaly detection.

ii) Average precision, which summarizes the precision-recall
curve into a single value, and is calculated as the weighted mean of
previsions achieved at each threshold, the weight being the increase
in recall from the previous threshold.

iii) Precision@k, which calculates the percentage of true anomaly
among the top k samples scored by the models to be anomalies.

We note that for vehicle detection problem, since the anomaly
rate is only 3%-5%, severe data imbalance issue exists. It is shown
in [22] that in heavily imbalanced datasets, metrics like F1 score
downgrades exponentially with data skewness, thus we do not
include F1 metrics. Meanwhile, ROC-AUC score is less influenced
by data imbalance, but with a caveat that model with distinctive
performance could have very similar ROC-AUC score. Precision@k
shows howwell we rank anomalies over normal samples, and works
well on imbalanced datasets where our focus is on the relatively
rarely occurring anomalies.

C AGGREGATOR
We briefly describe the choice of loss aggregation over time and
vehicles in section 3.6. Averaging the losses is more conservative
than maximizing. For vehicle detection, since many abnormal be-
haviors persist for relatively long time periods over several seconds,
we choose to average over time. Maximization results in around
0.1 decrease in average precision. For scene detection, we choose
maximization to avoid abnormal vehicles being averaged out by nor-
mal vehicles. Averaging results in around 0.06 decrease in average
precision.

D ROBUSTNESS ANALYSIS
We briefly explore the model robustness to anomalies in training
data. As described in section 4.1, our training data contains a small
portion of anomalies, to simulate the real-world situation of not
having a perfectly clean normal dataset. To evaluate the influence
of training anomalies, we compare the performance with model
trained on clean training data. Table 5 shows the result. We can
see that the results are similar, with differences in scores all less
than 0.05. There is also no clear trend of one dataset better than
the other. The result shows the model is robust to small number of
anomalies in the training data.

E HIGHD ANOMALY DESCRIPTION
In this section, we provide more examples of the qualitative results
for top ranked anomalies in the HighD real-world data. We note
that during ranking, there might be samples with overlapping time
windows, and we eliminate the repetitions for diversity. The results
are shown in Fig 4 and Fig 5. Out of the top anomalies, most are
because of drastic deceleration, as well as a significant difference in
speed relative to the speed of the surrounding cars, or to the typical
speed of the corresponding lane it is in.
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Table 5: Influence of anomalies in the training data. The per-
formance of two training sets are comparable, with differ-
ences in scores all less than 0.05.

Training
data Pre@100 Pre@200 Avg Pre AUC

vehicle
detection

Clean 0.79 0.815 0.336 0.888
Polluted 0.82 0.775 0.381 0.900

scene
detection

Clean 0.97 0.965 0.852 0.834
Polluted 0.93 0.950 0.859 0.841

(a) Vehicle with 3rd largest anomaly score. The abnormal vehicle
(marked ∗) is having dramatic deceleration and drives signifi-
cantly slower than other cars in its lane.

(b) Vehicle with 4th largest anomaly score. The abnormal vehicle
(marked ∗) is having dramatic deceleration.

Figure 4: Additional qualitative study of real-world HighD
traffic data (Part1)

(a) Vehicle with 5th largest anomaly score. The abnormal vehicle
(marked ∗) is having dramatic deceleration.

(b) Vehicle with 6th largest anomaly score. The abnormal vehicle
(marked ∗) is having dramatic deceleration, while also driving too
slow with respect to the lane it is in, therefore reconstructed to
rightmost lane which has smaller typical speed.

Figure 5: Additional qualitative study of real-world HighD
traffic data (Part 2)
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